Manara - Qatar Research Repository
Browse
1/1
2 files

Complex I reductions in the nucleus basalis of Meynert in Lewy body dementia: the role of Lewy bodies

journal contribution
submitted on 2024-05-29, 08:12 and posted on 2024-05-29, 12:34 authored by Christopher Hatton, Amy Reeve, Nichola Zoe Lax, Alasdair Blain, Yi Shiau Ng, Omar El-Agnaf, Johannes Attems, John-Paul Taylor, Doug Turnbull, Daniel Erskine

Neurons of the nucleus basalis of Meynert (nbM) are vulnerable to Lewy body formation and neuronal loss, which is thought to underlie cognitive dysfunction in Lewy body dementia (LBD). There is continued debate about whether Lewy bodies exert a neurodegenerative effect by affecting mitochondria, or whether they represent a protective mechanism. Therefore, the present study sought to determine whether the nbM is subject to mitochondrial dysfunctional in LBD and the association of Lewy body formation with such changes. Post-mortem nbM tissue was stained for Complex I or IV and quantitated relative to porin with immunofluorescence using confocal microscopy of individual cells from LBD (303 neurons, 8 cases), control (362 neurons, 8 cases) and asymptomatic incidental LBD (iLBD) cases (99 neurons, 2 cases). Additionally, α-synuclein, tau and amyloid-β pathology were analysed using quantitative immunohistochemistry, and respiratory chain markers were compared in cells with Lewy bodies (N = 134) and unaffected cells (N = 272). The expression of Complex I normalised to mitochondrial mass was significantly lower in LBD compared to control and iLBD cases and this was unrelated to local neuropathological burdens but trended toward a relationship with neuronal loss. Furthermore, Complex I expression was higher in cells with Lewy bodies compared to adjacent cells without α-synuclein aggregates. These findings suggest that Complex I deficits in the nbM occur in symptomatic LBD cases and may relate to neuronal loss, but that contrary to the view that Lewy body formation underlies neuronal dysfunction and damage in LBD, Lewy bodies are associated with higher Complex I expression than neurons without Lewy bodies. One could speculate that Lewy bodies may provide a mechanism to encapsulate damaged mitochondria and/or α-synuclein oligomers, thus protecting neurons from their cytotoxic effects.

Other Information

Published in: Acta Neuropathologica Communications
License: https://creativecommons.org/licenses/by/4.0
See article on publisher's website: https://dx.doi.org/10.1186/s40478-020-00985-8

History

Language

  • English

Publisher

Springer Nature

Publication Year

  • 2020

License statement

This Item is licensed under the Creative Commons Attribution 4.0 International License.

Institution affiliated with

  • Hamad Bin Khalifa University
  • Qatar Biomedical Research Institute - HBKU
  • Neurological Disorders Research Center - QBRI

Usage metrics

    Qatar Biomedical Research Institute - HBKU

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC