Manara - Qatar Research Repository
Browse
1/1
2 files

Hypoglycemia-induced changes in complement pathways in type 2 diabetes

journal contribution
submitted on 2024-04-29, 11:51 and posted on 2024-04-29, 11:51 authored by Abu Saleh Md Moin, Manjula Nandakumar, Ilhame Diboun, Ahmed Al-Qaissi, Thozhukat Sathyapalan, Stephen L. Atkin, Alexandra E. Butler

Background and aims An association between hypoglycaemia and adverse cardiovascular events has been suggested from longitudinal and retrospective cohort studies. The complement pathway proteins in hypoglycemia are not well studied. Here, we hypothesized that these circulating proteins would be elevated in response to hypoglycemia in type 2 diabetes (T2D) through the inflammatory response. Methods A prospective, parallel study in T2D (n = 23) and controls (n = 23). Subjects underwent insulin-induced hypoglycemia with blood sampling at baseline, hypoglycemia and post-hypoglycemia; SOMAscan proteomic analysis of complement pathway-related proteins, cytokines and inflammatory proteins was undertaken. Results At baseline: Complement C2 (p < 0.05) and Factor B (p < 0.05) were elevated in T2D. At hypoglycemia: Complement C2 (p < 0.05) and Factor B (p < 0.01) remained elevated, whilst Factor I became elevated (p < 0.05) in T2D; Complement C4b became elevated in controls (p < 0.05). In the post-hypoglycemia follow up period, Complement C2, Factor B and Factor I remained elevated in T2D; in addition, Factor D, Factor H and mannose-binding protein C showed elevations in T2D, whilst properdin, complement C3b, Factor H-related protein 5, complement C1q and decay-accelerating factor (DAF) showed elevations in controls. Granger causality analysis showed that inflammatory proteins appeared to drive complement protein changes in T2D; conversely, in controls, complement proteins drove inflammatory protein changes. Conclusions Baseline elevations in C2 and Factor B indicate upregulation of the complement pathway in T2D. Changes in complement pathway-related protein levels in response to hypoglycemia suggest both intrinsic and alternative pathway activation at 2-h that appears driven by the underlying inflammation in T2D and could contribute to a cardiovascular event. ClinicalTrials.gov NCT03102801. Date of registration April 6, 2017, retrospectively registered. https://clinicaltrials.gov/ct2/show/NCT03102801?term=NCT03102801&draw=2&rank=1.

Other Information

Published in: Atherosclerosis Plus
License: http://creativecommons.org/licenses/by/4.0/
See article on publisher's website: https://dx.doi.org/10.1016/j.athplu.2021.11.002

History

Language

  • English

Publisher

Elsevier

Publication Year

  • 2021

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • Qatar Biomedical Research Institute - HBKU
  • Diabetes Research Center - QBRI

Usage metrics

    Qatar Biomedical Research Institute - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC