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A B S T R A C T

An intelligent system must incrementally acquire, update, accumulate, and exploit knowledge to navigate the
real world’s intricacies. This trait is frequently referred to as Continual Learning (CL), and it can be limited by
catastrophic forgetting, a phenomenon in which learning a new task acutely reduces the system’s performance
on prior tasks. Numerous strategies have been developed to address this issue, as CL is essential for developing
Artificial Intelligence (AI) systems that adapt to dynamic environments. This study examines the practical
applications of CL, concentrating on energy management systems and their integration with Deep Learning (DL)
models. Energy management systems are strategies and methods for monitoring, controlling, and optimizing
energy use within a system or organization. The literature is systematically analyzed, highlighting methods
such as replay techniques, regularization strategies, and architectural adaptations that address the challenges of
catastrophic forgetting. Moreover, the review encompasses various energy-related applications, including non-
intrusive load monitoring, demand-side management, fault/anomaly detection, load forecasting/prediction,
and renewable energy integration. Additionally, a case study on anomaly detection in energy systems is
conducted, comparing different CL approaches. The case study findings aim to bridge the gap between
theoretical advancements and real-world applications, providing insights and guidelines for implementing CL
in diverse fields. Finally, this survey identifies key challenges that impede the deployment of CL and suggests
potential directions to enhance its implementation in the energy management sector.

1. Introduction

With climate change posing ever-increasing challenges, global lead-
ers and governments must take aggressive decarbonization activities to
ensure societal sustainability [1,2]. Building energy systems provide
tenant comfort and meet necessities, accounting for around 34% of
world energy consumption and 37% of global greenhouse gas emis-
sions [3,4]. Deep Learning (DL)-powered modeling approaches have
recently been applied to many elements of building energy systems to
increase energy efficiency, including energy prediction [5,6], predictive
maintenance [7,8], and control optimization [9]. The continuous de-
velopment of Machine Learning (ML)/DL techniques has the potential
to advance innovative management and accelerate the decarbonization
of building energy systems. Overall, ML/DL models have demonstrated
their effectiveness by rivaling or outperforming human performance
on various energy-related tasks [10,11]. While these achievements
are impressive, they were acquired using static models incapable of
responding to changing conditions over time. This limitation means the
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training procedure must be restarted whenever new data is available. In
today’s dynamic environment, this method soon becomes unattainable
for continuous data streams owing to storage restrictions or privacy
concerns [12]. This underscores the urgent and immediate need for
systems that can constantly adapt and learn over time to keep pace with
the evolving data landscape [13]. In Continual Learning (CL), tasks are
learned sequentially but treated as if they were learned simultaneously.

CL (also known as lifelong learning [14], Incremental Learning
(IL) [15], or sequential learning [16]) is a paradigm within ML rather
than a specific method. It refers to the ability of a model to continuously
learn and adapt to new data over time, retaining knowledge from
previous tasks while learning new ones without forgetting. A model is
anticipated to learn from noisy, unpredictable, and shifting data dis-
tributions while perpetually accumulating knowledge from previously
seen data. The model must transfer previously acquired information
to new tasks, transfer new knowledge backward to previously learned
tasks, and respond swiftly to contextual changes. Artificial Intelligence
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Table 1
Comparison of CL surveys and reviews.

Survey Year Application domain/s Research gaps

Parisi et al. [17] 2019 General ∙ Primarily theoretical, it lacks application-specific insights such as in energy systems.

Hadsell et al. [18] 2020 General ∙ Broader conceptual discussion; lacks specific domain applications like power
systems or energy management.

De Lange et al. [19] 2021 General ∙ Focuses heavily on classification tasks, with limited exploration of energy-related
applications.

Ven et al. [20] 2022 General ∙ Conceptual framework but lacks empirical validation, particularly in energy
systems.

Wickramasinghe et al. [21] 2023 General General discussion without empirical evaluation or focus on energy systems.

Wang et al. [22] 2024 General ∙ General review; lacks a focused analysis on real-world energy applications or
systems.

Lesort et al. [23] 2020 Robotics, autonomous systems ∙ Robotics-centric; does not generalize to energy systems or non-robotic domains.

Shaheen et al. [24] 2022 Autonomous systems, robotics ∙ Emphasis on autonomous systems; lacks detailed insights for energy management.

Mia et al. [25] 2022 Vision, image classification ∙ Limited to vision tasks; does not address energy system applications or practical
deployment.

Hurtado et al. [26] 2023 Predictive maintenance ∙ Limited to predictive maintenance without addressing broader energy management
challenges.

Proposed review 2024 Energy management ∙ Addresses energy-specific applications of CL, emphasizing power systems, NILM,
and smart grids. Highlights unique challenges and opportunities in this domain.

(AI) systems’ capabilities have grown significantly recently, but creat-
ing a lifetime learning system is still challenging. Addressing this issue
requires algorithmic advances.

The main obstacle in CL is retaining information without encoun-
tering catastrophic forgetting, also known as catastrophic interference.
This means that performance on a previously learned task or do-
main should not decline considerably over time as additional tasks
or domains are introduced. This phenomenon occurs since traditional
neural networks tend to override weights associated with previous tasks
while training for a new task. This obstacle also stems directly from
a more significant problem in neural networks: the stability–plasticity
conundrum [22]. Plasticity relates to the capacity to integrate new
knowledge, whereas stability refers to retaining old knowledge while
dealing with incoming data. Despite its complexities, advances in CL
are resulting in the emergence of real-world applications [23,26–28].

CL provides a transformative potential for energy management
systems by addressing the need for adaptability in dynamic and non-
stationary settings. Modern energy systems face challenges such as
fluctuations in demand, seasonal changes, evolving user behaviors,
and the introduction of renewable resources. These challenges require
the system to learn and adapt in real time. Unlike traditional ML
approaches that necessitate retraining on static datasets, CL enables sys-
tems to incrementally learn from new data while retaining knowledge
from previous tasks, avoiding catastrophic forgetting. This capability is
essential for energy systems to maintain optimal performance, adapt to
changes, and support long-term operational goals.

1.1. Related surveys

Many surveys have investigated the field of CL. These reviews
can be broadly categorized into two main groups based on their the-
matic content. The first group primarily focuses on CL methods and
their general applications, while the second group concentrates on
specific applications, discussing CL in the context of those particular
use cases. The following papers belong to the first category: Parisi
et al. [17] categorized CL approaches into three main types: replay,
regularization, and architectural methods. Hadsell et al. [18] discussed
the conceptual aspects of CL but did not provide a thorough technical
survey. In their survey, De Lange et al. [19] classified CL approaches
into replay, regularization, and parameter isolation methods and con-
ducted a case study for further illustration. Ven et al. [20] developed
a conceptual framework for CL and practical examples to support

their framework. Wickramasinghe et al. [21] identified various CL
techniques and the related challenges, offering valuable insights for
future research. Lastly, Wang et al. [22] presented an overview of the
core principles, techniques, and applications associated with CL.

As for the second category, the following papers are included: Lesort
et al. [23] presented a framework that integrates task-based and life-
long learning approaches for robotics applications. Shaheen et al. [24]
addressed real-world challenges and deployment considerations for au-
tonomous applications. Mia et al. [25] assessed state-of-the-art methods
for vision and image classification tasks across various benchmarks.
Hurtado et al. [26] discussed domain-specific challenges and strategies
for deploying predictive maintenance in CL applications. Table 1 sum-
marizes the recent reviews in CL to highlight the contributions of this
survey. As shown in the table, recent surveys have yet to cover the
application of CL in the energy management domain, which is the focus
of this survey paper.

1.2. Contribution of the paper

The continuous generation of data by sensors, the introduction of
new tasks associated with using new devices or households on a power
network, and the evolving consumption profiles over time all contribute
to the complexity of energy-related data-driven tasks. These factors
highlight the need for CL models over static ones, as CL allows for
adapting to changing conditions and incorporating new information
into the energy management process. Thus, this research is driven by
the scarcity of existing literature focusing on the detailed analysis of
energy management systems integrating CL. The primary contributions
of this paper can be summarized as follows:

• Providing, to the best of the authors’ knowledge, the first review
that investigates and summarizes the importance and implemen-
tation of CL for energy management systems.

• Conducting an extensive case study comparing various CL meth-
ods for anomaly detection in the context of the energy-efficient
domain.

• Identifying key challenges that could hinder the deployment of
CL in the energy domain and specifying prospective approaches
to address those challenges.
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Fig. 1. Taxonomy of CL for power/energy systems.

1.3. Organization of the paper

This review focuses on practical energy-related applications of CL
as identified in the literature, using the review methodology found in
Section 2. Section 3 provides an overview of the CL techniques and
their classifications. Section 4 discusses the practical applications of CL
in the energy domains. Section 5 presents a case study that compares CL
techniques for anomaly detection. Section 6 discusses key challenges in
deploying CL in the energy domain, and future directions are provided
in Section 7. Lastly, in Section 8, concluding remarks are made, and
potential future directions are outlined.

2. Review methodology

2.1. Study selection

Fig. 1 demonstrates the taxonomy applied in this review to cat-
egorize existing studies based on different aspects, including recent
CL models, applications of CL in the energy domain, current chal-
lenges, and future directions. The review followed the Preferred Re-
porting Items for Systematic reviews and Meta-Analyses (PRISMA) [29]
standard, a practical and efficient technique for conducting survey
studies.

2.2. Inclusion/exclusion criteria

All selected frameworks have been rigorously reviewed and care-
fully analyzed based on the inclusion/exclusion method described in
the following: (i) frameworks for CL models have been discussed and
Table 2 illustrates the search queries used in Scopus database while
conducting this review, (ii) only studies published between January
2019 and July 2024 were investigated, (iii) only research publications
available online (i.e., peer-reviewed conference proceedings papers,
book chapters, and journal articles) were included, (iv) when the same
authors published different frameworks on the same problem, the most
recent and valuable ones were analyzed, and (v) only studies written
in English were considered.

2.3. Quantitative analysis

After conducting the search, numerous studies were found that
utilized various CL approaches within the different energy manage-
ment systems. A quantitative analysis corresponding to the specifics
of referenced studies is presented in this subsection. We provide the
research statistics on the articles found in Fig. 2 concerning the type
of CL approach employed, the CL scenario, where the CL was applied
regarding the energy domain, the year of publication, and the first
author’s affiliated country. In the field of energy, a significant portion of
the academic papers that have employed CL approaches have centered
their research on two main areas: load forecasting, fault/anomaly
detection, and the integration of renewable energy sources. Most CL
methods employed in the examined articles were regularization-based,
followed by architectural and replay-based techniques. Additionally,
the figure depicts the CL scenarios employed in the reviewed papers,
with online-based studies appearing most frequently. The figure also
illustrates the distribution of publications from 2019 to 2024, high-
lighting a steady increase in the percentage of papers published each
year, with the highest concentration observed in 2023. Lastly, statistics
referencing the first author’s affiliation country are also provided in
the figure. China has the most publications, with 25 papers, followed
by South Korea, with eight papers.

3. Overview of CL methods

DL has demonstrated tremendous success in various computer vi-
sion and audio processing applications in recent years. However, the
primary focus of DL has been on developing high-accuracy Deep Neu-
ral Networks (DNN) via offline training with a pre-defined/collected
training dataset. The weights in these DNNs are meant to stay static
after deployment and do not adapt to changing contexts. Real-world
applications, particularly those involving autonomous agents, deal with
non-stationary data (i.e., data/tasks that change over time). Therefore,
static models fail to perform well in such cases. One option for adapting
to changing conditions is to repeat the training process each time
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Table 2
Search queries used when conducting the review.

Parameter Search query

Continual learning ‘‘Lifelong Learning’’ OR ‘‘Sequential Learning’’ OR ‘‘Incremental Learning’’ OR ‘‘Continuously
Learning’’ OR ‘‘Continuous Learning’’

Energy management system ‘‘Energy System’’ OR ‘‘Energy Systems’’ OR ‘‘Power System’’ OR ‘‘Power Systems’’ OR ‘‘Load
Forecasting’’ OR ‘‘Demand Response’’ OR ‘‘Renewable Energy Sources’’ OR ‘‘Presence Detection’’ OR
‘‘Non-Intrusive Load Monitoring’’ OR ‘‘Buildings Energy Consumption’’ OR ‘‘Process Control
Applications’’ OR ‘‘Renewable Energies’’ OR ‘‘Energy Management’’ OR ‘‘Energy Storage’’ OR ‘‘Smart
Grid’’ OR ‘‘Smart Grids’’ OR ‘‘Microgrid’’ OR ‘‘Microgrid’’

Fig. 2. Statistical findings from the surveyed papers.

a distribution change occurs. However, repeating the entire training
procedure, or even for a few epochs, with an enlarged dataset is ex-
tremely computationally costly, which makes it impossible in practical
resource-constrained circumstances. As a result, it is necessary to de-
velop entirely distinctive techniques/algorithms capable of facilitating
resource-efficient continuous learning in real-world systems [24]. CL

refers to the ability of a model to learn continuously from a stream of
data, adapting to new tasks while retaining knowledge from previously
learned tasks. This process involves several mathematical concepts and
techniques to ensure the stability and plasticity of the learning model.

Fig. 3 depicts standard update methods for data-driven models
with continuous data streams. The continuous data stream can be
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Fig. 3. Standard update approaches with continuous data stream [30].

separated into many subsets (i.e., historical and incoming datasets)
based on the timesteps at which the model is updated. The traditional
gradient descent-based updating methods (i.e., cumulative learning and
naive/fine-tuning learning) face challenges in addressing the concept
drift issue. Cumulative learning is time-consuming and requires sig-
nificant data storage, while fine-tuning cannot prevent catastrophic
forgetting. Moreover, Fig. 3(c–e) demonstrates how various CL methods
execute model updates.

3.1. CL scenarios

In traditional ML, the model has access to all training data simul-
taneously. On the contrary, when it comes to CL, the data arrives
in batches, and the data distribution shifts over time. Regarding the
shifts in data distribution, there are five fundamental ways a super-
vised learning problem can be incremental [20], as shown in Table 3.
The first scenario of CL is known as ‘Task-Incremental Learning’ (or
Task-IL). This scenario can be represented as a situation in which an
algorithm must learn a series of distinct tasks. A key feature of Task-
IL is that the algorithm always knows which task it needs to perform
during testing. The second scenario is termed ‘Domain-Incremental
Learning’ (or Domain-IL). In this scenario, the overall structure of the
problem remains constant, but there are variations in the context or
input distribution (for instance, domain shifts). Similar to task-IL, this
scenario can also be viewed as an algorithm that must learn a set
of ‘tasks’ incrementally (though it may be more accurate to consider
them as ‘domains’), with the important distinction that—at least during
testing—the algorithm does not know which task a sample corresponds
to. Nonetheless, recognizing the task is not required since each task has
the same potential outputs (e.g., the same classes are applicable in each
task). The third scenario of CL is referred to as ‘Class-Incremental Learn-
ing’ (or Class-IL). This scenario is best expressed as one in which an
algorithm needs to learn to differentiate among an expanding number
of objects or classes over time. A commonly used setup for this situation
involves encountering a sequence of classification-based tasks, where
each task presents different classes, and the algorithm has to learn to
differentiate among all the classes.

The final two types of CL scenarios are online and general CL. Online
CL (also called Instance-Incremental Learning (Instance-IL)) focuses
on processing data as it arrives, typically one instance or batch at a
time, without the ability to revisit past data. This setup mimics real-
time learning environments, such as edge devices or Internet of Things

(IoT) systems, where data is continuously streamed and memory or
computational resources are highly constrained. Finally, general CL
aims to handle diverse and complex real-world scenarios where task
boundaries, data distributions, and learning objectives are unclear. This
approach seeks to unify task, domain, and class-IL elements while
accommodating changing data characteristics, overlapping tasks, and
real-world unpredictability. The primary distinction between these two
approaches is that it is ambiguous which CL scenarios were applied in
studies utilizing online learning. On the other hand, the studies using
two or more CL scenarios simultaneously are categorized as having a
general learning scenario.

3.2. Catastrophic forgetting

Catastrophic forgetting is one of the major problems in CL. Catas-
trophic forgetting occurs when a model trained on new data signif-
icantly degrades its performance on previously learned tasks. Math-
ematically, if 𝑖 represents the 𝑖th task, the model parameters 𝜃 are
optimized for the current task 𝑛, and the loss function for the current
task is 𝑛 (𝜃), the training objective can be written as [32]:

𝜃∗ = ar g min
𝜃

𝑛 (𝜃) (1)

In CL, the goal is to optimize 𝜃 such that the loss on previous tasks is
also minimized:

𝜃∗ = ar g min
𝜃

𝑛
∑

𝑖=1
𝑖 (𝜃) (2)

In principle, recent research attempts to tackle catastrophic forget-
ting during continuous learning, using longer task sequences with more
samples. Based on how task-specific information is stored and used
throughout the sequential learning process, the following approaches
are distinguished in CL literature [19]:

1. Regularization Methods,
2. Replay Methods, and
3. Architectural Methods

3.3. Regularization methods

This method prioritizes privacy and reduces memory needs by
avoiding using raw inputs. Rather, while learning with new data, an ad-
ditional regularization term is added to the loss function to consolidate
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Table 3
Overview of CL scenarios.

