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A B S T R A C T

In recent years, power line maintenance has seen a paradigm shift by moving towards computer vision-powered
automated inspection. The utilization of an extensive collection of videos and images has become essential for
maintaining the reliability, safety, and sustainability of electricity transmission. A significant focus on applying
deep learning techniques for enhancing power line inspection processes has been observed in recent research.
A comprehensive review of existing studies has been conducted in this paper, to aid researchers and industries
in developing improved deep learning-based systems for analyzing power line data. The conventional steps
of data analysis in power line inspections have been examined, and the body of current research has been
systematically categorized into two main areas: the detection of components and the diagnosis of faults. A
detailed summary of the diverse methods and techniques employed in these areas has been encapsulated,
providing insights into their functionality and use cases. Special attention has been given to the exploration
of deep learning-based methodologies for the analysis of power line inspection data, with an exposition of
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their fundamental principles and practical applications. Moreover, a vision for future research directions has
been outlined, highlighting the need for advancements such as edge–cloud collaboration, and multi-modal
analysis among others. Thus, this paper serves as a comprehensive resource for researchers delving into deep
learning for power line analysis, illuminating the extent of current knowledge and the potential areas for future
investigation.

1. Introduction

The late 19th century saw Edison’s light bulb and Tesla and West-
inghouse’s alternating current (AC) systems usher in the electrical age.
This era not only illuminated the world but also laid the foundation
for the modern power delivery system, which has become a complex
network of power plants, transmission lines, and distribution networks.
For many decades, this complex network relied on manual inspections,
which were dangerous and limited. Technological advances improved
the methods, but the recent rise of computer vision and deep learning
has revolutionized how power line inspections are conducted.

A power line comprises a multitude of components, each with
distinct functions, including insulators, towers, conductors, and fittings.
Operating in a challenging outdoor environment, exposed to complex
landforms and unpredictable weather, power line components are sus-
ceptible to frequent damage. A single faulty component, such as a
conductor, or a combination of multiple damaged components, such
as fittings, can trigger power outages with far-reaching consequences.
These disruptions not only disrupt regional electricity supply but can
also escalate to supra-regional blackouts and even catastrophic inci-
dents, such as forest fires [1]. In California, about 10% of the state’s
wildfires are believed to be triggered by power lines. The severity of
these fires led the California Public Utilities Commission to investigate
Pacific Gas & Electric (PG&E) power line safety practices, considering
drastic measures such as breaking up the utility into smaller entities for
better management and accountability [2]. The resulting economic and
societal costs due to power line failures can be substantial [3]. Effective
power line inspection serves as the vanguard against such calamities. Its
primary objective is to assess the condition of the power line compo-
nents, enabling informed decisions on maintenance and replacement.
A swift and accurate inspection process significantly enhances the
efficiency of maintenance decision-making and, in turn, reduces the
likelihood of power line failures, safeguarding the safety and reliability
of the power supply to the connected load [4].

Nonetheless, power line inspection encounters a series of chal-
lenges, ranging from covering vast geographic areas to dealing with
a diverse array of components and navigating complex natural en-
vironments. For decades, traditional inspection methods have relied
on manual ground surveys and helicopter-assisted patrols [5]. These
methods heavily depend on visual observations from humans, which
involve significant costs, inherent risks, low operational efficiency, and
long timeframes [6]. In recent years, the application of computer vision
and deep learning technologies has helped in a transformative era for
power line inspection [7]. These advanced techniques have effectively
decoupled the traditional inspection process into two distinct phases:
data collection and data analysis. Operators can now leverage com-
puter vision and deep learning to automatically process images and
videos captured by Unmanned Aerial Vehicles (UAVs) or other means.
This transition from manual labor-intensive methods to automated in-
spection is driven by compelling advantages, including cost-efficiency,
enhanced safety, and superior operational efficiency [7].

Today, the maintenance of power lines is being transformed by the
integration of computer vision and deep learning algorithms. These
technologies enable the automation of inspection processes, offering a
safer, more efficient, and cost-effective method of identifying potential
issues before they escalate into major failures. By leveraging high-
resolution images and real-time data analysis, utility companies can
now predict maintenance needs, prevent outages, and ensure the re-
liable delivery of electricity to consumers. However, this transition has

introduced a deluge of data. Furthermore, the conventional approach
for analyzing these images and videos involves time-consuming manual
efforts, which are not only costly but also fraught with potential safety
hazards and may lack the necessary precision [8]. Consequently, there
is an urgent demand for the development of automated methodologies
to replace manual analysis [9]. Over the past years, several attempts
have diligently striven to devise rapid and accurate methods for the
automatic evaluation of power lines from aerial imagery or land [4].
Those attempts tried an extensive spectrum of power line components
and their associated faults, primarily leveraging image processing and
computer vision. Although image processing-based approaches like
color [10], shape [11], or texture segmentation [12] have seen some
success over the years, they are gradually being replaced by more
advanced deep learning-based approaches. Moreover, a substantial por-
tion of these endeavors are task-specific, concentrating on isolated
components or specific fault types.

This review paper explores the recent works on vision-based power
line inspection, casting the gaze through the lens of deep learning.
The paper starts with an introduction to the foundational concepts in
power line inspection, encompassing various inspection methods and
data sources. Subsequently, this paper provides a brief introduction to
the deep learning-based techniques applied to power line inspection.
Moving forward, an extensive review of research endeavors focused on
the analysis of images in power line inspection has been explored. The
literature has been organized into two categories: component detection
and fault diagnosis. Component detection research focuses on locating
and identifying power line elements, either as a standalone task or as a
crucial first step in fault analysis. Fault diagnosis studies, on the other
hand, encompass both direct fault detection approaches and methods
that build upon component detection to identify specific defects. This
systematic division allows us to examine the unique challenges and so-
lutions in each domain while highlighting their interconnected nature.
The paper unveils the key features of each analytical approach, explores
the nature of the datasets employed, and showcases representative
quality analysis results, offering insight into the diverse capabilities of
these methods across various applications. Finally, the paper presents
a set of open research questions and uncharted territories awaiting
future exploration. These questions encompass challenges related to
data quality, the intricacies of small object detection, the application
of deep learning in embedded systems, and the definition of robust
evaluation baselines. Finally, this paper synthesizes the key findings
and insights derived from this comprehensive analysis.

The structure of the rest of this paper is outlined as follows: Sec-
tion 2 explores similar works and compares this review with the
existing ones. Section 3 introduces the key stages of automated power
line inspection. Section 4 explores various image acquisition methods
and the vehicles employed for collecting power line data. In Sec-
tion 5, we examine a range of imaging techniques, discussing their
advantages and limitations. Section 6 presents a concise overview of
available computer vision datasets pertinent to power line inspection.
Section 7 highlights the leading deep learning models and architectures
employed in computer vision for tasks such as object detection and
classification. Following this, Section 8 offers an in-depth review of
research papers focused on power line component detection. Section 9
scrutinizes literature dedicated to identifying power line faults through
computer vision techniques. Section 10 provides a qualitative assess-
ment of the reviewed articles and Section 11 addresses the prevalent
challenges within this field and proposes potential areas for future re-
search. The paper concludes with Section 12, summarizing the findings
of this comprehensive review.
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Fig. 1. Block Diagram of an automated multi-modal power line inspection system.

2. Related works

The application of computer vision and deep learning for power line
inspection has garnered increasing attention in recent years, reflected in
a growing body of survey papers. Chen et al. [13] and Yang et al. [14]
offer general overviews of automated power line inspection techniques,
including 3D reconstruction, object detection, and inspection platforms.
Their work is primarily centered on the technology aspects, such as
LiDAR-based reconstruction and the classification of detection tech-
niques. While this technical perspective is valuable, the review lacks
an in-depth exploration of deep learning’s impact on these technologies.
Sundaram et al. [15] provide an overall perspective on deep learning
applications in the electrical domain, touching upon power line inspec-
tion alongside other areas. However, their review is broader in scope,
covering multiple electrical applications, which dilutes the focus on
power line inspection. Ruszczak et al. [16] focus specifically on the
importance of specialized datasets for training deep learning models
in power line inspection tasks.

Several reviews delve into the use of unmanned aerial vehicles
(UAVs) for inspection. Xu et al. [17] provide a systematic summary
of UAV platforms and image recognition techniques, while Foudeh
et al. [18] concentrate on UAV technologies and control strategies.
Nguyen et al. [4,19] explored UAV-based power line inspection tech-
niques in the light of deep learning and proposed a concept for an
autonomous UAV-based inspection system and discuss its challenges
and possibilities. The above mentioned reviews are notable for their
focus on UAV-based systems, but it largely centers on the hardware
and system integration aspects. Although they mention deep learning,
it is not the primary focus of their analysis. Finally, Liu et al. [9]
present a comprehensive review of data analysis techniques, including
deep learning methods, for power line inspection. Although the authors
cover deep learning, the topic of the review is much broader due
to the inclusion of image processing techniques and non machine
learning-based approaches.

While these existing reviews offer valuable insights, this current
review distinguishes itself through several key contributions. First, it
provides a comprehensive and up-to-date analysis of deep learning
applications specifically for power line inspection, encompassing both
component detection and fault diagnosis. This focused exploration

of deep learning techniques sets it apart from previous surveys that
either covered a broader range of inspection methods or touched upon
power line inspection as part of a larger survey. Second, the review
systematically categorizes existing research into component detection
and fault diagnosis, providing a structured understanding of the field.
It summarizes various methods and techniques, offering insights into
their functionality and use cases. This systematic approach facilitates
easier navigation and comprehension of the current state-of-the-art.
Furthermore, the review places a particular emphasis on deep learning
methodologies, including their fundamental principles and practical
applications in power line inspection. Finally, the review outlines future
research directions, highlighting areas like data quality improvement
and small object detection that require further exploration. It serves as
a roadmap for future research endeavors, guiding researchers towards
potential breakthroughs.

In summary, this review paper contributes significantly to the field
by offering a comprehensive, systematic, and deep learning-focused
analysis of automated power line inspection. It builds upon existing
knowledge, provides a structured understanding of current research,
and charts a course for future advancements.

3. Methodology for automated power line inspection

Automated power line inspection leverages the capabilities of com-
puter vision and deep learning to enhance the safety, reliability, and
efficiency of power transmission systems. Fig. 1 shows the overview
of a typical computer vision-based power line inspection process. It
starts by capturing images of power line components using aerial
or land vehicles sometimes using multiple imaging techniques. The
images are then processed through the object detection or segmentation
algorithm. Subsequently, the image classification algorithm evaluates
the segmented insulators to classify them as ‘good’ or ‘faulty’, resulting
in the final fault detection output. This section provides an overview
of the key steps involved in this process, from data collection to fault
diagnosis. It should be noted that in many cases in the literature,
the component detection part has been skipped and the deep learning
model has been trained for the fault detection purpose directly.
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Fig. 2. Example of different image enhancement techniques used for power line
inspection [9].

3.1. Data collection

The basis of automated power line inspection is high-resolution
images usually captured from land or aerial vehicles. The collected
images provide valuable visual data that forms the basis for subsequent
analysis. The data collection process for power line inspection has been
discussed in more detail in Section 4.

3.2. Preprocessing

The raw images obtained during data collection often require pre-
processing to improve their suitability for analysis. Preprocessing steps
may include noise reduction, image enhancement, and geometric cor-
rection to account for variations in lighting conditions and perspective
distortions. These enhancements ensure that the subsequent computer
vision algorithms can work effectively. Fig. 2 shows visual examples
of different image processing techniques such as image enhancement,
edge detection, orientation correction, and color-based background
subtraction.

3.3. Component detection

Component detection plays a central role in identifying and locating
power line components within the power line images. Deep learning
models, such as Faster R-CNN [20], (You Only Look Once) YOLO [21],
or (Single Shot Multibox Detector) SSD [22], are employed to detect
a wide range of components, including insulators, suspension clamps,
dampers, and conductors. These models can distinguish these compo-
nents from the complex backgrounds typically encountered. Section 8
provides a comprehensive overview of the literature focusing on power
line component detection.

3.4. Fault diagnosis

The final phase in automated power line inspection involves fault
diagnosis, where deep learning models analyze detected components or
direct image inputs to identify potential issues. Deep learning models
are employed to analyze the extent and severity of faults, enabling
operators to prioritize maintenance and repair efforts. These models
can provide valuable insights into the overall health of the power
transmission system, aiding in the prevention of outages and accidents.
Section 9 provides a comprehensive overview of the literature focusing
power line fault detection.

Automated power line inspection harnesses the capabilities of com-
puter vision and deep learning to streamline the inspection and main-
tenance of power transmission systems. By automating the detection
and diagnosis of components and faults, these systems contribute to
safer, more reliable power delivery while minimizing downtime and
operational costs.

