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A B S T R A C T

Surgical skills proficiency lowers the incidence of adverse clinical outcomes during surgeries. Artificial intelli-
gence (AI) has been applied for surgical skills assessment, especially in the field of minimally invasive surgeries
(MIS). This paves the way for integrating AI for skills assessment in open surgeries as well. An overview of its
applications can inform the scientific community and facilitate further developments. In this scoping review, we
present the open surgeries and clinical settings where AI-based skill assessment has been applied, the kind of
surgical data acquired for the AI-based algorithms, and the types of AI-based models used for automated skills
assessment. A total of 40 articles were identified and included. Majority of the articles focused on macrosurgical
suturing (45 %, n = 18). Most of the studies acquired data by capturing surgeon’s hands (50 %, n = 20). About
35 % utilized deep learning algorithms, specifically convolutional neural networks (CNN) (n = 14). The
assessment input for the automation algorithms were predominantly hand movement. Around 37.5 % (n = 15) of
the studies assessed algorithm performance using classification accuracy. In the review, we compare conven-
tional methods such as statistical modeling and custom algorithms with the emerging AI-based approaches. We
also explore the utilization of object detection and temporal information for surgical skills assessment. We
highlight the progress in automated skills assessment during open surgery with advancements in sensor tech-
nology, and AI algorithms with high prediction accuracies. Further developments in data acquisition and pro-
cessing methods are essential to facilitate clinical implementation of such technologies.

1. Introduction

For a surgeon to be deemed competent, they must be proficient in
three main domains, namely, knowledge, skills, and attitudes
(Pakkasjärvi et al., 2024). A core aspect of surgical training focuses on
acquisition of technical skills that involve effective manipulation of
surgical instruments requiring fine psychomotor ability (Bell, 2009).
Technical skills largely consist of knot tying, suturing, and procedure
specific techniques. Suturing is an essential surgical skill which is the
basis for moving towards other advanced surgical procedures (Singh
et al., 2024). Other operative skills such as tactile and visual-spatial
awareness are also important. Such skills are acquired through experi-
ence by repeated practice (Bell, 2009). Inadequate training in surgical
skills can significantly compromise the quality and safety of patient care.
For example, insufficient suturing skills can result in tissue damage and
bleeding (Singh et al., 2024). Overall surgical skill levels have a

profound impact on clinical outcomes, with lower skill levels associated
with increased complications and mortality rates (Birkmeyer et al.,
2013). Therefore, ensuring proficiency in surgical skills through as-
sessments conducted by experienced on-site surgeons, based on estab-
lished guidelines, is crucial (Glossop et al., 2023; Jaffer et al., 2009).
Learning by doing, which is a fundamental part of surgical training,
occurs in simulation settings (such as virtual trainers, synthetic phan-
toms, animals, or cadavers) and in the operating room (Pakkasjärvi
et al., 2024). However, this process is challenged by the limited avail-
ability of experts to assess large cohorts of trainees (Shabir et al., 2021,
2022a; Shayan et al., 2023). Addressing this shortage is critical, as pa-
tient outcomes, including readmissions, are influenced by the technical
skill level of the operating surgeon (Birkmeyer et al., 2013).

A potential solution for enhancing surgical skill training lies with the
integration of objective skills assessment through automated systems
using data capturing devices and artificial intelligence (AI) based
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algorithms for surgical skills assessment (Melton, 2010). Automated
systems, utilizing methods such as machine learning (ML), deep learning
(DL), or statistical modeling (Ahmidi et al., 2015), have the potential to
deliver accurate assessments of surgical skills comparable to evaluations
conducted by expert surgeons (Titov et al., 2023). This has been
extensively explored in minimally invasive and robot-assisted surgeries,
where data capture is relatively straightforward due to the use of camera
scopes and robotic systems (Abdurahiman et al., 2022; Ismail Fawaz
et al., 2019; Khorasani et al., 2023). However, the application of auto-
mated skill assessment in open surgery remains limited, despite it rep-
resenting a significant portion of procedures performed worldwide
(Deng et al., 2021; Shaharan et al., 2017).

Studies have reported various data acquisition and analysis tech-
niques aimed at providing feedback during open surgery. In these
studies, different features are extracted from the operative field to
identify traits of skilled and unskilled surgical maneuvers (Lavanchy
et al., 2021). One of the pioneering applications in open surgery
involved the use of electromagnetic (EM) sensors to track the surgeon’s
hand motions (Datta et al., 2001). Subsequent studies have focused on
motion analysis of surgical instruments and operative tissue to deter-
mine surgical dexterity (Hamza et al., 2023; Jardine et al., 2015; Sun
et al., 2016). In this context, the overall surgical performance of a
participant can be assessed and summarized with labels such as nov-
ice/expert, pass/fail, or through a scoring system. Advancements in
research, development, and application of automated skills assessment
during open surgery require a comprehensive understanding of existing
technologies employed.

2. Literature review

2.1. Artificial intelligence for surgical education

Existing literature reviews explore general applications of AI in
surgical education (Bilgic et al., 2022; Kirubarajan et al., 2022),
including AI’s potential in curriculum development and instructional
material enhancement. While it is useful for educators and researchers
interested in applying AI for general surgical knowledge acquisition,
such reviews do not cover assessment of technical skills in real-time. An
extensive overview of ML models used in surgical phase detection,
which is the identification of high level activities in the procedure,
during minimally invasive surgery has been published (Garrow et al.,
2021). The survey does not cover skills assessment, and additionally,
implementations in minimally invasive surgery may not necessarily
apply to open surgery. A thorough examination of AI applications in
orthopedic surgery has also been presented (Geda et al., 2024). Never-
theless, assessment of surgeon’s skills was not the focus of the review.

2.2. Automated skills assessment during surgeries

Specific to surgical skills assessment (Kawka et al., 2022), reviewed
ML models for intraoperative video analysis (such as recognition of in-
strument, gesture, or anatomy) in minimally invasive surgery, while
another review focused on metrics for automated skills assessments
specifically for robot-assisted laparoscopic surgeries (Guerin et al.,
2022). The methods for skills assessment heavily rely on laparoscopic
videos and kinematic data from robotic systems. These types of data are
not applicable to open surgeries, and therefore, the findings of such
reviews cannot be generalized. A review on the use of objective
computer-aided technical skill evaluation (Vedula et al., 2017) did not
specifically address applications for open surgery. Systematic review
published on ML models (Lam et al., 2022) mainly focused on endo-
scopic, laparoscopic and robot-assisted surgeries. Other reviews of
automated methods (Levin et al., 2019) and deep neural networks
(Yanik et al., 2022) for surgical skills assessment did not explore solu-
tions to difficulties in data acquisition during open surgeries. Similarly
(Dick et al., 2024), focused on automated analysis of surgical videos, and

did not consider other data capture methods such as inertial measure-
ment units (IMU) or EM sensors. It is essential to investigate various data
acquisition solutions since skills assessment during open surgery is
largely based on surgeon’s hand motions, which is hard to capture in a
conventional operating room setting. Another systematic review pre-
sented Internet of Things (IoT) systems for surgical skills assessment
(Castillo-Segura et al., 2021), however, it did not examine the different
open surgeries and clinical settings they have been applied to. On the
other hand (Titov et al., 2023), reviewed ML models used in virtual
reality training, microsurgeries, and endoscopies. However, this review
was limited to neurosurgical procedures.

To the best of our knowledge, no comprehensive reviews on auto-
mated skills assessment have been conducted that specifically focus on
open surgeries. To address this gap, we conducted a systematic search of
scientific literature. Application of automated skills assessment during
open surgery is challenging due to the nature of such procedures,
whereby data acquisition becomes harder as compared to minimally
invasive surgery. We believe that a comprehensive overview of different
automation algorithms utilized for skills assessment during open surgery
is much needed to gain a clear insight into approaches that have already
been applied. Such a synthesis has the potential for driving advance-
ments while ensuring that future research and developments stay rele-
vant and applicable.

3. Methods

This review adheres to the guidelines established by the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses extension
for Scoping Reviews (PRISMA-ScR) (Tricco et al., 2018). While we did
not publicly register the protocol previously, we have ensured the
guidelines for scoping review methods were thoroughly followed to
promote reproducibility.

3.1. Research questions

This scoping review aims to summarize existing automated skills
assessment technologies used in open surgery. The specific research
questions (RQ) and the rationale for each are provided in Table 1.

Table 1
Research questions we aim to address through this review and the rationale for
each.

# Research Question (RQ) Rationale

RQ1 What are the different open
surgeries and clinical settings
where automated skills
assessment has been applied?

Identifying the surgical specialties,
procedures, steps, and the clinical
settings (such as synthetic phantom,
animal, or human) where automated
skills assessment have been applied can
provide an understanding of the
automation systems that are
generalizable and thereby inform best
practice.

RQ2 What data is captured during
open surgery for automated skills
assessment?

Examining the most frequently
captured type of data as well as the
various devices used for data
acquisition during open surgery will
provide insights into future
improvements in data capturing
methods for automation skills
assessment systems.

RQ3 What are the algorithms used for
automated skills assessment
during open surgery?

Highlighting current automation
methods used, types of assessment
inputs from the open surgery data
captured, the outputs provided (in
terms of skills classification or scoring),
and performance of the algorithms can
inform future work towards clinical
implementations of automated skills
assessment.

H. Hamza et al.
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Distinct from earlier reviews, we present the types of open surgeries
utilizing automated skills assessment, the various sensors used for data
acquisition, the automation algorithms employed to process the data
and predict surgical skill levels, the evaluation criteria used to measure
accuracy, and a comparative analysis of these algorithms. In addition,
we further explore the challenges in open surgery data acquisition, and
provide deeper insights into the common algorithms used, assessment
inputs, and performance evaluation.

3.2. Eligibility criteria

To be considered in this review, articles must satisfy the inclusion
criteria which were: (i) article reporting original research, (ii) written in
English (iii) discussing technologies for automated assessment of sur-
gical technical skills (iv) during open surgery (including microsurgery).
Although data capture is more straightforward in microsurgery due to
the use of microscopic cameras, we included microsurgical procedures
in our review as instrument manipulation occurs through direct hand
and wrist motions (Fattahi Sani et al., 2021). We also considered non-AI
based papers reporting automated systems using statistical modelling,
computer vision, and other custom algorithms, with which the AI al-
gorithms were compared.

The exclusion criteria consisted of (i) articles not on surgery, (ii)
articles focusing on minimally invasive surgery using laparoscopes,
endoscopes, or robot-assistance, where instrument manipulation is not
direct, (iii) articles on skills assessment which is not automated, (iv)
articles related to virtual reality training where kinematic data capture is
effortlessly done (Titov et al., 2023), (v) articles on methods for data
acquisition and metric extraction without incorporating automation
algorithms for skill level prediction, (vi) assessment of only
non-technical skills (such as communication, teamwork, and situational
awareness), and (vii) review articles.

