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ARTICLE INFO ABSTRACT

Handling Editor: Ramazan Solmaz The integration of hydrogen vehicles into citizen-oriented energy communities presents a transformative op-
portunity to enhance energy resilience, sustainability, and democratization. With zero-emission profiles and
rapid refueling capabilities, hydrogen vehicles are pivotal in advancing cleaner transportation solutions. How-
ever, uncertainties in driving patterns and refueling behaviors pose challenges to their seamless integration and
management. This paper proposes a framework based on information gap decision theory (IGDT) to address
these uncertainties within community hydrogen parking lots. These parking lots also function as community
energy storage systems, utilizing electrolyzers, fuel cells, and hydrogen storage to manage both hydrogen and
electrical energy. The approach facilitates energy sharing among prosumers while ensuring thermal comfort
within the community. Results show that under a risk-averse strategy, the system tolerates up to 50% variability
in travel distances without exceeding cost limits, while a risk-seeking strategy accommodates up to 60% vari-
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ability at a 50% deviation factor.

1. Introduction
1.1. Motivation

The emergence of citizen energy communities (CECs) has marked a
pivotal shift in the energy landscape [1]. These communities not only
enhance energy resilience and independence but also foster sustainable
practices by integrating renewable energy sources [2]. By decentralizing
energy production and involving citizens directly, they contribute
significantly to reducing carbon footprints and promoting energy
democratization, aligning with global sustainability goals [3]. In this
context, the adoption of hydrogen vehicles (HVs) has surged due to their
potential to offer zero-emission transportation solutions and their role in
supporting the energy transition [4]. HVs offer performance comparable
to conventional vehicles, with a 650 km range, 280-s refueling time for
4.34 kg of hydrogen, and fuel savings of 10.2-11.0 ¢/km. Using green
hydrogen can reduce greenhouse gas emissions to 4.7 gCOz/km, making
HVs a competitive and eco-friendly alternative to fossil fuel vehicles [5].
To maximize the benefits of HVs, it is crucial to integrate them into CEC
and manage their operation in a manner that supports the overall energy
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ecosystem [6]. To improve the management of HVs in energy systems,
parking facilities equipped with hydrogen or electricity storage systems
can play a pivotal role. Hydrogen, as an energy carrier, enables
long-term storage of surplus energy generated from renewable sources,
while batteries are particularly suitable for short-term storage [7]. The
integration of these two technologies with vehicle parking systems helps
optimize energy consumption and storage, leading to increased energy
community flexibility, reduced operational costs within the community,
and lower greenhouse gas emissions [8].

However, in the context of HV parking lots, where human behavior
such as driving patterns plays a key role, the inherent complexity and
unpredictability of these behaviors make accurate forecasting based
solely on historical data highly challenging [9]. Human behavior is
influenced by a wide range of dynamic factors, including environmental
changes, personal preferences, social influences, and even momentary
psychological conditions [10]. All of these contribute to instability and
uncertainty in predictions based on historical data. While historical data
may reveal general trends, they lack the ability to account for sudden
changes or atypical behaviors [11]. To address these challenges, infor-
mation gap decision theory (IGDT) provides a robust framework for
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decision-making under severe uncertainty. Unlike traditional probabi-
listic approaches, IGDT accommodates situations where precise proba-
bility distributions are unavailable or unreliable. It allows for modeling
varying levels of risk attitudes, offering decision-makers the flexibility to
adopt either risk-averse or risk-seeking strategies depending on their
tolerance for uncertainty. This adaptability makes IGDT particularly
well-suited for managing HV parking systems, where human behavior
introduces significant unpredictability. By incorporating risk attitudes,
IGDT enables the development of solutions that align with specific
operational or strategic objectives.

Therefore, to address this uncertainty and enhance decision-making
accuracy, a model is required that is robust against these behavioral
fluctuations and unpredictability.

1.2. Literature review

CECs promote a decentralized and resilient energy system by
empowering individuals and local groups to actively participate in the
energy market [12]. [13] highlighted that CECs can optimize local en-
ergy use, reduce costs, and enhance energy independence. Furthermore,
CEGs play a crucial role in the energy transition by enabling local gen-
eration and storage, which contributes to the reduction of carbon
emissions and promotes sustainable energy use [14]. Additionally, one
of the notable features of CECs is the capability for energy sharing while
[14], and [15,16], explored the performance and mechanisms of energy
sharing within energy communities and demonstrated its impact. [17]
introduces an energy-sharing framework for CECs, incorporating a pu-
rification subsystem to optimize hydrogen trading and reduce operating
costs. [18] proposed an energy market framework that integrates
hydrogen and electric vehicles into microgrids, achieving an 8.08% cost
reduction through energy sharing. Furthermore, a key goal of CECs is to
maintain the thermal comfort of prosumers that is addressed by several
works in the literatures like [19-21].

Moreover, HVs in the CECs platform offer a zero-emission trans-
portation solution with the potential for rapid refueling and long driving
ranges [22]. The integration of HVs into energy systems can significantly
contribute to reducing greenhouse gas emissions [23]. [24] investigated
the operational strategies for fuel cell power supply systems to enhance
the durability of commercial HVs. HVs can provide services such as peak
shaving, load balancing, and backup power supply during grid outages
[25]. [26] proposed a coordinated hydrogen supply infrastructure
planning model that integrates transportation and energy networks.
[27] proposed a model based on the operation of battery and fuel cell
HVs and the expansion of charging and hydrogen refueling infrastruc-
ture to decarbonize road transport through microgrids. [28] presented
an optimization methodology to improve the hydrogen lifecycle,
emphasizing renewable energy, efficient storage, and integrating HVs to
support decarbonization and sustainability goals. [29] focused on opti-
mizing electric microgrid designs for HVs and refueling stations,
leveraging renewable energy and advanced energy management stra-
tegies, respectively. [30] underscored the importance of energy man-
agement strategies (EMSs) in HV performance, addressing Al-based
methods, as well as the evolution of EMSs, including rule-based and
optimization-based approaches. [31] proposed an energy management
framework for HVs with renewable energy systems and hydrogen stor-
age, incorporating risk management and demand response programs.

Recent studies on HVs highlight the importance of optimizing energy
management under uncertainty. As demonstrated in various works, both
the availability of HVs in parking lots and the distances they travel
introduce significant uncertainties that can impact the overall energy
system [32]. These uncertainties stem from operational variations,
component performance, and external factors like driving conditions.
Studies such as those by [33,34] emphasized the critical role that dy-
namic control strategies play in mitigating these uncertainties by uti-
lizing advanced methods like neural networks and predictive
algorithms. Similarly, [35,36] explored integrated energy management
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systems that adjust to real-time conditions to ensure optimal perfor-
mance, even in the face of fluctuating variables.

Community-based hydrogen storage systems are gaining significant
attention as a practical solution compared to individual hydrogen stor-
age systems. The high capital cost of hydrogen storage equipment,
including advanced storage tanks, compressors, and safety systems,
renders individual ownership financially impractical for most users.
Several studies have explored the design and optimization of
community-based hydrogen storage systems. [37] highlighted the eco-
nomic benefits of a communal hydrogen storage system, demonstrating
its efficiency and reliability for end-user applications. Similarly, [38]
emphasized that large-scale hydrogen storage facilities optimize
long-term energy storage, offering both environmental and economic
benefits to renewable energy communities. These findings are supported
by the work of [39], which details the operational advantages of
hydrogen generation and storage in community systems, enabling
higher flexibility and integration with renewable energy sources. [40]
proposed a dynamic programming approach to optimize hybrid energy
systems in microgrids, integrating photovoltaics, fuel cells, electro-
lyzers, hydrogen storage, and batteries. The method outperforms genetic
algorithms, enhancing photovoltaic utilization by 0.95% and fuel
economy by nearly 50%. All these studies have examined the role and
importance of community-based hydrogen storage systems while some
studies have also focused on hydrogen storage in hydrogen vehicle
parking lots. As an example, [41] examined the role of hydrogen storage
in electric vehicle parking lots and demonstrated that integrating
hydrogen storage with such parking facilities can reduce operating costs
by up to 42%. An optimal model for energy management of hydrogen
storage systems in hydrogen vehicle parking lots proposed by [42]. [43]
proposed an optimal energy management strategy for a combined heat,
hydrogen, and power microgrid incorporating electric and hydrogen
vehicle parking lots. Therefore, all previous studies have examined the
role and effectiveness of hydrogen storage systems in the context of CECs
or HV parking lots. However, no model has yet been proposed for the
optimal and efficient utilization of hydrogen storage systems in HV
parking lots that can serve as community-based hydrogen storage sys-
tems. To highlight the main research gaps in the literature, Table 1
presents a comparative taxonomy of key factors in hydrogen vehicle
integration within energy communities. Based on the literature review
and the taxonomy table, the primary research gaps identified in the
literature are as follows:

o Integrated energy management framework: Existing studies often
address individual aspects, such as energy sharing or hydrogen
storage ([14,15,171), but fail to provide a holistic framework that
integrates energy sharing, hydrogen parking lots, community
hydrogen storage, and thermal comfort for citizen energy
communities.

Uncertainty in hydrogen vehicle behavior: While some works
([26,27,34]) explore uncertainty in HV behavior, they primarily rely
on scenario-based or predictive algorithms, lacking a robust and
adaptable framework like IGDT to manage traveling distance un-
certainties effectively.

Lack of integrated models for dual-purpose hydrogen storage
systems in parking lots: Existing studies ([37-43]) have primarily
focused on hydrogen storage systems in parking lots, treating them as
separate operational assets for parking facilities and as communal
energy storage solutions for the broader community. However,
incorporating HV driving patterns alongside the dual-purpose func-
tionality of these hydrogen storage systems remains a significant
research gap in the literature.

1.3. Contribution

This paper introduces a novel framework that employs IGDT to
manage the travel uncertainty of HVs within CEC hydrogen parking lots.
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Table 1
Comparison of the proposed model with closely related studies.
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Refs. Energy sharing Hydrogen parking lot Hydrogen community storage Thermal comfort Traveling distance uncertainty of HVs Optimization type
[5] x x v x Predictive algorithm NLP
[14] v x x x x MILP
[15] v x x v x MILP
[16] v v v x x MINLP
[17]1 v x v x x MILP
[18] v v 4 x x MIQCP
[21] x x x v x MILP
[22] x v v x x MILP
[23] x v x x x MINLP
[25] x x v x x MILP
[26] x v x x Scenario-based MINLP
[27] x v v x Scenario-based MILP
[30] x v x x Data-driven x

[31] x v v x Robust MILP
[34] x v v x Predictive algorithm MILP
[42] x v v v x MILP
This paper v v v v IGDT MILP

A significant contribution of this research is the development of a
comprehensive CEC model that integrates various hydrogen energy
components, including HVs, hydrogen storage tanks, electrolyzers, and
fuel cells. This model provides a holistic approach to energy manage-
ment by embedding hydrogen technologies into the community energy
ecosystem, thereby enhancing both operational flexibility and sustain-
ability. It accounts for the synergistic roles of these components, sup-
porting the direct use of HVs as zero-emission transportation and
enabling efficient hydrogen production, storage, and utilization within
the community. Additionally, the paper presents an IGDT-based
framework designed to manage the unpredictability of driving pat-
terns and refueling behaviors of HVs, ensuring robust decision-making
under conditions of severe uncertainty. This approach contributes to
the reliable and optimal operation of energy systems within CECs,
significantly improving their overall resilience and adaptability. The
primary contributions of this work can be analyzed and summarized as
follows.

e Development of an optimal prosumer-centric energy manage-
ment model for CECs, incorporating energy sharing and thermal
comfort while considering HVs and hydrogen parking lots as
critical assets: The proposed model emphasizes optimizing energy
sharing among prosumers, enabling efficient utilization of locally
generated renewable energy. It also prioritizes the thermal comfort
of prosumers by managing heating, ventilation, and air conditioning

(HVAQ) systems and other flexible loads. In addition, the model in-

corporates HVs and hydrogen parking lots as essential components.

These parking lots not only facilitate the refueling of HVs but also

contribute to energy storage and management within the commu-

nity. This integration enhances the overall operational efficiency of
the CEC, providing a flexible and resilient energy ecosystem that
supports both sustainability and prosumer needs.

The traveling distance of HVs, modeled as a non-parametric

uncertainty, is managed using the IGDT approach: The

behavior of HVs, including the distances they travel, is highly un-
predictable due to various dynamic factors, such as driving habits,
environmental conditions, and refueling availability. Instead of
relying on fixed assumptions or historical data, the paper applies

IGDT to model this uncertainty in a non-parametric manner. By

leveraging IGDT, the model can make robust decisions that remain

effective even under significant deviations in HV travel patterns.

e The proposed model for the hydrogen parking lot can be viewed
as community storage, where both hydrogen and electrical en-
ergy demands are met: The hydrogen parking lot in this model is
designed to act as a shared; energy storage system for the commu-
nity. This dual capability of storing both hydrogen and electricity
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makes the parking lot a critical asset for balancing energy supply and
demand within the CEC. It helps to ensure that the energy needs of
prosumers whether in the form of hydrogen for refueling HVs or
electricity for powering homes and businesses are consistently met.

2. The proposed framework

The proposed framework, depicted in Fig. 1, provides the proposed
approach to manage the CEC with an emphasis on cost minimization. At
the heart of this community is the energy community manager (ECM),
whose primary role is to oversee the seamless integration of various
energy resources. The CEC is embodied by a smart building comprising
prosumers, individuals or entities who both produce and consume en-
ergy, equipped with rooftop photovoltaic (PV) panels.

These prosumers benefit from the capability to share surplus energy
with one another, enhancing collective energy efficiency and self-
sufficiency. The smart building is also outfitted with a sophisticated
HVAC system that ensures comfortable indoor environments by the
predicted mean Vvote (PMV) method, which dynamically adjusts to
maintain the desired comfort levels based on occupants’ feedback.

A distinguishing feature of this community is the inclusion of HVs
owned by the prosumers. To support these vehicles, the ECM oversees a
hydrogen parking lot, which functions as a refueling station and a crit-
ical component of the community’s energy ecosystem. The hydrogen
parking lot is equipped with an electrolyzer that produces hydrogen by
consuming electricity sourced in two ways: from the solar panels
installed by prosumers or through direct electricity purchases from the
upstream power grid. The produced hydrogen can be either stored in a
hydrogen storage tank for future use or immediately utilized by the HVs.
Additionally, the stored hydrogen provides a versatile energy reserve
that prosumers can convert back into electricity via fuel cells, further
supporting the building’s energy needs and enhancing grid
independence.

The ECM utilizes IGDT to address uncertainty in HV travel distances,
which are highly variable and difficult to predict due to dynamic user
behaviors and varying operational conditions. IGDT, as a robust
decision-making framework, enables the ECM to evaluate system per-
formance under uncertain scenarios without requiring precise probabi-
listic information. Within this framework, the ECM can adopt two
distinct attitudes: risk-averse or risk-seeking. In a risk-averse strategy,
the ECM determines the maximum allowable variability in HV travel
distances that the system can tolerate while maintaining operational
cost. This conservative approach ensures reliable performance even
under the worst-case conditions, where travel distances significantly
deviate from expected values. Conversely, in a risk-seeking scenario, the
ECM explores opportunities to maximize potential benefits, such as cost
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Upstream

Hydrogen Tank

Fig. 1. Proposed model for CEC.

savings or performance improvements, under favorable conditions.
3. Optimization model

The optimization model is divided into two components: determin-
istic model and the uncertainty management using IGDT that are
addressed in the first and second subsections, respectively.
3.1. Deterministic model

The objective function, which includes energy purchases and sales,

considering the power needed for prosumers and the electrolyzer is
shown in (1).

Ne
. B B
of =min| Y~ (xg"C (PP O + PP*9C) —x
t=1

Sell,GpSell,G
cHOPe)

@

Buy G Sell,G

and ny" " are the energy prices for purchasing from and selling to

Buy,G Pfell,G and szG,G

the grid, respectively. P; are the power associated
with buying from and selling to the grid and power purchased from the
grid for the electrolyzer, respectively.

Buy G __ Z PBuy Pr (2)
PSell G __ Z PSell Pr (3)
Buy,G Buy.G
pLYS < ppve < pBuG 4
Sell,.G 11, 11
pie ¢ < pellG < pSelG )
Buy,PrBuy.P; Buy P Buy,P:
| i) A ity S iy Al it (6)
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Sell, PrpSell Pr Sell.Pr Sell PrpSell. Pr
Im P < Pm.t S Im‘t Pmax (7)
It "+ <1 ®

(2) and (3) represent prosumers’ energy buying and selling. (4) and
(5) ensure energy balance for consumption and surplus, while (6) and
(7) set limits on energy transactions. (8) prevents simultaneous buying

Buy Pr

and selling of electricity. P,,;"" represents the power that each prosumer

m buys from the grid, while PSE’11 Pr is the power that each prosumer sells
to the grid. Py, and Py, represent the minimum and maximum power
limitation for each equation. I is a binary variable representing the state
of the corresponding variable. The electrical load balance of prosumers
is detailed in (9).

pRuyPr _ PSell Pry Pself PV Z pshare | pH2p _ pL )
P = — Pt a0
IR an
t=1

—Pom < Pt < PR 12)
Pt —PB' 4 PC 4P, 13

Base on (9), Pse"‘PV represents the part of PV generation consumed by

PShare

each prosumer. P,

PHZP

denotes energy sharing between prosumers m and
is the power generated by the fuel cell. Power sharing between
prosumers is addressed in (10) and (12). Pt represents the power
consumption for each prosumer, which includes fixed usage denoted by
P2 and the HVAC power consumption for cooling P&, .« and heating pH

m,t

m,t?
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as defined by (13). Constraints on the HVAC system are outlined in (14)-
2.