4. Image acquisition platforms and vehicles

The success of computer vision applications in the domain of trans-
mission line maintenance largely depends on the quality and diversity
of the images acquired. The choice of image acquisition techniques
plays a vital role in determining the cost and labor associated with the
operation. This section explores various methods employed for power
line image acquisition.

4.1. Unmanned aerial vehicles

Unmanned Aerial Vehicles (UAVs), commonly known as drones,
have emerged as a popular choice for image acquisition in power line
inspection. UAVs equipped with high-resolution cameras can capture
images and videos of transmission lines and their components from
various angles and distances. They offer a unique combination of acces-
sibility, maneuverability, and safety that is particularly well-suited to
the challenges posed by transmission line maintenance. This versatility
allows for comprehensive visual data collection, enabling the detection
of defects and anomalies in power lines with greater accuracy [23].

4.2. Aerial vehicles

Aerial vehicles such as helicopters have been utilized for decades
in power line inspection. Equipped with specialized cameras and imag-
ing systems, they offer the advantage of covering long distances and
providing a stable platform for capturing images of transmission lines.
They are particularly suitable for inspecting high-voltage lines, where
safety considerations are paramount [7].

4.3. Land vehicles

In situations where aerial inspection may not be feasible or cost-
effective, land vehicles equipped with imaging equipment are em-
ployed. These vehicles can navigate the terrain near transmission lines,
capturing images and videos of the components and their surroundings.
They are especially useful for inspecting power lines in areas with
limited airspace accessibility.

4.4. Fixed camera

Fixed cameras installed at strategic locations along power lines
provide continuous monitoring. These cameras capture images at pre-
defined intervals or when triggered by certain events. They offer a cost-
effective solution for routine inspections and surveillance, although
they may have limitations in terms of coverage and flexibility compared
to aerial methods.

4.5. Satellite imaging

Satellite imaging technology is increasingly being explored for
large-scale monitoring of transmission lines. While the resolution may
not be as high as that of UAVs or helicopters, satellite imagery can
provide valuable data for identifying overall trends and assessing the
condition of transmission networks over vast geographic areas [24].
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Table 1
Comparison of different image acquisition techniques.

Platform Cost Trackinga Accuracy Efficiency Coverage Safety Usage

UAV Low Difficult Good Fast Good Safe General purpose
Land vehicles Low Easy Good Slow Limited Safe Road-side lines
Aerial vehicles High Easy Bad Fast Good Unsafe Hard-to-reach areas
Fixed camera High Easy Good NA Limited Safe For towers
Satellite High Difficult Bad Slow Good NA Hard-to-reach areas
Inspection robots High Easy Good Slow Limited Safe Detailed inspection

a Tracking refers to following and keeping track of the power line.

4.6. Power line inspection robots

Power line inspection robots have emerged as a promising tech-
nology for automating the inspection and maintenance of transmission
lines. These robots can be classified into climbing robots, flying robots
(UAVs), and hybrid climbing-flying robots [25]. Climbing robots can
roll along the power lines and provide high-quality inspection data,
but they face challenges in obstacle avoidance and deployment onto
the lines. Flying robots offer faster inspection and easier obstacle
avoidance but may have limitations in terms of inspection quality.
Hybrid robots aim to combine the advantages of both climbing and
flying robots for more effective inspection. Research in this area focuses
on improving the robots’ mechanical design, power systems, control
algorithms, and sensing capabilities for autonomous operation [13]. For
a comprehensive review of power line inspection robots, readers are
referred to [13,25,26].

Selecting the most suitable image acquisition method is crucial for
obtaining high-quality data. The choice often depends on factors like
cost, terrain, and the specific goals of the inspection. The choice of
image acquisition method may also be influenced by weather condi-
tions. Adverse weather, such as rain, snow, or fog, can impact the
performance of aerial methods. Ground-based and fixed-camera sys-
tems may be preferred in such scenarios for their resilience to adverse
weather conditions. Table 1 shows a general comparison between these
techniques focusing on several different aspects such as cost, accuracy,
coverage, and safety.

5. Imaging techniques

The choice of imaging technique is critical for obtaining the most
relevant and accurate data. Various imaging modalities are employed,
each offering unique advantages and limitations. In this section, four
primary image acquisition techniques: visible light images, infrared
images, UV images, and x-ray images have been explored. Furthermore,
LiDAR-based geospatial mapping has also been discussed briefly.

5.1. Visible light imaging

Visible light imaging is the most widely used method and is readily
available through standard cameras. It is a cost-effective choice for
routine inspections. Visible light images capture fine details of power
line components and surrounding vegetation and other objects, which
is crucial for identifying defects and assessing structural integrity. How-
ever, visibility can be compromised in adverse weather conditions, such
as fog, rain, or darkness [27,28]. While visible light images provide
valuable surface-level data, they may not detect defects hidden within
materials or components.

5.2. Infrared imaging (Thermography)

Infrared imaging, or thermography, detects temperature variations
in power line components, highlighting issues like overheating, loose
connections, and faulty insulators [29]. Faulty electrical components

often result from internal electrical defects which can lead to over-
current flow and heating of the component which can be detected from
its surface temperature. Infrared imaging is not reliant on visible light
and can operate effectively day and night. However, Infrared imaging
requires specialized cameras that can be costly and may require trained
personnel. It primarily provides information about surface temperature,
and its ability to penetrate materials is limited [30].

5.3. Ultraviolet (UV) imaging

UV imaging is particularly useful for detecting corona discharges
— electrical discharges caused by the ionization of air surrounding
high-voltage conductors — which can indicate electrical faults [31].
UV imaging is non-destructive and can reveal hidden faults without
physical contact with the power lines [32]. However, UV imaging
has a limited range compared to visible light or infrared imaging,
which means it may not capture an entire transmission line in a
single image [33]. Also, specialized UV cameras are required for this
technique.

5.4. X-ray imaging

X-ray imaging can penetrate materials, providing detailed images of
inner structures and components. It is effective at identifying hidden
defects, such as corrosion and internal damage [34]. The use of X-
ray imaging involves exposure to ionizing radiation, which requires
adherence to safety protocols and limits its routine use. Also, X-ray
imaging equipment is costly and requires skilled operators to acquire.

5.5. LiDAR imaging

LiDAR (Light Detection and Ranging) imaging is a cutting-edge
technique increasingly used in power line inspection. It employs laser
light to create high-resolution, three-dimensional representations of
power line infrastructure and surrounding environments. LiDAR sensors
emit pulses of laser light and measure the time taken for each pulse
to bounce back after hitting an object. This data is then used to
construct detailed 3D models of the power lines and their immediate
surroundings. LiDAR provides precise, three-dimensional information,
enabling accurate mapping of power line components and detection of
even minor structural anomalies. Unlike visible light imaging, LiDAR
can penetrate through mild fog, rain, and other atmospheric condi-
tions, offering more consistent results in diverse weather scenarios.
It is particularly effective in assessing vegetation encroachment and
potential physical obstructions near power lines, which are crucial for
maintaining line safety and preventing outages [35,36].

The choice of image acquisition technique in power line inspection
depends on specific inspection goals, budget, and the expected chal-
lenges. Often, a combination of imaging modalities may be used to
maximize the coverage of inspection. While visible light images provide
a foundational dataset for routine inspections, advanced techniques like
infrared, UV, and X-ray imaging offer deeper insights into the condition
of power lines. When combined with computer vision algorithms, these
techniques can significantly enhance the accuracy and efficiency of
fault detection and maintenance decisions [32]. Table 2 shows a com-
parison between these techniques in terms of cost, lighting condition,
and coverage.
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Table 2
Comparison between different imaging techniques.

Modality Cost Lighting Coverage Usage

Visible Low Requires light High Structural defect, foreign object detection
IR Moderate Not needed High Internal electrical defect
UV Moderate Not needed Low Corona discharge
X-ray High Not needed Low Internal structural defect
LiDAR High Not needed High 3D mapping, terrain analysis, vegetation encroachment

Table 3
Summary of some publicly available power line image datasets.

Name Year Type Component Task No. of images Ref Download

Chinese Power Line
Insulator Dataset (CPLID)

2018 RGB Insulator Segmentation,
Classification

848 [37] Link

Powerline dataset
(Infrared-IR and Visible
Light-VL)

2019 RGB, IR Conductor, No
conductor

Detection 8000 [40] Link

Transmission Towers and
Power Lines (TTPLA)

2020 RGB Insulator, Tower,
Conductor

Segmentation 1234 [41] Link

Power transmission line
dataset

2021 RGB Conductor Classification 1044 [42] Link

(Recognizance - 2) Power
lines detection

2021 RGB Conductor Classification 16 078 [43] Link

STN PLAD: A dataset for
multi-size Power Line
Assets Detection in
high-resolution UAV
images

2021 RGB Tower, Insulator,
Damper

Segmentation 2409 [44] Link

Aerial power infrastructure
detection dataset

2023 RGB Tower Segmentation 3956 [45] Link

RSIn-dataset: An
UAV-based insulator
detection aerial images
dataset and benchmark

2023 RGB Insulator Segmentation 1887 [46] Link

6. Publicly available datasets

Developing deep learning tools for checking power lines automati-
cally relies on having detailed datasets with images of power line parts.
These images need to be gathered and labeled by experts, which can
be tricky and expensive. It often involves using UAVs or helicopters.
Labeling these images is a detailed task, especially since the parts are
small and spotting problems need an expert’s eye. Therefore, making
even a small dataset can take a lot of time and money. However,
these deep-learning models need a lot of data to learn well and make
accurate predictions. To deal with the lack of enough real images,
some researchers have tried making artificial images by changing the
background or surroundings of power line parts using computer pro-
grams [37]. The big issue is that there aren’t many large datasets
available for everyone to use. The datasets that are created by utility
companies are not available to the public due to privacy and data
protection laws and regulations. Several companies around the world
are obligated to follow rules and regulations regarding data protection
such General Data Protection Regulation (GDPR) [38] in Europe or
California Consumer Protection Act (CCPA) [39] in California. Those
laws limit the sharing of data from Utility companies. But there are a
few datasets that can be found online in Table 3. For more information
on this topic, readers are referred to a study by Ruszczak et al. [16]
containing a comprehensive review of the power line datasets.

7. Deep learning architectures and detection paradigms

Deep learning models have significantly advanced the field of power
line inspection, offering unique advantages in terms of speed, accu-
racy, and the ability to handle complex scenarios [47]. Models like
YOLO [21,48–51], R-CNN family [20,52,53], SSD [22], and trans-
former architectures [54–56] have shown remarkable performance in

detecting and classifying various power line components, including
insulators, dampers, pin bolts, and conductor wires [19,57–66]. These
models are increasingly being deployed in hierarchical detection sys-
tems, where lightweight variants perform initial coarse screening while
more sophisticated versions handle refined secondary recognition [60].
YOLO stands out for its real-time capabilities and high frame rate [67],
while region-based CNNs excel in precisely localizing objects within
images [68]. SSD offers a balance between speed and accuracy [69],
making it particularly suitable for edge deployment, and transformer
architectures, such as ViT [54], Swin Transformers [55], and DE-
TRs [56], have demonstrated their effectiveness in capturing global
context and handling complex scenes [64–66,70].

Classification algorithms, particularly those pretrained on large
datasets like ImageNet [71], have also been employed for identifying
faults and anomalies in power line images. ResNet [72], VGG [73],
MobileNet [74], and EfficientNet [75] have shown promising results
in classifying power line components as either faulty or in good con-
dition [60,67,76–81]. The attention mechanism [82] has also gained
widespread popularity in recent years, enhancing the accuracy and
efficiency of object detection tasks [76,83,84].

Various computer vision tasks, such as bounding box detection,
semantic segmentation, and instance segmentation have been utilized
in automating the inspection of power line components. Bounding
box detection is particularly useful for identifying larger components
like towers, insulators, and dampers [85]. Semantic segmentation pro-
vides detailed component-wise masks [86,87], while instance segmen-
tation excels in scenarios where components are close together or
overlapping [86,87].

For a more detailed discussion on these deep learning models and
computer vision tasks, please refer to Appendix A and Appendix B,
respectively.
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Fig. 3. Overall process of the two stage insulator detection using the SSD network [63].

8. Detection of power line components

In recent years, advancements in computer vision and deep learning
have revolutionized the field of power line inspection and maintenance.
Power transmission lines, a critical part of our modern infrastructure,
consist of various components such as insulators, conductors, fittings,
and more. The accurate and efficient detection of these components
serves two crucial purposes in power line inspection: first, as a stan-
dalone task for inventory management and infrastructure mapping, and
second, as a prerequisite step for fault diagnosis, where detected com-
ponents are further analyzed for potential defects. This section focuses
specifically on component detection methodologies, covering research
works that either concentrate solely on locating and identifying power
line components, or present novel component detection techniques that
later serve as foundations for fault diagnosis systems. Section 9 on fault
diagnosis will then examine approaches for detecting various types of
faults, both in scenarios where component detection is a preliminary
step and in methods that analyze faults directly from full images.

8.1. Insulator detection

Among the components of transmission lines, the insulator detec-
tion technologies are the most well-researched in the literature. These
technologies offer efficient and accurate solutions to identify insulators
among the other components. In a 2019 work, Miao et al. [63] proposed
an efficient insulator detection method for aerial images, addressing
the challenge of cluttered backgrounds. The approach utilizes the SSD
network and employs a two-stage fine-tuning strategy to improve ac-
curacy (Fig. 3). In the first stage, a basic insulator model is fine-tuned
with a diverse dataset, while the second stage fine-tunes the model for
specific insulator types and scenarios. This approach demonstrates that
pretraining on a generalized insulator dataset can improve the model’s
performance when using a smaller and more specific type of insulator
dataset.

The YOLO and Faster R-CNN algorithms for object detection have
been widely used for insulator detection tasks. Sadykova et al. [57] pro-
posed a cost-effective solution for automatically detecting high voltage
insulators from aerial images, particularly in scenarios with uncluttered

backgrounds, varying object resolutions, and lighting conditions. The
approach utilizes the YOLO network and includes data augmentation to
prevent overfitting, leveraging a training dataset of 56,000 image sam-
ples after augmentation. Experimental results demonstrate the accuracy
of this method in locating insulators in real-time UAV-based image
data. Kang et al. [88] proposed a two-stage deep learning system for
the detection of defects on the surface of high-speed railway insulators.
In the first stage, a Faster R-CNN was employed to locate the insulators
within images captured by the inspection vehicle. The second stage in-
volved a novel Deep Multitask Neural Network (DMNN) that combined
a Deep Material Classifier (DMC) for segmenting the insulator from the
background and a Deep Denoising Autoencoder (DDAE) for detecting
anomalies (defects) on the insulator surface. The DMNN was trained
in a multitask learning framework, allowing the DMC and DDAE to
benefit from shared convolutional layers. The authors noted that the
system might struggle to detect defects that are small or have a gray
value similar to the normal insulator surface.

Any kind of occlusion such as fog, smoke, etc. can be challenging
for computer-vision-based insulator detection. A 2022 work by Zhang
et al. [28] introduced a dataset designed for insulators and presented a
benchmark model called Foggy Insulator Network (FINet), which builds
upon the improved YOLOv5 framework. To enhance the dataset, the
research develops and optimizes a synthetic fog algorithm, resulting in
the creation of a Synthetic Foggy Insulator Dataset (SFID) containing
13,000 images. Furthermore, the YOLOv5 network is enhanced with a
channel attention mechanism to form SE-YOLOv5. However, the syn-
thetic fog generation algorithm, while effective, might not fully capture
the complexity and diversity of real-world fog conditions. The evalu-
ation of the FINet model was primarily focused on the SFID dataset,
which might limit the generalizability of the results to other datasets
or real-world scenarios. Table 4 summarizes the relevant literature on
insulator detection.

8.2. Detection of power line fittings

Detecting power line fittings, including components like pin bolts,
dampers, and suspension clamps, presents a unique set of challenges.
These fittings are relatively small in size compared to the overall
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Table 4
Summary of insulator detection studies in power line inspection.

Year & Ref Component Type of detection Imaging platform Dataset Algorithm Performance

2019 [63] Porcelain
insulator,
Composite
insulator

Bounding box
detection

UAV 7605 RGB images SSD Porcelain insulator:
90.51–94.12% Composite
insulator: 86.70–87.29%

2019 [57] Glass insulator Bounding box
detection

UAV 3500 RGB images YOLOv2 Detection accuracy: 88%
Prediction time: 0.04 s

2019 [88] Insulator Bounding box
detection

High-speed
railway

18 000 RGB
images

F-RCNN mAP: 99.8%

2020 [89] Insulator Object presence
detection

NA 4780 insulator and
13 012 background
IR images

DCNN & VLAD
Coding

Detection accuracy: 99.21%

2021 [90] Insulator Semantic
segmentation

High-speed
railway

800 RGB images CDSNets IOU: 0.94

2021 [91] Ceramic insulator Bounding box
detection

UAV 2973 RGB images R-CNN, SSD Onshore mAP: 0.56–0.77;
Onboard mAP: 0.24–0.27

2022 [60] Insulator Bounding box
detection

NA 8500 insulator
images

SSD, F-RCNN Accuracy: SSD: 89%,
F-RCNN: 91.6%

2022 [28] Insulator Bounding box
detection

Synthetic 13 000 Foggy RGB
images

Improved
YOLOv5

mAP@0.5:0.95: 88.3%, F1
Score: 96.2%

2022 [92] Insulator Instance
segmentation

UAV 1523 RGB images Mask R-CNN mAP: 87.0%

2023 [24] Insulator Semantic
segmentation

Satellite 9900 RGB images HRNet and
OHEM

F1 Score: 0.7952

2023 [93] Insulator Bounding box
detection

UAV 1887 RGB images YOLOv4++ mAP: 94.24%

2023 [58] Insulator Bounding box
detection

UAV & Synthetic CPLID dataset:
848 RGB images

YOLOv8 mAP@[0.5:0.95]: 91.25%

transmission line structure, making their detection and classification
a particularly intricate task [77]. This section explores the efforts and
methodologies aimed at the automatic detection of these critical power
line fittings, focusing on the utilization of deep learning and computer
vision techniques to address the intricacies associated with their small-
scale identification. Table 5 summarizes the literature on power line
fittings detection.

As mentioned earlier, one of the biggest challenges to overcome in
power line fittings like bolts detection is their relatively small size com-
pared to the other components. To tackle this, Luo et al. [77] propose
a novel model (UBDDM) based on deep CNN. This model includes two
modules: the ultrasmall object perception module (UOPM) for initial
bolt region identification and the local bolt detection module (LBDM)
for pinpointing defects within high-resolution image blocks. The au-
thors enhance feature extraction using ResNet-50, a hybrid attention
mechanism, and multiscale feature fusion. Their method simplifies data
labeling requirements while maintaining end-to-end detection capabili-
ties. While experiments demonstrate the model’s superior performance
in detecting bolt defects within inspection images, the model can only
draw bounding boxes of some predefined dimensions.

Transmission line fittings encapsulate a wide range of components
and often require a multi-task object detection model to detect all the
different types. In 2022 a study done by Zhai et al. [94] proposed
the Cascade Reasoning Graph Network (CRGN) which offers a novel
solution to the intricate challenges posed by detecting multiple power
line fittings in aerial images. CRGN uses spatial knowledge represen-
tations that capture the interrelationships among objects based on
the unique characteristics of transmission line fittings. However, the
model’s dependency on high-resolution, close-up photographs of the
fittings presents a practical challenge, as such image quality may be
difficult to consistently achieve in real-world scenarios.

8.3. Conductor detection

Conductor detection using computer vision must contend with mul-
tiple complexities, including the conductor’s slender profile, varying
backgrounds, and potential occlusions. This subsection explores the
state-of-the-art techniques and advancements in conductor detection
using computer vision and deep learning, addressing the unique chal-
lenges associated with this critical task. Table 6 summarizes the litera-
ture on conductor detection.

Power lines are often a small portion of the image, leading to
class imbalance issues. To address these challenges, Yang et al. [97]
proposed a novel vision-based power line detection network designed
to address challenges in detecting power transmission lines in complex
aerial images including varying background environments, illumination
conditions, and foreground–background class imbalance, where power
lines occupy a small portion of the image. The proposed network
utilizes an encoder–decoder architecture (similar to UNet) to create
an end-to-end power line detection system. To improve segmentation
precision, it incorporates an attention block to capture global contexts
and emphasize target power line regions. Additionally, an attention
fusion block is introduced to enhance multi-scale feature fusion and
capture richer information, mitigating issues related to local contextual
feature processing and information loss caused by multiple pooling
operations. However, due to the complexity of the UNet-based network
combined with the attention mechanism, the proposed model is not
particularly suitable for real-time applications.

While deep learning, especially U-Net and its variants, has advanced
pixel-level object segmentation, limitations in processing local contex-
tual features and information loss in deep CNNs persist. To overcome
these issues, in a follow-up study, Yang et al. [98] proposed a novel
dual-branch residual attention network called DRA-Net. It features a
dual-branch encoder with a residual CNN (RCNN) branch and a recur-
rent RCNN (RRCNN) branch to capture richer semantic information.
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Table 5
Summary of power line fittings detection studies.

Year & Ref Component Type of detection Imaging platform Dataset Algorithm Performance

2021 [61] Fittings Bounding box
detection

UAV 1455 RGB images HK R-CNN mAP:
59.82%–98.27%

2022 [95] Dampers and
suspension clamps

Bounding box
detection

UAV 1209 RGB images AGMNet mAP: 95.3%

2022 [94] Fittings Bounding box
detection

Aerial vehicle 1455 Aerial
images

CRGN mAP@0.5–0.95:
47.5%

2023 [96] Damper Semantic
segmentation

UAV 240 RGB images Improved GrabCut F1 Score:
89.1–97.3%

2023 [77] Bolts Bounding box
detection

UAV 1852 RGB images UPOM (Based on
ResNet and
Attention)

Recall 0.94–1.00

Table 6
Summary of power line conductor detection studies.

Year & Ref Component Type of detection Imaging platform Dataset Algorithm Performance

2022 [97] Conductor Semantic
segmentation

UAV 366 RGB images UNet with
Attention blocks

Dice: 0.957

2023 [98] Conductor Semantic
segmentation

UAV PLD dataset: 573
RGB images; OPL
dataset: 571 RGB
images

DRA-Net mIOU: 93.19%
(PLD dataset),
mIOU: 96.04%
(OPL dataset)

Additionally, a U-shaped noise denoising (UND) block reduces back-
ground interference, and an edge enhancement block (EEB) strengthens
the network’s capacity to extract useful edge features. Experimental
results demonstrate DRA-Net’s excellent segmentation performance,
achieving a Dice coefficient of 93.26% and a mean Intersection over
Union (mIoU) of 93.19% on the public power line dataset (PLD) and
96.40% Dice coefficient and 96.04% mIoU on the self-built overhead
power line (OPL) dataset. However, the reported results were obtained
from a relatively small training dataset of 1144 images and could be
reduced when tested on a wide variety of real-world images.

8.4. Multi-component detection

A typical transmission tower consists of multiple different types
of components with varying shapes and dimensions. Some studies
have extended focus beyond individual component detection to multi-
component detection [19,99,100]. In a 2024 study, Dong et al. [101]
proposed a meta learning-based model to address the challenge of
detecting key components and defects in transmission lines using aerial
images, particularly when dealing with limited sample sizes for certain
categories. The model incorporated a region-aware fusion (RAF) mod-
ule to capture spatial relationships between support and query images,
enabling effective matching and identification of objects. Additionally,
cascade RAF heads were employed to progressively refine bounding box
proposals and improve detection accuracy. The model was trained us-
ing a two-stage fine-tuning strategy, leveraging a larger dataset of base
classes to enhance the detection of novel classes with fewer samples.
Experimental results demonstrated the model’s superior performance
compared to traditional deep learning and few-shot object detection
models. The authors acknowledged potential limitations in their work.
The model’s performance might be affected by variations in image
quality and environmental conditions encountered in real-world power
transmission line inspections. The reliance on a pre-defined set of base
classes and novel classes might limit the model’s adaptability to new
or unexpected object categories. The authors suggested exploring the
incorporation of online learning or active learning techniques to enable
the model to continuously learn and adapt to new scenarios.

Self-supervised pretraining has been used effectively in other do-
mains to tackle the challenge of minimal or non-existent annotated
dataset. Liu et al. [102] introduced Tower Masking MIM (TM-MIM),
a self-supervised pretraining method designed to enhance power line

component detection in aerial images, particularly in scenarios with
limited labeled data. By employing a novel masking strategy that
focuses on the tower–conductor region and a Siamese architecture with
dual reconstruction branches, the model learns to capture discrimina-
tive features and global representations from unlabeled data. The incor-
poration of knowledge distillation further enhances the model’s ability
to retain general knowledge from pretrained models while acquiring
domain-specific knowledge. The authors identified potential areas for
future work. The masking strategy’s reliance on tower presence in im-
ages might necessitate the development of techniques to handle images
without towers. Additionally, exploring the use of varied-grained masks
for different feature hierarchies could further enhance the model’s abil-
ity to detect components of varying scales. The authors also suggested
extending the TM-MIM approach to other object detection frameworks,
such as YOLO, to broaden its applicability. Table 7 summarizes the
literature on power line multi-component detection.

This section has demonstrated the remarkable progress in automat-
ing power line component detection through computer vision and
deep learning techniques. The reviewed literature showcases signifi-
cant achievements across various components: from insulator detection
achieving mAP rates of up to 91.25% using YOLOv8, to conductor
segmentation reaching Dice coefficients of 96.40% with innovative
architectures like DRA-Net, and multi-component detection systems
attaining mAP rates of 87.7% through self-supervised learning ap-
proaches. These advances have been enabled by architectural inno-
vations such as attention mechanisms, multi-scale feature fusion, and
hybrid networks combining CNN backbones with specialized modules.
However, several domain-specific challenges persist. The detection of
small-scale components like pin-bolts and dampers, which often occupy
minimal pixels in aerial imagery, remains particularly challenging,
with performance metrics for fitting detection typically lower than
those for larger components. Additionally, real-world deployment faces
obstacles such as varying imaging conditions, complex backgrounds,
and class imbalance issues where critical components occupy only a
small portion of the image. The limited size and diversity of publicly
available datasets — with most studies utilizing fewer than 5000 im-
ages — continues to constrain model development and benchmarking.
Recent promising directions include meta-learning approaches for few-
shot detection, self-supervised pretraining methods like TM-MIM for
leveraging unlabeled data, and specialized architectures incorporat-
ing domain knowledge about component spatial relationships. These
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Table 7
Summary of multi-component detection studies in power line inspection.

Year & Ref Component Type of detection Imaging platform Dataset Algorithm Performance

2019 [103] Insulator and
Damper

Bounding box
detection

UAV 4416 insulator &
4352 damper
images

YOLOv3 Accuracy:
95.84%

2019 [100] Tower components Bounding box
detection

NA 11 600 RGB
images

F-RCNN –

2019 [19] Tower components Bounding box
detection

Aerial vehicle 123 151 RGB
images

SSD mAP: 0.67

2020 [99] Tower components Bounding box
detection

UAV City A: 2016 RGB
images; City B:
3960 RGB images

Enhanced F-RCNN City A dataset:
mAP: 52.9%,
City B dataset:
mAP: 45.3%

2021 [80] Insulator and Bolts Bounding box
detection

Aerial vehicle 1830 RGB images Mask R-CNN and
RetinaNet

Precision: 96.7%
(Insulators),
97.9% (Bolts)

2023 [102] Tower components Bounding box
detection

UAV PLCD dataset:
1000 images

TM-MIM network mAP@0.5:
87.7%

2023 [104] Towers Bounding box
detection

Satellite Duke university
dataset: 2740
images

Improved
YOLO-based
network

mAP@0.5:
77.47%

2024 [101] Tower components Bounding box
detection

UAV 9017 RGB images Meta learning mAP@0.5:
64.6%

challenges and emerging solutions in power line component detection
will be explored more comprehensively in Section 11, along with their
implications for future research and practical applications.

9. Power line fault diagnosis

Visual inspection, coupled with cutting-edge computer vision tech-
niques has emerged as a powerful and efficient means of identifying and
diagnosing a spectrum of faults. From insulator defects to conductor
issues, and tower anomalies to grounding problems, the ability of
computer vision to meticulously assess power line components is trans-
forming maintenance and reliability in the electrical grid. This section
delves into the application of computer vision and deep learning for the
diagnosis of various faults (Fig. 4) within power lines and associated
equipment, underlining its potential to enhance the resilience and
performance of critical power transmission infrastructure.

9.1. Insulator fault detection

Insulators are critical components of power lines, ensuring that
high-voltage currents are safely transported without coming into con-
tact with the towers or poles that support them. However, insula-
tors continuously endure environmental stresses and mechanical wear,
which can lead to various types of faults. The following sections dis-
cuss some of the most common types of insulator faults and review
significant research addressing these issues.

9.1.1. Surface defect detection
Surface defects in insulators encompass a range of anomalies that

affect the outermost layer of the insulator. This category includes
issues such as surface contamination, cracking, flashover marks, arcing
damage, and chipping. Recent research works have made significant
strides in the detection and classification of these surface defects,
utilizing a variety of computer vision techniques and machine learning
algorithms. Roy et al. [109] developed a deep learning framework
incorporating AlexNet, VGG16, and ResNet50 models to detect sand,
ash, and mud contaminations on the insulator surface. However, this
approach requires images of the insulators taken at close proximity
and is limited to classification and cannot detect contaminated areas.
Mussina et al. [107] introduced a Fusion Convolutional Network (FCN)

for the real-time monitoring of insulators using UAVs, addressing chal-
lenges like varying resolutions and unclear surfaces. It combines a CNN
with a binary ANN to form a multi-modal information fusion system
that improves contamination classification accuracy on insulators to
99.76% by using image data and leakage current values. However,
the proposed model was trained on a relatively small dataset of only
250 images per class and it requires close-up images of the insulator
with uniform background. These limitations can affect the model’s
capability to generalize on real-world situations. Table 8 summarizes
the literature on insulator surface faults.

9.1.2. Structural defect detection
Structural defects refer to issues that affect the internal composi-

tion and mechanical strength of the insulator. They include complete
breakage, missing insulator caps, and material degradation. Table 9
summarizes the literature on insulator structural faults. The following
goes over some of the notable works on structural defect detection.

In a 2022 work, [92] proposed an attention-based end-to-end frame-
work that combines object detection and instance segmentation at the
pixel level. Although trained on a relatively small dataset of 1523
images, this is one of the few works that targeted pixel-level segmenta-
tion and achieved great results. By integrating a three-branch attention
structure into the backbone network, the proposed model achieved
a significant improvement in detection performance, surpassing the
state-of-the-art instance mask prediction models while maintaining
computational efficiency. In a similar work by Wang et al. [110], the
authors proposed an insulator defect detection method that leverages
an improved ResNeSt network and an enhanced Region Proposal Net-
work (RPN). The improvements to ResNeSt were aimed at refining
the detection of insulator defects, particularly in aerial images where
insulators might be small and have low resolution. The authors ac-
knowledge that their method might struggle to detect certain types of
defects, such as breaks on specific insulator types, due to their subtle
visual characteristics. The computational efficiency of the proposed
method, while improved compared to some baseline models, might still
be a concern for real-time applications on resource-constrained devices.

Multi-task networks can be used to detect different types of insulator
faults as separate classes. In a recent article Fu et al. [111] presented the
I2D-Net, a deep learning-based method for detecting small-sized defects
in overhead transmission line insulators, particularly missing caps. The
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Fig. 4. Different types of power line faults [9].

Table 8
Summary of insulator surface fault detection studies.

Year & Ref Component Type of detection Type of fault Imaging platform Dataset Algorithm Performance

2017 [105] Porcelain
insulators

Classification Deterioration
damage

Still camera 700 IR images CNN Accuracy: 93%

2019 [88] Insulators Classification Surface defects High speed
railway

18 000 RGB
images

DDAE (Based on
CNN AutoEncoder)

F1-Score: 0.95

2019 [57] Glass insulator Classification Surface defects UAV 3500 RGB images CNN Accuracy: 87%

2020 [106] Insulators Classification 3 types of surface
defects

Still camera 1240 RGB images CNN Accuracy: 89.5%

2020 [107] Glass insulators Classification 4 Types of surface
defects

UAV 5000 RGB images FCN Accuracy: 99.76%

2021 [91] Ceramic insulators Bounding box
detection

Insulator surface &
Structural defects

UAV 2973 RGB
insulator images

R-CNN, SVM,
CNN, SSD Fusion

Onshore mAP:
0.56–0.77;
Onboard mAP:
0.24–0.27

2022 [108] Insulators Classification Kaolin defects Still camera 600 RGB images ANN Accuracy: 97.50%

2023 [109] Insulators Classification 4 types of surface
defects

Still camera 1000 RGB images CNN Accuracy: 97.5%

I2D-Net enhanced the Faster R-CNN object detection framework with
three key components: the Three-path Feature Fusion Network (TFFN)
to improve feature extraction from shallow layers, the enhanced Re-
ceptive Field Attention (RFA+) block to adapt to different-scale defects,
and the Context Perception Module (CPM) to enhance defect localiza-
tion. The authors acknowledged that while the I2D-Net achieved high
accuracy, it came with a slight increase in inference time compared
to the baseline Faster R-CNN + FPN model. Liu et al. [112] proposed
another approach that utilizes a deep CNN with parallel branches to
locate fault regions and estimate insulator endpoints. The method offers
high accuracy and robustness, outperforming previous approaches like
Faster R-CNN, SSD, and cascading networks. Zhang et al. [90] took a
different approach where they used a generative network including a
denoising autoencoder, discriminator, and classifier to detect defects.
The method comprises two stages: first, insulator extraction using cas-
caded deep segmentation networks (CDSNets); second, defect detection
within sampled patches using the proposed DefGAN, scoring defects
based on classifier anomaly probability and denoising autoencoder

reconstruction error. Although the proposed model can detect mild
deformities, it is sensitive to the noise in the image.

One of the primary causes of insulator failures is the self-explosion
of caps and several research works have been done to detect these
faults. Cao et al. [76] proposed an improved image augmentation
method for the detection of self-detonation defects in aerial images
of insulators. The method incorporated edge detection to enhance the
shape features of insulators, which were then used to guide the augmen-
tation process. The authors utilized the YOLOv3 model for insulator
detection and an improved ResNet-18 model for defect classification.
The proposed method was evaluated on a dataset of aerial images
and showed superior performance compared to baseline models and
other augmentation techniques. However, the authors acknowledged
the need for further evaluation on larger and more diverse datasets,
including images captured under different weather conditions. Ad-
ditionally, the proposed method relied on edge detection as prior
knowledge, which might not be sufficient for detecting more complex
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Fig. 5. Simplified diagram of multi-model fusion network for detecting insulators [60].

or subtle defects. In another work, Wei et al. [60] introduced a fault de-
tection scheme for insulator self-explosion, leveraging edge computing
and deep learning to address issues with traditional centralized cloud
computing. It employs a lightweight SSD target recognition network
at the edge, replacing VGG16 with MobileNets to reduce computa-
tion. In the cloud, three distinct detection algorithms (Faster-RCNN,
Retinanet, YOLOv3) are used to identify insulator self-explosion areas,
and a novel multimodel fusion algorithm (Fig. 5) enables overhead
transmission line fault detection. Results demonstrate effective data
reduction, achieving an average cloud recognition accuracy of 95.75%,
with a modest increase in edge device power consumption.

9.2. Detection of conductor faults

Transmission line conductors are the lifelines of the electrical power
grid, carrying electrical energy over long distances. Conductor defects,
such as aging, corrosion, internal damage, and contamination, pose
significant threats to the reliable and safe operation of power transmis-
sion systems. This subsection explores the challenges associated with
conductor defect detection and highlights the use of computer vision
technologies to enhance the efficiency and accuracy of inspections.
Table 10 summarizes the literature on conductor faults.

External defects of conductor wires can be detected using visible
light images. These types of defects can be due to aging, structural dam-
ages or due to foreign objects which are described in more detail in the
‘‘Detection of Foreign Objects’’ subsection. Aging defects of conductors
are one of the most common for aluminum conductors. In a 2022 study,
Yi et al. [120] introduced a novel approach to quantitatively diagnose
the aging of conductor surfaces in smart high-voltage electricity grids.
The model consists of an AlexNet-based deep convolution network and
a specialized loss function that incorporates Gaussian label distribution.
By reframing the conductor morphology aging problem as a multi-
classification challenge, the model leverages a weakly labeled training
dataset and a carefully designed loss function, combining entropy loss,
cross-entropy loss, and Kullback–Leibler divergence loss. Comparative
analysis with four commonly used CNN-based classifiers demonstrates
superior performance on the collected dataset. However, the proposed
model is suitable only when super-close-up high resolution conductor
images are available.

Internal defects of the conductors can be challenging to detect using
visible light images. To address this, Wang et al. [34] presented a
novel automatic detection system for identifying internal defects in
overhead aluminum conductor composite core (ACCC) transmission
lines. The system utilizes an X-ray inspection robot equipped with a
nondestructive testing (NDT) system to capture X-ray images of ACCC
wires. The proposed system employs an anchor-free object detection
model called CenterNet-NDT, which incorporates specialized modules
like spatial pyramid pooling-cross stage partial convolution (SPPCSPC),
polarized self-attention (PSA), and a weighted bidirectional feature
pyramid network (SOFPN). Although CenterNet-NDT achieves a high
mAP of 90.60% on the IN-ACCC dataset, the instrumentation and
maintenance required for this method can be challenging.

9.3. Fault detection for fittings: Pin-bolts, dampers, suspension clamps

Power line fittings such as pin bolts, dampers, and suspension
clamps are integral components of transmission and distribution sys-
tems. These components are tiny compared to the rest of the trans-
mission line tower and they occupy a very small area in the images
involving only a few pixels. As a result, accurately detecting faults
in these components requires a high level of image processing and
powerful deep-learning algorithms. Table 11 summarizes the literature
on power line fittings fault detection.

Zhao et al. [123] proposed RFBD (Recognition of Bolt Faults using
multilabel image recognition) that comprises two networks: VFSKnet
leverages professional posterior knowledge to model relationships be-
tween bolt defect labels, while VFPKnet extracts structural features
to capture fine-grained details. After combining and weighting these
subnetworks, RFBD achieves label-level accuracy of 93.91% and image-
level accuracy of 83.29% in detecting 5 types of bolt defects. However,
the proposed solution is not end-to-end and requires properly seg-
mented images of bolts. In a similar work, Zhang et al. [65] addressed
the challenge of visually indistinguishable bolt defects in transmission
lines by proposing an end-to-end detection method based on trans-
mission line knowledge reasoning. It employs the DETR (End-to-End
Object Detection with Transformers) [56] model augmented with a
dilated encoder module to capture multiscale features. Additionally,
a Transmission Line Image Relative Position Encoding (TL-iRPE) is
designed to infer bolt position knowledge. The approach includes a bolt
attributes classifier and a bolt defects classifier, combining position and
attributes knowledge to enhance defect detection accuracy.

One of the most prominent faults that occurs often is the missing
pin of bolts. Due to its tiny nature, it can be very challenging to detect
these faults. Zhao et al. [121] proposed the AVSCNet model to address
the challenge of detecting pin-missing defects in bolts on transmission
lines using aerial images. The model tackled the issue of varying
visual shapes of bolts due to different camera angles by employing an
automatic visual shape clustering method. It also incorporated feature
enhancement, feature fusion, and expanded region-of-interest feature
extraction to improve the detection of small-scale defects in complex
aerial images. However, the model’s performance might be affected by
the distributional differences in aerial images captured from diverse
transmission line structures and environments.

Structural anomalies and rusting of the dampers and suspension
clamps can compromise the transmission line system causing failure.
Zhang et al. [95] introduced the AGMNet, an attention-guided multi-
task convolutional neural network designed for the detection of power
line parts in aerial images. The network incorporated a region attention
mechanism to enhance the feature representation of objects, a refinable
Region Proposal Network (RPN) to improve proposal quality, and
a multitask learning framework to simultaneously detect power line
fittings (dampers and suspension clamps), identify their rust levels,
and detect abnormal conditions. However, the authors acknowledged
the need for further evaluation on larger and more diverse datasets.
Additionally, the distinction between different rust levels was found to
be challenging, leading to less accurate rust level identification. The
authors suggested further research to improve the accuracy of rust level
detection.

9.4. Fault recognition on towers

Towers are the sturdy backbone that supports high-voltage conduc-
tors, ensuring the reliable delivery of electricity over long distances.
Traditional methods for fault detection in transmission lines have lim-
itations, such as susceptibility to noise and transient fluctuations. To
address these challenges, Wang et al. [100] proposed a novel approach
for fault zone detection that emphasizes fine-grained categorization
and quality-awareness. The primary objective is to identify the most
distinguishing image patches for classification. The key components of
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Table 9
Summary of insulator structural fault detection studies.

Year & Ref Component Type of detection Type of fault Imaging platform Dataset Algorithm Performance

2019 [113] Glass and
Porcelain
insulators

Bounding box
detection

Insulator
structural defects

UAV 485 RGB images SSD Precision:
91.23%, Recall:
93.69%

2020 [114] Insulators Bounding box
detection

Structural defects UAV 1956 RGB images Cascaded DNN F1 Score: 93.3%,
Speed: 135
ms/Image

2020 [110] Insulators Bounding box
detection

Insulator
structural defect

NA 2560 RGB images Improved
RetinaNet

Accuracy:
98.38%

2021 [112] Insulators Bounding box
detection

Structural faults Aerial vehicle 969 RGB images Box point detector mAP@0.5:
94.0%

2021 [115] Insulators Bounding box
detection

Missing cap UAV & Synthetic CPLID dataset:
848 RGB images,
Pascal VOC
dataset: 5011 RGB
images

Improved YOLOv3 Pascal VOC:
mAP@0.75:
45.90% CPLID:
mAP@0.75:
64.05%

2021 [90] Insulators Classification Insulator
structural defect

High speed
railway catenary

800 RGB images GAN F1-Score: 0.95

2022 [92] Insulators Instance
segmentation

Insulator defects UAV 1523 RGB images Mask R-CNN AP: 89.4%

2022 [116] Insulators Bounding box
detection

Bunch drop defect UAV & Synthetic CPLID dataset:
848 RGB images

Improved
YOLOv4-ResNest

mAP: 95.63%

2022 [60] Insulators Bounding box
detection

Self-explosion
defect

UAV 8500 RGB images F-RCNN,
RetinaNet,
YOLOv3 Fusion

Precision:
99.04%, Recall:
93.69%

2023 [76] Glass insulators Bounding box
detection &
Classification

Self-explosion
defects

UAV 8463 RGB images YOLOv3 &
Improved
ResNet-18

F1-Score:
86.25%

2023 [111] Insulators Bounding box
detection

5 types of
structural defects

UAV & Synthetic CPLID dataset:
848 RGB images

I2D-Net (Based on
F-RCNN)

mAP: 89.6%

2023 [117] Insulator Bounding box
detection

Structural defect Aerial vehicle 900 RGB images PKAMNet mAP@0.5:
95.5%

2023 [58] Insulators Classification Structural defects UAV 848 RGB images Ps-ProtoPNet F1-Score: 0.996

2023 [118] Insulators Bounding box
detection

Self-explosion
defect

UAV & Synthetic CPLID dataset:
848 RGB images

GhostNet-YOLOv4 mAP: 99.50%

2024 [66] Insulator Bounding box
detection

Structural defects UAV 5939 RGB images YOLO-v5 and
DETR

mAP: 98%

2024 [119] Insulator Bounding box
detection

Structural defect UAV and Synthetic CPLID dataset:
848 RGB images

Improved
YOLO-based
network

mAP@0.5:
85.8%

Table 10
Summary of conductor fault detection studies.

Year & Ref Component Type of detection Type of fault Imaging platform Dataset Algorithm Performance

2019 [32] Oil transformer
and Conductor

Classification Internal defects Still camera 12 000 UV, IR and
Visible images

Capsule network Qualitative
assessment

2021 [62] Conductor Bounding box
detection

Vegetation Tower mounted
camera

70 RGB images Cascaded network
(Based on
F-RCNN)

Accuracy: 95%

2022 [120] Conductor Classification Aging defect NA 5200 RGB images Improved AlexNet Avg. MAE: 3.80

2023 [34] Conductors Bounding box
detection

4 types of
composite core
defects

Inspection robot 2500 X-ray images CenterNet-NDT
(Based on
ResNet50)

mAP: 90.60%

2024 [36] Conductor Semantic
segmentation

Vegetation Land 851 LiDAR images UNet-based
network

Precision: Above
90%

their method involve extracting features from line currents using a Fast
R-CNN-based image sample decomposition, with a quality module se-
lecting the most informative regions. These extracted features are then
utilized in a Support Vector Machine (SVM) [127] for fault recognition.
In a similar work, Liang et al. [128] created four medium-sized datasets
for training component detection and classification models. They also
employed data augmentation techniques to balance the imbalanced

classes. Furthermore, the authors proposed a multi-stage component
detection and classification approach using the SSD network and deep
ResNet to detect small components and faults. The results demonstrate
that the proposed system is both fast and accurate in detecting common
faults in tower components, such as missing top caps, cracks in poles
and cross arms, woodpecker damage on poles, and rot damage on cross
arms. Table 12 summarizes the literature on tower faults.
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Table 11
Summary of fault detection studies for power line fittings.

Year & Ref Component Type of detection Type of fault Imaging platform Dataset Algorithm Performance

2020 [121] Bolts Bounding box
detection

Missing pin defect Tower mounted
cameras

1840 RGB images AVSCNet mAR: 0.876

2021 [122] Bolts Bounding box
detection

Pin defects Aerial vehicle 1500 RGB images Improved MTCNN mAP: 94.76%

2022 [81] Bolts Bounding box
detection

2 types of pin
defects

UAV 482 RGB images EfficientDet-D7 mAP: 54.3%,
mAR: 63.4%

2022 [95] Dampers and
Suspension clamps

Bounding box
detection

Rust defects and
Abnormal
conditions

UAV 1209 RGB images AGMNet Rust: mAP:
75.4%,
Abnormal: mAP:
92.7%

2022 [123] Bolts Classification 5 types of bolt
defects

UAV 1944 RGB images VFPKNet Accuracy:
83.29%

2023 [96] Damper Classification Structural defects UAV 240 Aerial images Improved GrabCut Accuracy:
95.76%

2023 [124] Bolts Bounding box
detection

Structural defect UAV 32 094 images MARF-CCN
network

mAP: 87.16%

2023 [77] Bolts Bounding box
detection

Structural defects UAV 1852 RGB images UBDDM (Based on
ResNet-50 &
Attention)

mAP: 78.6%

2023 [125] Fittings Bounding box
detection

Rust defect NA TLCF dataset: 700
RGB images

Deformable
YOLOX

mAP@0.5:
0.857,
mAP@0.5:0.95:
0.533

2023 [65] Bolts Classification 4 types of bolt
defects

UAV VIBD dataset:
8972 bolt
instances in RGB
images

PA-DETR (Based
on ResNet50, FPN
and Attention)

mAP: 81.9%

2023 [126] Dampers Bounding box
detection

Structural defect UAV 490 RGB images DSA-Net mAP@0.5: 0.935

Table 12
Summary of tower fault detection studies.

Year & Ref Component Type of detection Type of fault Imaging platform Dataset Algorithm Performance

2019 [19] Tower components Classification Structural defects UAV 123 151 RGB
images

ResNet F1-Score:
77.96%

2019 [100] Tower components Classification Line Faults NA 11 600 RGB
images

SVM Accuracy:
96.73%

2020 [128] Tower components Bounding box
detection

8 types of
structural defects

UAV WIRE_10 dataset:
8000 RGB images

F-RCNN mAP: 91.11%

2021 [80] Tower components Classification Surface and
Structural defects

Helicopter Insulators: 25 804
RGB images, Bolts:
94,619 RGB
images

EfficientNetB0 ROC: 0.94
(insulator), ROC:
0.98 (Bolts)

2022 [129] Tower components Bounding box
detection

Structural defect UAV 1309 RGB images Graph neural
network

mAP@0.5:
89.1%

2022 [108] Tower components Classification Structural defects Still camera 240 RGB images Inception v3 F1-Score:
84.50%

2022 [78] Tower components Classification Structural defects Still camera 240 images Semi-ProtoPNet
(Based on
VGG-19)

Accuracy:
97.22%

2023 [130] Tower components Classification Structural defect Aerial vehicle TLAD dataset:
4811 RGB images

NMHEM model F1 Score: 80.5%

2023 [131] Tower components Bounding box
detection

Structural defect UAV 956 RGB images PSTL-Net mAP: 0.848

2024 [132] Substation and
Tower components

Classification and
Bounding box
detection

Structural defect UAV and land Substation dataset:
2000 images; UAV
dataset: 5048
images; CPLID
dataset 848
images

Federated learning mAP: .990
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Table 13
Summary of foreign object detection studies in power line systems.

Year & Ref Component Type of detection Type of fault Imaging platform Dataset Algorithm Performance

2020 [59] Tower, Conductor Bounding box
detection

7 types of Foreign
objects

NA 926 & 2000 RGB
images

YOLOv4 –

2020 [133] Tower, Conductor Bounding box
detection

Foreign objects Tower mounted
camera

8000 RGB images DBF-NN mAP: 88.1%

2022 [85] Tower Bounding box
detection

Bird nest Aerial platform 3695 RGB images YOLOv5 mAP: 83.4%,
FPS: 85.32

2022 [67] Tower, Conductor Bounding box
detection

4 types of Foreign
objects

NA 35 000 RGB
images

YOLOv3-
MobileNetv2

mAP: 0.832,
FPS: 60

2023 [134] Tower, Insulator Bounding box
detection

Bird nest UAV & Synthetic Bird nest: 2864
images, CPLID
dataset: 848 RGB
images

YOLOX++ mAP: 86.8%

2023 [79] Tower Bounding box
detection

Foreign objects UAV & Manual 1232 RGB images YOLOv4 with
Attention

mAP: 96.71%,
FPS: 45

2023 [135] Tower, Conductor Bounding box
detection

6 types of Foreign
objects

UAV 8803 RGB images Improved YOLOv7 mAP: 92.2%,
FPS: 19

2023 [136] Conductor Bounding box
detection

Cranes Tower mounted
camera

4000 RGB images Edge VIP (Based
on YOLOv5s)

mAP: 50.60%

9.5. Detection of foreign objects

Foreign object-related anomalies and faults in power lines encom-
pass a multitude of potential hazards that can pose significant threats
to the reliable operation of electrical transmission systems. These haz-
ards can range from inadvertent interference caused by construction
equipment and vehicles to more natural occurrences like fires, bird
nests, and overgrown vegetation among others. The presence of foreign
objects in proximity to power line components can lead to various
issues, including interruptions in electrical supply, damage to critical
equipment, and heightened safety concerns for both utility personnel
and the public. Table 13 summarizes the literature on foreign object
faults.

Construction equipment and vehicles operating near power lines can
accidentally make contact with electrical components, causing short
circuits, equipment failure, and potentially even electrical fires. Simi-
larly, fires in the vicinity of power lines can result from various sources,
including wildfires, discarded cigarette butts, or even arcing caused by
faulty equipment. Zhang et al. [136] presented an edge-based frame-
work for power transmission line abnormal target detection, focusing
on overcoming resource limitations and improving model performance.
To mitigate the lack of labeled data, deep semi-supervised learning was
introduced, which can refine the decision boundary by learning from
unlabeled samples. To achieve this, the framework starts with an initial
model trained on a small amount of labeled data and then updates itself
using unlabeled data. In another work, Zhang et al. [59] introduced a
framework that combines cloud and edge computing with deep learning
techniques. Initially, a YOLOv4 model is trained in the cloud server
for abnormal object detection. This trained model is then deployed to
edge servers for real-time detection of abnormal objects in captured
pictures. To address the limited initial data samples of only 926 images,
enhancement techniques are used to increase the number of pictures,
and real-time data streams are employed for incremental learning.

Bird nests, while seemingly innocuous, can also present challenges
for power lines. Nests built on or near power line components can
lead to electrical faults if they bridge connections or create conductive
pathways. Ge et al. [85] proposed a bird’s nest defect recognition
method using YOLOv5, aiming to address the safety concerns posed
by bird nests on power transmission towers. The method employs a
YOLOv5-based architecture, comprising a backbone network, Feature
Pyramid Network (FPN) [137], and YOLO head, and undergoes multi-
ple rounds of training with a constructed bird’s nest defect database and
transmission line model. Results demonstrate that the YOLOv5 model

achieves an 83.40% recognition rate for bird’s nests while maintaining
a high FPS rate of 85.32. In a similar work, Bi et al. [134] presented
a novel target detection model called YOLOX++, which is built upon
the YOLOX [138] architecture to enhance the detection of abnormal
targets in transmission lines. It introduces a multiscale cross-stage
partial network (MS-CSPNet) to fuse multiscale features and expand the
receptive field of the target, improving channel combination (Fig. 6).
Depth-wise and dilated convolutions are added to the object decoupling
head to capture long-range dependencies of objects in feature maps.
Additionally, the alpha loss function (𝛼-IoU) is incorporated to opti-
mize small object localization. Experimental results demonstrate that
YOLOX++ achieves detection accuracies of 86.8% for high-voltage-
tower bird nests and 96.60% for power line insulators, outperforming
the YOLOX model. On the PASCAL VOC dataset [139], YOLOX++
exhibits a 9.30% improvement in AP50 and a 5% improvement in
APS compared to YOLOX, showcasing its enhanced robustness for small
target detection.

Another common cause of power line faults is vegetation, which,
if left unmanaged, can grow into power lines, potentially causing
short circuits, outages, or even wildfires during dry conditions. Rong
et al. [62] proposed an intelligent detection framework for real-time
monitoring of vegetation encroachment on power lines. The framework
utilized binocular vision sensors mounted on transmission towers to
capture images, which were then processed locally. The framework
employed Faster R-CNN for vegetation detection, Hough transform
for power line detection, and an advanced stereovision algorithm for
3D reconstruction. The advanced stereovision algorithm incorporated
calibration optimization and world coordinate system transformation
to improve accuracy in large-scale scenes. The authors acknowledged
that the accuracy of the proposed method might be affected by complex
terrain and weather conditions, which could impact image quality
and object detection. Additionally, the computational efficiency of the
framework was not explicitly addressed, which could be a concern for
real-time monitoring applications.

To conclude, this section has demonstrated the transformative im-
pact of computer vision and deep learning in revolutionizing power
line fault diagnosis. Through the integration of advanced neural net-
work architectures and multi-task models, significant progress has been
made across multiple domains: from detecting small insulator defects
with accuracies exceeding 97%, to identifying structural anomalies in
towers with mAP rates above 90%, and recognizing foreign objects
with real-time processing capabilities of up to 85 FPS. However, several
critical challenges persist. The scarcity of large-scale, publicly available
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Fig. 6. The simplified network architecture of the proposed YOLOX++ network [134].

datasets remains a significant bottleneck, with most studies limited
to small, proprietary datasets of under 5000 images. The detection
of miniature components like pin-bolts and dampers, which often oc-
cupy only a few pixels in aerial imagery, continues to challenge even
state-of-the-art models. Environmental factors such as varying lighting
conditions, weather effects, and complex backgrounds further compli-
cate reliable fault detection. To address these limitations, promising
research directions include: leveraging generative adversarial networks
(GANs) for synthetic data augmentation, developing semi-supervised
learning approaches to maximize the utility of unlabeled data, explor-
ing attention-based architectures specifically optimized for small object
detection, and investigating multi-task learning frameworks that can
simultaneously handle different types of faults. The integration of edge
computing solutions, as demonstrated in several studies, also shows
promise in enabling real-time fault detection while managing compu-
tational constraints. These challenges and future research directions
regarding power line fault diagnosis are explored in greater detail in
Section 11.

10. Discussion

In this section, we present a comprehensive overview of the research
articles reviewed in this study. Additionally, we provide a qualitative
assessment of these articles. Initially, a set of criteria has been es-
tablished for evaluating the papers, ensuring these criteria adequately
reflect the core content of each article without favoring a particular
subset. This involved a meticulous review of the articles and consulta-
tion with multiple co-authors to mitigate individual biases. Following
this procedure, several criteria were identified for our qualitative as-
sessment, including the use of large datasets (sample size greater
than 5000), publicly available datasets, publication of accompanying
code, fault detection across multiple components, employment of image
modalities beyond visible light, application of advanced image pro-
cessing techniques beyond resizing and cropping, use of synthetic and
augmented data, focus on small components such as bolts, localization
of specific components or faults, provision of performance metrics, ac-
knowledgment of limitations, and suitability for real-time deployment.
Based on these criteria, we conducted a thorough evaluation of all
selected papers, and the findings are summarized in Table 14.

Table 14 reveals several noteworthy insights regarding the articles
reviewed. The scarcity of publicly available datasets is evident, with
only 23% of the papers utilizing them, while the majority rely on
privately generated datasets. This issue has been discussed in Section 6,
‘‘Publicly Available Datasets’’. Moreover, large datasets are seldom
used, with only 30% of the articles meeting our 5000-sample threshold.

To address this, numerous studies have incorporated synthetic or aug-
mented data, with image augmentation being particularly prevalent,
utilized in 67% of the studies.

The publication of source code alongside machine learning or deep
learning papers is highly beneficial for enabling readers to replicate
algorithms and reproduce results, provided the dataset is also available.
Although not always possible, sharing the source code enhances the
credibility and impact of the research. However, among the articles
reviewed, only 6 out of 73 published their source code.

Detecting faults across various components presents significant chal-
lenges due to the diverse nature of components and faults, such as the
noticeable size difference between power line insulators and bolts [19,
128]. Despite these challenges, 34% of the papers successfully em-
ployed multi-task learning techniques to address this issue, demonstrat-
ing effective results and highlighting further research opportunities in
generalizing across more component types, faults, and environments.
The detection of small objects remains particularly challenging due to
their size relative to other components, often requiring sophisticated
algorithms with considerable potential for advancement [80].

Unlike periodic inspections, real-time systems offer continuous surve
illance, promptly identifying and addressing emergent issues. UAVs
equipped with real-time algorithms can rapidly cover extensive areas,
delivering immediate data to operators and aiding in the localization of
faults, thus reducing the time and labor costs associated with manual
inspections [59]. Real-time systems demand algorithms capable of op-
erating at speeds typically around 30 FPS or more on low-powered edge
devices [63]. Approximately 33% of the reviewed studies have tackled
this challenge by developing performant algorithms suitable for real-
time deployment, often relying on rapid object detection algorithms
like YOLO [57] and SSD [63].

Automated power line inspection is a multi-step process where
each step influences subsequent ones. For simplicity and clarity, it can
be broken down into these key aspects: the component of interest,
the choice of imaging platform, the size of the dataset, the type of
detection, and the selected algorithm. When the process involves fault
diagnosis, the type of fault should also be considered. By combining
these aspects into a flow diagram, with the target component as the
starting point and algorithm selection as the endpoint, we can establish
a pattern for how decisions are made. With this context in mind, we
carefully examined the reviewed literature to construct the diagrams in
Fig. 7. Fig. 7(a) illustrates the decision-making process for automated
component detection in power line infrastructure. The diagram shows
that most research focused on insulators, utilized UAVs as the imaging
platform, used datasets of 1000–5000 samples, and employed bounding
box detection. Algorithm choices are balanced among YOLO, RCNN,
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Table 14
Assessment of the reviewed literature.
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1 Liu et al. [105] 2017 × × × × ✓ × × ✓ × × ✓ × ×
2 Tao et al. [37] 2018 × ✓ × × × ✓ ✓ ✓ × ✓ ✓ × ✓

3 Kang et al. [88] 2019 ✓ × × × × × ✓ × × ✓ ✓ × ×
4 Li et al. [32] 2019 ✓ × × ✓ ✓ ✓ × × × × × × ×
5 Miao et al. [63] 2019 ✓ × × × × × × ✓ × ✓ ✓ × ✓

6 Chen et al. [103] 2019 ✓ × × ✓ × ✓ × ✓ × ✓ ✓ × ✓

7 Jiang et al. [113] 2019 × × × × × × × ✓ × ✓ ✓ ✓ ×
8 Nguyen et al. [19] 2019 ✓ × × ✓ × × × ✓ × ✓ ✓ × ×
9 Sadykova et al. [57] 2019 × × × × × × × ✓ × ✓ ✓ × ✓

10 Wang et al. [100] 2019 ✓ × × ✓ × × × × × × × × ×
11 Sadykova et al. [57] 2019 × × × × × × × ✓ × × ✓ × ✓

12 Ibrahim et al. [106] 2020 × × × × × ✓ × × × × ✓ × ×
13 Mussina et al. [107] 2020 ✓ × × × × × × ✓ × × ✓ × ✓

14 Wang et al. [110] 2020 × ✓ × × × × × × × ✓ ✓ ✓ ✓

15 Zhang et al. [99] 2020 ✓ × × ✓ × × ✓ × ✓ ✓ ✓ × ×
16 Zhang et al. [59] 2020 × × × ✓ × × × ✓ × ✓ ✓ × ✓

17 Zhao et al. [121] 2020 × × × × × × × ✓ ✓ ✓ ✓ ✓ ×
18 Zhao et al. [89] 2020 ✓ ✓ × × ✓ × × × × × ✓ × ×
19 Zhu et al. [133] 2020 ✓ × × ✓ × × × ✓ × ✓ ✓ ✓ ✓

20 Odo et al. [80] 2021 × × × ✓ × × × ✓ ✓ ✓ ✓ ✓ ×
21 Singh et al. [29] 2021 × × × × ✓ ✓ × × × × ✓ × ×
22 Waleed et al. [91] 2021 × × × × × × × × × ✓ ✓ ✓ ✓

23 Xiao et al. [122] 2021 × × × × × × × ✓ ✓ ✓ ✓ × ×
24 Zhang et al. [90] 2021 × × × × × × ✓ ✓ × ✓ ✓ ✓ ×
25 Zhai et al. [61] 2021 × × × ✓ × × × ✓ ✓ ✓ ✓ × ×
26 Rong et al. [62] 2021 × × × × × × × × × ✓ ✓ × ×
27 Zhang et al. [90] 2021 × ✓ × × × × ✓ ✓ × ✓ ✓ × ×
28 Antwi-Bekoe et al. [92] 2022 × × × × × × × ✓ × ✓ ✓ ✓ ×
29 Ge et al. [85] 2022 × × × × × × × ✓ × ✓ ✓ × ✓

30 Hao et al. [116] 2022 × ✓ × × × × ✓ ✓ × ✓ ✓ × ✓

31 Hunag et al. [96] 2022 × × × × × ✓ × ✓ ✓ ✓ ✓ × ✓

32 Li et al. [67] 2022 ✓ × × ✓ × × × ✓ × ✓ ✓ × ✓

33 Li et al. [81] 2022 × × × × × × × × ✓ ✓ ✓ ✓ ×
34 Qiu et al. [79] 2022 × × × ✓ × ✓ × ✓ × ✓ ✓ ✓ ✓

35 Stefenon et al. [108] 2022 × ✓ × ✓ × ✓ × ✓ × × ✓ × ×
36 Stefenon et al. [78] 2022 × ✓ × ✓ × × × ✓ × × ✓ ✓ ×
37 Wei et al. [60] 2022 ✓ × × × × × × ✓ × ✓ ✓ × ×
38 Yang et al. [97] 2022 × × × × × × × × × ✓ × × ×
39 Yi et al. [120] 2022 ✓ × × × × × × ✓ × × ✓ × ×
40 Zhai et al. [94] 2022 × × × ✓ × × × ✓ ✓ ✓ ✓ × ×
41 Zhang et al. [95] 2022 ✓ ✓ ✓ × × × ✓ ✓ × ✓ ✓ × ✓

42 Zhang et al. [95] 2022 × × × ✓ × × × × ✓ ✓ ✓ × ×
43 Zhao et al. [123] 2022 × × × × × × × × ✓ × ✓ × ×
44 Bi et al. [134] 2023 × ✓ × ✓ × × ✓ ✓ × ✓ ✓ ✓ ×
45 Cao et al. [76] 2023 ✓ × × × × ✓ × ✓ × ✓ ✓ × ×
46 Dong et al. [64] 2023 × × × ✓ × × × ✓ ✓ ✓ ✓ × ×
47 Fu et al. [111] 2023 × ✓ × × × × ✓ ✓ × ✓ ✓ × ×
48 Luo et al. [77] 2023 × × × × × × × × ✓ ✓ ✓ × ×
49 Roy et al. [109] 2023 × × × × × ✓ × × × × ✓ × ✓

50 Shuang et al. [93] 2023 × ✓ × × × × × × × ✓ ✓ ✓ ✓

51 Singh et al. [58] 2023 × ✓ × × × × × ✓ × ✓ ✓ × ×
52 Song et al. [125] 2023 × × × ✓ × × × ✓ ✓ ✓ ✓ × ✓

53 Wang et al. [34] 2023 × × × × ✓ ✓ × ✓ × ✓ ✓ ✓ ×
54 Yang et al. [98] 2023 × ✓ × × × × × × × ✓ ✓ × ×
55 Yu et al. [135] 2023 ✓ × × ✓ × × × ✓ × ✓ ✓ ✓ ✓

56 Zhang et al. [136] 2023 × × × × × × × ✓ × ✓ ✓ × ×
57 Zhang et al. [118] 2023 × ✓ × × × × ✓ ✓ × ✓ ✓ × ✓

58 Zhang et al. [65] 2023 ✓ × × × × × × × ✓ × ✓ × ✓

59 Zhou et al. [24] 2023 ✓ × ✓ × × × × ✓ ✓ ✓ ✓ × ×
60 Zhang et al. [65] 2023 ✓ × × × × × × × ✓ × ✓ × ✓

61 Hao et al. [117] 2023 × × × × × ✓ × ✓ × ✓ ✓ ✓ ×
62 Liu et al. [129] 2023 × × ✓ ✓ × × × ✓ ✓ ✓ ✓ × ×
63 Liu et al. [130] 2023 × × × ✓ × × × × × × ✓ × ×
64 Jiao et al. [124] 2023 ✓ × × × × × × ✓ ✓ ✓ ✓ ✓ ×
65 Zhong et al. [132] 2024 ✓ × × ✓ × × ✓ × × ✓ ✓ ✓ ×
66 Zhang et al. [126] 2024 × × × × × × × ✓ ✓ ✓ ✓ ✓ ✓

(continued on next page)
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Table 14 (continued).
67 Yi et al. [131] 2024 × ✓ ✓ ✓ × × × × ✓ ✓ ✓ ✓ ×
68 Wang et al. [119] 2024 × ✓ ✓ × × × ✓ ✓ × ✓ ✓ ✓ ×
69 Shi et al. [104] 2024 × ✓ × × × × × ✓ ✓ × ✓ ✓ ×
70 Liu et al. [102] 2024 × × ✓ ✓ × × ✓ ✓ ✓ ✓ ✓ × ×
71 Jain et al. [66] 2024 ✓ × × × × ✓ × ✓ × ✓ ✓ × ×
72 Dong et al. [101] 2024 ✓ × × ✓ × × × × ✓ ✓ ✓ ✓ ×
73 Bergmann et al. [36] 2024 × × × × ✓ ✓ ✓ × × ✓ ✓ ✓ ×

30% 23% 8% 34% 8% 19% 19% 67% 30% 78% 96% 33% 33%

SSD, or custom architectures. Notably, all works targeting semantic
segmentation proposed their own custom network architecture. Simi-
larly, Fig. 7(b) reveals the decision-making process for power line fault
diagnosis. Again, a large portion of the works targeted insulators, used
UAVs as the imaging platform, and collected datasets of 1000–5000
samples. Component fault detection is more common in the literature
than foreign object detection. While YOLO, RCNN, and SSD have been
used on multiple occasions for fault detection, most works propose
custom network architectures.

11. Current challenges and future directions

In the rapidly evolving field of automated power line inspection,
significant advancements have been made. However, several critical
challenges still persist that need to be addressed to further advance
the state of the art. This section outlines these challenges and proposes
potential future research directions.

11.1. Edge–cloud deployment challenges

The deployment of deep learning models for power line inspection
faces significant architectural challenges in both cloud-centric and
edge-based approaches. Traditional cloud computing, while offering
substantial computational resources, suffers from high latency, ex-
cessive bandwidth consumption, and significant communication costs
when processing the massive amount of visual data generated by
inspection devices [60,140]. Edge computing attempts to address these
limitations by bringing computation closer to data sources, but edge
devices typically lack the computational capacity to run sophisticated
deep learning models effectively [141]. This limitation is particularly
critical in power line inspection, where models must detect subtle
defects and anomalies with high accuracy, creating a fundamental
tension between model complexity and computational efficiency.

Edge–cloud fusion architectures present a promising direction to ad-
dress these challenges by combining the strengths of both approaches.
This fusion has led to the emergence of effective two-stage detec-
tion systems, where lightweight models at the edge perform initial
coarse screening, followed by refined secondary recognition using more
sophisticated models in the cloud [60]. In this hierarchical frame-
work, edge devices can efficiently filter and pre-process data, while
cloud resources handle detailed analysis, significantly reducing data
transmission while maintaining high accuracy [59,60,136]. Future re-
search should focus on several key areas to advance this fusion ap-
proach: developing more efficient model compression techniques for
edge deployment [74], improving communication protocols for edge–
cloud interaction [141], creating adaptive frameworks for dynamic
resource allocation [140], and investigating federated learning [142]
approaches for collaborative model training. These advancements could
enable more efficient and reliable power line inspection systems while
maintaining the accuracy needed for critical infrastructure monitoring.

11.2. Multimodal imaging and fusion

Power line inspection research has predominantly relied on optical
imaging, with our comprehensive review revealing that only around
8% of published works utilize other imaging modalities. This heavy
dependence on optical imaging persists despite the known limitations

of visible spectrum cameras in various environmental conditions and
their inability to detect certain types of faults. Limited studies exploring
alternative modalities demonstrated the complementary capabilities
of infrared and ultraviolet imaging for detecting corona discharge
and heating associated with leakage current flow in composite insu-
lators [29,32,105]. Their research highlighted how different imaging
modalities can provide unique insights — with IR imaging excelling
at detecting heat distribution patterns from current leakage, while UV
imaging proved effective for visualizing corona discharge phenomena.
However, such multimodal approaches remain vastly underutilized in
power line inspection literature, despite their proven effectiveness in
other domains such as medical imaging, remote sensing, and defense
applications [143,144].

The future of power line inspection could benefit significantly from
greater adoption of multimodal imaging approaches. Recent devel-
opments in image fusion, as outlined in the comprehensive review
by Karim et al. [143], demonstrate how combining multiple imag-
ing modalities can provide more comprehensive information about
the real world than any single modality alone. While optical images
excel at providing high spatial resolution and clear texture details,
other modalities like infrared can detect thermal anomalies, and ul-
traviolet can reveal corona discharge patterns [145]. By integrating
multiple modalities through advanced fusion techniques — ranging
from conventional transform-based methods to emerging deep learning
architectures [146,147] — future inspection systems could achieve
more robust fault detection capabilities.

11.3. Lack of data availability

The scarcity of publicly available datasets remains a significant
challenge in deploying deep learning for power line inspection [148].
Power line components and scenarios require vast, varied datasets for
effective training. While researchers often create custom datasets [103],
data protection regulations frequently prevent public sharing, as dis-
cussed in Section 6.

Several approaches show promise in addressing this challenge. Syn-
thetic data generation using GANs [149] or Denoising Diffusion Mod-
els can create diverse, realistic power line images. For example, a
recent study [150] enhanced Cycle-GAN [151] with attention mech-
anisms to generate insulator defect images, demonstrating significant
improvements in sample quality.

Self-supervised pretraining [152] offers another solution by lever-
aging unlabeled data to learn useful representations before fine-tuning
on smaller labeled datasets. Additionally, few-shot learning approaches
[153], particularly meta-learning techniques [154], enable models to
learn from limited examples. Combining these methods with transfer
learning could effectively address the data scarcity challenge while
maintaining robust performance in real-world applications.

11.4. Data annotation

The problem of data annotation presents a significant challenge in
power line inspection, particularly given the complexity of power line
components and the subtleties of potential faults. While many excellent
annotation tools exist [155–157], the process remains time-consuming
and labor-intensive, requiring substantial human intervention for veri-
fication. The emergence of large foundation models like SAM (Segment
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Fig. 7. (a) The inter-relation between the different aspects in power line component detection. (b) The inter-relation between the different aspects in power line fault diagnosis.
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Anything Model) [158] offers new opportunities for streamlining this
process through zero-shot segmentation capabilities, though these mod-
els require significant computational resources and careful adaptation
to the power line domain. The integration of such models into exist-
ing annotation workflows necessitates consideration of domain-specific
fine-tuning strategies to ensure reliable performance in power line
inspection contexts.

Several promising approaches are being developed to address these
challenges. Weakly supervised learning techniques [159] have shown
potential in reducing labeling requirements, as demonstrated by Choi
et al. [160] in their two-stage power line detection algorithm. The
combination of these approaches with foundation models and special-
ized annotation tools could create more effective hybrid systems that
leverage both general semantic understanding and domain-specific ex-
pertise. Additionally, self-supervised pretraining [152] can significantly
reduce the dependency on labeled datasets by equipping models with
a deep understanding of structural and contextual features inherent in
power line images, thereby streamlining the annotation process while
maintaining accuracy and reliability.

11.5. Very small components detection

Detecting small components like fittings, bolts, and fractures in
power lines presents unique challenges due to their low resolution in
images. These components, while critical for structural integrity, are of-
ten indistinguishable from complex backgrounds [122]. The prevalent
use of UAVs introduces additional challenges: image blur from drone
motion and inability to capture close-up images due to high voltage
risks. Consequently, small components often occupy only a few pixels
in the captured images [61].

Recent advances offer promising solutions. Transformer-based ap-
proaches [64] have shown success in reducing errors in small and
occluded object detection through lightweight self-attention modules.
Image super-resolution techniques [161] enhance resolution by infer-
ring missing details and refining textures. Future research could focus
on combining high-resolution imaging technology with advanced deep
learning models, while improving multi-scale detection strategies and
feature extraction methods for small objects [162].

11.6. Anomaly detection for unknown defects

Traditional supervised approaches often fail to identify novel power
line defects absent from training data. Recent semi-supervised and
unsupervised learning methods [163,164] offer solutions by learning
normal patterns and detecting deviations.

Autoencoder-based methods with auxiliary anomaly localization
enable end-to-end defect detection using only normal samples [165,
166]. Feature embedding approaches using pre-trained networks re-
duce noise interference during reconstruction [167]. Memory-based
methods that compare normal feature representations have improved
detection of subtle anomalies [168], while combined reconstruction
and discriminative training approaches enhance defect localization
accuracy [169]. Future research should focus on developing efficient
architectures suitable for edge deployment while maintaining detection
accuracy.

12. Conclusion

This review examines the evolution of vision-based power line
inspection through deep learning technologies. We explored various
imaging platforms and techniques, from UAVs to X-ray imaging, an-
alyzing their effectiveness for different inspection tasks. The review
detailed how deep learning algorithms like YOLO, R-CNN, and SSD
have advanced component detection and fault diagnosis, with partic-
ular success in insulator inspection. Current trends show promising

developments in edge–cloud fusion architectures and two-stage de-
tection approaches, balancing computational efficiency with accuracy.
However, challenges persist in data availability, annotation efficiency
and unknown defect detection among others. Solutions are emerg-
ing through synthetic data generation, few-shot learning, and semi-
automatic labeling techniques. Looking forward, the integration of
edge–cloud computing, multi-modal fusion, and novel learning ap-
proaches suggests a trajectory towards more resilient and adaptive
power line maintenance systems. These advancements promise to en-
hance the reliability and efficiency of power infrastructure inspection
while reducing operational costs and safety risks.
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Appendix A. Deep learning models for power line inspection

Historically, power line inspections relied heavily on manual labor
and traditional image processing techniques, which often proved time-
consuming and prone to human error [47]. With the adoption of
deep learning models, a profound shift has occurred. These models
have showcased their ability to learn intricate patterns and structures
within images, allowing for the precise identification and localization of
various power line components. This transformation is not merely the-
oretical; it has translated into tangible benefits for power grid operators
and maintenance teams [47]. This, in turn, enhances the reliability of
power transmission infrastructure and mitigates the risks of unexpected
outages and associated economic and safety implications. In this sec-
tion, key deep learning techniques that have found application in power
line component detection and fault diagnosis have been explored. The
following sections delve into their advantages and use cases, shedding
light on how these techniques are pushing the boundaries of what is
achievable in the field of power line maintenance.
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Fig. A.8. The architecture of the original YOLO network [21].

A.1. You Only Look Once (YOLO)

You Only Look Once (YOLO) [21] is a revolutionary real-time object
detection system that has gained widespread recognition in computer
vision applications. It stands out for its ability to swiftly process images
and directly predict bounding boxes and class probabilities in a single
evaluation. YOLO’s efficiency and accuracy make it a compelling choice
for power line component detection.

The original YOLO model (Fig. A.8) introduced the concept of end-
to-end object detection in real-time. It divides an image into a grid
and predicts bounding boxes and class probabilities for objects within
each grid cell. YOLOv2 [48] brought improvements in accuracy and
flexibility by employing anchor boxes and multi-scale detection. It was
also trained on a broader dataset, allowing it to detect a wide range of
objects. YOLOv3 [49] further enhanced the model’s accuracy by utiliz-
ing a three-stage detection process and the addition of more anchor
boxes. YOLOv4 [50] introduced several architectural improvements,
including the integration of the CSPDarknet53 backbone, PANet, and
SAM block [50]. These enhancements resulted in better performance
in complex scenarios and more accurate component detection. The re-
cently proposed YOLOv8 is built on top of the previous YOLO versions
and designed to be faster, and more accurate [51].

In power line inspection, YOLO is utilized to identify and classify
various components, such as insulators, dampers, pin bolts, conductor
wires, and fittings [57–59]. Its speed and real-time capabilities are
particularly advantageous when inspecting extensive stretches of power
transmission infrastructure. YOLO’s speed is one of its defining features.
It operates at a significantly high frame rate, often exceeding real-time
requirements [67]. This speed advantage is particularly valuable in
power line inspections, where rapid assessments of extensive infras-
tructure can be vital. The ability to process images quickly allows for
the efficient identification of components, even in cases of frequent
data acquisition through aerial surveys. It’s worth noting that YOLO’s
real-time performance might require a sufficiently powerful hardware
setup [170], but the trade-off between accuracy and processing speed
can often be optimized according to specific project requirements.

A.2. Region-based CNNs (R-CNN, Fast R-CNN, Faster R-CNN)

Region-Based Convolutional Neural Networks (CNNs) [20] repre-
sent a family of object detection models that focuses on detection
accuracy while compromising on speed and complexity. This family
includes R-CNN [20], Fast R-CNN [52], and Faster R-CNN [53], each
building upon the other to improve efficiency and accuracy in power
line component detection. R-CNN slides an image window, extracts
features for each window, and then classifies and refines bounding
boxes for potential objects within those windows. Fast R-CNN (Fig. A.9)

improves on R-CNN by processing the entire image at once with a single
CNN to extract features, making it significantly faster. Faster R-CNN
further refines the model by introducing the Region Proposal Network
(RPN) [53] for generating region proposals. This innovation results in
a more streamlined and faster detection process. These models have
been applied in power line component detection to locate and classify
insulators [60], dampers [61], pin bolts [61], conductor wires [62], and
other elements.

Region-based CNNs excel in precisely localizing objects within im-
ages, making them suitable for power line component identification.
Fast R-CNN and Faster R-CNN integrate region proposal and feature
extraction steps, enhancing processing efficiency. However, Training
and fine-tuning region-based CNNs require substantial computational
resources and a large labeled dataset. These models may need hardware
acceleration for real-time performance [68].

A.3. Single Shot MultiBox Detectors (SSD)

Single Shot Detectors (SSD) [22] is another object detection al-
gorithm that combines high-speed processing with robust detection
capabilities. SSD is designed for real-time object detection, eliminating
the need for a separate region proposal step and streamlining all
computations into a single network. SSD is employed to rapidly identify
and classify various components, such as insulators [63], fittings [19],
conductor wires [19], and other crucial infrastructure elements.

SSD’s primary advantage is its ability to process images rapidly
while keeping a high enough accuracy [69]. This characteristic is
essential for real-time inspections, particularly in scenarios where as-
sessments of extensive power line infrastructure are required. SSD’s
architecture (Fig. A.10) integrates all detection computations into a
single network, eliminating the need for multiple stages, which sim-
plifies implementation and results in efficient performance. While SSD
offers impressive speed and efficiency, its performance may be com-
promised compared to models like Faster-RCNN [69]. Balancing speed
and accuracy demands may require optimization for specific hardware
configurations and project constraints.

A.4. Transformer architectures

Transformer architectures have revolutionized various domains in
deep learning, originally emerging as a powerful tool in natural lan-
guage processing. Introduced by Vaswani et al. [82], the transformer
model is based on self-attention mechanisms, enabling it to capture
long-range dependencies within data. Unlike traditional convolutional
neural networks (CNNs), which are limited by their localized receptive
fields, transformers excel in modeling global context, making them
highly effective for complex tasks in computer vision, including power
line inspection.
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Fig. A.9. Simplified architecture of the Fast R-CNN network.

Fig. A.10. Simplified architecture of the Single Shot Multibox Detector (SSD) Network.

A.4.1. Vision Transformers (ViT)
Vision Transformers (ViT) [54] marked a paradigm shift by applying

the transformer architecture directly to image data. ViTs divide an
image into a sequence of patches, each treated similarly to tokens in
a language model. These patches are then processed through multiple
layers of self-attention, allowing the model to learn intricate relation-
ships between different parts of the image. Although we could not find
any research work on power line inspection that utilizes ViTs, they
have potential in tasks requiring detailed analysis of visual data. Their
ability to capture global information makes them particularly suitable
for identifying subtle anomalies in power line components, such as
bolt defects, micro-cracks in insulators or structural defect of conductor
wires [70]. However, ViTs require a very large dataset to train on to
get rid of the inductive bias [54].

A.4.2. Swin Transformers
Swin Transformers [55], or Shifted Window Transformers, build on

the concept of ViTs by introducing a hierarchical structure that allows
the model to operate at multiple scales. This architecture divides the
image into non-overlapping windows and applies self-attention within
each window. To capture cross-window information, the windows are
shifted between layers, enabling the model to build a more comprehen-
sive understanding of the image. The multi-scale feature representation
of Swin Transformers is advantageous, especially in scenarios where
defects or components vary in size. Swin Transformers can effectively
manage high-resolution images, making them ideal for detecting and

localizing faults in expansive power transmission networks, where both
small and large defects need to be identified with precision [64].

A.4.3. Detection Transformers (DETRs)
Detection Transformers (DETRs) [56] integrate the transformer ar-

chitecture into object detection tasks, offering an end-to-end approach
that simplifies the traditional detection pipeline. The architecture of
the DETR network is shown in Fig. A.11. DETRs eliminate the need for
anchor boxes and region proposals, which are common in conventional
object detection models. Instead, they leverage the transformer’s atten-
tion mechanism to directly predict object bounding boxes and class
labels. Their ability to model complex interactions between objects
within an image enhances detection accuracy, particularly in cluttered
or complex scenes typical of power line infrastructure. Additionally,
DETRs are robust to variations in object scale and orientation, which
are common challenges in aerial imagery used for inspecting power
lines [65,66].

A.5. Classification algorithms

Classification algorithms, particularly those pretrained on large
datasets like ImageNet [71], have demonstrated remarkable capa-
bilities in recognizing diverse patterns and anomalies in power line
components. These algorithms excel in scenarios where pinpointing
the exact location of a fault is unnecessary, and the primary goal is
simply to determine whether a fault exists. When provided with an
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Fig. A.11. The simplified block diagram of the original DETR network [56].

Fig. B.12. Comparison between different image segmentation techniques [86,87].

image of power line infrastructure or a specific segment of a power
line component, these algorithms are capable of classifying the image
as either faulty or in good condition. Key algorithms in this domain
include ResNet, VGG, MobileNet and EfficientNet each bringing unique
strengths to the table.

ResNet (Residual Networks) [72], a pivotal model in deep learn-
ing, introduced the concept of residual learning to ease the training of
very deep networks. It employs ‘‘skip connections’’ to jump over some
layers, effectively addressing the vanishing gradient problem. In power
line inspection, ResNet’s ability to learn from a vast depth of layers
makes it exceptionally good at recognizing complex patterns, crucial
for identifying subtle anomalies in power lines [60,76,77].

The VGG (Visual Geometry Group) [73] network stands out for
its simplicity and depth, with a uniform architecture that stacks con-
volutional layers directly on top of each other. This design, while com-
putationally intensive, offers excellent feature extraction capabilities.
For power line inspections, VGG’s depth helps in capturing intricate
details necessary for accurate component classification and fault detec-
tion [78]. However, its performance may be compromised compared to
other state-of-the-art models that came out in recent years [171].

MobileNet [74] architectures are designed for efficiency, making
them ideal for use in mobile and edge computing scenarios. Their
streamlined design, based on depthwise separable convolutions [172],
allows for reduced computational load while maintaining high accu-
racy. In power line inspection, especially those conducted via drones or
handheld devices, MobileNet’s lightweight nature enables rapid, on-site
processing of images for real-time analysis [60,67,79].

EfficientNet [75] represents a new scaling method for neural net-
works, which uniformly scales all dimensions of depth, width, and
resolution with a set of fixed scaling coefficients. This balanced scaling

results in a network that achieves state-of-the-art accuracy with a lower
computational cost [171]. In power line inspection, EfficientNet can
be particularly useful for processing high-resolution images effectively,
allowing for detailed and accurate identification of line defects and
deterioration [80,81].

The above-mentioned object detection and classification networks
are often mixed with each other to design powerful networks that
often have superior performance to the original networks [114]. No-
tably in recent years, the attention mechanism [82] and its utilization
in segmentation and classification algorithms has gained widespread
popularity. Its initial application was by the Google DeepMind team in
2014, where they integrated an attention module into an RNN model
for image classification [54]. The potency of self-attention networks,
particularly in capturing long-distance dependencies and contextual
information, has made them a staple in machine vision tasks like
image segmentation and classification. Cao et al. [76] innovatively
used attention-guided multipath features to reconcile the contradic-
tory needs between feature map resolution and the receptive field for
high-resolution inputs. Furthermore, the introduction of the attention-
RPN module by Fan et al. [83] for small sample target detection,
and the combination of global attention and local restructuring by
Kong et al. [84], exemplify the versatility of attention mechanisms.
These adaptations enable the collection of task-oriented features across
different spatial locations and scales, harnessing both global and local
contexts to enhance the accuracy and efficiency of object detection.

Appendix B. Computer vision tasks in power line inspection

Various object detection techniques are employed in computer vi-
sion to automate this task, each with its strengths and application
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scenarios. This section discusses key methods like bounding box de-
tection, semantic segmentation, and instance segmentation. A visual
comparison between these techniques has been shown in Fig. B.12.

B.1. Bounding Box Detection

Bounding Box Detection is a primary object detection method where
a box is drawn around each object of interest in an image, marking
its location and extent. It is straightforward to implement and com-
putationally less demanding. This method is well-suited for real-time
applications due to its relatively fast processing time often reaching
over 80 Frames Per Second (FPS) [85]. Bounding box detection is
typically used to identify and locate larger power line components such
as towers, insulators, and dampers.

B.2. Semantic segmentation

Semantic segmentation involves the partitioning of an image into
segments, where each pixel is classified into a predefined category. This
method is capable of producing detailed component-wise masks, which
are beneficial for understanding the scene at a pixel level. It provides a
precise outline of the components, which is crucial for assessing their
condition. Semantic segmentation allows for a comprehensive analy-
sis of the scene by understanding the relationship between different
components. This technique is particularly useful for distinguishing
between different types of insulators, conductor wires, and vegetation
encroachment.

B.3. Instance segmentation

Instance segmentation goes a step beyond semantic segmentation
by not only separating the background from the foreground but also
differentiating between individual objects of the same class. It is ca-
pable of identifying and delineating each instance of multiple objects
of the same type. This method excels in scenarios where components
are close together or overlapping. Instance segmentation is essential
when dealing with dense power line components, such as closely
spaced insulators or bundled conductor wires, to assess each component
separately.

Data availability

No data was used for the research described in the article.
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