Up-cycling plastic waste into swellable super-sorbents
Environmental pollution caused by plastic waste and oil spills has emerged as a major concern in recent years. Consequently, there has been a growing interest in exploring innovative solutions to address these challenges. Herein, we report a method to upcycle polyolefins-based plastic waste by converting it into a bimodal superoleophilic sorbent using dissolution, spin-coating, and annealing techniques. The resulting sorbent possesses an extensive network of pores and cavities with a size range from 0.5 to 5 µm and 150–200 µm, respectively, with an average of 600 cavities per cm2. Each cavity can swell up to twenty times the thickness of the sorbent, exhibiting sponge-like behavior. The sorbent had an oil uptake capacity of 70–140 g/g, depending on the type of sorbate and dripping time. Moreover, the sorbent can be mechanically or manually squeezed to recover the sorbed oil. Our integrated methodology provides a promising approach to upcycling plastic waste as an abundant source of value-added materials.
Other Information
Published in: Journal of Hazardous Materials
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: http://dx.doi.org/10.1016/j.jhazmat.2023.131356
Funding
Open Access funding provided by the Qatar National Library
History
Language
- English
Publisher
ElsevierPublication Year
- 2023
License statement
This Item is licensed under the Creative Commons Attribution 4.0 International LicenseInstitution affiliated with
- Hamad Bin Khalifa University
- College of Science and Engineering - HBKU
- Qatar University
- Center for Advanced Materials - QU