3.3. Search

A comprehensive literature search was conducted across the
PubMed, Scopus, and IEEE Xplore databases without any restrictions on
publication year. The most recent searches were conducted on
September 01, 2024. The search terms included but were not limited to
“open surgery”, “microsurgery”, “automation”, “artificial intelligence”,
“machine learning”, “deep learning”, “convolutional neural networks”,
“skills assessment”, and “proficiency”. Search limits were applied to
exclude articles that mentioned laparoscopes, endoscopes, or robotic

surgery in the title. Table 2 provides the Boolean search strings used for
the different databases. The complete electronic search strategy used for
PubMed is provided in Supplementary Content 1. Additional records
were identified through the examination of review articles and citation
searches.

3.4. Study selection

A total of 926 scientific records were identified through the searches.
The results were imported into the Rayyan web app (https://www.
rayyan.ai/) for duplicate removal, title/abstract, and full-text
screening to ensure articles met the eligibility criteria. A total of 908
records were screened by title/abstract to exclude non-relevant studies
according to the exclusion criteria. A total of 131 records underwent
full-text screening. Two independent reviewers [HH and DS] were
responsible for title/abstract and full-text screening process. Any dis-
agreements on the eligibility of an article were resolved through dis-
cussions with a third reviewer [NN] when necessary. At the end of the
screening process, 40 articles that met the inclusion criteria were
selected for the review.

3.5. Data extraction

Data items were extracted from the included papers and summarized
based on the type of open surgery performed, the phase of clinical trial,
the sensor device used, the data captured, the automation algorithm
employed, the predicted output, and the type of evaluation conducted.
Two reviewers [HH and DS] jointly developed the data extraction form
with the variables to be extracted from each eligible article for this
scoping review. The reviewers [HH and DS] were independently
responsible for extracting the data from each study. Resolution of dis-
agreements on results of the data extraction was achieved through dis-
cussions with a third reviewer [NN] when necessary.

3.6. Quality assessment

The medical education research study quality instrument (MERSQI)
was used to assess the studies and provide a score between 5 and 18. The
articles were evaluated in terms of study design, sampling, type of data,
validity of the evaluation instrument, data analysis, and outcome (Cook
and Reed, 2015; Reed et al., 2007). A higher score given to an article
indicates a superior study design. Same as the study selection and data
extraction process, two reviewers [HH and DS] were responsible for
quality assessment of the included studies, while disagreements were
resolved through discussions with a third reviewer [NN] when
necessary.

3.7. Data synthesis

The data extracted from the articles were presented using a
descriptive table with information on open surgery specialty, procedure,
clinical trial, type of data captured, sensor used to capture the data,
automation algorithm used, predicted output, and primary findings of
the study. In addition, visual summary of study characteristics such as
surgical procedure, clinical trial, type of data captured, sensors utilized,
automation algorithms, assessment inputs, and performance metrics
were provided. A meta-analysis was not performed due to the wide
range of clinical settings, type of data captured, and outcomes measured.

4. Results

As illustrated in Fig. 1, the screening of search results yielded 40
articles covering automated skills assessment for open surgery, pub-
lished between 2008 and 2024. The articles included had an average
MERSQI score of 12.35 out of 18. The articles covered objective data
measurement (as opposed to self-reported data) and utilized appropriate

Table 2
Boolean search strings used for different databases.

Database Boolean Search Strings

PubMed (("Surgical Procedures, Operative"[Mesh] or "surgery" [Subheading] or
"open surgery" or "surgical procedure" or "open approach" or
"microsurgery") and (("Teaching"[Mesh] or "Education"[Mesh] or
"education" [Subheading]) or ("surgical skills" or "surgical training" or
"skills assessment" or "skills classification" or "proficiency" or "surgical
technique")) and ("Pattern Recognition, Automated"[Mesh] or
"Artificial Intelligence"[Mesh] or "Machine Learning"[Mesh] or
"Unsupervised Machine Learning"[Mesh] or "Supervised Machine
Learning"[Mesh] or "Deep Learning"[Mesh] or "Automation"[Mesh] or
"Neural Networks, Computer"[Mesh] or "convolutional neural
networks" or "automated" or "computer vision")) NOT ((endoscop*
[Title/Abstract] OR laparoscop*[Title/Abstract] OR robot*[Title/
Abstract]))

Scopus (ALL ("open surgery") AND ALL ("skills" OR "proficiency") AND ALL
("artificial intelligence" OR "machine learning" OR "automated") AND
NOT TITLE-ABS-KEY ("robot*" OR "endoscop*" OR "laparoscop*"))

IEEE
Xplore

("Full Text & Metadata":surgery) AND ("Full Text & Metadata":
automated or artificial intelligence or machine learning or deep
learning or neural networks) AND ("Full Text & Metadata":skills or
proficiency or assessment or classification) NOT ("Publication Title":
robot* or endoscop* or laparoscop*)

H. Hamza et al.
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data analysis which went beyond descriptive analyses resulting in a
positive contribution to the MERSQI score. However, most of the studies
were designed as single group tests that were not randomized and were
all conducted at a single institution. Not all studies consistently reported
the validity of the evaluation instruments utilized. In addition, the
outcome measures were mostly limited to knowledge and skills. These
factors greatly limited the overall MERSQI score obtained.

A summary of the search findings is presented in Table 3. In the
Automation Algorithms column, an asterisk (*) indicates a standalone
algorithm, and an arrow (→) indicates a sequential algorithm where the
output of one is fed into the next. For each algorithm, the contents
within brackets specify the network architecture used. The Results col-
umn provides details about the assessment task achieved using the
automation algorithm, with evaluation results presented as measured
values of assessment metrics in brackets. These are followed by the
assessment inputs on which the algorithm was based. The subsequent
sections of this paper provide a detailed description of the table ele-
ments, including the types of open surgeries and corresponding surgical
skills (section 4.1), the types of data acquired from the operative field in
these open surgeries (section 4.2), and the various algorithms utilized to
analyze the acquired data for automated assessment of surgical skills
(section 4.3).

4.1. Open surgeries (RQ1)

The articles reporting automated skill assessment for open surgery
were classified into two categories based on the level of magnification
under which the procedure was performed: macrosurgery (including
cardiothoracic, colorectal, general, head & neck, plastic, and non-
specific specialties) and microsurgery (including neurosurgery and
ophthalmology), as depicted in Fig. 2. Various surgical procedures were
identified under these specialties, such as mitral valve repair (Tozzi
et al., 2022), pilonidal cystectomy (Goodman et al., 2024), appendec-
tomy (Goodman et al., 2024), cholecystectomy (Rittenhouse et al.,
2014), septoplasty (Ahmidi et al., 2015), thyroidectomy (Goodman
et al., 2024), liposuction (Yibulayimu et al., 2022), knot tying (Azari
et al., 2019, 2021a, 2021b; Bkheet et al., 2023; Kasa et al., 2022; Nagaraj
et al., 2023; Nguyen et al., 2019; Shaharan et al., 2016, 2017; Sun et al.,

2016; Ying-Ying and Shulruf, 2019; Zia et al., 2018), suturing (Azari
et al., 2019, 2021a, 2021b; Bkheet et al., 2023; Handelman et al., 2020;
Hoffmann et al., 2024; Kil et al., 2024; Nagaraj et al., 2023; Nguyen
et al., 2019; Sbernini et al., 2018; Shaharan et al., 2017; Singh et al.,
2024; Yamada et al., 2022; Ying-Ying and Shulruf, 2019; Zia et al., 2018;
Zuckerman et al., 2024), venous anastomoses (Watson, 2014), cere-
brovascular procedures (Davids et al., 2021; Oliveira et al., 2022;
Sugiyama et al., 2018), temporal lobectomy (Sugiyama et al., 2018),
tumor resection (Baghdadi et al., 2023; Sugiyama et al., 2018), and
cataract surgery (Hira et al., 2022; Kim et al., 2019; Ruzicki et al., 2023).
Where specified, surgical steps, such as stitch placement, tissue dissec-
tion, liposuction strokes, arteriotomy & microsuture, coagulation &
dissection, microvascular anastomosis and capsulorhexis, were also
identified. The majority of articles evaluated the automated skill
assessment technology for suturing (n = 18 articles) and/or knot tying
(n = 13 articles) using low-fidelity synthetic phantoms (Azari et al.,
2021a, 2021b; Bkheet et al., 2023; Handelman et al., 2020; Kasa et al.,
2022; Nagaraj et al., 2023; Nguyen et al., 2019; Sbernini et al., 2018;
Shaharan et al., 2016, 2017; Sun et al., 2016; Yamada et al., 2022;
Ying-Ying and Shulruf, 2019; Zia et al., 2018). This was followed by
automated skills assessment for the capsulorhexis step during live
cataract surgeries (n = 3 articles) (Hira et al., 2022; Kim et al., 2019;
Ruzicki et al., 2023). Fewer articles (n = 2 each) utilized automated skill
assessment during live surgeries for knot tying and suturing (Azari et al.,
2019, 2021a) as well as the coagulation and dissection steps during
tumor resection (Baghdadi et al., 2023; Sugiyama et al., 2018). Simi-
larly, low-fidelity synthetic phantoms were used for microvascular
anastomosis (Sugiyama et al., 2024; Tang et al., 2024) and ophthalmic
suturing (Franco-González et al., 2021; Handelman et al., 2020) (n = 2
articles each). The remaining surgical procedures were described indi-
vidually (n = 1 article for each procedure/step).

4.2. Data acquisition (RQ2)

The articles present different types of data captured from the oper-
ative field during open surgery for automated skills assessment. The
operative field consists of the tissue being operated on by the surgeon
using surgical instruments (Fig. 3a). Therefore, the data captured from

Fig. 1. PRISMA flowchart depicting the identification, screening, and inclusion of articles on automated skills assessment in open surgery.

H. Hamza et al.
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Table 3
Description of open surgery articles on automated skills assessment, by year.

Reference MERSQIa

Score
Open Surgery Data Acquisition Automated Skills Assessment

Surgical
Specialty

Surgical Procedure
& Skill

Clinical
Trial

Data
Capturedb

Sensor Used Automation
Algorithm

Predicted
Output

Results

Goodman et al.
(2024)

12.5 Colorectal
General
Head & neck

Pilonidal
cystectomy
Appendectomy
Thyroidectomy

Phantom
(high
fidelity),
human
(live)

H Video
camera

*LRc Novice/
Expert

Skill classification
achieved (with
custom evaluation,
p < 0.02) based on
hand movement

Hoffmann et al.
(2024)

13.5 Not specific Suturing Phantom
(low
fidelity)

H, I, T Video
camera

*CNNd (TSN)
→ CNN (I3D)
*CNN (TSN) →
ViT (Video
Swin)

Novice/
Expert

Skill classification
achieved (with
accuracy 71 %, F1
score 72 %) based
on OSATSe scoring
by expert raters

Kil et al. (2024) 12.5 Not specific Suturing Phantom
(low
fidelity)

I Video
camera

*Custom CVf

algorithm
Novice/
Expert

Skill classification
achieved (with
custom evaluation,
p < 0.01) based on
instrument motion
data in 2D

Singh et al. (2024) 12.5 Not specific Suturing Phantom
(low
fidelity)

I, T IMUg, EMh

tracking
system

*Custom non-
CV algorithm

Novice/
Expert

Skill classification
achieved (with
custom evaluation,
p < 0.05) based on
instrument motion
data in 3D and
placement of knot/
suture

Sugiyama et al.
(2024)

13.5 Neurosurgery
Microsurgery

Cerebrovascular
procedure -
microvascular
anastomosis

Phantom
(low
fidelity)

I Video
camera

*CNN
(YOLOv2)

Novice/
Expert

Skill classification
achieved (with
custom evaluation,
p < 0.01) based on
instrument motion
data in 2D and
OSATS scoring

Tang et al. (2024) 11.5 Neurosurgery
Microsurgery

Cerebrovascular
procedure -
microvascular
anastomosis

Phantom
(low
fidelity)

T Video
camera

*CNN (ResNet-
50)

Novice/
Expert

Skill classification
achieved (with
custom evaluation,
p < 0.01) based on
placement of knot/
suture

Baghdadi et al.
(2023)

11.5 Neurosurgery
Microsurgery

Tumor resection -
coagulation &
dissection

Human
(live)

I Force sensor *CNN (U-Net)
→ CNN
(Inception-v4)

Novice/
Expert

Skill classification
achieved (with AUCi

81 %, F1 score 71 %)
based on force from
sensor on instrument

Bkheet et al.
(2023)

11.5 Not specific Knot tying, suturing Phantom
(low
fidelity)

H, I Video
camera

*CNN (YOLOX)
→ CNN
(ResNet) →
CNN (TCN) →
Estimation

Novice/
Expert

Skill classification
achieved (with
custom evaluation,
p < 0.05) based on
hand movement

Nagaraj et al.
(2023)

11.5 Not specific Knot tying, suturing Phantom
(low
fidelity)

H, I Video
camera

*CNN
(EfficientNet)
*CNN (X3D)

Pass/Fail
Pass/Fail

Skill classification
achieved (with
accuracy 83 %, F1
score 69 %) based
on hand movement
and placement of
knot/suture

Ruzicki et al.
(2023)

11.5 Ophthalmology
Microsurgery

Cataract surgery -
capsulorhexis

Human
(live)

I Video
camera

*CNN (ResNet-
152) → RNNj

(LSTM) → RFk

Novice/
Expert

Skill classification
achieved (with
accuracy 63.3 %,
AUC 69.2 %) based
on instrument motion
data in 2D

Xu et al. (2023) 10.5 Neurosurgery
Microsurgery

Cerebrovascular
procedure -
dissection

Phantom
(low
fidelity)

H Force sensor *CNN (TCN) Novice/
Expert

Skill classification
achieved (with
accuracy 97.45 %)
based on hand
movement

Goldbraikh et al.
(2022)

11.5 Not specific Suturing Phantom
(low
fidelity)

H, I Video
camera

*CNN
(YOLOv3) →
Estimation

Novice/
Expert

Skill classification
achieved (with
custom evaluation,
p < 0.01) based on
hand movement

(continued on next page)
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Table 3 (continued )

Reference MERSQIa

Score
Open Surgery Data Acquisition Automated Skills Assessment

Surgical
Specialty

Surgical Procedure
& Skill

Clinical
Trial

Data
Capturedb

Sensor Used Automation
Algorithm

Predicted
Output

Results

Hira et al. (2022) 13.5 Ophthalmology
Microsurgery

Cataract surgery -
capsulorhexis

Human
(live)

I Video
camera

*CNN (TCN) →
CNN (ResNet)
→ RNN (LSTM)

Novice/
Expert

Skill classification
achieved (with AUC
78 %, sensitivity
84.3 %, specificity
75 %) based on
instrument motion
data in 3D

Kasa et al. (2022) 13.5 Not specific Knot tying Phantom
(low
fidelity)

H, T Video,
depth video,
image
camera

*CNN (ResNet-
18) → RNN
(LSTM)
*CNN (ResNet-
50)

Score
Score

OSATS scores
predicted: Respect
for tissue (MSEl

0.48, ICCm 30 %),
time and motion
(MSE 0.35, ICC 59
%), quality of final
product (MSE 0.18,
ICC 90 %), overall
performance (MSE
0.19, ICC 74%). The
predictions were
made based on hand
movement, placement
of knot/suture and
OSATS scoring by
expert raters

Oliveira et al.
(2022)

11.5 Neurosurgery
Microsurgery

Cerebrovascular
procedure
-arteriotomy &
microsuture

Human
(cadaver)

H, I Video
camera

*Custom CV
algorithm

Score The work did not
evaluate the
algorithm. It was
proof-of-concept.
The score (custom
scoring) was based
on hand movements

Soangra et al.
(2022)

10.5 Not specific Knot tying Phantom
(low
fidelity)

H EMGn

sensor, IMU
*RF Novice/

Expert
Skill classification
achieved (with
accuracy 61 %)
based on hand
movement

Tozzi et al. (2022) 11.5 Cardiothoracic Mitral valve repair -
stitch placement

Phantom
(high
fidelity)

T Video
camera,
embedded
tissue sensor

*Custom non-
CV algorithm

Score Score (custom
scoring): Experts
rated system 9 on a
scale of 1–10, based
on placement of
knot/suture

Yamada et al.
(2022)

13.5 Not specific Suturing Phantom
(low
fidelity)

T Image
camera

*Custom CV
algorithm

Score Score (custom
scoring): Showed
correlation to expert
OSATS (p < 0.001),
based on accuracy
of placement of knot/
suture

Yibulayimu et al.
(2022)

12.5 Plastic Liposuction -
liposuction strokes

Phantom
(high
fidelity),
human
(live)

I Force
sensor,
optical
tracking
system

*RF Novice/
Expert

Skill classification
achieved (with
accuracy 92.93 %,
sensitivity 92.92 %)
based on force from
sensor on instrument,
instrument motion
data in 3D

Azari et al.
(2021b)

13.5 Not specific Knot tying, suturing Phantom
(low
fidelity)

H Video
camera

*GAMo

*LR
Score
Score

OSATS scores
predicted: Fluidity
of motion (R2 77 %),
motion economy
(R2 66 %), tissue
handling (R2 57 %),
hand coordination
(R2 63 %). The
predictions were
made based on hand
movement and
OSATS scoring by
expert raters

Azari et al.
(2021a)

13.5 Not specific Knot tying, suturing Phantom
(low
fidelity),

H Video
camera

*GAM
*LR

Score
Score

OSATS scores
predicted: Fluidity
of motion (R2 55 %),

(continued on next page)
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Table 3 (continued )

Reference MERSQIa

Score
Open Surgery Data Acquisition Automated Skills Assessment

Surgical
Specialty

Surgical Procedure
& Skill

Clinical
Trial

Data
Capturedb

Sensor Used Automation
Algorithm

Predicted
Output

Results

human
(live)

motion economy
(R2 49 %). The
predictions were
made based on hand
movement and
OSATS scoring by
expert raters

Davids et al.
(2021)

13.5 Neurosurgery
Microsurgery

Cerebrovascular
procedure -
dissection

Phantom
(high
fidelity)

I Video
camera

*CNN (Mask-
RCNN)

Novice/
Expert

Skill classification
achieved (with
accuracy 84.21 %,
AUC 97.7 %) based
on instrument motion
data in 2D

Franco-González
et al. (2021)

11.5 Not specific
Microsurgery

Suturing Phantom
(low
fidelity)

I Depth video
camera

*Custom CV
algorithm

Novice/
Expert

Skill classification
achieved (with
custom evaluation,
p < 0.02) based on
instrument motion
data in 3D

Handelman et al.
(2020)

10.5 Not specific
Ophthalmology
Microsurgery

Suturing - linear &
circular suturing

Phantom
(low
fidelity),
human
(cadaver)

T Embedded
tissue
sensor,
image
camera

*Custom CV
algorithm

Score The work did not
evaluate the
algorithm. The score
(custom scoring) was
based on placement
of knot/suture and
force from sensor
inside tissue

Pérez-Escamirosa
et al. (2020)

12.5 Not specific Knot tying, suturing Phantom
(low
fidelity)

T Embedded
tissue sensor

*Custom non-
CV algorithm

Novice/
Expert

Skill classification
achieved (with
custom evaluation,
p < 0.05) based on
force from sensor
inside tissue

Azari et al. (2019) 13.5 Not specific Knot tying, suturing Human
(live)

H Video
camera

*LR Score OSATS scores
predicted for
suturing, knot-
tying: Fluidity of
Motion (R2 86 %,
54 %), motion
economy (R2 88 %,
64 %), tissue
handling (R2 69 %,
52 %). The
predictions were
made based on hand
movement and
OSATS scoring by
expert raters

Kim et al. (2019) 13.5 Ophthalmology
Microsurgery

Cataract surgery -
capsulorhexis

Human
(live)

I Video
camera

*CNN (TCN) Novice/
Expert

Skill classification
achieved (with
accuracy 84.8 %,
AUC 86.3 %,
sensitivity 82.4 %,
specificity 70.8 %)
based on instrument
motion data in 3D

Nguyen et al.
(2019)

10.5 Not specific Knot tying, suturing Phantom
(low
fidelity)

H Video
camera,
IMU

*CNN → RNN
(LSTM)

Novice/
Expert

Skill classification
achieved (with
accuracy 98.2 %)
based on hand
movement

Ying-Ying and
Shulruf (2019)

15.5 Not specific Knot tying, suturing Phantom
(low
fidelity)

T Video
camera,
embedded
tissue sensor

Custom CV and
non-CV
algorithms

Score
Pass/Fail

The study did not
evaluate the
algorithm. The
algorithm provided
OSATS scores on:
safety, quality,
efficiency. The
algorithm’s pass/
fail classification
was based on
placement of knot/

(continued on next page)
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Table 3 (continued )

Reference MERSQIa

Score
Open Surgery Data Acquisition Automated Skills Assessment

Surgical
Specialty

Surgical Procedure
& Skill

Clinical
Trial

Data
Capturedb

Sensor Used Automation
Algorithm

Predicted
Output

Results

suture and force from
sensor inside tissue

Sbernini et al.
(2018)