Scenario Description

Task-Incremental (Task-IL) [20] ∙ A new task with its own set of classes is introduced incrementally. Tasks are
typically distinguished by a task ID.

Domain-Incremental (Domain-IL) [20] ∙ The same set of tasks or classes are learned under changing conditions, such as
shifts in data distribution or context.

Class-Incremental (Class-IL) [20] ∙ New classes are introduced incrementally, and the model must learn them without
forgetting previously learned classes.

Online Learning/Instance-Incremental
Learning (Instance-IL) [22]

∙ Data is processed one instance or batch at a time without revisiting previous data.

General/Hybrid CL [31] ∙ Combines multiple scenarios or focuses on real-world setups where task boundaries
and data distribution changes are unknown.

prior information [33–36]. These techniques may be further separated
into two categories: data-focused and prior-focused. Regularization
methods constrain the optimization problem to preserve knowledge
from previous tasks.

3.3.1. Elastic weight consolidation (EWC)
EWC adds a regularization term that penalizes changes to important

parameters. The importance of each parameter 𝜃𝑗 is measured by the
Fisher Information Matrix 𝐹 [37]:

EWC(𝜃) = 𝑛 (𝜃) +
𝜆
2
∑

𝑗
𝐹𝑗 (𝜃𝑗 − 𝜃∗𝑗 )

2, (3)

where 𝜃∗𝑗 are the optimal parameters from previous tasks and 𝜆 is a
regularization strength hyperparameter.

3.3.2. L2 regularization
L2 regularization penalizes large changes in the parameter val-

ues [36]:

L2(𝜃) = 𝑛 (𝜃) +
𝜆
2
∑

𝑗
(𝜃𝑗 − 𝜃∗𝑗 )

2 (4)

3.3.3. Knowledge distillation (KD)
KD involves training the model to mimic the outputs of the previous

model. A well-known CL approach utilizes this concept, which is Learn-
ing without Forgetting (LwF) [38]. The distillation loss KD is defined
as [39]:

KD(𝜃) =
∑

𝑥∈old

𝐷KL(𝑝old(𝑦|𝑥)∥𝑝new(𝑦|𝑥, 𝜃)) (5)

where 𝐷KL is the Kullback–Leibler divergence, 𝑝old is the output distri-
bution of the old model, and 𝑝new is the output distribution of the new
model.

3.4. Replay methods

In the replay methods, also commonly referred to as rehearsal
methods, raw samples from previously seen tasks or pseudo-samples
produced using a generative model are stored in the system memory.
These prior task samples are repeated during model training to reduce
forgetting while learning a new task. This approach either reuses the
stored instances as model inputs for rehearsing or constrains the opti-
mization of the current task loss to avoid interference from earlier tasks.
This method could be sub-categorized into three branches, namely, (1)
rehearsal, (2) pseudo rehearsal, and (3) constrained methods.

3.4.1. Experience replay
Experience replay stores a buffer  of past data samples and mixes

them with current data during training [40]. Due to the relatively
restricted storage capacity, the primary problem is designing and lever-
aging the memory buffer. In terms of construction, the stored training
samples should be carefully picked, compressed, supplemented, and
updated to adaptively retrieve previous knowledge:

ER(𝜃) = 𝑛 (𝜃) +
∑

(𝑥,𝑦)∈
old(𝑥, 𝑦; 𝜃) (6)

3.4.2. Generative replay
Pseudo-rehearsal (also known as generative replay) methods train

generative AI models to synthesize pseudo-examples that fit previ-
ous tasks, which are then used for rehearsal [41]. This approach is
particularly useful in scenarios where samples from previous tasks
are unavailable or not stored by the system. This is accomplished by
leveraging the outcomes of the prior tasks to train the generative model
instead of storing them in memory. The generated random samples are
then periodically fed into the latest task-driven trained model to avoid
catastrophic forgetting. As new tasks appear, more samples are used to
fine-tune the generative model and provide comparable output results
(pseudo-samples) [42]. Generative replay uses a generative model 𝐺 to
produce synthetic data for previous tasks [43]:

GR(𝜃) = 𝑛 (𝜃) +
∑

(𝑥,𝑦)∈𝐺
old(𝑥, 𝑦; 𝜃) (7)

3.4.3. Constrained replay
Experience replay methods are widely used in ML, particularly

Reinforcement Learning (RL) and CL. However, these approaches often
need help with significant challenges, primarily due to their tendency
to overfit the examples stored in their replay buffers. This overfitting
can result in degraded performance compared to models trained in
a more integrated manner, where all data is available concurrently.
To address this issue, researchers have explored various constrained
replay strategies to mitigate the negative impact of overfitting while
maintaining the learning from previous tasks.

One notable approach in this realm is Gradient Episodic Mem-
ory (GEM) [44]. GEM allows for integrating updates from new tasks
without disrupting the knowledge acquired from previous tasks. It
accomplishes this by projecting the gradients of new task updates onto
a feasible region defined by the gradients from earlier tasks. This
projection is facilitated through the use of a first-order Taylor series
approximation, ensuring that the learning process is both efficient
and preserves prior knowledge effectively. Another significant variant
within constrained replay methods is Averaged GEM (AGEM) [45].
AGEM simplifies the problem by allowing projections into a single
direction determined by a randomly sampled subset from the buffer
of previous task data. This method relaxes the constraints, enabling
the model to retain the valuable information from older tasks while



Applied Energy 384 (2025) 125458

7

A.N. Sayed et al.

remaining flexible enough to incorporate new data. By leveraging this
strategy, AGEM effectively balances the retention of past knowledge
with acquiring new skills.

3.5. Architectural methods

To help with forgetting, this family of approaches assigns distinct
model parameters to each task. This is done by creating new branches
for new tasks while freezing the parameters of earlier activities or
assigning a model copy to each task when there are no restrictions on
the size of the architecture. Architectural methods dynamically adjust
the model’s architecture to accommodate new tasks.

3.5.1. Progressive neural networks (PNNs)
PNNs add new subnetworks for each task and keep previously

trained subnetworks fixed [46]:

𝜃 = {𝜃1, 𝜃2,… , 𝜃𝑖}, (8)

where 𝜃𝑖 are the parameters of the 𝑖th subnetwork.

3.5.2. PackNAT
This method [47] allocates parameter groups to subsequent tasks

iteratively using binary masks. New tasks are designed to establish
two training stages. First, the network is trained without modifying
the prior task parameter groups. Then, specific insignificant free pa-
rameters are trimmed and monitored using the lowest magnitude. The
remaining subset of essential parameters is retrained during the sec-
ond training phase. The pruning mask maintains task performance by
guaranteeing that the task parameter subset remains constant for sub-
sequent tasks. PackNet provides explicit network bandwidth allocation
per job, restricting the number of functions.

3.5.3. Hard attention to the task (HAT)
HAT [48] undergoes a single training phase and includes task-

specific embeddings to mask attention. A Sigmoid function controls
each layer’s embeddings to create attention masks during the forward
pass. The Sigmoid slope is adjusted during each training epoch, initially
allowing modifications to the masks and eventually resulting in nearly
binary masks. A regularization term enforces sparsity on the new task
attention mask to accommodate additional tasks. The critical aspect of
this approach is restricting parameter updates between two units that
are important for previous tasks based on the attention masks.

3.6. Analysis of the CL methods

In summary, regularization-based methods, such as EWC, combat
catastrophic forgetting by incorporating penalty terms into the loss
function. This approach prevents significant updates to crucial param-
eters for previously learned tasks. These computationally efficient and
memory-friendly methods make them suitable for resource-constrained
environments. However, they become less effective with highly di-
verse or complex tasks, as accurately estimating the importance of
parameters over time can be challenging. Although they help maintain
stability, regularization techniques often only partially mitigate task
interference, and their effectiveness may diminish as the number of
tasks increases.

Replay methods, while particularly effective in scenarios with ample
storage and computational power, also present challenges, such as
potential data privacy concerns and the need for strategic sampling to
balance memory constraints while maintaining task diversity. Genera-
tive replay addresses some storage issues but heavily depends on the
quality of generated samples, which can decline over time, especially
in high-dimensional data spaces.

On the other hand, architecture-based methods enhance a model’s
structure by adding new units, layers, or subnetworks as new tasks
are introduced. This strategy prevents task interference and ensures

that previously learned knowledge is preserved. These methods offer
task isolation and long-term scalability, making them ideal for systems
managing multiple tasks without performance degradation. However,
the rapid growth of the model size can lead to inefficiencies in com-
putation and memory usage. Additionally, managing and training a
growing architecture can become increasingly complex, making these
methods more computationally expensive and challenging to deploy in
resource-constrained settings.

To enhance learning efficiency, hybrid approaches merge elements
of regularization, replay, and architectural strategies, leveraging the
strengths of multiple techniques. For instance, one approach would be
to pair generative replay with regularization to balance stability and
flexibility. While these methods show promise, they often encounter
increased computational complexity, making them less practical in
resource-constrained environments.

3.7. Evaluation metrics

Several metrics are used to evaluate CL models:

3.7.1. Accuracy (𝐴)
The accuracy of a specific task or set of tasks is defined as:

𝐴 =
Number of correct predictions
Total number of predictions (9)

3.7.2. Average accuracy (𝐴𝐴)
The average accuracy at task n is then defined as:

𝐴𝐴𝑛 =
1
𝑛

𝑛
∑

𝑖=1
𝑎𝑛,𝑖, (10)

where 𝑎𝑛,𝑖 ∈ [0, 1] is the accuracy assessed on the test set of the 𝑖th task
(𝑖 ≤ 𝑛) after training the network incrementally from tasks 1 to 𝑛.

3.7.3. Backward transfer (𝐵 𝑊 𝑇 )
The influence of learning new tasks on the performance of previ-

ously learned tasks is defined as [49]:

𝐵 𝑊 𝑇 = 1
𝑛 − 1

𝑛−1
∑

𝑖=1
(𝐴𝑖 − 𝐴∗

𝑖 ), (11)

where 𝐴∗
𝑖 is the accuracy on task 𝑖 immediately after learning it, and

𝐴𝑖 is the accuracy on task 𝑖 after learning the new tasks.

3.7.4. Forgetting (𝐹 )
The reduction in performance on previous tasks after learning new

tasks is defined as [50]:

𝐹 = −𝐵 𝑊 𝑇 (12)

3.8. Synopsis of recent CL research

CL has emerged as a pivotal area in ML, aiming to enable mod-
els to learn from non-stationary data streams while mitigating catas-
trophic forgetting and preserving knowledge from previous tasks. Re-
cent research spans diverse methodologies, leveraging benchmarks,
pre-trained models, task-specific optimizations, generative techniques,
and biologically inspired approaches. This subsection overviews no-
table advancements and innovative solutions across these dimensions,
highlighting key contributions and their impact on the field. It is
worth noting that most existing research on CL has focused on specific
methodologies and performance evaluations using well-known datasets
like MNIST or CIFAR-100 [20].
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3.8.1. CL benchmarks and evaluation
Several works highlight innovative approaches to tackling key chal-

lenges in CL across diverse applications and domains. For example, Ver-
wimp et al. [51] introduced the CLAD benchmark for autonomous driv-
ing, utilizing the SODA10M dataset to address classification and detec-
tion tasks with domain-IL challenges while highlighting the limitations
of existing CL benchmarks and suggesting pathways for future research.
Ghunaim et al. [52] emphasized the importance of computational effi-
ciency in CL with their real-time evaluation framework, demonstrating
that a simple baseline outperformed state-of-the-art methods on the
large-scale CLOC dataset. Similarly focused on improving CL perfor-
mance, Razdaibiedina et al. [53] proposed Progressive Prompts for
language models, achieving over 20% improvements in test accuracy
on the T5 model compared to prior state-of-the-art methods. Comple-
menting these efforts, Smith et al. [54] explored rehearsal-free CL,
showing that L2 parameter regularization combined with K provided
superior performance on benchmarks such as ImageNet-R and CIFAR-
100, outperforming other techniques while addressing catastrophic
forgetting.

3.8.2. Approaches leveraging pre-trained models
Various studies highlight innovative strategies for harnessing pre-

trained models and prompting techniques to advance CL across di-
verse domains. For instance, Mcdonnell et al. [55] leveraged pre-
trained models for CL by introducing a random projector and class-
prototype accumulation approach, effectively reducing error rates by
20%–62% across benchmarks without relying on rehearsal memory.
Expanding on the use of pre-trained models, Gao et al. [56] pro-
posed the Learning-Accumulation-Ensemble (LAE) framework, integrat-
ing Parameter-Efficient-Tuning (PET) methods to achieve accuracy im-
provements of 1.3% on CIFAR-100 and 3.6% on ImageNet-R. Focusing
on video data, Villa et al. [57] introduced PIVOT, a prompting-based
method that utilized pre-trained image models to achieve a signifi-
cant 27% improvement on the ActivityNet benchmark. Complementing
these efforts, Smith et al. [58] developed an end-to-end attention-based
key-query prompting mechanism, which surpassed the performance of
DualPrompt with up to a 4.5% accuracy increase on established CL
benchmarks.

3.8.3. Task-specific CL
Various frameworks demonstrate advancements in CL methodolo-

gies by tackling core challenges such as pre-training optimization,
class imbalance, and the stability–plasticity trade-off. Typically, Wang
et al. [59] introduced HiDe-Prompt, a hierarchical approach for op-
timizing pre-training in CL, achieving significant improvements of
15.01% on Split CIFAR-100 and 9.61% on Split ImageNet-R. Building
on strategies to enhance CL performance, Lin et al. [60] proposed
Proxy-based Contrastive Replay (PCR), effectively addressing class
imbalance and instability in replay-based methods, yielding superior
results on benchmarks such as Split CIFAR-100 and Split MiniImageNet.
Complementing these efforts, Kim et al. [61] presented Auxiliary Net-
work CL (ANCL), which improved the trade-off between plasticity and
stability, achieving 1%–3% better accuracy in IL scenarios.

3.8.4. Generative and diffusion-based methods
Numerous studies propose innovative approaches to improve func-

tionality and address challenges in generative and vision-language
models within the realm of CL. Specifically, Heng et al. [62] intro-
duced Selective Amnesia, a novel approach for controllable forgetting
in text-to-image models, enabling the removal of sensitive content
while preserving overall functionality. Expanding on generative meth-
ods, Gao et al. [63] proposed Deep Diffusion-based Generative Replay
(DDGR), which significantly enhanced generative replay approaches,
achieving a 4.71% accuracy improvement on CIFAR-100. Address-
ing zero-shot transfer challenges in vision-language models, Zheng
et al. [64] developed Zero-Shot CL (ZSCL), a method to prevent per-
formance degradation, leading to a notable 9.7% improvement on a
multi-domain task benchmark.

3.8.5. Biological and regularization-inspired approaches
To address fundamental challenges in CL, some studies have

adopted innovative approaches inspired by biological systems and
advanced algorithms. In this regard, Wang et al. [65] drew inspiration
from the Drosophila learning system to develop a model that effectively
balances plasticity and stability, outperforming traditional synaptic
regularization methods in task-IL settings. Building on the challenge
of maintaining plasticity, Dohare et al. [66] introduced continual back-
propagation, a novel approach designed to counter the loss of plasticity
in CL scenarios, demonstrating notable improvements on MNIST and
ImageNet tasks.

In Table 4, we aim to provide a summary of the above-described
studies based on different aspects, including specific models employed,
the datasets used or types of data, the real-world applications of the
research, the primary contributions of each study, the performance met-
rics used, and any limitations or drawbacks identified in the research.

3.9. Implementing CL

The implementation of CL begins with defining the problem and
tasks, followed by choosing a suitable CL method from options such
as regularization-based methods, replay methods, parameter isolation
methods, or dynamic architectures. The model is then initialized to
prepare it for the training phase. Moving on, for each task in the
sequence, the algorithm pre-processes the data, trains the model on
the current task, and applies techniques to address catastrophic forget-
ting, ensuring previously learned knowledge is retained. Methods for
mitigating forgetting include KD, EWC, generative replay, and using a
memory buffer. After all tasks have been processed, the model is evalu-
ated to assess its performance, and further optimization and refinement
steps are applied to enhance the model’s efficiency and accuracy. This
comprehensive approach ensures the model continuously learns and
adapts while preserving knowledge from previous tasks. Algorithm 1
outlines a structured approach to implementing CL.

Algorithm 1: Steps to Implement CL
Data: Tasks 𝑇1, 𝑇2,… , 𝑇𝑛
Result: Trained CL model
Function Main(𝑡𝑎𝑠𝑘𝑠):

Define the Problem and Tasks;
strategy ← ChooseContinualLearningStrategy();
model ← ModelInitialization();
foreach task 𝑇𝑖 ∈ 𝑡𝑎𝑠𝑘𝑠 do

PreprocessData(𝑇𝑖);
TrainModel(𝑚𝑜𝑑 𝑒𝑙 , 𝑇𝑖);
HandleCatastrophicForgetting(𝑚𝑜𝑑 𝑒𝑙);

EvaluateModel(𝑚𝑜𝑑 𝑒𝑙);
OptimizeAndRefine(𝑚𝑜𝑑 𝑒𝑙);

Function ChooseContinualLearningStrategy():
return Regularization-Based Methods, Replay Methods,
Parameter Isolation Methods, Dynamic Architectures;

Function HandleCatastrophicForgetting(𝑚𝑜𝑑 𝑒𝑙):
return Knowledge Distillation, Elastic Weight
Consolidation, Generative Replay, Memory Buffer;

Function TrainModel(𝑚𝑜𝑑 𝑒𝑙 , 𝑡𝑎𝑠𝑘):
PreprocessData(𝑡𝑎𝑠𝑘);
TrainModelAlgorithm(𝑚𝑜𝑑 𝑒𝑙 , 𝑡𝑎𝑠𝑘);
ValidateAndTune(𝑚𝑜𝑑 𝑒𝑙 , 𝑡𝑎𝑠𝑘);

Function OptimizeAndRefine(𝑚𝑜𝑑 𝑒𝑙):
Main(𝑇1, 𝑇2,… , 𝑇𝑛)
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Table 4
Comparison of studies on CL.

Ref. Model(s) used Application Dataset/Data type Main contribution Best performance
value

Limitation

[51] Various CL
models

Object classification
and detection in
autonomous driving

SODA10M Introduced CLAD-C
(classification) and
CLAD-D (detection)
benchmarks

mAP: 59.8
(Finetune), 74.7
(D1), 61.5 (D2),
59.0 (D3)

Focuses on specific
benchmarks for
autonomous driving

[52] Various CL
models

Real-time evaluation
of CL

CLOC Evaluated CL
methods with
computational cost
constraints

ER outperformed
other methods
under varying
memory budgets

Existing methods
fail in practical
settings due to
computational costs

[55] Pre-trained
models with
random
projectors

CL with pre-trained
models

Various class-IL
benchmarks

Proposed a
training-free
approach using
random projectors
and class-prototype
accumulation

Reduced final error
rates by 20%–62%
on seven class-IL
datasets

Focuses on class-
and domain-IL CL
without rehearsal
memory

[67] Online prototype
learning (OnPro)

Online CL CIFAR-10,
CIFAR-100

Introduced OnPro
framework to tackle
shortcut learning in
online CL

Acc: 57.8%
(CIFAR-10), 22.7%
(CIFAR-100)

Limited to online
CL scenarios

[68] Prompt-based
methods with
language
guidance

CL without replay
buffer

Various datasets for
prompt-based
methods

Proposed LGCL for
improving
prompt-based
methods

Avg. Accuracy:
86.15 (Frozen CLIP
Keys), 87.23
(Learnable Keys)

Focuses on
prompt-based
methods with
language guidance

[65] Multiple learning
modules inspired
by Drosophila

General CL Various datasets Proposed a
multi-learner
architecture inspired
by biological
systems

Improved
performance over
synaptic
regularization
methods

Complex
architecture may be
difficult to
implement

[69] Pre-trained
models with
Slow Learner

CL on pre-trained
models

Split CIFAR-100,
Split ImageNet-R,
Split CUB-200, Split
Cars-196

Proposed SLCA to
address progressive
overfitting in CLPM

Up to 49.76% (Split
CIFAR-100), 50.05%
(Split ImageNet-R)

Focuses on
addressing
overfitting in CL
with pre-trained
models

[56] PET methods Unified CL
framework

CIFAR-100,
ImageNet-R

Proposed LAE
framework for CL
with PET methods

Last-incremental
accuracy improved
by 1.3%
(CIFAR-100), 3.6%
(ImageNet-R)

Focuses on
parameter-efficient
tuning methods

[57] Prompting
mechanisms

CL for video data ActivityNet Introduced PIVOT
for video data CL
using image domain
pre-trained models

Improved
state-of-the-art by
27% on 20-task
ActivityNet setup

Limited to video
data CL

[58] Vision
transformer
models with
key-query
mechanism

Computer vision Various class-IL and
domain-IL
benchmarks

Proposes an
end-to-end
attention-based
key-query scheme
with
input-conditioned
prompts

4.5% improvement
in average final
accuracy over
DualPrompt

Reduced plasticity,
sacrificing new task
accuracy

[59] HiDe-Prompt
with task-specific
prompts and
contrastive
regularization

CL with pre-trained
knowledge

Split CIFAR-100,
Split ImageNet-R

Introduces
Hierarchical
Decomposition
(HiDe-)Prompt

15.01%
improvement on
Split CIFAR-100,
9.61% on Split
ImageNet-R

Difficulty
incorporating
task-specific
knowledge

[62] Selective
Amnesia applied
to conditional
variational
likelihood
models

Selective forgetting
in deep generative
models

Various models and
datasets

Enables controllable
forgetting of specific
concepts

Effective forgetting
of harmful concepts
in text-to-image
models

Risk of forgetting
important
information

[60] PCR Online class-IL CL Split CIFAR-10,
Split CIFAR-100,
Split MiniImageNet

Combines
proxy-based and
contrastive-based
replay methods

Final accuracy on
Split CIFAR-10:
58.8%, Split
CIFAR-100: 29.3%,
Split MiniImageNet:
28.4%

Unstable and hard
to converge with
limited samples

(continued on next page)
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Table 4 (continued).
[64] ZSCL with

parameter and
feature space
regularization

Vision-language
models

Multi-domain
Task-IL (MTIL)

Prevents zero-shot
transfer degradation

9.7% improvement
in MTIL benchmark

Trade-off between
zero-shot
performance and
downstream task
performance

[61] ANCL Task-IL and class-IL Various datasets Promotes plasticity
with auxiliary
network

1%–3%
improvement over
naive CL approaches

Underlying
mechanism of
plasticity-stability
trade-off not fully
understood

[66] Continual
backpropagation
with
L2-regularization

CL MNIST, ImageNet Introduces continual
backpropagation to
maintain plasticity

Maintains high
accuracy over long
task sequences

Performance drops
in highly
challenging settings

[63] DDGR Class-IL CIFAR-100 Uses diffusion
model for
generative replay

Final average
accuracy of 59.20%
on CIFAR-100

Challenges with a
large first task and
diffusion steps

[53] Progressive
Prompts for
language models

CL in language
models

Standard CL
benchmarks

Sequentially
concatenates new
soft prompts

>20% improvement
over previous best
on T5 model

Relies on data
replay and
task-specific
parameters

[54] L2 parameter
regularization
with KD

CL without
rehearsal

CIFAR-100,
ImageNet-R

Combines parameter
regularization and
KD for strong
performance

Final accuracy of
35.6% on
CIFAR-100 with
pre-training

Large performance
gap between
rehearsal and
rehearsal-free
methods

[70] Drift activated
rehearsal

Online class-IL CIFAR-10, MNIST Combines drift
detection with
various rehearsal
techniques for
optimum
performance

Final accuracy
94.9% at MNIST,
80.5% at CIFAR-10

Relies on data
replay and
task-specific
parameters

4. CL in the energy domain

The preceding section provided a comprehensive overview and
analysis of the various classes and methodologies used to address CL.
This section thoroughly examines the research studies incorporating CL
in the energy and power domain. These studies are further classified
into five distinct subsections based on the specific areas within the
power system where CL was applied. These subsections include:

1. Non-Intrusive Load Monitoring
2. Demand-Side Management
3. Fault/Anomaly Detection
4. Load Forecasting/Prediction
5. Renewable Energy Integration

4.1. Non-intrusive load monitoring

Non-Intrusive Load Monitoring (NILM) uses an algorithmic ap-
proach to monitor the states of appliances and their power consumption
within a building using a single metering point. Recently, DNN methods
have proven to be the most effective for NILM in classifying appliance
states as single or multi-label networks. However, most current DNN
methods are static and do not consider changes in user habits or
appliances. Fig. 4 demonstrates how class-IL can be applied for NILM.
The studies referenced have introduced a novel solution integrating CL
to address this challenge.

The study in [71] proposed integrating NILM with CL. Specifically,
they have compared the proposed Appliance IL (AIL) approach with the
LwF approach to adapt and monitor new appliances. Additionally, they
compared their technique to a static NILM method, and the findings
showed that the suggested strategy effectively copes with newly added
appliances while reducing forgetting of previously trained/seen appli-
ances. Similarly, Sykiotis et al. [72] employed a CL approach to perform
NILM to address the issue of forgetting previously learned information.
To elaborate, the experience replay method was employed to improve

NILM model retraining in a resource-efficient manner. Furthermore,
NILM was implemented in an IL setting in [73]. The strategy involved
using a particular approach to work on the current task with new appli-
ance classes and another method for older appliance classes to identify
the associations between the older and newer classes. Moreover, Li
et al. [74] proposed a novel IL approach to address catastrophic forget-
ting in NILM, enabling adaptive learning for new appliance classes and
demonstrating effectiveness using the PLAID dataset. Similarly, Zhang
et al. [75] presented an IL approach for NILM, enabling progressive
identification of new appliances with limited training data. Lastly,
Qiu et al. [76] introduced a novel method combining class-IL and
semi-supervised learning to address the challenge of accurate load
identification in NILM. The method prevents catastrophic forgetting,
distills knowledge, and exploits unlabeled data. Experimental results
on PLAID and WHITED datasets demonstrated adequate performance.

In NILM, CL addresses key challenges such as device variability,
changing user habits, and noisy energy signals. Unlike traditional mod-
els, CL enables IL, allowing adaptation to new appliances or usage
patterns without full retraining while mitigating catastrophic forgetting
through techniques like EWC or experience replay. Through resource
efficiency, CL can be ideal for real-time deployment on edge devices,
improving accuracy and reducing disaggregation errors. Future direc-
tions include tackling imbalanced energy datasets and integrating CL
with Federated Learning (FL) for privacy-preserving, adaptive energy
monitoring in real-world settings.

4.2. Demand-side management

Demand-side management presents the potential to drastically
lower building operating expenses and overall energy usage [77].
Buildings may reduce their energy use and increase their energy
efficiency by implementing various management techniques. Enhanc-
ing energy efficiency through better materials, intelligent energy tar-
iffs that offer incentives for particular consumption patterns, and
sophisticated real-time control of distributed energy resources are
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Fig. 4. Overview of the AIL for NILM employing class-IL by introducing a new appliance throughout each re-training round [71]

just a few examples. The studies summarized utilized CL in their
implementations.

Kim et al. [78] proposed a demand response approach to controlling
and adjusting energy consumption loads such as those from lights and
air conditioners in domestic buildings. A data-driven ML approach has
tackled the uncertainty in environmental variables and user prefer-
ences. Moreover, a Multi-Task Learning (MTL) approach was employed
to take advantage of the shared structural characteristics within policies
for different rooms. A method for kernel-based lifelong learning has
been developed, which can continuously update the shared represen-
tation of the policies online to improve computational efficiency and
the ability to track optimal policies over time [79]. An overview of the
proposed CL-based demand response is illustrated in Fig. 5. Similarly,
Hossain et al. [80] employed Random Forest (RF) to determine the
demand response schedule. They used the MuZero RL method, which
allows for continuous learning through self-play, attains better sam-
ple efficiency, and effectively adjusts to changing environments. The
MuZero RL was mainly used to manage the demand response, which
can reduce energy costs and smooth out peak loads more efficiently.
Equivalently, the authors in [81] proposed a Deep RL (DRL) approach
to managing energy usage in a cluster of houses. To address the
unpredictability of power usage in homes, they used a DNN to analyze
household data, including power usage patterns, indoor temperature,
outdoor temperature, and humidity. This data was then used to predict
the total peak power demand. The DRL approach effectively reduced
total power usage and minimized consumption during high-demand
periods while maintaining a specific temperature. A demand prediction-
based scheduling approach was proposed in [82] using CL and DL.
The scheduling algorithm uses the cosine similarity of the electric
load pattern to manage and control the gradient of the optimization
process. Experimental evaluations demonstrated the effectiveness of
the proposed scheme compared to the base method. Similarly, Wu
et al. [83] proposed a replacement learning-based online adaptation
framework for multivariate multi-step time series forecasting. This
approach addressed concept drift through retraining, clustering-based
sampling, and a correcting factor, outperforming offline models by over
50% in forecasting accuracy, as validated using synthetic building and
cooling system electricity demand datasets.

Tang et al. [84] introduced a demand-aware pricing algorithm using
DRL. The algorithm was designed to optimize energy consumption and
provide real-time pricing. The algorithm adjusted pricing structures
dynamically through continuous learning and adaptation to encourage
demand-side flexibility and maintain grid stability. In a similar manner,
the authors in [85] proposed a CL-based bidding system for energy

trading to address the change in data distribution while using ML.
The framework used a CL method, which involved combining a small
segment of historical data with new data to enhance the accuracy of
bidding decisions. The framework was tested using an energy trading
dataset and showed improved prediction accuracy. Lastly, W. Y. Ng
et al. [86] introduced an incremental ensemble learning method for
streaming data environments, tackling concept drift and class imbal-
ance. The technique employed dynamic cost-sensitive weighting and
imbalance-reversed bagging to enhance classification accuracy. Applied
to electricity pricing prediction in Australia, the approach demon-
strated statistically significant effectiveness compared to state-of-the-art
IL techniques, validating its utility in smart grid applications. The
Radial Basis Function Neural Network (RBFNN) was employed as the
base classifier.

All in all, CL plays a crucial role in demand-side management by
enabling energy systems to adapt to evolving consumption patterns and
grid dynamics. Unlike traditional models, CL allows for incremental up-
dates, efficiently learning new trends such as shifts in user behavior, the
addition of new energy devices, or seasonal demand fluctuations with-
out forgetting previously learned knowledge. CL’s lightweight nature
also makes it suitable for real-time implementation on edge devices,
facilitating smarter energy optimization. Future research could focus
on enhancing CL’s scalability for large-scale demand-side management
applications and improving its integration with predictive models for
more accurate demand forecasting.

4.3. Fault/anomaly detection

Fault or anomaly detection in power systems involves identifying
unusual occurrences that may indicate defects, malfunctions, or ineffi-
ciencies within electrical networks or equipment. This process is vital
for ensuring the reliability and safety of power systems, as it allows
for the early detection of problems, prevents potential damage, and
minimizes downtime. The following papers have incorporated CL into
the fault detection process.

Transit Stability Assessment (TSA) ensures the power system’s stable
and safe operation, particularly after a system disturbance. The authors
in [88] merged the advantages of Convolutional Neural Networks
(CNNs) and the CL-based algorithm named Orthogonal Weight Modifi-
cation (OWM) to take advantage of CNN’s feature extraction property
and OWM’s LwF. The proposed approach enabled the evaluation of the
system’s transient stability and seamless updating per the power grid’s
configuration. Likewise, in their study, Liu et al. [89] suggested using
Support Vector Machines (SVM) with Karush–Kuhn–Tucker (KKT) for
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Fig. 5. An instance of applying CL for demand response, where (a) is an overview of the system’s architecture and (b) is the proposed CL-based approach to demand response [78].

Fig. 6. Overview of CL-based TSA in power systems [87].

performing TSA in an IL setting. To test their approach, they conducted
a simulation study using an IEEE-39 bus system. The results indicated
that the TSA was updated effectively, and the training was completed
efficiently while maintaining prediction accuracy. Moreover, [87] in-
troduced using the Sliced Cramer Preservation (SCP) modal as a CL
approach. They combined the SCP algorithm with the Deep Residual
Shrinkage Network (DRSN) to create a TSA classifier. Using SCP, the
model can be extended and updated using new scenario data. This
updated model improves prediction accuracy for new scenarios and
maintains prediction capabilities for old scenarios, thus reducing the
need for frequent model updates. Furthermore, Ren et al. [90] de-
veloped a fully data-driven method for post-fault short-term voltage
stability assessment, addressing missing Phasor Measurement Units
(PMU) measurements using a deep residual learning CNN and Incre-
mental Broad Learning (IBL). Similarly, Tian et al. [91] proposed a
novel transient stability boundary construction methodology for power
systems, modeling critical clearing times using a Broad Learning System
(BLS). This efficient, update-capable method, validated through IEEE
and real-world case studies, demonstrated superior accuracy and ro-
bustness in online transient stability assessment. Also, Li et al. [92]
introduced a dual cost-sensitivity factor method for TSA to address
class and regional imbalances. Using LightGBM, the approach improved

unstable sample accuracy and reduced stable sample misjudgment. As
validated on three power systems, an IL-based fast update scheme
further enhanced online performance. Additionally, Cui et al. [93]
proposed a TSA digital twin framework using KD to address compu-
tational resource challenges. This approach enabled adaptive updates
for complex conditions, enhancing the model’s learning capability.
The approach, validated on the IEEE 39-bus system, demonstrated its
effectiveness in real-time power grid applications. Fig. 6 showcases
how CL could be applied to TSA. The figure highlights the innovative
approach of integrating CL techniques to systematically analyze and
improve the stability of transit systems over time.

On another note, the study in [94] presented an approach to detect
abnormalities in a PMU data stream. The proposed approach consists
of an offline and online Gaussian Mixture Model (GMM) to identify
if anomalies are present and an ensemble clustering model to classify
the present anomaly. The online GMM model was used to update the
overall model in the case of concept draft while considering the previ-
ous knowledge and alleviating catastrophic forgetting. Sifat et al. [95]
proposed a data-driven approach to detect high-impedance faults, a
paramount stage in power system distribution. The developed hybrid
model was constructed using a CNN phase and several Recurrent Neural
Network (RNN) algorithm-based versions. The models were trained
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using real-world Giant Magneto-Resistive (GMR) device data from a
purpose-built 400-volt test facility. A memory block was incorporated
into the architecture to process the new sequences while considering
previously learned output. The memory block included several Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) mem-
ory cells. Furthermore, Luo et al. [96] developed a state estimation
approach for power systems based on a broad learning method. The
method can quickly compute the connecting weights among network
layers and utilizes an IL system to update the modal based on new
input data. The proposed approach was verified on a node system
and with local power data. Similarly, Alves et al. [97] addressed the
challenge of defending power system state estimation against false
data injection attacks, which could manipulate input data such as
measurements, system topology, or transmission line parameters. They
proposed an IL Support Vector Machine (ILSVM) approach, which dy-
namically adjusted the SVM model in real-time through fast re-training
to counteract cyber-attacks. Mollaiee et al. [98] proposed a novel CL
scheme for online static security assessment to address uncertainties
in modern power systems. Using a Mondrian forest-based model and a
weather-dependent security index, the scheme periodically updates the
assessment model.

Veerakumar et al. [99] proposed a Dynamic IL method for DL to
address catastrophic forgetting in real-time disturbance event classifica-
tion. The method, based on a replay-based IL strategy, minimizes train-
ing time, maximizes accuracy, and prevents forgetting. Zhu et al. [100]
proposed a pipeline radial threat condition recognition model based
on Multidimensional Information Fusion and a BLS (MIFBLS). The
method improved signal processing, reduced false alarms, and enabled
efficient real-time updates through IL. Experimental results on a nat-
ural gas pipeline dataset demonstrated the method’s effectiveness in
real-time monitoring and intelligent identification. Cai et al. [101]
proposed an IL-enhanced LightGBM (IL-LightGBM) method for online
load margin estimation in smart grids. By updating weight parameters
with synchronized measurements, the method improves adaptability
to operational variability. Case studies on IEEE 39-bus and 145-bus
systems demonstrated their effectiveness and robustness in handling
large-scale operational changes.

To conclude, CL significantly enhances fault and anomaly detection
in the energy domain by enabling models to adapt to evolving data
without retraining from scratch. As energy systems become increasingly
complex, CL allows for the IL of new patterns, such as unexpected load
spikes or equipment malfunctions, while retaining knowledge of pre-
viously detected anomalies. Techniques like IBL, replay, and EWC can
prevent catastrophic forgetting, allowing the model to handle new fault
types without interfering with previously learned knowledge. Future
research could explore CL’s application in improving the detection of
novel and rare anomalies, addressing the challenges of class imbalance,
and creating more adaptive and robust detection algorithms that can
operate effectively in diverse and dynamic energy environments.

4.4. Load forecasting/prediction

Because of its relevance in energy management, infrastructure plan-
ning, and budgeting, electricity load forecasting has sparked interest in
academia and industry. The spread of smart meters and other sensors
in recent years has opened up new prospects for sensor-based load
forecasting at the building and individual household levels. ML tech-
niques for load forecasting have seen substantial success. However,
these techniques use offline learning, which means they are taught
just once and miss out on the potential to learn from freshly arriving
data. Thus, deploying CL approaches solves that issue and provides new
insights.

In [102], it was suggested to use EWC with a sliding window
fine-tuning method for energy load prediction. The overview of the
proposed approach is illustrated in Fig. 7. They evaluated this approach
against three dynamic modeling techniques. The results indicated that

the proposed method’s mean absolute error decreased by 66.58%,
9.06%, and 8.70% on average compared to sliding window retraining,
sliding window fine-tuning, and static modeling, respectively. Simi-
larly, in their study, Li et al. [30] thoroughly examined the performance
of three traditional model update techniques and five new CL meth-
ods using a 2-year dataset from 100 buildings sourced from an open
database. The findings indicated that CL methods are more efficient
at maintaining long-term accuracy while reducing computation time
and data storage costs. Compared to static models and accumulative
learning, the Coefficient of Variation of the Root Mean Squared Er-
ror (CV-RMSE) of EWC and GEM were around 14% and 8% lower,
respectively.

In their study, Prabowo et al. [103] evaluated the effectiveness
of using mobility data and a CL approach for forecasting buildings’
electricity load. They employed Fast and Slow Network (FSNet) as
the CL method with Temporal Convolutional Networks (TCN) as the
backbone. The FSNet approach yielded good performance results with
a lowest Mean Absolute Error (MAE) value of 5.26 for the pre-lockdown
periods. Moreover, Fekri et al. [104] proposed an online adaptive
RNN approach to continually forecast electrical loads. The RNN model
captures time dependencies and updates weights according to new data
to achieve CL functionality. The proposed approach was tested using
data collected from five homes. Comparably, Hu et al. [105] utilized
a reply approach for identifying the dominant load parameter. The
backbone of the CL approach was a feed-forward neural network.

The authors in [106] showcased how catastrophic forgetting can
affect forecasting performance in power grids. They evaluated various
CL approaches against two scenarios where forgetting old knowledge
can occur. The experimental work showed that EWC and Online-EWC
yielded low forgetting values. In addition, Aragon and Chala [107]
employed LSTM models for continuous load prediction. The evaluation
and testing were conducted using residential datasets from various
locations at different time intervals, such as hourly and minutely.
The findings indicated that LSTM algorithms showed great potential
for incorporating continuous load prediction with IL. That said, the
paper in [108] proposed an adaptive approach for load forecasting
using a combination of RNN and Autoregressive Integrated Moving
Average (ARIMA) models. The suggested method’s effectiveness has
been tested on four households experiencing varying concept drift
levels. The findings reveal that the combined approach outperforms
the individual algorithms in terms of accuracy. Additionally, the study
highlights the importance of evaluating load forecasting methods based
on their ability to manage concept drift.

A framework called SteamDL was introduced in [109] to provide a
DL interface with the Advanced Metering Infrastructures (AMI) data
stream. The platform enabled the continuous learner to reduce the
decline in performance resulting from changes in distribution. More-
over, the authors in [110] proposed a self-updating ML approach for
building load forecasting. The ML model was based on the prophet
model, which is, in turn, based on the General Additive Model (GAM).
The self-updating segment of the system was based on using the expe-
rience replay CL approach. Similarly, Ramos et al. [111,112] employed
an Artificial Neural Network (ANN) model with a CL approach to
enhance load forecasting accuracy. The ANN model underwent daily
retraining to ensure an up-to-date forecasting model. The study used
the Weighted Absolute Percentage Error (WAPE) and Symmetric Mean
Absolute Percentage Error (SMAPE) to evaluate the approach’s ef-
fectiveness. Furthermore, the authors in [113] proposed an hourly
continuous-learning system for load forecasting. The data was collected
from various sensors, and then they were analyzed. Following that,
a model is trained using that analyzed data if the model was not
trained prior. If the model reappears, the model’s performance will
be evaluated first. If the performance is adequate, no training will
be commenced; otherwise, the model will go through the retraining
cycle, with the retrained model saved for future use. Additionally, Kim
et al. [114] proposed an accelerated computing framework for accurate
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Fig. 7. Overview of CL-based load predicting approach [102].

energy prediction using an AMI data stream. The framework had two
main elements: an adaptive incremental learner and a deep-learning
accelerator using FPGA-GPU scheduling of resources. The experimental
findings showed that the framework performed well for adjustable
batch size and epoch for IL while ensuring minor forecasting errors,
queue stability, an elevated model score, and cost-effective processing.

Moreover, the authors in [115] presented a novel approach to solv-
ing the concept drift and catastrophic forgetting issues by proposing an
incremental solar power prediction approach. The approach trained a
model to predict Photovoltaic (PV) values based on a BLS via a regional
data exchange. Moreover, an online incremental model was proposed to
learn the new features continuously and without forgetting. Similarly,
the study described in [116] focused on predicting the hourly net load,
which anticipates the disparity between the hourly power demand and
the hourly power output of the PV system, representing the demand
the utility needs to meet to the consumer. They primarily employed an
LSTM and a Fully Online Sequential Extreme Learning Machine (FOS-
ELM), an IL model that does not necessitate initial training data for this
task. Also, Chen et al. [117] introduced an innovative lifelong learning
approach using deep generative replay to dynamically and adaptively
model building energy systems. Fig. 8 provides a schematic overview of
the suggested lifelong learning technique for building energy systems.
They employed a Variational AutoEncoder (VAE) to produce replay
samples. To demonstrate the method’s technical effectiveness, they
conducted a field experiment in a custom net zero energy building
to forecast solar power generation. The proposed method achieved an
overall accuracy of 0.89, nearing the theoretical upper limit of 0.91
achieved through joint training.

On another note, Silva et al. [118] presented a smart grid-based
load forecasting solution that utilizes a Fuzzy-ArtMap (FAM) and ANN.
Training of the ANN involved using historical databases to extract fun-
damental knowledge. In addition to load forecasting, they implemented
FAM-ANN CL for incremental knowledge extraction using real-time
measurement system data. To validate the methodology, they utilized a
historical database from an electric sector company, achieving a Mean
Absolute Percent Error (MAPE) of approximately 5% without CL perfor-
mance and generally less than 2% when CL execution was considered.
Likewise, the authors in [119] presented EnGAT-BiLSTM, an enhanced
framework for short-term load forecasting. The bidirectional LSTM
aimed to support CL of load prediction. The proposed framework was
designed to solve the data sparsity issue in short-term prediction and
improve the overall prediction accuracy. Wang Ng et al. [120] proposed
a novel DB-SOINN-R model for building load prediction, addressing
the limitations of the Enhanced Self-Organizing Incremental Neural
Network (ESOINN) model with density-based de-noising, a new dis-
tance metric, and k-nearest-neighbor with inverse distance weighting

regression. The method outperformed five models in day-ahead and
one-hour-ahead load predictions, demonstrating superior accuracy with
IL on two datasets. Similarly, Chupong et al. [121,122] suggested using
an OS-ELM model for hourly load forecasting, addressing the challenge
of insufficient initial training data by synthesizing new samples with
added noise.

Overall, CL enhances load forecasting in the energy sector by en-
abling models to adapt to changing demand patterns without forgetting
previous knowledge. Approaches like replay-based methods, such as
experience replay, allow the model to revisit past data, preserving
important patterns while incorporating new information. Regulariza-
tion techniques, such as EWC, help prevent catastrophic forgetting
by penalizing large changes in model weights, ensuring stability as
the model learns incrementally. Additionally, architectural approaches,
like PNN, allow for the addition of new modules to handle new tasks
without disrupting previous knowledge. Future research could focus on
enhancing CL’s ability to manage rare or extreme events, like sudden
demand surges or grid disruptions, and scaling these approaches for
large, distributed energy systems.

4.5. Renewable energy integration

Integrating renewable energy sources such as solar, wind, and hydro
into energy systems helps to minimize reliance on fossil fuels. En-
ergy management systems must optimize renewable energy generation,
storage, delivery, and integration with the electrical grid.

Goh et al. [123] suggested using a Self-Organizing Neural Network
(SONN) with an IL model to detect PV power fluctuation. The ex-
periment result had a higher prediction rate of 95.83% compared to
93.81% in the simulation. Similarly, the authors in [124] introduced
the usage of adaptive OS-ELM to detect fluctuations in a shipboard’s
electric power where renewable energy was integrated. The algorithm’s
efficacy is verified using real-time electric power fluctuation data from
a ship under two distinct sea conditions.

The approach proposed in [125] used IL in conjunction with BLS to
forecast solar irradiation with good performance in microgrid settings.
The BLS demonstrated quicker learning capabilities than numerous
DNNs due to its non-iterative nature and ability to bypass gradient
descent while estimating the final output. Additionally, it is much easier
to expand the network architecture using IL, allowing for the addition
of enhancement nodes or mapped feature nodes to achieve the desired
prediction and classification accuracy without retraining the network.
The authors of [126] explored a new regression approach for solar
irradiance detection using an incremental SONN model. The approach
operates by incrementally learning the time-series solar irradiance and
performing predictions in real-time. Almaraashi et al. [127] introduced
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Fig. 8. Conceptual overview of performing CL in building energy systems [117].

a compact, explainable, lifelong learning-based interval type-2 fuzzy
logic system for solar radiation modeling. Optimized using simulated
annealing, the system produces accurate prediction models with many
interpretable IF-Then rules. The lifelong learning approach ensures
minimal forgetting while transferring model knowledge to new lo-
cations. The system outperformed other models by 13.2% and was
well-received by experts for its transparency and potential for further
model enhancement.

Sarmas et al. [128] employed a naive IL approach to load forecast-
ing in microgrids. As for the DL, they utilized a Multi-Layer Perceptron
(MLP). Experimental results showed that, in terms of the MAE met-
ric, online learning models outperformed offline learning models by
8.6% in energy demand forecasting and 11.9% in renewable forecast-
ing, emphasizing the benefits of IL. Furthermore, the work in [129]
utilized a convolution technique to capture the spatial–temporal cor-
relation between surrounding wind farms, and from this, a unique
spatial–temporal wind power predictor, CSTWPP, was constructed. The
proposed CSTWPP was trained in two steps, with initial offline training
followed by gradual online training. Also, in the article [130], the
authors suggested a framework for predicting targets and self-updating
using CL. Experiments were conducted utilizing European wind farm
data to assess the framework’s performance in real-time. The experi-
mental findings showed that the framework can learn from the data
stream and increase prediction accuracy over time.

A unique hybrid architecture known as ‘‘CL-Net’’, based on Con-
volutional LSTM (ConvLSTM) and LSTM, was presented in the study
in [131] for the multi-step forecasting of battery health and power con-
sumption. Three datasets were utilized to confirm and assess the sug-
gested architecture’s efficacy. The comparison analysis demonstrated
the efficacy and efficiency of the suggested design in multi-step battery
state of health and power consumption forecasting. Comparably, the
authors in [132] used CL and ML to assess battiers’ performance. This
type of battery is widely utilized in renewable energy storage because
of its low cost, environmental friendliness, and scalability. Compared
to the reference, the trained CL shows that it can assess the emergence
of battery materials within the defined parameter space.

In a recent study, researchers proposed an innovative online risk
assessment method for a power system characterized by high levels of
renewable energy integration. This method was based on IL, as detailed
in [133]. A case study was conducted using the IEEE-33 node system
to validate the reliability of the risk assessment model. The study’s

results highlighted the effectiveness of the IL paradigm-based online
risk assessment technique in predicting operational risk indicators.
Furthermore, Yang et al. [134] investigated strategies for analyzing
small signals in power networks with wind farm integration. A BLS
model was built to assess the damping ratio sensitivity across several
operational modes. The model was evaluated using the IEEE 3-machine,
9-bus, and New England 10-machine, 39-bus protocols. The findings
show that the suggested strategy is feasible and effective. Also, the
study in [135] offered a DRL technique for continually optimizing the
control strategy of wind energy plants. The paper compared DRL to
existing optimization methods such as Particle Swarm Optimization
(PSO), Krill Herd, and Grey Wolf.

In [136], an OS-ELM-based technique is described to allow for fast
real-time Dynamic Security Assessment (DSA) and model update. To
improve the performance of ELMs, feature selection was performed
using a single-feature estimate, and the findings were used to con-
struct generation shifting as a preventative measure. The suggested
approaches are evaluated using the New England 39-bus test system
and compared to popular Intelligent Systems (IS) methods. The sim-
ulation results indicated that the ELM-based DSA approach has much
faster calculation times while maintaining high, competitive accuracy.
Lastly, Li et al. [137] proposed a system for secure energy manage-
ment using a DRL algorithm and blockchain technology. The DRL
algorithm dynamically adapts to varying demands and changing envi-
ronmental characteristics. The system was evaluated through extensive
simulations as well as real-world experiments.

Finally, CL approaches like replay, EWC, and LwF could seamlessly
optimize the integration of renewable energy sources. This is done
by enabling the models to adapt to changing production levels of
renewable sources such as solar and wind. These CL strategies enhance
the model’s ability to forecast energy generation, optimize storage, and
balance real-time supply and demand. Future research could improve
CL’s ability to handle extreme variability in renewable energy gener-
ation and integrate climate-specific data to enhance grid stability in
dynamic environments.

Table 5 summarizes all the studies mentioned in this section where
CL was applied in the energy domain based on several aspects, in-
cluding the CL model(s) used, CL scenario, ML/DL approach used,
application type, best performance value, and limitations.
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Table 5
Comparison of studies using CL in the energy domain.