10.5 Not specific Suturing Phantom
(low
fidelity)

H IMU, force
sensor

*ANNp Novice/
Expert

Skill classification
achieved (with
accuracy 90 %)
based on hand
movement

Sugiyama et al.
(2018)

11.5 Neurosurgery
Microsurgery

Cerebrovascular
procedures,
temporal
lobectomy, tumor
resection -
coagulation &
dissection

Human
(live)

I Force sensor *CDAq Novice/
Expert

Skill classification
achieved (with
accuracy of 87.5 %)
based on force from
sensor on instrument

Zia et al. (2018) 13.5 Not specific Knot tying, suturing Phantom
(low
fidelity)

H, I Video
camera,
IMU

*KNNr Novice/
Expert

Skill classification
achieved (with
accuracies of 94 %
and 93.2 % for knot-
tying and suturing
tasks) based on
instrument motion
data in 3D, hand
movement (and
OSATS)

Shaharan et al.
(2017)

13.5 Not specific Knot tying, suturing Phantom
(low
fidelity)

H EM tracking
system

*Custom non-
CV algorithm

Novice/
Expert

Skill classification
achieved (with
custom evaluation,
p < 0.0001) based
on hand movement

Shaharan et al.
(2016)

13.5 Not specific Knot tying Phantom
(low
fidelity)

H Video
camera, EM
tracking
system

*Custom non-
CV algorithm

Score Score (custom
scoring): Showed
correlation to expert
OSATS (p < 0.05),
based on hand
movement

Sun et al. (2016) 10.5 Not specific Knot tying Phantom
(low
fidelity)

H Video,
depth video
camera

*HMMs Novice/
Expert

Skill classification
achieved (with
accuracy 100 %)
based on hand
movement

Ahmidi et al.
(2015)

10.5 Head & neck Septoplasty - tissue
dissection

Human
(live)

I Depth video
camera, EM
tracking
system

*Custom non-
CV algorithm

Novice/
Expert

Skill classification
achieved (with
accuracy 91 %,
sensitivity 88.45 %)
based on instrument
motion data in 3D

Rittenhouse et al.
(2014)

13.5 General Cholecystectomy Phantom
(high
fidelity)

H Video
camera, EM,
optical
tracking
systems

*Custom non-
CV algorithm

Novice/
Expert

Skill classification
achieved (with
custom evaluation,
p < 0.05) based on
hand movement (and
OSATS)

Watson (2014) 11.5 Not specific Venous
anastomoses

Phantom
(low
fidelity)

H IMU *SVMt Novice/
Expert

Skill classification
achieved (with
accuracy 83 %,
sensitivity 86 %,
specificity 80 %)
based on hand
movement

Frischknecht et al.
(2013)

11.5 Not specific Suturing Phantom
(low
fidelity)

T Image
camera

*Custom CV
algorithm

Novice/
Expert

Skill classification
achieved (with
custom evaluation,
p < 0.05) based on
placement of knot/
suture

Solis et al. (2008) 15.5 Not specific Knot tying, suturing Phantom
(low
fidelity)

T Video
camera,
embedded
tissue sensor

*DAu Novice/
Expert

Skill classification
achieved (with
custom evaluation,
p < 0.001) based on
based on placement
of knot/suture and
force from sensor
inside tissue

a MERSQI stands for Medical Education Research Study Quality Instrument.
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the operative field was classified into three categories: (i) surgeon’s
hand motion (denoted by ‘H’), (ii) surgical instrument motion (denoted
by ‘I’), and (iii) operative tissue interaction (denoted by ‘T’).

As shown in Fig. 3b, studies focusing on hand motion (H) and sur-
gical instrument motion (I) were significantly more common compared
to those focusing on operative tissue (T). This is because hand motion
metrics effectively distinguish between experience levels of the surgeon,
such as in differentiating skilled and unskilled suturing maneuvers
(Bkheet et al., 2023; Nagaraj et al., 2023; Shayan et al., 2023). Experi-
enced surgeons exhibit smoother hand motions, higher average roll
angles, and fewer roll movements compared to novices, making hand

rotational metrics valuable for skills assessment (Shayan et al., 2023).
Similarly, surgical instrument motion metrics, such as, time taken, path
length, collision, unnecessary movements, and force exerted, can also
differentiate experts from novices (Guerin et al., 2022; Poursartip et al.,
2017). Fewer studies utilized operative tissue data due to challenges in
capturing accurate data: (i) the final image of the tissue post-procedure
may not accurately reflect surgical performance, and (ii) measuring the
force exerted on the tissue by surgical instruments is difficult without
specialized phantoms (Kasa et al., 2022; Tozzi et al., 2022; Yamada
et al., 2022).

As depicted in Fig. 3c, various types of sensors were used to acquire

b H – Surgeon’s hand, I – Surgical instrument, T – Operative tissue.
c LR stands for Linear Regression.
d CNN stands for Convolutional Neural Network.
e OSATS stands for Objective Structured Assessment of Technical Skills.
f CV stands for Computer Vision.
g IMU stands for Inertial Measurement Unit.
h EM stands for Electromagnetic.
i AUC stands for Area Under the Curve.
j RNN stands for Recurrent Neural Network.
k RF stands for Random Forest.
l MSE stands for Mean Squared Error.
m ICC stands for Interclass Correlation.
n EMG stands for Electromyography.
o GAM stands for Generalized Additive Model.
p ANN stands for Artificial Neural Network.
q CDA stands for Canonical Discriminant Analysis.
r KNN stands for k-Nearest Neighbor.
s HMM stands for Hidden Markov Model.
t SVM stands for Support Vector Machine.
u DA stands for Discriminant Analysis.

Fig. 2. Number of open surgery articles using automated surgical skill assessment under different phases of clinical trials.
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data from the open surgical field. Two-dimensional (2D) video cameras,
inertial measurement units (IMU), electromagnetic (EM) tracking sys-
tems, and three-dimensional (3D) depth cameras were used to capture
all the three data formats (H, I, and T). The 2D video cameras were
extensively utilized due to their affordability and ease of use (Deng et al.,
2021). Wearable IMUs equipped with accelerometers provided 3D hand
motion measurements (Nguyen et al., 2019; Sbernini et al., 2018).
Studies utilizing EM tracking systems placed the sensors either on sur-
geon’s hands (Shaharan et al., 2016, 2017) or the surgical instruments
(Ahmidi et al., 2015; Singh et al., 2024). Depth video cameras included
Microsoft Kinect, which captured the operative field (Ahmidi et al.,
2015), and Leap Motion, which was used to capture 3D hand motion
(Kasa et al., 2022; Sun et al., 2016). Embedded tissue sensors (Nguyen
et al., 2019; Sbernini et al., 2018; Watson, 2014; Zia et al., 2018) and
image cameras (Ahmidi et al., 2015; Shaharan et al., 2016, 2017; Singh
et al., 2024) were mostly used for T data. Image cameras captured the
outcome in high resolution for evaluation, while embedded sensors used
in synthetic phantoms detected incorrect stitches (Tozzi et al., 2022) and
measured strain applied to the tissue (Ahmidi et al., 2015; Shaharan
et al., 2016, 2017). Force sensors (Sbernini et al., 2018) and optical
tracking systems (Shaharan et al., 2016, 2017) were used to capture H
and I. Force sensors, such as bipolar forceps (Baghdadi et al., 2023;
Sugiyama et al., 2018) and modified instrument handles (Yibulayimu
et al., 2022), provided data on the resistance exerted, whereas optical
trackers placed on hands and instruments (Rittenhouse et al., 2014;
Yibulayimu et al., 2022). Electromyography (EMG) sensors captured H
data through wearable components that recorded muscle activity
(Soangra et al., 2022).

4.3. Automated skills assessment (RQ3)

The automation algorithms in the reviewed articles can be catego-
rized into: (i) machine learning (ML), (ii) deep learning (DL), (iii) sta-
tistical modeling, and (iv) custom algorithms.

Automation algorithms refer to the technologies used for automated
feedback or assessment of surgical skills. These algorithms perform skill
assessments and provide outputs in the form of: (i) classification as
“novice” or “expert,” (ii) classification as “passed” or “failed,” (iii)
scoring based on Objective Structured Assessment of Technical Skills
(OSATS), or (iv) custom scoring that rates performance during training.

A mapping of the automation algorithms to their skill assessment out-
puts is depicted in Fig. 4a. The algorithms and their corresponding
models (shown in Fig. 4b) are described below.

(i) ML algorithms involve several pre-processing steps, such as
extracting features from input data before learning or predicting
from the data. They are effective for simpler tasks and smaller
datasets. The ML algorithms used in the articles include linear
regression (LR) (Azari et al., 2019, 2021a, 2021b), random forest
(RF) (Ruzicki et al., 2023; Yibulayimu et al., 2022), canonical
discriminant analysis (CDA) (Sugiyama et al., 2018), hidden
Markov model (HMM) (Sun et al., 2016), k-nearest neighbor
(KNN) (Zia et al., 2018), and support vector machine (SVM)
(Watson, 2014).

(ii) DL algorithms consist of neural networks that process data
through multiple layers to extract information and improve pre-
dictions over time. Unlike ML, DL eliminates the need for
extensive pre-processing by automatically extracting information
through data abstraction. DL is effective for complex tasks, large
datasets, and unstructured data like images and text. The DL al-
gorithms used in the articles include convolutional neural net-
works (CNN) (Baghdadi et al., 2023; Bkheet et al., 2023; Davids
et al., 2021; Hira et al., 2022; Kasa et al., 2022; Kim et al., 2019;
Nagaraj et al., 2023; Nguyen et al., 2019; Ruzicki et al., 2023),
recurrent neural networks (RNN) (Hira et al., 2022; Kasa et al.,
2022; Nguyen et al., 2019; Ruzicki et al., 2023), and artificial
neural networks (ANN) (Sbernini et al., 2018).

(iii) Statistical modeling algorithms are similar to ML in terms of
analyzing data, drawing inferences from patterns, and making
predictions. However, while ML is more algorithm-driven and
focuses on predictive accuracy, statistical modeling focuses on
formal data modeling and understanding underlying data distri-
butions. The statistical modeling algorithms utilized in the arti-
cles include generalized additive model (GAM) (Azari et al.,
2021a, 2021b) and discriminant analysis (DA) (Solis et al., 2008).

(iv) Custom algorithms refer to automation methodologies that do
not fall under any of the above categories. These algorithms
produce estimations rather than predictions. In this review,
custom algorithms are classified as computer vision (CV)-based
(if their outputs are calculated based on captured image data)

Fig. 3. Depiction of (a) the operative field during open surgery, (b) number of articles capturing data in the form of surgeon’s hand motion - H, surgical instrument
motion - I, and operative tissue interaction - T, and (c) number of articles using various sensors to capture the data.
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(Handelman et al., 2020; Oliveira et al., 2022; Yamada et al.,
2022; Ying-Ying and Shulruf, 2019) or as non-CV-based algo-
rithms (Ahmidi et al., 2015; Shaharan et al., 2016, 2017; Tozzi
et al., 2022; Ying-Ying and Shulruf, 2019).

The automation algorithms and corresponding models utilized for
different surgical specialties and procedures are shown in Fig. 5. In some
cases, the raw data extracted from sensors based on H, I, or T was further
processed to generate input for the automation algorithms. A description
of the processed data (assessment input) is given in Table 4. These
assessment inputs and the corresponding automation algorithms utilized
are shown in Fig. 4c. The automation algorithms used for skills assess-
ment were evaluated using various performance metrics. A detailed
description of these metrics is presented in Table 5 and Fig. 4d.

5. Discussion

This review aimed to outline the various technologies available for
automated skills assessment during open surgery. The number of

published articles has notably increased since 2021, reflecting a growing
interest in this topic (Fig. 6). Automated skills assessment during open
surgery was mostly applied for suturing and knot tying on low-fidelity
synthetic phantoms. The surgeon’s hand motion captured using video
cameras was the most frequently used type of data. Deep learning al-
gorithms using hand movements as assessment inputs were predomi-
nantly reported, while the algorithm performance was mainly assessed
using classification accuracy. The subsequent sections discuss the sur-
gical procedures and clinical trial used in testing the technology (section
5.1), challenges in acquiring data during open surgery (section 5.2),
common automation algorithms (section 5.3) with detailed applications
of CNNs (section 5.3.1), RNNs (section 5.3.2) and transformers (section
5.3.3), performance evaluation and assessment inputs (section 5.4), and
limitations of the review (section 5.5).

5.1. Common surgical procedures and clinical trials

A low complexity level of the surgical procedure was observed in
most studies, which focused on basic surgical skills such as knot tying

Fig. 4. (a) Depiction of automation algorithms and the skills assessment outputs. Number of articles utilizing (b) the algorithms and their corresponding models, (c)
various assessment inputs for the automation algorithms, and (d) performance metrics to evaluate the algorithm.
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and suturing (Bkheet et al., 2023; Nagaraj et al., 2023). Although
considered simple tasks, they are fundamental skills requiring precise
maneuvers (Davids et al., 2021; Huffman et al., 2020). As a result, these
procedures are extensively practiced on low-fidelity synthetic phan-
toms, providing an inexpensive solution for surgical training with haptic
feedback (Feifer et al., 2011). Applying automated skills assessment in
such training setups requires minimal effort, as it allows for repeated
trials and data acquisition (Watson, 2014). Similarly, multiple articles
covered live cataract surgeries, facilitated by the microscope camera
used during microsurgery, which provided video recordings for skills
assessment (Franco-González et al., 2021; Titov et al., 2023). The
coagulation and dissection steps in cerebrovascular procedures, tem-
poral lobectomy, and tumor resection were also extensively used for
applying automated skills assessment, with data easily collected from
the sensorized bipolar forceps (SmartForceps System) (Baghdadi et al.,
2023; Sugiyama et al., 2018). The current research landscape focuses on
implementation of automated skills assessment in less complex pro-
cedures. While basic surgical skills practiced on simulators prepares a
trainee towards the operating room experience, it does not translate into
proficiency for increasingly complex procedures (Irfan et al., 2019).
Requirements for general surgical trainees around the world often
stipulate a variety of procedure-specific surgeries. For example, the
Intercollegiate Surgical Curriculum Programme (ISCP) in the United
Kingdom requires experience in a minimum number of index procedures
including appendicectomy, inguinal hernia repair, cholecystectomy,
segmental colectomy, emergency laparotomy, and Hartmann’s proced-
ure (Elsey et al., 2017). Although current automated skill assessment
efforts often focus on relatively basic tasks (e.g., knot tying or suturing
on synthetic models), future developments must expand into evaluation
of more complex surgical steps or even entire surgical procedures from
start to finish. Such implementations would require incorporation of
accurate surgical phase detection and tool recognition (Dick et al.,
2024). A comprehensive assessment of surgeon’s capabilities can be
achieved by combining effective surgical workflow recognition along
with hand and instrument motion analysis (Guerin et al., 2022).
Combining kinematic, force, and video data may reveal the subtle cues
that differentiate proficiency levels in intricate, multi-step procedures.
Furthermore, advanced surgical skills assessment may be accomplished
through the integration of real-time estimation of operating time
(Kawka et al., 2022) as well as prediction of surgical outcomes (such as
blood loss estimation) (Pangal et al., 2022).

The majority of studies were conducted on synthetic phantoms (with
at least 67.5 % using low-fidelity phantoms), with a few on cadavers (5
%) or live patients (25 %). Synthetic phantoms are widely used for
surgical training since they are readily available, easy to assemble, and
cheaper to maintain. Some phantoms can also mimic both the hard and
soft tissue of the human body depending on the synthetic material used
in its making. Since they are easily reproducible, they also provide a
standardized training platform for surgical skills acquisition
(Raeker-Jordan et al., 2022). On the other hand, cadaveric models can
be difficult to maintain, prone to degradation, limited to single usage
depending on the surgical procedure, and can be relatively expensive to
procure and maintain. This explains the low adoption of cadavers in the
automated skills assessment studies. About 25 % of the studies captured
metrics associated with operative tissue. Nevertheless, they were all
limited to synthetic phantoms. Sensors embedded to the synthetic tissue
is used to collect data such as strain and force exerted on the tissue (Solis
et al., 2008). Such embedded sensors include optical fibers on simulated
wound to measure strain applied while suturing (Handelman et al.,
2020) and accelerometers placed under a tissue platform to measure the
movement of the tissue during interaction with the tool
(Pérez-Escamirosa et al., 2020). However, it is challenging to incorpo-
rate such embedded sensors during live surgeries due to safety and
sterility concerns. Although training on animal models is known to
improve surgical skills by providing a highly realistic environment
(DeMasi et al., 2016), none of the included articles utilized animal
models for automated skills assessment. This may be explained by
ethical considerations and public approval concerns regarding the use of
live animal models for routine surgical training (as opposed to their
broader acceptance for testing novel surgical techniques) (Bergmeister
et al., 2020; Ruan et al., 2020). Future work should prioritize the
application of automated skills assessment during live surgeries,
ensuring that operating theatres are well-equipped for this purpose (Lam
et al., 2022). Integrating automated skills assessment into training is
expected to reduce the teaching load of expert surgeons (Titov et al.,
2023).

Some of the barriers to clinical translation of automated skills
assessment in surgical practice include the lack of annotated datasets
and high-quality studies. A cultural shift in clinical management is
required to promote data acquisition, annotation, and storage in the
operating rooms. Evaluation of the studies based on MERSQI revealed
that most of them followed a single group study design without

Fig. 5. Distribution of automation algorithms and models used for various surgical specialties and procedures.
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randomization. This limitation in study quality further restricts the
clinical translation of automated skills assessment in surgical practice.
The quality of research in this area can be improved by encouraging
multiple institutional collaborations to ensure generalizability of the
findings. Standardized evaluation instruments must be utilized to
improve the credibility of the assessment. Beyond perceptions and
knowledge, the outcomes measured should also include the surgeon’s
behavior in a live setting as well as the effect on patient outcomes.
Clinical validation of skill assessment technologies can be achieved by
designing and conducting appropriate randomized controlled trials
(RCT). This will pave the way for conducting future meta-analyses of
RCTs, which is the gold standard for informing clinical practice. As
advancements in the field continue to develop, integration with current
surgical workflow must also be investigated to facilitate clinical

Table 4
Detailed description of assessment inputs for the automation algorithms.

Assessment Input Description

Hand movement Hand movement data (including motion of wrists,
fingertips, finger joints, palm orientations, hand gestures)
can be used to determine patterns in surgeon’s hand
motion (Sun et al., 2016; Zia et al., 2018) quality of
surgeon’s technique (Watson, 2014), manual expertise (
Sbernini et al., 2018), duration of a certain gesture,
subtlety in hand movements, and handling of tools, for
example, during suturing (Bkheet et al., 2023)

Placement of knot/
suture

Placement of knot/suture on a tissue can be used to
determine quality of surgical subtask (Handelman et al.,
2020; Tozzi et al., 2022; Yamada et al., 2022; Ying-Ying
and Shulruf, 2019) and deformations to tissue (Tang et al.,
2024)

Instrument motion data
in 3D

Surgical instrument’s motion data (including tooltip
position, rotation, velocity, acceleration as well as tool
path and trajectory) extracted from sensors in 3D space
can be used to determine length of tool strokes, regularity
of tool trajectories (Kim et al., 2019; Yibulayimu et al.,
2022), smoothness of tool motion, and area covered by
tooltip (e.g. septoplasty (Ahmidi et al., 2015))

Instrument motion data
in 2D

Tracking the positions of the tooltips in video frames of
the operative field can be used to determine patterns of
tool usage (Ruzicki et al., 2023), movement with respect
to tissue, and tool velocity profiles (Davids et al., 2021; Kil
et al., 2024; Sugiyama et al., 2024)

Force from sensor on
instrument

The forces measured by the sensors on the tool can be used
to determine active periods of utilization of tool during
the surgery (Baghdadi et al., 2023), strength exerted
during tool strokes (e.g. liposuction surgery (Yibulayimu
et al., 2022)), finesse during surgical task (e.g. dissection (
Baghdadi et al., 2023)), and variability in contrast to an
expert handling the tool (Sugiyama et al., 2018)

Force from sensor
inside tissue

Force measured from sensors embedded within artificial
skin/tissue can be used to determine distributed strain
around a wound while performing surgery (Handelman
et al., 2020) and quality of task (e.g. quality domain of
OSATS for suturing/ligature skill) (Ying-Ying and Shulruf,
2019)

Modified OSATS
scoring

Modified Objective Structural Assessment of Technical
Skills (OSATS) scores are used to assess surgical skills in
new domains such as fluidity of motion (Azari et al., 2019,
2021a, 2021b), motion economy (Azari et al., 2019,
2021a, 2021b), tissue handling (Azari et al., 2019, 2021a,
2021b), hand coordination (Azari et al., 2021b), quality of
final product (Kasa et al., 2022; Ying-Ying and Shulruf,
2019), respect for tissue (Kasa et al., 2022), time and
motion (Kasa et al., 2022), overall performance (Kasa
et al., 2022), safety (Ying-Ying and Shulruf, 2019),
efficiency (Ying-Ying and Shulruf, 2019), and Global
Rating Score (GRS) (Hoffmann et al., 2024; Sugiyama
et al., 2024)

Custom scoring A study-specific customized scoring is used (based on the
type of developed automation algorithm) to determine a
proficiency index (Oliveira et al., 2022), errors and
out-of-bound actions during surgery (Tozzi et al., 2022),
and quality of surgical technique (Handelman et al., 2020;
Yamada et al., 2022)

Table 5
Description of performance metric used to evaluate automation algorithms.

Performance
Metric

Description Assessment Output &
Reference

Classification
accuracy

Classification accuracy is the
ratio of correct predictions to
the total number of
predictions. It is a measure of
how often an ML model
correctly predicts the class.

Novice/Expert classification
(Ahmidi et al., 2015; Davids
et al., 2021; Kim et al., 2019;
Nguyen et al., 2019; Ruzicki
et al., 2023; Sbernini et al.,
2018; Sugiyama et al., 2018;
Sun et al., 2016; Watson,
2014; Yibulayimu et al.,
2022; Zia et al., 2018)
Pass/Fail classification (
Nagaraj et al., 2023)

Area under the
curve (AUC)

Receiver Operating
Characteristic (ROC) curve is a
graphical plot that determines
the diagnostic ability of a
classification model. It is
created by plotting true
positive rate (recall) against
false positive rate (also known
as probability of false alarm).
The total area under this curve
(AUC) gives a probability
estimation of how well an ML
model can distinguish between
two classes.

Novice/Expert classification
(Baghdadi et al., 2023;
Davids et al., 2021; Hira
et al., 2022; Kim et al., 2019;
Ruzicki et al., 2023)

Sensitivity Sensitivity calculates the
percentage of correct classes
detected. It measures the
ability of a model to identify
all actual positive cases. It is
the ratio of true positives to the
sum of true positives and false
negatives (positive cases that
were missed). We report the
average sensitivity across all
classes.

Novice/Expert classification
(Ahmidi et al., 2015; Hira
et al., 2022; Kim et al., 2019;
Watson, 2014; Yibulayimu
et al., 2022)

Specificity Specificity assesses how well a
model correctly identifies
negative instances. It measures
the proportion of true negative
predictions (correctly
identified negative cases)
relative to all actual negative
cases in the dataset. We report
the average specificity across
all classes.

Novice/Expert classification
(Hira et al., 2022; Kim et al.,
2019; Watson, 2014)

F1 score F1 score provides a balance
between how many relevant
items are retrieved (recall) and
how many of the retrieved
items are relevant (precision).
A higher F1 score indicates a
better overall performance of
the classification model.

Novice/Expert classification
(Baghdadi et al., 2023;
Hoffmann et al., 2024)
Pass/Fail classification (
Nagaraj et al., 2023)

R2 R2, also known as the
coefficient of determination, is
a statistical measure used to
assess how well a numerical
prediction model fits the
observed data.

OSATS scoring (Azari et al.,
2019, 2021a, 2021b)

Intraclass
correlation
(ICC)

ICC is a metric used in statistics
to assess the consistency or
agreement between
measurements made by
different observers or methods
on the same set of subjects or
items.

OSATS scoring (Kasa et al.,
2022)

Mean squared
error (MSE)

MSE is the difference between
actual and predicted numerical
predictions which is then
summed and averaged over
total number of predictions.

OSATS scoring (Kasa et al.,
2022)

(continued on next page)
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translation of automated skills assessment technologies (Maier-Hein
et al., 2022).

5.2. Challenges in open surgery data acquisition

5.2.1. Overview of challenges in data acquisition
Limited application of automated skills assessment in the operating

room during live open surgery has been noted. This limitation is likely
due to difficulty in obtaining accurate data from the operative field. For
instance, existing data acquisition based on optical tracking is limited by
clear line-of-sight requirements, which are difficult to maintain due to
frequent obstructions by hand, instruments, and human motion during
live procedures. The data acquired through EM tracking is susceptible to
interference from the presence of metallic or other ferromagnetic ma-
terials near the tracking sensor, including the instrument itself. IMU can
capture hand movements to differentiate between skilled and unskilled
suturing (Shayan et al., 2023). However, the sensor must be placed on
the surgeon’s hand and wrist (Singh et al., 2024) which is impractical
during open surgery due to sterility issues. Furthermore, the magne-
tometer within IMUs faces interference issues similar to those faced by
EM sensors, despite gyro-assisted compensation (Ren and Kazanzides,
2009). Depth sensors require expensive hardware and are severely
affected by occlusions and clutter. Moreover, for robustness they require
multiple depth capturing setups that typically rely on computationally
complex background subtraction algorithms (Kadkhodamohammadi
et al., 2017). Embedded tissue sensors, which measure strain and force
applied to the tissue (Solis et al., 2008), also face challenges in being
used on the patient’s body during live open surgery due to safety and
sterility concerns. Force sensors used for automated skills assessment

during open surgery consists of two types: sensorized surgical instru-
ment that can record tool-tissue force data (Baghdadi et al., 2023;
Sugiyama et al., 2018), and sensors placed on surgeon’s hands capturing
the force exerted on the instrument held (Sbernini et al., 2018; Xu et al.,
2023). The use of sensorized forceps is typically limited to neurosurgery
and may not be applicable for majority of other open surgical proced-
ures. Additionally, the force sensors placed on the surgeon’s hands raise
sterility concerns. Ensuring reliable placement of piezoresistive sensors
for optimal measurements across different instruments can also be
difficult (Xu et al., 2023). EMG sensors are placed on surgeon’s thumb,
arm, and shoulder to capture muscle activity (Soangra et al., 2022).
However, this is also not practical due to sterility concerns during live
surgery.

Concerns about safety, sterility, and ease of acquisition can be
overcome with the use of image (RGB)-based cameras placed at a dis-
tance from the surgeon’s hands and patient body. However, acquiring
high-quality video footage during open surgeries involving large in-
cisions can present its own difficulties (Deng et al., 2021; Rafiq et al.,
2004). Unlike minimally invasive procedures where the camera scope
captures the full operative view with relative ease, video footages from
open surgeries can be partially obstructed with the operating surgeon’s
head or body (Bilgic et al., 2022). Moreover, image cameras can capture
the final result of knot tying and suturing tasks (Kasa et al., 2022;
Yamada et al., 2022). However, they do not record hand or instrument
movements. This makes them unsuitable for advanced surgical proced-
ures where the process must also be captured to gauge the surgeon’s
skills. To address this, various camera setups (such as head-mounted,
body-mounted, tripod, or overhead surgical lights) have been tested.
However, these setups can have drawbacks, including unnecessary
motion causing blur and low quality footage, short battery life, unin-
tentional occlusion by operating room staff, and excessive light exposure
(Kajita et al., 2020).

5.2.2. Deep learning solutions to data acquisition challenges

5.2.2.1. Robustness of algorithms to suboptimal data. Challenges within
image-based data predominantly affect computer vision-based (image
processing) algorithms and traditional machine learning algorithms.
These algorithms rely on inflexible assumptions about objects based on
their appearance, structure and motion. Additionally, they exhibit
inability to interpret meaningful information and handle significant
appearance changes, due to dependence on manually designed features
such as Histogram of Oriented Gradients, Color Names, and Scale-

Table 5 (continued )

Performance
Metric

Description Assessment Output &
Reference

Custom
evaluation

The metrics used to evaluate
performance of custom
automation methodologies fall
under this category.

Novice/Expert classification
(Bkheet et al., 2023;
Shaharan et al., 2017)
Pass/Fail classification (
Ying-Ying and Shulruf, 2019)
Custom scoring (Handelman
et al., 2020; Oliveira et al.,
2022; Shaharan et al., 2016;
Tozzi et al., 2022; Yamada
et al., 2022; Ying-Ying and
Shulruf, 2019)

Fig. 6. Number of articles using various automation algorithms, by year of publication.
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Invariant Feature Transforms (Marvasti-Zadeh et al., 2021). In contrast,
deep learning techniques have demonstrated robustness to such limi-
tations, by learning hierarchical representations from large datasets,
making it more adaptable to variations in motion blur (Zamir et al.,
2021; Zhang et al., 2018), lighting (Silwal et al., 2021; Windrim et al.,
2016) and partial occlusions (Zhu et al., 2019). To overcome limited
availability of large datasets, deep learning uses transfer learning, in
which knowledge from prior tasks and diverse datasets enhances
learning for new or specialized tasks. This allows a model to focus on the
specific task while leveraging other well-generalized models to handle
common challenges such as illumination variations and blur (Iman et al.,
2023). This approach is not possible in ML as they do not learn hierar-
chical representations of objects from images as DL does, making them
less adaptable across tasks (Djolonga et al., 2021).

5.2.2.2. Synthetic data generation. Advancements in DL have provided
solutions to overcome challenges pertaining to low resolution of image-
based data, by enhancing video quality during real-time surgical pro-
cedures. Models like Generative Adversarial Networks (GAN) have po-
tential to enhance image resolution through techniques like deblurring
(Kupyn et al., 2019), and dehazing (Zheng et al., 2023). Transformers
have shown potential in video restoration, also called video super res-
olution, through feature extraction followed by reconstruction of
high-quality frames from low quality frames, based on temporal
self-attention from multiple adjacent frames (Liang et al., 2024). Such
image generation-based models have also shown potential in addressing
scarcity of data, by generating reliable and accurate synthetic datasets
including photo-realistic high resolution images (Ledig et al., 2017).
These datasets have been validated to show high concordance to real
surgical data (Azizi et al., 2021), suggesting that synthetic data can serve
as effective substitutes and additionally address privacy concerns
(detailed in section 5.2.5).

5.2.2.3. Enhancing sensor-based data acquisition. Challenges in accurate
data acquisition pertaining to sensors have been addressed using DL
techniques. Presence of metallic objects around EM sensors causes
reflection, scattering and absorption of EM signals, distorting the
received signals and reducing their tracking accuracy. By training deep
neural networks on correctly labeled data, it has shown potential to
capture the complex interactions within the scene and account for the
effects of metallic interferences (Li et al., 2020). Similarly, deep learning
has been applied to improve data acquisition for IMU sensors (Chen
et al., 2018), and depth sensors (Wang and He, 2023; Yoneyama et al.,
2021). These technological advancements highlight the potential to
improve data acquisition in open surgeries. Deep learning-based neural
network training and synthetic datasets can address the challenge of
limited accurate data acquisition in open surgical settings.

5.2.3. Limitations of virtual reality trainers
Effective acquisition of hand motion and surgical instrument data is

crucial, and immersive virtual reality (VR) simulators, which allow
effortless data capture and feedback generation, may present a prom-
ising solution (Shabir et al., 2022b; Titov et al., 2023; Velazco Garcia
et al., 2019). VR has been extensively applied for orthopedic procedures
involving tools for drilling, sawing, or screw placement, as such move-
ments can be simulated using haptic devices (Syamlan et al., 2022).
However, replicating such a virtual environment with a realistic
human-computer interface is challenging for open procedures using
standard surgical instruments. Furthermore, intricate hand movements
and deformations resulting from tissue manipulation in open surgeries
may not be accurately represented (Seymour et al., 2006). Additionally,
VR may only provide approximations of the tasks performed (Titov
et al., 2023). Therefore, automated skills assessment for most open
surgeries relies on reliable data capture during surgical training.

5.2.4. Non-technical skills
Most studies did not consider non-technical skills in automated

assessment, which can potentially have a significant impact on intra-
operative performance (Nagyné Elek and Haidegger, 2021). According
to the Non-Technical Skills for Surgeons (NOTSS) rating tool, key ele-
ments assessed include situational awareness, decision-making, leader-
ship, communication and teamwork (Abahuje et al., 2022). These
elements all have an impact on the surgical care received by the patient.
In fact, surgical errors do not occur exclusively due to lack of technical
skills. Inadequate decision-making, situational awareness, and commu-
nication errors are also significant factors in the incidence of intra-
operative adverse events. An earlier study revealed a substantial portion
of errors occurring in the operating room attributed to surgeon’s
behavior and decision making (Gawande et al., 2003). Such insights
question the reliability of traditional surgical skills assessment, and calls
for a more comprehensive method that incorporates assessment of
non-technical skills as well (Khan and Begum, 2021). Future de-
velopments focusing on integrating automated assessment of
non-technical skills would be very useful (Nagyné Elek and Haidegger,
2022). This may be achieved through analysis of intraoperative video
recordings (Dick et al., 2024). Expert surgeons may assess non-technical
skills using the NOTSS tool by reviewing multiple camera angle views
depicting discussion among the operating team. The video segments
may be labeled for training algorithms based on the expert surgeon’s
assessment (Likosky et al., 2021). Alternatively, video data combined
with force input data may also be utilized for automated non-technical
skills assessment. In the study by (Nagyné Elek and Haidegger, 2022),
sensory data was combined with Surgery Task Load Index (SURG-TLX)
results as class labels. In addition to mental, physical, and temporal
demands, the SURG-TLX also evaluates task complexity, situational
stress and distractions. However, it can be prone to bias since they are
self-reported results. Future research on automated non-technical skill
assessment may incorporate objective measurements such as eye
movement, heart rate, and electroencephalogram (EEG) recordings of
the operating surgeon.

5.2.5. Ethical implications
Ethical implications must be taken into consideration while utilizing

data acquired from live surgeries for automated skill assessment. Legal
frameworks such as Health Insurance Portability and Accountability Act
(HIPAA) in the United States and General Data Protection Regulation
(GDPR) in the European Union provide guidelines that ensure protection
of patient privacy (Walsh et al., 2023). Risk of data breaches can be
reduced through anonymization (removal of patient identifiers), data
encryption (such as hashing mechanism), and the use of firewall pro-
tection (Filicori and Addison, 2022; Godfrey et al., 2019). Prior ap-
provals must be obtained from the relevant ethical boards before
conducting research with surgical data. In the subsequent sections, we
focus on the applications of the commonly used automation algorithms,
namely, CNN, RNN, and transformers.

5.3. Common automation algorithms

5.3.1. Applications of convolutional neural networks
The automation algorithms used within the articles are diverse, with

most utilizing AI for skill assessment and standardized evaluation met-
rics such as classification accuracy and mean-squared-error. Notably,
the most frequently used algorithm was CNN. A CNN (LeCun et al.,
2015) is a type of deep learning model specifically designed to process
and analyze visual input through automatic recognition and learning of
hierarchical patterns within images. It has been widely used in image
recognition, classification, and computer vision tasks. Prominent CNN
architectures include U-Net (Ronneberger et al., 2015), which is
designed for image segmentation in the medical domain and uses an
encoder-decoder structure with skip connections for high accuracy even
with limited data, as demonstrated by (Baghdadi et al., 2023). ResNet
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models (ResNet (Bkheet et al., 2023; Hira et al., 2022), ResNet-18 (Kasa
et al., 2022), ResNet-50 (Kasa et al., 2022; Tang et al., 2024),
ResNet-152 (Ruzicki et al., 2023)) utilize residual learning with shortcut
connections to effectively train deep networks by overcoming challenges
typically associated with very deep architectures (He et al., 2016).
Although more than 20 % of the DL-based automations followed the
ResNet architecture (Bkheet et al., 2023; Hira et al., 2022; Kasa et al.,
2022; Ruzicki et al., 2023) for skill classification or score prediction
using various assessment inputs, their performances were average
(mean values of 63.3 % accuracy, 73.6 % AUC, 75 % specificity, 84.3 %
sensitivity, 0.26 MSE, and 72 % ICC), indicating that this architecture
may not be the best choice for automated assessment in open surgery.
Inception-v4 (Szegedy et al., 2015) improves feature extraction by using
scalable convolution filters rather than single-sized filters within the
network. This approach allows for the capture of both fine and global
features from images, balancing accuracy and computational efficiency.
However, when combined with U-Net for analyzing time-series data on
forces from sensors on tool, as demonstrated by (Baghdadi et al., 2023),
the model yielded average performance (71 % F1 score, 81 % AUC),
falling short of other approaches in skill classification. Similarly, a
variant of the Inception-v4 network, I3D (or Inflated 3D ConvNets),
which extends scalability into the third dimension and is pre-trained for
human action recognition, was used by (Hoffmann et al., 2024) for skill
classification, yielding moderate results (71 % F1 score and 72 % AUC).
Having described the general applications of CNN, we now explore the
utilization of two main aspects, namely, object detection and temporal
information for skills assessment in the following subsections.

5.3.1.1. Utilizing object detection for skill assessment. Region-based
Convolutional Neural Network (R-CNN) focuses on object detection in
images by first generating region proposals using Selective Search and
then classifying each region through a two-stage process. Faster R-CNN
enhances this approach by performing the classification in a single stage,
and Mask R-CNN builds on Faster R-CNN by predicting segmentation
masks (He et al., 2017; Ren et al., 2015; Davids et al., 2021) used Mask
R-CNN to track surgical tool behavior from instrument motion data in 2D
captured from 2 cameras. The model demonstrated strong performance
(97.7 % AUC, 84.21 % accuracy) in automated skill classification.
However, the broader applicability of this deep learning network for
skill assessment remains uncertain due to the limited amount of sup-
porting research. The You Only Look Once (YOLO) architecture,
renowned for real-time object detection, predicts bounding boxes and
class probabilities in a single stage (Redmon et al., 2016). Its newer
versions are recognized for delivering sub-millisecond speed and high
performance. The works by (Bkheet et al., 2023; Goldbraikh et al., 2022)
demonstrate reliable performance (p < 0.05) in terms of speed and ac-
curacy for skill classification based on hand movement. However, further
research, particularly with more recent YOLO architectures like YOLOv7
and YOLOv8, is necessary to fully assess their potential for automated
skill assessment in open surgery.

5.3.1.2. Utilizing temporal information for skill assessment. More recent
networks used, like EfficientNet (Tan and Le, 2019), systematically
scales network depth, width, and resolution to optimize performance
with fewer parameters. Similarly, X3D (Feichtenhofer, 2020) expands a
small 2D network along multiple axes, adding a temporal dimension,
specifically targeting video classification with enhanced accuracy.
However, the use of these networks is limited in number as well as
performance in the current scope (only one work (Nagaraj et al., 2023)
with average performance of 69 % F1 score, 83 % accuracy) and requires
further research to understand their full potential. Temporal Convolu-
tional Networks (TCNs) (Bai et al., 2018) are effective for capturing
information from a broader temporal context due to 1D convolutions
that process sequences in parallel, allowing them to capture long-range
dependencies efficiently without significantly increasing computational

load. The temporal segment network (TSN), extends this through
segment-based aggregation, suitable for efficient action recognition
tasks that was applied in combination with I3D, for skill classification by
(Hoffmann et al., 2024).

5.3.2. Applications of recurrent neural networks
Recurrent Neural Networks (RNNs) are designed for sequential data

processing by maintaining a hidden state that captures information from
previous time steps, making them effective for tasks like time-series
prediction. However, standard RNNs struggle with long-term de-
pendencies, a challenge overcome by the Long Short-Term Memory
(LSTM) network architecture, which uses mechanisms like gates to
better capture and retain information over longer sequences (Hochreiter
and Schmidhuber, 1997). Its application for automated skill assessment
demonstrates good performance (98.2 % accuracy) when integrated
with the CNN-based architecture proposed by (Nguyen et al., 2019).
However, when combined with ResNet (Hira et al., 2022; Kim et al.,
2019; Xu et al., 2023), the performance appears average (63.3 % ac-
curacy, 69.2 % AUC, 0.26 MSE, and 72 % ICC). In contrast, TCNs, which
similarly utilizes temporal information, demonstrate superior perfor-
mance (91.2 % accuracy, 82.2 % AUC) (Bkheet et al., 2023; Nguyen
et al., 2019), even when integrated with ResNet (p < 0.05) (Kiyasseh
et al., 2023; Matsoukas et al., 2021; Xie et al., 2021). Existing studies
have primarily focused on hand movement for skill classification.
However, TCNs hold the potential to be applied effectively to various
other assessment inputs across different forms of skill assessment.

As evident from the above analyses, integrating CNN architectures
with temporal feature extractors improves surgical skill assessment, as it
provides insights on variation of surgeon actions and motions
throughout consecutive time frames. When integrating temporal infor-
mation, the appropriate choice of input sequence length (also called
window size) is important. A small window size may enhance compu-
tational efficiency but may demonstrate reduced performance accuracy.
However, for complex tasks like knot-tying, a higher window size could
demonstrate improved performance (Wang and Majewicz Fey, 2018).
Specific modifications to CNN architectures, like utilization of Scaled
Exponential Linear Unit (SELU) instead of Rectified Linear Unit (ReLU)
as the activation function within the neurons may benefit from
self-normalization properties, providing the effect of batch normaliza-
tion and sufficient regularization to maintain robust learning (Castro
et al., 2019). Additionally, for multi-variate time-series like force
sequence data and kinematics data (like position, velocity), the use of
global mixed pooling strategy has shown to improve generalization ca-
pabilities for skill classification by taking advantage of both global
average pooling and global max pooling strategies. The use of Adaptive
Synthetic (ADASYN) sampling method for enhancing classification on
minority classes in imbalanced datasets (Peng et al., 2024, 2025) and
encoding predictable patterns in surgical motion using approximate
entropy (ApEn) have shown to demonstrate good results in other do-
mains (Zia and Essa, 2018), whose potential could be explored in open
surgical skill assessment using CNNs.

5.3.3. Applications of transformers
More recent algorithms, such as vision-based transformers (ViT)

have emerged to show results on par with CNNs when initialized with
pre-trained information, and even outperform CNNs in tasks like object
detection and semantic segmentation in the natural image domain
(Kiyasseh et al., 2023; Matsoukas et al., 2021; Xie et al., 2021). Although
they have been widely used for skill assessment in other surgical do-
mains like MIS and robotic surgeries (Kiyasseh et al., 2023), only one
work out of 40 in the current scope, employed a vision transformer
(ViT), Microsoft’s Shifted Windows (Swin) Transformer (Hoffmann
et al., 2024; Liu et al., 2021), achieving moderate results on skill clas-
sification (71 % F1 score). This highlights a gap in research utilizing such
algorithms for the automation of skill assessment within open surgery.
Having discussed the applications of commonly used automation
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algorithms, the following section discusses some of the methods used for
evaluating the algorithms, and the different assessment inputs utilized
by the automation systems.

5.4. Performance evaluation and assessment inputs

Evaluation of AI algorithms in the studies was done through stan-
dardized metrics pertaining to the task. Classification tasks utilized ac-
curacy, F1 score, AUC, etc., while regression tasks utilized MSE or R2.
However, not all studies had the same list of metrics used for evaluation,
i.e., some used a combination of accuracy and F1, while others included
AUC, sensitivity and so on. This variability in use of metrics poses a
challenge when it comes to comparison of algorithm performance be-
tween studies. AUC of a model describes how well the algorithm can
distinguish between two classes. In skill classification, this metric can be
considered more useful than other metrics due to its direct dis-
tinguishing capability between a novice and an expert. However, it is
noteworthy that for the skill classification task, 15 studies used accuracy
as their metric to evaluate performance, while only 4 studies made use of
AUC. Although measuring performance in terms of accuracy helps un-
derstand the algorithm’s overall predictive ability, it overlooks the al-
gorithm’s distinguishing ability – which is particularly important for
classification algorithms. For example, consider two scenarios A and B:
estimated probabilities of 0.51 and 0.99 are both classified as Expert. If
the ground truths were Novice and Expert respectively, then the accu-
racy metric has evaluated the model performance as 50 %. In contrast,
AUC measures the probability that a randomly chosen negative example
will have a smaller estimated probability of belonging to the positive
class than a randomly chosen positive example (Hanley and McNeil,
1982). This means that AUC evaluates the algorithm based on its pre-
diction probability directly, rather than post-thresholding result. Since
the estimated probability of scenario A (randomly selected negative
sample Novice) is 0.51 and it is lesser than scenario B (randomly selected
positive sample), AUC would help evaluate the algorithm as 100 %
estimation of performance. Hence, AUC is generally a better estimate of
classification performance than accuracy (Huang and Ling, 2005), and is
recommended to use in combination with accuracy to provide a more
complete performance evaluation of AI algorithms for skill
classification.

Beyond learning-based algorithms, custom algorithms were also
prevalent among the discussed articles. While AI algorithms often
adhere to standardized evaluation metrics for performance comparison,
custom algorithms are frequently evaluated using varied or non-
standardized methods. For instance, some studies employed statistical
analyses, such as t-tests and correlation coefficients, to assess the algo-
rithm’s correlation to OSATS scoring (Yamada et al., 2022). Others
relied on expert evaluations, such as a study where seven experts rated
the overall reliability of the automation system with a score of 9/10
(Tozzi et al., 2022). However, the reliability of such variable and sub-
jective evaluations raises concerns, particularly given the variability in
the quantity and quality of raters. This variability poses challenges when
translating these automation algorithms into clinical settings. For such
algorithms, the correlation to well-established scoring benchmarks like
OSATS or Procedure-Based Assessment (PBA) demonstrates highest
reliability (Beard et al., 2011). To ensure a dependable and comparable
evaluation of such algorithms, reliability and validity are crucial factors
to consider. The MERSQI score includes an aspect that is dedicated to the
validity of the evaluation instrument used in a study. A higher score
would indicate that the study has reported evidence of content and
reliability of the instrument used. In addition, to provide a reliability
estimate, every relevant factor should be sampled as widely and repre-
sentatively as possible, based on generalizability theory (Andersen et al.,
2021). This includes the number of evaluations of the algorithm, number
of assessors, assessor designations, types of surgical cases assessed, and
most importantly, the inter-rater reliability between the assessors. The
assessment algorithm should also undergo validity evaluation through

predictive validity, internal content validity, and construct validity.
Predictive validity measures the correlation between the pre-
diction/outcome (i.e., whether the trainee successfully completed the
procedure or demonstrated proficiency in technical skills), and the
scores estimated by the algorithm. Internal content validity evaluates
the correlation between each criterion within the assessment algorithm;
and construct validity explores the correlation of these scores with age,
experience and demographics of the assessors. Additionally, a user
satisfaction and acceptability assessment by the assessors is recom-
mended to understand the usefulness of the algorithm for providing
feedback, for its summative purpose, and its importance in surgical
education. To obtain a comparative analysis between algorithms, it is
recommended to use pooled reliability tests based on
Generalizability-coefficients (or G-coefficients) (Mitchell, 1979), and
conduct concurrent validity that estimates the correlation between
tools, i.e., tools measuring the same construct should have high corre-
lation estimates; and finally, inter-procedural differences should be
accounted for, i.e., algorithms designed for different surgical procedures
may not be comparable (Beard et al., 2011).

As observed in Fig. 4c, hand movement was the most frequently used
assessment input across all algorithms, followed by modified OSATS
scoring, knot/suture placement, and instrument motion in 3D, in decreasing
order. When hand movement was used for skill classification, 77 % of the
automation algorithms showed good results (i.e., significantly high
performance with p< 0.05 (Bkheet et al., 2023; Goldbraikh et al., 2022;
Rittenhouse et al., 2014; Shaharan et al., 2017) or above 90 % accuracy
(Nguyen et al., 2019; Sbernini et al., 2018; Sun et al., 2016; Xu et al.,
2023; Zia et al., 2018)). Notably, half of these successful applications
involved DL algorithms, and the rest constituted the other types of al-
gorithms. This indicates that using DL to assess a surgeon’s skills based
on hand motion or manual expertise has yielded the most promising
results compared to other combinations of assessment inputs and
algorithms.

The use of 3D instrument motion data has also produced notable re-
sults for skill classification. All studies using this data showed good re-
sults in skill classification (p < 0.05 (Franco-González et al., 2021) or
above 90 % accuracy (Ahmidi et al., 2015; Yibulayimu et al., 2022; Zia
et al., 2018)), except for two (Hira et al., 2022; Kim et al., 2019), both of
which involved DL algorithms. This suggests that using DL on 3D in-
strument motion data may not be the most effective approach for skill
classification and warrants further research. Additionally, it is worth
noting that existing works have used 3D instrument motion data exclu-
sively for skill classification; no studies have applied this data for
generating skill assessment scores (like OSATS).

It is also important to highlight that only 10 out of 40 studies focused
on automated skill assessment using scores. Out of these, 3 studies uti-
lized ML techniques (Azari et al., 2019, 2021a, 2021b) and 1 utilized DL
techniques for assessing surgeon skills (Kasa et al., 2022). There is a lack
of studies focusing on direct output of skill assessment through scores, in
comparison to classification, indicating a significant research gap in
scoring-based skill assessment. The main reason for this gap is the un-
availability of ground truth. Acquisition of detailed ground truth infor-
mation like OSATS scores is difficult as this requires a minimum number
of expert evaluators assessing in-person or video recordings of the user
performance (Martin et al., 1997). There is a lack of public datasets for
such ground truth, and there are usually restrictions on making any such
collected data public (Yanik et al., 2022). For example, according to
GDPR, videos recorded for the purpose of performance metric scoring
(like OSATS) should be deleted right after scoring (Filicori and Addison,
2022). This provides scoring datasets, however with no corresponding
source videos to train on. Comparatively, classification ground-truth is
easy to acquire from self-proclaimed skill levels based on hours of
experience (Wang and Majewicz Fey, 2018).
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5.5. Limitations of the review

One limitation of this review is that the search strategy did not
include databases specifically for grey literature (such as dissertations
and unpublished clinical trials). Although an effort was made to be as
comprehensive as possible with the search strategy used, articles
describing automated skill assessment systems for open surgery that did
not use certain terminologies might have been overlooked. Nonetheless,
this scoping review presents an overall picture of the field of automated
skills assessment during open surgery, which is still in its early stages.

6. Conclusion

Overall, automation of skills assessment during open surgery is
making significant progress. The comprehensive analysis of 40 articles
indicated a steady evolution of sensors, including wearable devices, for
acquiring data from the open surgical field. Various automation algo-
rithms have been applied, resulting in high accuracies for predicting the
skill levels of participants. Improvements in methods for data acquisi-
tion from the surgical field and the adoption of standardized surgical
skills assessments will be crucial for facilitating the clinical translation of
this technology.

Despite these advancements, challenges remain, particularly in the
reliable capture of data during live open surgeries. Although 65 % of the
studies utilized video cameras, setbacks such as variability in camera
setups and difficulties in obtaining high-quality footage and accurate
measurements remain. This highlights the need for further refinement in
data acquisition methods. As such, operating rooms must be equipped
adequately for the collection and storage of intraoperative data during
open surgeries. Additionally, about 45 % of the studies focused on su-
turing which was not specific to a surgical procedure. This indicates an
underrepresentation of complex surgical procedures and limited focus
on comprehensive skill assessment. Future research must be directed
towards advanced surgical procedures. In addition, automated assess-
ment of non-technical skills must also be taken into consideration. To
facilitate these developments, efforts should be devoted to building
annotated open surgery research datasets.

While DL algorithms, especially CNNs, have shown promise in skill
classification based on hand and instrument motions, there is still a
significant gap in research exploring their application for scoring sys-
tems like OSATS. Only 10 % of the studies included in the review had
OSATS as a predicted score. To improve reliability and validity of
automated assessment, further development on OSATS score predictions
is needed. Moreover, the potential of newer architectures, such as
vision-based transformers and TCNs, remains underexplored in the
context of open surgery, suggesting that future work should investigate
these avenues to fully leverage their capabilities.

In general, there is an optimistic outlook for further research and
development in the field of automated skills assessment in open surgery.
Continued innovation in sensor technology, algorithm development,
and data acquisition methods will be key to overcoming existing chal-
lenges and advancing the clinical implementation of these systems, ul-
timately enhancing the training and performance of surgeons.
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