Ref. CL approach CL scenario ML/DL approach Application Best performance
value

Limitation

[71] LwF and AIL Class-IL CRNN Non-Intrusive Load
Monitoring

Precision = 0.77,
Recall = 0.78, and
F1-score = 0.77

Additional factors
that could impact
performance were
not explored

[72] Replay Domain-IL LSTM and CNN Non-Intrusive Load
Monitoring

MAE = 5.18 and
F1-score = 0.853

Benchmarking was
not performed with
CL baselines

[73] AIL Class-IL ResNet-18 Non-Intrusive Load
Monitoring

F1-score = 0.7069 Benchmarking was
not performed with
CL baselines

[74] KD and Replay Class-IL CNN Non-Intrusive Load
Monitoring

F1-score = 0.7597 Benchmarking was
not performed with
CL baselines

[75] Replay Class-IL ResNet-32 Non-Intrusive Load
Monitoring

F1-score = 0.8195 Benchmarking was
not performed with
CL baselines

[76] KD, Replay, and
Weight Aligning

Class-IL ResNet-20 Non-Intrusive Load
Monitoring

Accuracy = 91.40% Limited
incorporation of
unsupervised
learning approaches

[78] Kernel General MTL Demand Response N/A as numerical
values

Benchmarking was
not performed with
CL baselines

[80] MuZero RL General RF Demand Response MSE = 0.00603 The energy
reduction ratio
value was not
determined

[81] DRL Domain-IL LSTM Peak Load
Reduction

MAPE = 5.47% The use of multi
agent RL approach
was not investigated

[82] GEM General CNN-LSTM Demand Prediction ARMSE = 0.0905 The CosSim
approach performed
better than the
study’s proposed
approach

[83] Replacement
Learning

Domain-IL LightGBM Electricity and
Cooling Demand
Detection

R2 = 0.969 and
MAE = 0.004

Need to refine
clustering
techniques, improve
the correction
factor, and explore
data characteristics

[84] DRL Domain-IL LSTM Demand-Aware
Intelligent Pricing

N/A as numerical
values

N/A

[85] Replay Task-IL MLP Energy Trading N/A as numerical
values

The framework’s
forgetting ratio was
not measured

[86] CWIB Domain-IL RBFNNs Electricity Pricing
Prediction

Accuracy = 75.80%
and F1-score =
73.47%

Using different base
models was not
explored

[88] OWM Task-IL CNN Transient Stability
Assessment

Test Accuracy =
97.48%

Performance metrics
were limited to
accuracy

[89] KKT Domain-IL SVM Transient Stability
Assessment

Average Accuracy =
93.37%

Benchmarking was
not performed with
other CL approaches

[87] SCP Domain-IL DRSN Transient Stability
Assessment

Accuracy = 98.03% Number of scenarios
was limited to three

[90] IBL Online CNN Voltage Stability
Assessment

Average Accuracy =
98.38%

Other CL scenarios
were not explored

[91] IBL Online BLS Transient Stability
Assessment

RMSE = 0.296 An effective
contingency filtering
tool needs to be
developed

(continued on next page)
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Table 5 (continued).
[92] Replay Online LightGBM Transient Stability

Assessment
Accuracy = 98.49% Model’s adaptability

could be improved

[93] KD and Replay Online Neural Networks Transient Stability
Assessment

Accuracy = 98.54% Limited to
simulation scenarios

[94] GMM Online GMM and K-Means Anomaly Detection
in Smart Grids

Recall = 99.00% Benchmarking was
not performed with
other CL approaches

[95] LSTM and GRU Task-IL CNN and RNN High Impedance
Fault Detection

Accuracy = 99.48% Generalization was
not achieved

[96] IBL Online BLS State Estimation Average relative
error = 0.0111%

Benchmarking was
not performed with
CL baselines

[97] ILSVM Online SVM False Data Injection
Detection

Accuracy = 97.40% Benchmarking was
not performed with
CL baselines

[98] MF Online MF Security Assessment Accuracy = 98.25% Benchmarking was
not performed with
other CL approaches

[99] Replay Class-IL CNN Disturbance Event
Classification

Accuracy = 97.30% Gradual
misclassification can
occur

[100] IBL Online BLS Condition
Recognition for
Energy Pipeline

Accuracy = 90.12% Research on spatial
threat estimation of
energy pipeline
safety based on IoT
systems is limited

[101] IL-LightGBM Online LightGBM Load Margin
Estimation

RMSE = 0.59 and
R2 = 0.973

Limited
investigations into
variable importance
measures

[102] EWC with a
sliding window
fine-tuning

Task-IL ANN Load Prediction MAE = 293.183,
RMSE = 452.487,
CVRMSE = 0.200,
and MAPE = 0.204

CL approach was
not compared to
other well known
approaches

[30] EWC, SI, LFL,
MR, and GEM

Task-IL and
Domain-IL

MLP Building Energy
Prediction

CV-RMSE of EWC
and GEM decreased
on average by 14%
and 8% compared
with static model
and accumulative
learning

Other DL models
were not investigate

[103] FSNet Domain-IL TCN Electricity Load
Forecasting

MAE = 5.26 for the
pre-lockdown period

Benchmarking was
not performed with
other CL approaches

[104] Online adaptive
RNN

Online RNN Load Forecasting MAE = 0.07 and
MSE = 0.03 for
100-hours ahead

Benchmarking was
not performed with
other prominent CL
approaches

[105] Replay Online FFNN Load Parameter
Identification

N/A Benchmarking was
not performed with
other prominent CL
approaches

[106] LWF, EWC,
Online-EWC, and
SI

Task-IL and
Domain-IL

AE and MLP Power Generation
and Consumption
Forecasting

MSE = 0.02049 Benchmarking was
not performed with
cumulative and joint
training approaches

[107] LSTM Online LSTM Load Forecasting MAE = 0.0044 and
RMSE = 0.0048

Benchmarking was
not performed with
other prominent CL
approaches

[108] RNN and ARIMA Online LSTM Load Forecasting N/A as numerical
values

Benchmarking was
not performed with
other prominent CL
approaches

(continued on next page)
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Table 5 (continued).
[109] N/A Domain-IL DL Individual Load

Forecasting
N/A Performance metrics

were not mentioned

[110] Replay Domain-IL GAM Load Forecasting MAPE = 13% Performance metrics
related to
catastrophic
forgetting were not
explored

[111,112] N/A General ANN Load Forecasting WAPE = 9.59%,
SMPE = 13.64%

Performance metrics
related to
catastrophic
forgetting were not
explored

[113] Naïve Online ANN Load Forecasting MAPE ≤ 2% Performance metrics
related to
catastrophic
forgetting were not
explored

[114] Adaptive IL Domain-IL CNN-LSTM Energy Data Stream
Processing

N/A as numerical
values

Benchmarking was
not performed with
CL baselines

[115] Ridge Regression Online BLS PV Power Prediction MAE = 0.012 Performance metrics
related to
catastrophic
forgetting were not
explored

[116] FOS-ELM Online LSTM PV Load Forecasting MAPE = 1.9% Performance metrics
related to
catastrophic
forgetting were not
explored

[117] Generative reply
with Conditional
VAE

Task-IL ANN Solar Power
Generation
Forecasting

Accuracy = 89.00% CL approach was
not compared to
other well known
approaches

[118] FAM Online FAM-ANN Smart Grids Load
Prediction

MAPE ≤ 2% Performance metrics
related to
catastrophic
forgetting were not
explored

[119] BiLSTM Online EnGAT-BiLSTM Load Forecasting in
Smart Grids

RMSE = 0.0423, F1
= 0.9412, and MAP
= 0.9558

Complex scenarios
were not
investigated

[120] DB-SOINN-R Domain-IL SOINN Load Prediction MAPE = 1.438%,
RMSE = 0.979,
CVRMSE = 2.071%,
MAE = 0.667, and
R2 = 0.996

N/A

[121,122] FOS-ELM Online ELM Short-Term Load
Forecasting

MAPE = 1.36% Benchmarking was
not performed with
CL baselines

[123] TS-SOINN General SOM Predict Power
Fluctuation in PV

Prediction rate =
95.83%

The final network
size was not
optimized

[124] AKOS Online ELM Ship Power
Fluctuations
Prediction

ARMSE = 0.0188 Forgetting of older
knowledge was not
clearly explored

[125] Architectural
model

Online BLS Solar Irradiance
Prediction

Depends on the
testing scenario

Benchmarking was
not performed with
other CL approaches

[126] E-SOINN Online RE-SOINN Solar Irradiance
Prediction

MASE = 0.65755,
RMSE = 73.945

AI-based
optimization
algorithms were not
explored

[127] N/A General XAI Solar Radiation
Modeling

Average RMSE
improvements of
13.2%

Limited by the need
to refine pruning
and consolidation
processes

(continued on next page)
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Table 5 (continued).
[128] Naïve Online MLP Photovoltaic

Production and
Load Forecasting

MAE = 6.697,
RMSE = 13.260,
and nRMSE = 0.527

Forgetting of older
knowledge was not
explored and
benchmarking was
not performed with
other CL approaches

[129] Naïve Online CNN Wind Power
Forecasting

MAE = 1.81, MASE
= 71.6, and RMSE
= 3.41

Challenges in model
generalization across
varying locations
and seasons

[130] EWC Online AE Wind Power
Forecasting

Prediction error =
0.623 and
Forgetting ratio =
1.161

Comparative
analysis was not
performed with
other CL approaches

[131] ConvLSTM Task-IL ConvLSTM and
LSTM

Batteries’ State of
Health and Power
Consumption
Forecasting

MSE = 0.015, RMSE
= 0.122, and MAE
= 0.088

Additional
environmental
parameters were not
analyzed in the
study

[132] EWC and LwF Task-IL DNN Battery Material
Performance

Error <4% Benchmarking was
not performed with
CL baselines

[133] Replay Online LSTM Risk Assessment for
Systems using
Renewable Sources

MAE = 0.095,
MAPE = 2.012, MSE
= 0.018, RMSE =
0.135, and RRMSE
= 5.049

N/A

[134] Naïve Online BLS Stability Analysis of
Power System
Integrated with
Wind Farms

MAPE = 0.17% and
RMSE = 0.000106

Benchmarking was
not performed with
CL baselines

[135] DRL Online DRL Continuous Control
Optimization in
Wind Energy
Systems

Overshoot =
0.0415% and
settling time =
0.0011 secs

High computational
complexity of DRL

[136] Online
Sequential

Online ELM Dynamic Security
Assessment and
Control

Accuracy = 98.5 Impact of missing
data on the
data-driven DSA
methods was not
investigated

[137] DRL General DRL and Blockchain Renewable Energy
Management

N/A Some scalability
concerns

5. Case study for energy anomaly detection

Classification problems are the most common when it comes to ML
algorithms and are used in most use cases where ML is employed.
This is also the case for CL methods and applications; classification-
based tasks are the most prevalent. In CL classification tasks, the
goal is always to maintain good performance and eliminate the issue
of catastrophic forgetting when introducing new input examples or
classes. We implemented CL as a technique for detecting anomalies in
power consumption. This approach is particularly focused on detecting
Micro-Moments (MM), which are brief and significant fluctuations in
energy usage that can indicate underlying issues or inefficiencies. By
utilizing CL, we aim to enhance anomaly detection capabilities across
various domains/tasks within the broader fault and anomaly detection
context. MMs are derived from raw data collected by numerous sensors.
An MM class is retrieved from a dataset using a rule-based model [138].
Table 6 summarizes the MMs feature classes derived using the proposed
rule-based approach and their related label descriptions.

5.1. Dataset

5.1.1. Dataset description
Three different sets of data were used in this study to cover a

wide range of situations and challenges. These datasets are the Dutch
Residential Energy Dataset (DRED) [139], the Qatar University Dataset

(QUD) [140], and SimDataset [140]. Each dataset offers distinct char-
acteristics and challenges for the evaluation, ensuring a comprehensive
analysis of CL model performance. The DRED dataset provides diversity
in power contexts, the QUD dataset highlights power and environ-
mental features, and the SimDataset introduces simulated scenarios.
These three datasets allow for a detailed examination of the model’s
adaptability and generalization across various real-world and simulated
conditions. The tabular data section of the study incorporates labels
for the MM categories ranging from 0 to 4 in the DRED, QUD, and
SimDataset. Table 6 elucidates the meaning of the MM labels.

5.1.2. Dataset pre-processing
An unbalanced dataset is an instance in which the distribution of

samples across different classes is highly skewed, resulting in one or
more classes having significantly fewer examples than others. This
imbalance can lead to challenges in training ML models, as the model
may become biased towards the majority class and have difficulty accu-
rately predicting the minority class. Dealing with unbalanced datasets
often requires techniques such as resampling, cost-sensitive learning,
or different evaluation metrics to address the issue and improve model
performance. The original distribution of the datasets was significantly
unbalanced, as shown in Table 7. To address this issue, we decided to
use the under-sampling strategy, which involves randomly removing
instances from an over-represented class to balance the class distribu-
tion.
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Table 6
Micro-moment labels and their descriptions.
Label Case Micro-moment description

0 Normal consumption <95% of power consumption
1 Turn on Switching on a device
2 Turn off Switching off a device
3 Excessive consumption >95% of power consumption
4 Consumption while outside Device on but user is not present

Table 7
Distribution of micro-moment labels across the three datasets.

Dataset Label Total

0 1 2 3 4

DRED 45,455 (27%) 3,315 (2%) 3,342 (2%) 35,044 (21%) 79,196 (48%) 166,352
QUD 12,102 (26%) 1,568 (3%) 1,580 (3%) 3,954 (8%) 27,725 (59%) 46,929
SimDataset 59,424 (57%) 7,780 (7%) 7,779 (7%) 6,343 (6%) 23,793 (23%) 105,119

Moreover, most open-source CL approaches are based on using im-
ages as inputs. The MM tabular data was transformed into images using
the approach found in [141]. The case study closely aligns with the
Domain-IL CL scenario, as the three datasets were collected in different
contexts and domains, resulting in varying data distributions; however,
they share the same labels/classes. Additionally, a data augmentation
technique was incorporated to further evaluate the effectiveness of the
CL approach by introducing various noise variations to the original
data. This allowed us to create an additional task for each dataset,
resulting in a total of six tasks for both training and testing purposes. So
overall, we will use six tasks, therefore six different MM-based datasets,
sharing the same number of five classes.

5.2. Experimental setup

5.2.1. Base model
We have utilized ResNet-18 as the base model, which comprises 18

layers and functions as a CNN model. In Python, we have employed
a pre-trained version of the network trained on more than a million
images from the ImageNet database [142]. The pre-trained network can
classify images into 1000 categories, such as keyboards, mice, pencils,
and animals. As a result, the network has developed advanced feature
representations for a wide range of images. The network takes images
with a size of 224-by-224 as input. We have modified the output layer
to specifically classify only five categories instead of the original 1000
to customize the network for our specific requirements.

5.2.2. Employed CL methods
In terms of the replay methods, we have utilized the basic re-

hearsal [40], Gradient Episodic Memory (GEM) [44], and Average
GEM (AGEM) [45]. As for the regularization-based methods we deployed
the Elastic Weight Consolation (EWC) [143], Synaptic Intelligence
(SI) [144], Memory Aware Synapses (MAS) [145], and LwF [38].
Finally, for the architectural-based approach, we have utilized the Copy
Weight with Reinitialization Star (CWR*) [146] method. For our im-
plementation, we have utilized the Avalanche library [147,148] for CL.
Avalanche, developed in PyTorch, is a CL Library designed for End-to-
End functionality. It was created in ContinualAI to offer a collaborative
open-source platform for rapid prototyping, training, and reproducible
assessment of CL algorithms.

5.2.3. Evaluation metrics
In the context of CL, we assess performance by measuring the aver-

age accuracy and forgetting of each task after its re-training. Forgetting
is the difference between the initial task knowledge, represented by
the accuracy during the first learning phase, and the accuracy achieved
after training on one or more additional tasks. In the visual representa-
tions, we focus on tracking the accuracy changes for each task as more
tasks are introduced. The legend presents the mean accuracy and mean
forgetting for the final model, which is determined by assessing each
task after the entire learning sequence.

5.2.4. Baselines
The employed CL methods were meticulously compared against

various baselines:

1. Naive begins by optimizing the prior task model to the present
task’s parameters. This baseline greedily trains each task with-
out considering past task performance, resulting in catastrophic
forgetting and indicating the lowest required performance.

2. Joint training simultaneously evaluates all data in the task se-
quence, violating the CL paradigm. This baseline establishes a
goal reference performance.

3. Cumulative training involves training the current task based on
the knowledge acquired from the previous task while incorpo-
rating the earlier tasks’ training samples. Just like joint training,
this approach achieves optimal performance.

5.2.5. Learning attributes
Throughout the training process, the models underwent optimiza-

tion using stochastic gradient descent with a momentum value of 0.9,
and the learning rate was specifically set to 0.001. The training phase
was carried out for ten epochs for each task. Additionally, a training-to-
testing ratio of 80/20 was chosen to ensure comprehensive evaluation
and validation of the model’s performance.

5.3. Results and discussion

The outcomes of implementing the different CL methods can be seen
in Fig. 9 alongside the baseline results. Fig. 9 displays the outcomes
for all three CL families. Each figure comprises six subpanels, each
subpanel illustrating the evolution of test accuracy for a specific task
(e.g., Task 1 for the leftmost panel) as additional tasks are included
in the training. As the 𝑛th task is included in the training only after
n steps, the curves become shorter as we progress to subpanels on the
right.

The naive approach showed the poorest performance due to severe
catastrophic forgetting. It initially achieved good results when training
for a task, but when re-training for a new task, the performance of
the old task quickly degraded. This resulted in an average accuracy
of 26.35% and a forgetting rate of 52.42%. On the other hand, the
joint training and cumulative methods produced the best results, with
an average accuracy of at least 86.00%.

Regarding replay-based approaches, the basic rehearsal approach
demonstrated the highest average accuracy performance at 70.26% and
a forgetting rate of 9.47%. This was accomplished with a memory
buffer of 200 samples for each task. The GEM and AGEM approaches
displayed similar performance, with an average accuracy of around
50.00% and a forgetting rate of 16.00–18.00%, respectively.

Among the various regularization-based approaches utilized in the
case study, the MAS performed the best in terms of average accuracy
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Fig. 9. Replay methods (top) and regularization-based and architectural methods (bottom) on ResNet-18 for the base model, reporting average accuracy (forgetting) in the legend.

and forgetting rate of 52.19% and 33.96%, respectively. The second
best was the LwF, which reported an average accuracy of 44.68% and
a forgetting rate of 42.10%. The EWC and SI performed similarly across
the two metrics. The CWR* reported the lowest average forgetting
rate of −1%. Additionally, comparing the CWR* approach with other
regularization approaches, it achieved the highest average accuracy
of 52.50%. CWR isolates task-specific weights and carefully manages
how new and old knowledge is merged, preventing new tasks from
interfering with previously learned tasks.

Future work in this context could involve conducting the anomaly
detection case study in a semi-supervised or even unsupervised manner,
providing valuable insights into the robustness of the CL methodolo-
gies. In a semi-supervised approach, a small amount of labeled data
could be combined with a larger pool of unlabeled data. On the other
hand, exploring an unsupervised approach would entail analyzing data
without any prior labels, allowing the system to discover patterns
and relationships on its own. Both approaches present unique advan-
tages and challenges, and investigating them could lead to a deeper
understanding of the CL methodologies employed in the study.

6. Key challenges

6.1. Stability–plasticity dilemma

The stability–plasticity dilemma is a fundamental challenge in CL,
particularly in the energy domain and in tasks like energy consump-
tion prediction, where new devices, sensors, and consumer behavior
patterns constitute a continuously evolving landscape. These dynamics

raise the need for a smart grid system that can adapt to the new
variables (plasticity) while retaining the previously acquired knowl-
edge (stability) [83]. The same dilemma arises in the case of fault
detection in energy networks and their components (e.g., energy cells,
power lines, etc.) when new smart devices, sensors, and metering
systems are incorporated and consequently introduce new types of fail-
ures [149]. Achieving an optimal balance between the two is essential
for successful CL systems [30].

6.1.1. Stability and plasticity
Stability refers to a model’s capacity to maintain its performance

on previously learned tasks when faced with new data or tasks. In the
context of CL in energy systems, stability is crucial to avoid the well-
known phenomenon of catastrophic forgetting, where the model loses
its ability to recall previously learned information after being exposed
to new energy consumption patterns or renewable energy generation
forecasts [150]. For example, in the case of energy price forecasting,
the models have to be continuously trained to predict price fluctuations
due to technological advancements (e.g., new energy storage systems),
supply chain disruptions (e.g., geopolitical crises) or policy changes
(e.g., new taxes) and at the same time must retain important historical
patterns to maintain accurate forecasting [83].

6.1.2. Trade-off and the dilemma
The stability–plasticity dilemma illustrates that a balance must be

struck between these two competing objectives [151]:
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• Too much stability results in a rigid model that is resistant to
change and cannot adapt well to new tasks. While it may retain
previously learned knowledge effectively, the model’s ability to
learn new information is impaired. This can lead to poor per-
formance on newer tasks as the model becomes overly biased
towards previously seen tasks [152].

• Too much plasticity makes the model overly adaptive to new
tasks, potentially forgetting previously learned knowledge. While
plasticity can be beneficial for adapting to new trends, exces-
sive plasticity can lead to overwriting knowledge from earlier
tasks [153]. Techniques such as experience replay, regularization,
and incremental and MTL can improve the balance between
historic and new knowledge [154].

6.1.3. Mathematical perspective
From a mathematical perspective, the trade-off between stability

and plasticity can be framed in terms of optimizing model parameters.
In standard neural networks, weights are adjusted during training via
gradient descent [155]. When learning new energy tasks, gradient
updates may lead to significant shifts in model weights, particularly
if the new task requires significantly different representations from
previous tasks, such as adjusting to a new energy source or demand
pattern. This shift is the essence of plasticity, but without mechanisms
to preserve important weights for prior tasks, the model’s stability is
compromised [156].

The stability–plasticity dilemma can thus be framed as a constrained
optimization problem, where the objective is to minimize the loss on
the current task while ensuring minimal disruption to the model’s
performance on previously learned tasks. This requires approaches that
explicitly manage how model parameters are updated, preventing crit-
ical weights from being overwritten while allowing enough flexibility
to learn new tasks [157].

6.1.4. Challenges in achieving balance
Balancing stability and plasticity is difficult due to several factors:

• Non-Stationary Data: In real-world CL scenarios, data distri-
butions change over time. A model must adapt to new data
distributions (plasticity) without losing performance on previ-
ously learned data (stability). This becomes challenging when
new tasks differ significantly from old ones [158]. For example,
energy demand can vary drastically from winter to summer,
driven by heating or cooling needs. These fluctuations, which are
due to seasonal changes, create non-stationary demand data over
time [159].

• Task Similarity: When new tasks are similar to old ones, it is
easier to strike a balance between stability and plasticity because
the representations learned for the new tasks can be built upon
the old. However, when tasks are dissimilar, a high degree of
plasticity is required to learn the new tasks, increasing the risk
of catastrophic forgetting [160]. For example, a model trained
to predict energy prices and later tasked with forecasting energy
demand will face stability problems because the two tasks may
be similar but not identical. Both tasks depend on factors like
weather, consumer behavior, and supply, but the relationships
may differ. Similarly, the tasks of short-term and long-term pre-
diction of energy prices differ since they should consider different
factors (e.g., weather conditions and supply disruptions versus
policy and market trends).

• Capacity Limitations: Neural networks have finite capacity,
meaning they can only store a limited amount of knowledge.
As the number of tasks increases, it becomes harder for the
model to maintain stability while learning new tasks, as the new
information competes with old information for representation
in the network [66]. The limitations in the energy domain can
be reached, for example, when an energy forecasting model is

scaled up to cover multiple regions, which involves handling large
datasets with diverse geographical and temporal variations. If the
model is retrained frequently with new data from one region,
it might forget the consumption behaviors of other regions it
was previously trained on, affecting the model’s generalization
ability [161].

6.1.5. Existing approaches to address the stability–plasticity dilemma
Several techniques have been proposed to manage the trade-off

between stability and plasticity in CL. Regularization-based approaches
address the stability–plasticity dilemma by preserving critical parame-
ters of previous tasks through regularization penalties. Methods such
as EWC [61,162], SI [144,163], and MAS [164] reduce catastrophic
forgetting by constraining changes to weights deemed important for
prior knowledge, thus maintaining stability without hindering new
learning.

Replay strategies mitigate forgetting by revisiting prior knowledge
during training, thus ensuring the balance between retaining stability
and enabling plasticity. Experience Replay [165] achieves this by inter-
leaving stored examples from past tasks, while Generative Replay [166]
synthesizes pseudo-data resembling earlier tasks. Conversely, architec-
tural solutions dynamically adjust the model structure to accommodate
new tasks while safeguarding prior knowledge. PNNs and Dynamic
Parameter Isolation [167] either expand the architecture or selec-
tively isolate task-specific parameters, preventing interference with
earlier learning. While these approaches excel in preserving stability,
scalability challenges can arise with an increasing number of tasks.

6.2. Data scarcity

Data scarcity is an important challenge in CL, which is due to the
limited availability of sufficient and diverse data for each new task.
Usually, CL systems must learn from limited, sometimes imbalanced
data, leading to challenges in generalization and adaptation [168].
Effective CL requires strategies to overcome these limitations while
maintaining the model’s ability to adapt to new tasks and retain past
knowledge.

6.2.1. The impact of limited data
Data scarcity can lead to two major risks: overfitting and under-

fitting. Overfitting occurs when the model becomes overly tailored to
the small dataset of the current task, losing its generalization capabili-
ties [169]. This makes the model less flexible (reduced plasticity), as it
is biased towards the specific instances it has seen. On the other hand,
underfitting happens when the model fails to capture the essential
patterns in the data due to its limited size or diversity, resulting in poor
performance on the new task. This is the case of energy forecasting
models in buildings that are equipped with smart meters with varying
data sampling granularities or in which there is a lack of historical
data [170]. The volatility of the population and the continuously
changing user profiles. At the same time, the model may suffer from
catastrophic forgetting if it cannot adequately consolidate knowledge
from previous tasks due to insufficient exposure to new data [171].
Thus, it becomes harder to achieve robust performance on old and new
tasks with limited information.

6.2.2. Challenges in task representation
Data scarcity often complicates the representation learning process,

particularly when tasks are highly varied. In multi-task setups [172],
the model must handle a sequence of tasks and relies on data to develop
meaningful representations that generalize across tasks [173]. When
data is scarce, the model may fail to develop these representations
adequately, resulting in suboptimal performance on both the current
and previous tasks. Furthermore, the absence of enough data from
certain tasks can lead to biased representations, affecting the model’s
long-term stability and plasticity.
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6.2.3. Existing approaches to mitigate data scarcity
Several methods have been proposed to alleviate the challenges

posed by data scarcity in CL. First, data augmentation techniques,
such as rotations, scaling, and cropping, artificially have been used to
increase the diversity of training data, improving generalization and
reducing overfitting [174]. Generative models, such as Generative Ad-
versarial Networks (GANs) and VAEs, offer another solution by creating
synthetic data that mimic the distribution of scarce datasets, effectively
augmenting the training set [175]. Additionally, self-supervised learn-
ing approaches enable the use of unlabeled data to pre-train models,
which can then be fine-tuned on scarce labeled data, demonstrating
robustness in various applications, including fault diagnosis in HVAC
systems [176,177].

Transfer learning and KD have also been introduced as promising
strategies to counteract data scarcity. Transfer learning allows models
to leverage knowledge from domains with abundant data to improve
performance in target domains with limited examples, as demonstrated
in energy management tasks like power consumption forecasting [178].
This approach ensures stability in pre-trained knowledge while en-
abling flexibility to adapt to specific new tasks. Similarly, KD transfers
essential information from a larger, well-trained model to a smaller,
more efficient one, making it ideal for tasks with constrained data, such
as electric load forecasting in individual households [179]. These tech-
niques balance stability and plasticity, ensuring adaptability without
compromising the retention of prior knowledge.

Finally, replay methods, meta-learning, and task-specific architec-
tures have been suggested to mitigate data scarcity. Experience replay
allows for enhanced stability while supporting adaptation [165] to new
tasks, whereas meta-learning techniques, including few-shot learning,
maintain plasticity without sacrificing stability [180]. Task-specific
architectures, such as modular networks, assign dedicated sub-networks
to different tasks, enabling specialization without requiring extensive
new data [181]. All the aforementioned methods collectively miti-
gate the challenges posed by limited data, supporting the effective
application of CL in diverse scenarios.

6.3. Security and privacy

Security and privacy are critical challenges in CL, particularly when
models operate on sensitive data or are deployed in environments
where they are exposed to adversarial attacks. Adversarial Learning
Attacks (ALAs), which involve tampering with meteorological data
from external Application Programming Interfaces (APIs) to disrupt re-
newable energy forecasting, can compromise CL models by embedding
malicious patterns, leading to inaccurate predictions and jeopardiz-
ing power system operations [182]. As CL systems are designed to
interact with evolving data streams, ensuring that these systems are
protected from malicious actors and that user data remains confidential
is paramount for their safe deployment and operation. Maintaining
a balance between learning new tasks and ensuring robust security
and privacy protections is a significant challenge in CL. Implementing
advanced intrusion detection systems that leverage ML is essential
for identifying cyber threats in CL models. These systems must be
continually updated with diverse attack scenarios to adapt to evolving
threats and provide timely alerts for effective defense. Implementing
advanced intrusion detection systems that leverage ML is essential for
identifying cyber threats in energy systems. These systems must be
continually updated with diverse attack scenarios to adapt to evolving
threats and provide timely alerts, ensuring the resilience and security
of energy forecasting and management [183].

6.3.1. Privacy concerns
In CL, models often require access to diverse and potentially sen-

sitive datasets across multiple domains. Without proper privacy mech-
anisms, user information might be leaked or exposed during training,
especially when learning new tasks from decentralized sources or when

training data is distributed across various devices [184]. Techniques
like FL have been proposed to enhance privacy in energy manage-
ment applications by keeping data localized and only sharing model
updates. This approach is particularly useful for tasks like net-energy
forecasting, where sensitive household or industrial data must remain
secure. However, even with such techniques, vulnerabilities such as
inference attacks remain a concern, as attackers can still potentially
extract sensitive information from the model’s updates, compromising
privacy despite the system’s distributed nature [185].

6.3.2. Security threats
CL systems are susceptible to various security threats, including

adversarial attacks, data poisoning, and model inversion attacks. Ad-
versarial attacks attempt to manipulate the model’s learning process
by introducing small perturbations to the input data, which can lead
to incorrect predictions or significant performance degradation. Data
poisoning is another critical threat, where an attacker intentionally
introduces misleading data during the learning process to corrupt the
model [186]. This is especially dangerous in CL, as the model’s ability
to adapt may make it more prone to learning from poisoned data.

6.3.3. Existing approaches to address security and privacy
• Differential Privacy: Differential Privacy (DP) is a widely

adopted technique that safeguards user privacy by ensuring that
the inclusion or exclusion of any individual data point mini-
mally impacts the model’s output. In energy grids, DP can be
applied by adding noise to energy consumption data used for de-
mand forecasting, preventing the leakage of sensitive household
patterns [187]. Integrating DP into CL systems involves inject-
ing noise into model updates and balancing privacy protection
with model performance, as excessive noise can impair learning
accuracy.

• Adversarial Training: Adversarial training involves augment-
ing the training data with adversarial examples to improve the
model’s robustness against attacks. For instance, an ensemble ad-
versarial training-based robust model can be employed for multi-
horizon dynamic line rating forecasting, enhancing resilience
against adversarial attacks [188]. This approach can also be
applied to CL systems to strengthen their defenses while learning
new tasks [189]. However, adversarial training often introduces
computational overhead and requires careful tuning to balance
security with learning efficiency.

• Federated Learning and Secure Aggregation: FL enables de-
centralized model training, where data remains on local devices,
and only model updates are shared. This helps preserve user
privacy by preventing raw data from being transmitted to a
central server [185]. To further enhance privacy, secure aggre-
gation techniques can be applied to ensure that individual device
updates are encrypted before being aggregated, reducing the risk
of information leakage during the learning process.

6.4. Scalability and interoperability

Scalability and interoperability represent significant challenges in
CL, particularly as the complexity and size of models and datasets
increase. As CL systems are deployed in diverse environments and
must interact with various external systems, ensuring they can scale
efficiently while maintaining seamless interoperability is crucial for
their effectiveness and applicability in real-world scenarios [172].
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6.4.1. Scalability challenges
Scalability refers to a system’s ability to handle increased loads,

whether in data, model complexity, or the number of tasks learned. In
the energy domain, this could involve forecasting electricity demand
across a growing number of regions, processing vast datasets from
smart meters, or integrating diverse renewable energy sources into grid
management systems. As the number of tasks increases, models must
be able to efficiently process and learn from large volumes of data
without significant degradation in performance or increase in com-
putational resource demands [190]. Additionally, training on larger
datasets, such as historical energy consumption data or meteorological
inputs for renewable energy forecasting, can lead to longer training
times, making it essential for CL systems to employ strategies that
ensure rapid adaptation and training efficiency, such as distributed
learning frameworks or online learning methods.

6.4.2. Interoperability concerns
Interoperability refers to the ability of different systems and models

to work together and share information effectively. In the energy
domain, this is particularly important when models trained on diverse
datasets, such as smart grid data, renewable energy forecasts, or en-
ergy consumption patterns, need to collaborate or integrate insights
from one another. Challenges arise due to differences in model ar-
chitectures, data formats, and training protocols, which can hinder
effective communication between systems. For example, integrating
energy forecasting models with grid management systems or combining
data from various sensors and meters with centralized platforms can
create significant interoperability issues. Ensuring that models can op-
erate across different platforms and with various types of data requires
the establishment of standardized protocols and frameworks [191].

6.4.3. Balancing scalability and interoperability
Achieving a balance between scalability and interoperability is es-

sential for deploying CL systems in practical applications. While scal-
able systems can efficiently handle large amounts of data and tasks,
they must also be designed with interoperability in mind to facilitate
collaboration with other models or systems. This balance can be chal-
lenging, as increased complexity in scaling systems may lead to greater
difficulty in ensuring that they can communicate effectively with other
models [192].

6.4.4. Existing approaches to address scalability and interoperability
• Distributed Learning Frameworks: Distributed learning frame-

works enable the training of models across multiple nodes, which
can significantly improve scalability [193]. By parallelizing the
learning process, these frameworks allow for faster processing of
large datasets and the ability to manage numerous tasks concur-
rently without overwhelming a single system. However, ensuring
interoperability among distributed systems remains challenging,
as data and model updates must be synchronized effectively.

• Standardized Protocols: Implementing standardized protocols
for data representation and communication can enhance inter-
operability in CL systems. Techniques such as the Open Neural
Network Exchange (ONNX) format provide a common framework
for sharing models across different platforms and frameworks,
allowing seamless integration of diverse learning systems [194].
Standardization can help facilitate the exchange of information
between models trained on different tasks or datasets.

• Modular Architectures: Modular architectures enable compo-
nents of CL systems to be developed and deployed independently,
allowing for greater flexibility and scalability. For example, in
energy management systems, different renewable energy fore-
casting, demand response, and grid optimization modules can be
independently updated or replaced without disrupting the entire
system. By designing systems with interchangeable modules, it

becomes easier to adapt to new tasks or incorporate new technolo-
gies, such as AMI or smart grid technologies without disrupting
existing functionality. This modular approach also supports in-
teroperability by allowing different components to communicate
through well-defined interfaces.

6.5. Expanding the practical applications of CL in energy systems

The practical deployment of CL in energy systems faces several
critical challenges. Energy systems demand real-time decision-making,
requiring research to optimize CL methods for minimal latency while
effectively adapting to dynamic data streams [114]. Additionally, many
energy systems operate under computational and resource constraints,
such as edge devices, necessitating the development of lightweight
CL frameworks and efficient task allocation strategies to enhance op-
erational efficiency [119,120]. Interoperability across diverse energy
infrastructures and platforms remains another significant hurdle, em-
phasizing the need for standardized protocols to seamlessly integrate
CL models [110,140]. Moreover, adopting AI-driven CL systems must
address regulatory and policy considerations, particularly regarding
data privacy, security, and fairness, to ensure compliance and public
trust in energy management applications [124,137].

6.5.1. Smart grid management
Smart grids benefit significantly from CL applications such as dy-

namic load forecasting, energy demand-response optimization, real-
time anomaly detection, and fault diagnosis [114,118]. However, inte-
grating CL into existing grid infrastructure presents challenges, includ-
ing managing data heterogeneity across regions and ensuring system
reliability amid dynamic learning updates [119,120]. Future research
should focus on developing task-specific CL models tailored for grid op-
erations, establishing real-time performance benchmarks, and optimiz-
ing communication networks to enhance the efficiency of distributed
CL systems in smart grid environments [113,123].

6.5.2. Renewable energy integration
CL has promising applications in renewable energy, including pre-

dicting energy generation from sources like solar and wind, optimizing
energy storage systems, and enhancing grid stability amidst fluctuat-
ing inputs [117,130]. However, significant challenges remain, such as
managing concept drift caused by seasonal variations, training models
on incomplete or sparse datasets, and adapting to rapid technological
advancements in renewable energy systems [115,116]. Future research
should prioritize hybrid CL approaches, combining replay methods and
architectural solutions to address fluctuating renewable outputs, inte-
grating climate-specific data for enhanced adaptability, and improving
scalability to efficiently manage larger distributed energy systems [124,
125].

6.5.3. Building energy management
CL offers transformative applications in smart buildings, including

personalized energy consumption forecasting, anomaly detection in
energy usage, and optimizing HVAC systems [110,140]. However, chal-
lenges persist, such as safeguarding privacy in residential energy data,
addressing the limited generalizability of models across diverse build-
ing types, and seamlessly integrating CL with IoT devices [30,104].
Future research should focus on implementing privacy-preserving CL
methods like FL, developing modular architectures for building-specific
adaptation, and deploying lifelong learning systems that continuously
adapt to evolving conditions over extended periods [103,105].
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Fig. 10. Future directions that could address the challenges associated with CL deployment.

6.5.4. Energy trading and market optimization
CL has significant applications in dynamic pricing models, real-

time prediction of energy demand-supply imbalances, and adaptive
energy trading strategies [119,137]. However, key challenges include
mitigating adversarial threats in energy trading, maintaining fairness in
pricing algorithms, and ensuring interoperability within decentralized
energy markets [106,123]. Future research should focus on developing
adversarially robust CL models for secure energy trading, leveraging
Zero-Knowledge Proof (ZKP) methods for secure data sharing, and
integrating blockchain technology to ensure tamper-proof transactions
and enhance system reliability [124,137].

7. Future directions

Addressing the key challenges of CL, such as the stability–plasticity
dilemma, data scarcity, scalability, and security requires advancing
research in several areas. Below are future research directions, and
advancements from the broader area of ML/DL that can help overcome
these challenges in the energy domain (see Fig. 10).

7.1. Overcoming stability–plasticity dilemma

7.1.1. Meta-learning approaches
Meta-learning has emerged as a powerful approach to improve CL

by addressing critical challenges such as catastrophic forgetting and the
stability–plasticity dilemma. Traditional methods often struggle with
the balance between adapting to new tasks while retaining knowledge
from previous one, but meta-learning techniques offer solutions by
optimizing how models learn and update their parameters. One of the

key contributions to this field is the Look-ahead MAML (La-MAML)
algorithm, proposed by Gupta et al. [195], which introduces a fast,
optimization-based meta-learning method tailored for online CL. The
La-MAML algorithm can be adapted to energy load forecasting by
modulating per-parameter learning rates during meta-learning updates,
enabling the model to adapt efficiently to dynamic load patterns.
Additionally, its use of a small episodic memory to store and replay
key historical energy data can help maintain forecasting accuracy while
mitigating catastrophic forgetting.

In another study, Javed and White [196] focused on reducing
interference between tasks while enhancing fast adaptation to new
ones. Their method, an extension of the MAML framework, empha-
sizes minimizing task interference and improving task adaptation by
learning representations that support both objectives. By incorporating
these features, the model performs better on new tasks while retaining
knowledge from previous tasks, significantly reducing the forgetting
issue often observed in CL. Addressing the stability–plasticity dilemma,
Han et al. [197] introduced a framework that optimizes CL through
a meta-learning-based approach. Their method, MMKDDA, uses multi-
scale KD to manage the long-range and short-range spatial relationships
between features, which helps mitigate the data imbalance between
tasks. Blending data from past and current tasks during training helps
maintain stability for past knowledge while providing the flexibility
needed for learning new tasks. The meta-learning update in their
framework balances these conflicting demands, thus improving stability
and plasticity in CL. Finally, Son et al. [198] explored how combining
meta-learning and CL frameworks can address the complexities of
streaming data. Meta-learning, often described as ‘‘learning to learn’’,
optimizes the learning process, making it well-suited for environments
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where tasks arrive sequentially and must be learned incrementally. By
continually adapting the learning algorithm, models can better manage
new tasks while retaining performance on older ones. This synergy
between meta-learning and CL opens new avenues for research and
innovation, providing a framework for developing models that excel in
dynamic environments. Such approaches highlight the value of meta-
learning in fine-tuning the balance between retention and adaptability
in sequential learning settings and seem appropriate for the energy
domain prediction tasks.

7.1.2. Lifelong learning architectures
Research on neural networks with adaptive architectures that grow

in response to new tasks without compromising old knowledge could
provide a solution. PNNs or modular architectures that selectively up-
date parts of the model based on task similarity might offer a better bal-
ance between stability and plasticity. For instance, in next-generation
green building energy systems, novel lifelong learning methods such as
deep generative replay have been proposed for dynamic and adaptive
modeling to enhance energy prediction, predictive maintenance, and
control optimization. These methods alternate training between a task
solver and a replay generator, allowing models to retain previous
knowledge while adapting to new tasks without explicitly storing data,
thereby conserving resources and protecting privacy. Typically, lifelong
learning architectures enhance CL by providing models with the ability
to continuously adapt to new data, retain past knowledge, and improve
performance over time. Whether in anomaly detection or dialog sys-
tems, lifelong learning enables models to handle evolving patterns and
dynamic environments, making them more robust and scalable while
reducing the need for manual intervention [199,200]. In the case of
solar power generation prediction for net-zero energy buildings, such
methods achieved a 53.4% higher accuracy than standard approaches
and effectively reduced forgetting rates to below 0.10, demonstrat-
ing their feasibility and superiority over traditional retraining-based
methods [117].

7.1.3. Hybrid regularization and replay methods
This hybrid method can significantly improve CL by mitigating

catastrophic forgetting and enhancing the model’s ability to retain
and integrate knowledge from previous tasks while learning new ones.
Replay methods, such as those discussed by Merlin et al. [201], work
by storing a subset of past data, which is then used during training
to reinforce prior knowledge, helping to balance memory efficiency
and performance. These replay strategies, combined with data augmen-
tation, further improve model robustness even with smaller memory
buffers. Additionally, Han et al. [202] highlighted the effectiveness
of hybrid approaches that combine regularization and replay tech-
niques. Regularization strategies can stabilize learned representations,
preventing model outputs from drastically shifting when learning new
tasks. This dual regularization, particularly in domain-IL, ensures that
the model retains past knowledge while adapting to new environ-
ments. Lomonaco et al. [203] extended this idea by proposing a more
flexible hybrid approach that combines architectural priors, regular-
ization, and replay policies, leading to state-of-the-art performance
across various scenarios. Similarly, Kirichenko et al. [204] introduced
a generative-discriminative hybrid model that leverages generative
replay and functional regularization to avoid forgetting while detect-
ing task changes, providing strong performance on CL benchmarks.
Together, these hybrid methods offer a comprehensive solution to CL
challenges by leveraging the strengths of both regularization and replay
strategies [201–204].

In the energy domain, hybrid regularization and replay methods
can be applied to improve the accuracy of load forecasting mod-
els under dynamic grid conditions. For instance, a model predicting
energy demand could store a subset of historical data from prior
seasons and replay it during training to reinforce its understanding
of long-term consumption trends while learning new patterns, such

as those caused by extreme weather events. Regularization techniques
could further stabilize the learned relationships between weather vari-
ables and energy demand, preventing performance degradation when
adapting to emerging scenarios like renewable energy integration or
shifts in consumption behavior. This dual approach ensures robustness
and adaptability, crucial for maintaining grid stability and optimizing
energy distribution.

7.1.4. Dynamic task-specific learning rates
Investigating dynamic learning rates tailored to the importance

of tasks or developing task-aware optimizers could help manage the
trade-off between retaining stability and enhancing plasticity. Dynamic
Task-Specific Learning Rates (DTSLR) improve CL by adjusting the
learning rates based on the task’s complexity and the model’s progress
on each task [205,206]. This approach allows models to dynamically
adapt their learning speed, leading to better retention of previous tasks
while still efficiently learning new ones. For instance, in models like
Dynamic Sparse Distributed Memory (DSDM), which focuses on non-
stationary data and task-free CL, DTSLR can help balance learning new
tasks and retaining previously learned knowledge by controlling how
much weight updates impact different network parts. This adjustment
reduces catastrophic forgetting by allowing more gradual learning in
areas related to older tasks while speeding up learning for new, unseen
data, which improves memory efficiency and task-specific performance
over time [207]. In other frameworks, such as DualNet, DTSLR can
ensure optimal performance between fast and slow learning systems
by modulating learning rates based on how fast or slow knowledge
should be retained, enhancing the effectiveness of CL across various
domains [208].

In the energy domain, dynamic learning rates tailored to task impor-
tance could enhance the performance of renewable energy forecasting
models. For example, DTSLR could be employed in a wind energy
forecasting system where the model adjusts its learning speed based
on seasonal variations in wind patterns. Higher learning rates could
accelerate adaptation to rapidly changing conditions during peak wind
months, while lower rates during stable periods could help preserve
long-term knowledge about average wind behavior. Similarly, DTSLR
can optimize model updates in dynamic grid management systems by
gradually learning the impact of renewable integration while retaining
knowledge about baseline grid performance. This approach would re-
duce catastrophic forgetting, ensure reliable predictions, and improve
overall energy system resilience in evolving conditions.

7.1.5. Constrained optimization frameworks
Future work could formalize the stability–plasticity dilemma as a

constrained optimization problem, aiming to minimize loss on new
tasks while constraining the loss on old tasks. Research could focus
on improving such optimization methods to balance learning across
tasks without drastic performance losses [209,210]. A constrained op-
timization approach could minimize forecasting errors for new energy
sources (e.g., solar farms coming online) while maintaining accuracy
for existing sources (e.g., wind farms). For instance, integrating these
models into a hybrid energy grid must avoid disrupting operational
stability when introducing new data. Physics-Informed Neural Net-
works (PINNs) also seem to be a promising solution that combines
historical knowledge or known principles with data-driven models for
more accurate and reliable estimation [211].

7.2. Overcoming data scarcity problems

7.2.1. Self-supervised and semi-supervised learning
Self-supervised and semi-supervised learning techniques are critical

in improving CL by enabling models to learn from unlabeled data while
mitigating catastrophic forgetting. Self-Supervised Learning (SSL) cre-
ates strong feature representations without requiring labeled datasets,
particularly useful when data is introduced sequentially in CL scenarios.
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Studies such as [212,213] demonstrated that by incorporating SSL
objectives like Barlow twins or distillation-based methods into the CL
framework, the models can retain previously learned knowledge while
adapting to new tasks. These methods help maintain the quality of
learned representations, avoid retraining from scratch, and optimize
resource efficiency. Moreover, semi-supervised learning techniques al-
low for the combination of both labeled and unlabeled data, which is
vital in real-world scenarios where fully labeled datasets are scarce,
as highlighted in [214,215]. By using representation learning and
designing loss functions that balance knowledge retention and new
data acquisition, SSL-based CL models achieve comparable or superior
performance to traditional supervised models, especially in applications
like earth observation and sound recognition. This helps create scalable
and flexible CL systems that generalize better across different domains,
including the energy domain, where large volumes of unlabeled data
are generated continuously from sensors, smart meters, and renewable
energy systems. For example, in energy load forecasting, SSL techniques
could create robust representations of seasonal and daily consumption
patterns without requiring fully labeled historical data. Similarly, semi-
supervised approaches could integrate labeled data from specific grid
nodes with unlabeled data from new or under-monitored areas, im-
proving model adaptability while preserving learned knowledge about
prior consumption trends. These techniques are particularly valuable
for optimizing renewable energy integration and managing dynamic en-
ergy grids, where data variability and scarcity of labels often challenge
traditional supervised learning approaches.

7.2.2. Few-shot and zero-shot learning
Advancements in Few-Shot Learning (FSL) and Zero-Shot Learning

(ZSL) have significant implications for improving CL, especially in
scenarios where labeled data is limited or unavailable. FSL allows
models to generalize from minimal examples, which is crucial in CL
tasks where acquiring a large amount of labeled data for each new
task is impractical. For instance, as noted in [216], incorporating proto-
type augmentation and multi-teacher knowledge transfer mechanisms
in Continual ZSL (CZSL) helps strike a balance between maintaining
stability on old tasks and maintaining the flexibility to learn new ones.
FSL techniques can help models quickly adapt to new tasks with few
examples, reducing negative transfer and enhancing the retention of
past knowledge. Similarly, ZSL contributes to CL by enabling models to
generalize to unseen tasks or categories without explicitly training on
them, leveraging semantic information like class attributes or represen-
tations. For example, [217,218] demonstrated that generative models
and meta-learning approaches can enhance learning new tasks without
prior access to unseen classes. These advancements allow for faster
training and more efficient adaptation in CZSL, reducing catastrophic
forgetting while expanding the model’s capacity to handle new tasks.
By leveraging FSL and ZSL, CL models can generalize more effectively
and efficiently in dynamic environments where the data distribution
evolves.

7.2.3. Data augmentation techniques for CL
In the energy domain, leveraging image-based frameworks such

as 2D-CNNs and PConv for transforming time-series data into images
enables innovative approaches like image-inpainting models to handle
missing energy data, improving data imputation accuracy and support-
ing downstream tasks such as energy forecasting and building energy
modeling [219]. Extending data augmentation and synthetic data gen-
eration techniques like GANs and VAEs to CL tasks can provide more
training data, particularly in domains with limited availability. De-
veloping domain-specific augmentation methods may improve model
robustness and generalization [220].

7.2.4. Task embedding for knowledge transfer
Task knowledge transfer and embedding for knowledge transfer are

critical in improving CL, particularly in scenarios with limited data or
highly specialized tasks. By enabling knowledge transfer across tasks,
these methods can help models learn new tasks more effectively while
mitigating catastrophic forgetting. The idea is to extract transferable
task embeddings or representations from previously learned tasks and
apply them to new tasks, allowing the model to generalize even with
limited task-specific data. In the energy domain, this could transfer
knowledge from models trained on specific energy systems, such as
solar power generation, to related tasks like wind energy prediction or
energy load forecasting, enabling more efficient learning with limited
labeled data. For example, in [221], the authors proposed a novel
CL model that leverages pre-trained models for knowledge transfer
across tasks, enhancing task performance and reducing catastrophic
forgetting. This approach ensures that valuable knowledge from pre-
vious tasks is retained and reused for future tasks, optimizing the
model’s capacity to handle sequential learning tasks. Similarly, [222]
introduced a biologically inspired method for dynamically managing
knowledge transfer, selectively forgetting old knowledge that hinders
the learning of new tasks, which further improves forward knowledge
transfer. Such dynamic methods could be applied to scenarios like en-
ergy data imputation, where older patterns in seasonal energy usage are
selectively refined to accommodate newer data trends. Moreover, [223]
highlighted how Adaptive Knowledge Transfer with a Multi-classifier
Ensemble (AKTME) can improve fault diagnosis by effectively distilling
shared knowledge across multiple auxiliary tasks. In the context of
energy systems, this could translate to fault detection in smart grids by
leveraging auxiliary tasks like anomaly detection in energy consump-
tion patterns. This CL framework adapts pre-learned representations
to new tasks, allowing the model to recognize rare conditions with
limited data. This highlights how task embeddings can be continuously
refined and transferred, making the model more resilient in data-scarce
environments and improving task performance in CL systems.

7.3. Promoting security and privacy

7.3.1. Privacy-preserving CL
Developing privacy-preserving CL is essential for future research,

particularly when sensitive data, such as medical records or user data,
is used. As CL involves learning sequentially from different tasks,
there is a significant risk of sensitive information leakage across tasks,
especially when data from previous tasks is retained or accessed to pre-
vent catastrophic forgetting. Implementing robust privacy-preserving
mechanisms like differential privacy or FL can help mitigate these risks
while maintaining model performance. For instance, in healthcare, as
highlighted in [224], CL can mitigate the need for frequent retraining
by using privacy-preserving methods to protect patient data. This study
demonstrated that privacy-preserving CL algorithms can perform well
even without retaining prior patient data, thus offering a solution
to the challenges of long-term deployment of AI models in clinical
settings. Similarly, in [225], the Dream Net model for face emotion
recognition ensures privacy using a pseudo-rehearsal approach, which
helps preserve privacy without storing explicit examples of previously
learned data. Moreover, in decentralized learning environments like FL,
privacy risks are amplified as data is distributed across multiple clients.
Privacy-preserving methods such as federated clustering, as explored
by [226], and differentially private FL, as introduced in [227], help
protect client data by ensuring that sensitive information is not leaked
across tasks or devices. These methods can adapt to changing privacy
requirements and handle non-iid data distributions, enabling more
secure and scalable CL solutions. Privacy-preserving CL in the energy
domain can be applied through FL to optimize energy usage across
smart grids while ensuring that individual household energy data re-
mains confidential. Additionally, differentially private mechanisms can
be used in renewable energy forecasting, enabling models to adapt to
new weather patterns without compromising sensitive location-specific
energy consumption data.
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7.3.2. Adversarial robustness in CL
CL systems are prone to adversarial vulnerabilities, where models

are manipulated by carefully crafted perturbations, undermining their
reliability in dynamic environments. Adversarial attacks in the energy
domain include injecting perturbations into smart meter data to ma-
nipulate energy usage predictions or tampering with renewable energy
forecasting models to create inaccurate supply–demand estimates. Re-
search into adversarial robustness in CL emphasizes the importance
of robust feature extraction to enhance the security of models against
attacks. For instance, [189] showed that utilizing robust features over
non-robust ones can significantly improve adversarial resilience in
class-IL, as robust features make the model less susceptible to noise and
adversarial attacks, compared to non-robust or mixed-feature models.
Another study by [228] introduced Task-Aware Boundary Augmen-
tation (TABA), a novel method that strengthens CL models against
adversarial attacks by dynamically adapting decision boundaries for
different tasks, proving its efficacy in experiments on CIFAR-10 and
CIFAR-100. However, there are deeper concerns regarding adversar-
ial vulnerabilities, as illustrated by [229], who demonstrated that
CL systems are particularly vulnerable to adversarial attacks across
all task-incremental, domain-incremental, and class-incremental set-
tings. They emphasize the ease with which adversaries can target any
learned task, highlighting a critical challenge in securing continually
learned knowledge. To address this, approaches such as Retrospective
Adversarial Replay (RAR) proposed by [230] introduced adversarial
perturbations into replay buffers, refining the boundary between old
and new tasks, which mitigates catastrophic forgetting while bolstering
the model’s robustness against adversarial inputs. Additionally, the sus-
ceptibility of CL models to backdoor attacks, as highlighted by [231],
revealed that even a small percentage of manipulated data can com-
promise the integrity of a continually learned model, injecting false
memories or malicious misinformation. This poses significant threats
in real-world applications where CL models must operate securely
over time, making it essential for future research to explore adaptive
adversarial defense strategies that evolve with the model’s CL process.
Robustness in CL in the energy domain can be achieved by using
techniques like adversarial training, which incorporates adversarial
examples during model updates, or by leveraging TABA to dynamically
adapt decision boundaries for evolving tasks (e.g., energy demand fore-
casting, under varying weather conditions). Additionally, integrating
mechanisms such as RAR can mitigate catastrophic forgetting while
enhancing resilience to adversarial inputs in dynamic energy systems
(e.g., in energy grids that include renewable resources frequently added
or removed from the grid).

7.3.3. Federated CL
Federated CL (FCL) combines the strengths of FL and CL to address

the challenge of learning from non-stationary data in decentralized,
privacy-preserving systems such as energy management and IoT appli-
cations. By allowing distributed clients to learn sequential tasks from
private data streams without sharing raw data, FCL preserves privacy
while enabling ongoing learning. However, this approach presents
challenges like task interference, communication overhead, and data
heterogeneity, which must be addressed for effective implementation.
For example, task interference may occur when an FCL model trained
on renewable energy forecasting for solar farms struggles to adapt to
wind energy forecasting tasks, as the features and patterns from solar
data can conflict with those needed for accurate wind predictions.
One solution to task interference and inefficient knowledge sharing
in FCL is Federated Weighted Inter-client Transfer (FedWeIT), intro-
duced by [232]. FedWeIT addresses these issues by separating global
federated parameters from task-specific parameters, allowing clients to
share only relevant knowledge. This minimizes the negative impact of
unrelated tasks, enhances overall task performance, and significantly
reduces communication costs—critical in decentralized systems. This
selective knowledge transfer ensures that FCL can effectively adapt to

new tasks while preventing catastrophic forgetting. In environments
with constrained resources, such as edge devices in IoT applications,
efficient and fast learning is essential. To tackle this, [233] proposed
ADMM-FedMeta, a federated meta-learning framework designed for
continual edge learning. By leveraging prior task knowledge and using
an ADMM-based approach to reduce computational overhead, ADMM-
FedMeta allows rapid adaptation to new tasks. This makes it well-suited
for real-time decision-making in edge applications, where quick CL is
required without overloading the system. Additionally, data hetero-
geneity, where data distributions differ across clients and over time,
is a major challenge in FCL. As discussed by [234], CL strategies are
particularly well-suited to handle this issue, as they are designed to
cope with shifting data streams. Integrating these strategies into FL
systems can improve performance by ensuring models adapt to evolving
data. Finally, secure aggregation techniques are crucial in FCL for
maintaining privacy while ensuring that model updates from multiple
clients are aggregated without compromising individual data. This is
particularly important in applications like energy management, where
privacy and security are paramount but robust, and CL is still necessary
to improve system performance over time.

7.3.4. Zero-knowledge proofs
ZKPs offer a cryptographic method to enhance security and privacy

in CL by allowing one party (the prover) to prove the correctness of
a statement (such as a model’s learning outcome) without revealing
sensitive information to the verifier. This is especially useful in de-
centralized environments like FL and ML as a Service (MLaaS), where
data privacy is critical. In FL, ZKPs can safeguard against malicious
behavior by central aggregators. For instance, [235] introduced zkFL,
a framework that uses ZKPs to verify each aggregation round without
revealing local model details, protecting against tampering. ZkFL inte-
grates blockchain technology to validate the proofs securely, ensuring
privacy and security without altering the FL architecture or affecting
speed. Additionally, [236] proposed zk Proof of Training (zkPoT),
which allows model owners to prove that they have trained their
models correctly without exposing the training data. This is crucial
in scenarios like outsourced ML, ensuring that models are trained
as specified while maintaining data privacy. ZkPoT can efficiently
verify models such as logistic regression, and its techniques could
extend to more complex models. ZKPs are also vital in ensuring the
integrity of model prediction services. In MLaaS environments, as
discussed by [237], ZKPs can verify the accuracy of predictions without
exposing model parameters or input data, ensuring that the service
remains secure and trustworthy. ZKPs further enhance cryptographic
primitives, such as lattice-based cryptography, as proposed by [238],
improving performance while maintaining security. They also extend
to applications like decentralized credential verification, as seen in
CrossCert [239], ensuring secure, anonymous credential checks in dis-
tributed networks. ZKPs techniques can enhance CL in the energy
domain by enabling secure and privacy-preserving verification of model
updates or learning outcomes. For example, ZKPs could be used in
decentralized energy management systems to prove that a CL model
has accurately learned to optimize energy distribution based on private,
evolving data streams from smart meters without exposing the underly-
ing data. Additionally, ZKP frameworks like zkFL can ensure that model
updates in FCL are aggregated securely, safeguarding against malicious
tampering while maintaining the privacy of individual clients in tasks
such as renewable energy forecasting or load balancing.

7.4. Improving scalability and interoperability

7.4.1. Efficient distributed learning frameworks
Future research should explore distributed and decentralized learn-

ing frameworks tailored to CL scenarios. Such systems could help
scale learning across multiple devices or cloud-based systems, enabling
large-scale task learning without overburdening individual models.
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7.4.2. Modular and task-agnostic architectures
Developing modular architectures that compartmentalize learning

for different tasks can promote scalability, efficiency, and interoperabil-
ity in CL. Such architectures can allow the system to efficiently handle
new tasks without redundant learning by reusing or freezing specific
modules dedicated to prior tasks. This approach facilitates the isola-
tion of task-specific knowledge, thereby enhancing the system’s ability
to mitigate catastrophic forgetting and enabling forward knowledge
transfer. For instance, [240] proposed a Mixture-of-Variational-Experts
layer that creates information processing paths through the network,
governed by a gating policy. This modular approach ensures that
each sub-network specializes in specific tasks, reducing forgetting by
leveraging diverse and specialized parameters while maintaining the
flexibility to learn new tasks in a task-agnostic manner. Additionally,
methods like the one introduced in [241] utilized a LOss DEcou-
pling (LODE) strategy, which separates learning objectives for new
tasks, providing a more balanced trade-off between stability (retaining
knowledge) and plasticity (learning new tasks). Similarly, [242,243]
emphasize task-agnostic architectures where models can incrementally
learn tasks without requiring explicit task identities during inference.
These approaches promote the reuse of shared task-agnostic features
while adapting to specific task-related features. For example, the Task
Agnostic Representation Consolidation (TARC) method combined task-
agnostic self-supervised learning with task-specific supervised learning
to maintain generalizable representations across tasks. This modular
and compartmentalized learning approach allows models to dynami-
cally adjust to new tasks without redundant retraining, significantly
improving CL’s flexibility and robustness. In the energy domain, such
modular and task-agnostic architectures could be applied to smart
grid management, where task-specific modules handle energy demand
forecasting, anomaly detection, or renewable energy integration, while
shared task-agnostic components ensure seamless adaptation to emerg-
ing tasks like EV charging optimization or real-time energy trading
without disrupting existing functionalities.

7.4.3. Interoperability via standardized model protocols
Developing standardized frameworks for model interoperability in

CL is essential for enabling efficient knowledge sharing and collabora-
tion across different domains. These frameworks promote scalability,
adaptability, and performance in decentralized or federated systems
by allowing models to communicate and exchange learned knowledge
without redundant retraining. For instance, tools like MMdnn, intro-
duced in [244], provide a unified Intermediate Representation (IR)
for converting models between different DL frameworks while pre-
serving their semantic integrity. This approach can be extended to CL
environments to ensure seamless platform interoperability. Moreover,
solutions like the Lion-based Shuffled Shepherd (Lion-SS) optimization
algorithm proposed in [245] for application migration in cloud envi-
ronments offer valuable insights for optimizing resource allocation in
CL systems. By leveraging such optimization techniques, CL models can
be efficiently migrated or shared across various platforms, ensuring
compatibility and performance.

7.4.4. Efficient task allocation
Efficient task allocation in CL improves scalability and model per-

formance as new tasks are learned over time. Continual Task Allocation
via Sparse Prompting (CoTASP), introduced by [246], enhances this
process by utilizing sparse prompts to allocate sub-networks within
a meta-policy network. This method allows related tasks to share
resources efficiently, preventing catastrophic forgetting while ensuring
optimal model capacity. By dynamically adjusting network weights
and prompts, CoTASP achieves a balance between learning new tasks
(plasticity) and retaining prior knowledge (stability). Task prioritiza-
tion is another key aspect, as demonstrated by [247]. Their approach
identifies cooperative relations between tasks, allowing models to focus
on helpful information from past tasks, reducing interference, and

improving learning efficiency. Additionally, in Mobile Edge Comput-
ing (MEC) environments, where resources are limited, efficient task
allocation is crucial. Zhan et al. [248] proposed a CL-based resource
allocation method that optimized system performance by adapting to
user demand without requiring full retraining, reducing computational
and energy costs. In the energy domain, efficient task allocation
techniques could be applied to dynamically manage energy resources
in smart grids, where tasks like renewable energy integration, demand
forecasting, and fault detection are prioritized and allocated based on
their interdependencies, ensuring optimal performance and reducing
the need for costly retraining or redundant computations.

7.5. Improving practical applications of CL in energy systems

Advancing CL in energy systems requires focused efforts in several
key areas. Developing scalable architectures, such as modular, task-
specific, and dynamic designs, can facilitate scalability and task-sharing
across diverse energy infrastructures [120,124]. Hybrid learning mod-
els that integrate supervised, semi-supervised, and self-supervised tech-
niques are essential for addressing the challenge of limited labeled
data in real-world settings [103,115]. Enhancing security and privacy
through FCL, adversarial robustness, and privacy-preserving methods
like ZKPs is critical for protecting sensitive energy data [119,137].
Leveraging domain-specific knowledge, such as energy conservation
laws and physical principles, can improve model robustness and en-
sure practical applicability [106,163]. Lastly, rigorous benchmarking
and real-world case studies are necessary to validate CL methods and
address implementation gaps, demonstrating their feasibility across
diverse energy scenarios [30,106].

In this regard, future research in energy systems should prioritize
hybrid CL approaches that integrate replay methods and architectural
solutions to handle fluctuating renewable energy outputs, incorporate
climate-specific data for improved adaptability, and enhance scalability
for larger distributed systems [124,125]. In building energy manage-
ment, privacy-preserving CL techniques such as FL, modular architec-
tures for building-specific adaptation, and lifelong learning systems for
continuous adaptation to evolving conditions are essential [103,105].
Additionally, in energy trading and market optimization, future efforts
should focus on developing adversarially robust CL models, employ-
ing ZKP methods for secure data sharing, and integrating blockchain
technology to ensure tamper-proof transactions and enhance system
reliability [124,137].

8. Conclusion

In summary, this paper thoroughly and comprehensively examined
different methods of CL, reviewed various studies that utilized CL in
the energy sector, and conducted a case study on detecting anomalies
in energy usage. After highlighting the main challenges that could
hinder the deployment of CL, the paper suggested potential directions
for improved deployment of CL. To expand, we thoroughly carried out
the following activities:

• Examined the literature, focusing on approaches like replay, regu-
larization tactics, and architectural methods that tackle the issues
related to catastrophic forgetting.

• Surveyed various energy-related CL applications, including non-
intrusive load monitoring, demand-side management,
fault/anomaly detection, load forecasting/prediction, and renew-
able energy integration.

• Conducted a case study about identifying anomalies in energy
systems and compared various CL methods.

• Identified key challenges that could hinder the deployment of CL
in the energy domain and specified prospective approaches to
address those challenges.
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According to the case study’s conclusions, replay-based strategies per-
formed best on both new and old tasks in terms of average accuracy
and forgetting rate. The best course of action would be to combine
the regularization-based method with earlier samples replayed during
training. Future work will concentrate on employing hybrid CL ap-
proaches and observing their performance. Additionally, we plan to
conduct the anomaly detection case study in a semi-supervised or even
unsupervised manner, providing valuable insights into the robustness
of the CL methodologies.
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