O —€ RO, + [ 1—ecx (efn"_‘t" - e;,t) a4
O =Rk (P, + P, 1s)
L Pa™t <PL < I PO 16)
Lo PR™" <P, < ID PR a7
Lt In <1 (18)
phuman _ g
PMV,, =243 — 3.76 (W) (19)
PMVpin <PMVp, ¢ < PMViyax (20)
PMV,; =0 @n

Here, 0, represents the indoor temperature, and 6;1 refers to the
temperature modification by HVAC. R denotes thermal resistance, C is

thermal capacitance, 6>™ represents the ambient temperature, 1 is the

m,t
efficiency factor, 6" is the average temperature of human skin in a
comfortable state, R°™ refers to the thermal resistance of clothing, and
M is the human energy metabolism rate. The constraints related to
hydrogen converters, storage units, and hydrogen vehicles are as
follows:

Ny /nP2H (sze.w + PPZG,G)
SLESY o ‘ (22)

m=1 OHE

: If,
prIOR patey _pry 2
Nm
PP IRy 24)
m=1
. Ny . Nin

H?E + HfIES.dls + Z H:Iv.dls — ch + H{{Es.ch + Z H:IV.ch (25)

m=1 m=1

Hydrogen production by the electrolyzer, denoted by H'®, depends

on the electrical power used, as specified in (22). Power sources include

P2G.PV
m,t

the electrolyzer’s efficiency coefficient. Hydrogen storage and conver-
sion to electrical power via fuel cells are addressed in (24) and (25). ch

the grid and solar panels, represented by P , as stated in (23). oy is

represents hydrogen consumption by fuel cells, while H'®<" and HESdis
denote the amount of hydrogen charged and discharged from the

Hydrogen Energy Storage (HES) system. Additionally, H™V" and H*V 4
represent the hydrogen used for charging and discharging HVs.

SOCHES — SOCTIS + H:—IES.ChnHES _ H:—IES.diS/nHES (26)
SocﬂES.min S SOCHES S SocHES.max (27)
I?ES,ChHHES,Chmin S H:—IES.Ch S I?ESAChHHESAChmaX (28)
Ii—lES,diSHHESdismin S H:lES.diS S Ii—lES.diSHHES,dismax (29)
I?ES,Ch +I?Es.dis S 1 (30)
SOGHY ~SOCHY,, 4 Hifshyv _ pitis /i _ pycn 31
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soctVmin < SOCHY < socHVmax (32)
IEX'ChHHV‘Chmin S HE\,/{Ch S I:X'ChHHV'ChmaX (33)
Iﬁ\é.disHHV.dismin S HTI:\./t.dis S IE\;disHHV.dismax (34)
HVeh L (VA < YD, # 0 (35)
[Veh | pHvdis < 1VDy, =0 (36)
Ht =@ (Dt (37

The HES system’s State of Charge (SoC) is governed by (26), with
charging and discharging limits outlined in (27)-(30). HV storage and
usage constraints are detailed in (31)-(34), with (35) and (36) restricting
charging and discharging during vehicle operation. Hydrogen con-
sumption, represented by H’}, relative to vehicle distance, denoted by
Dpy, is described in (37). ¢, is the efficiency coefficient of HV
consumption.

3.2. IGDT optimization model

IGDT offers a robust framework for addressing challenges associated
with uncertain input data, avoiding reliance on traditional probabilistic
or possibilistic methods. The approach can be formulated using the
following optimization model:

min function(y, ®) (38)
h(y,w)=0 (39)
g(y,0) <0 (40)

In this model, function(y, o) represents the cost function targeted for
minimization, with y as the decision variables and o as the uncertain
parameters impacting the system. In the context of IGDT, an uncertainty
model for a parameter o, represented as U, is characterized by an un-
bounded collection of nested sets.

U(o,0)={0:|o—o|<oa},a>0 (41)

In the given equation (41), the variable u signifies the uncertain
parameter, whereas ® denotes the forecasted variable. Furthermore, o is
described as the uncertainty horizon. IGDT can be applied from either a
risk-averse or risk-seeking standpoint. In the risk-averse application of
IGDT, the decision-maker is content if the cost does not exceed a pre-
determined critical value. The objective in this risk-averse IGDT model is
to maximize the uncertainty horizon, also known as the robustness ho-
rizon. This approach ensures that any variation in uncertain input data,
within the defined robustness set, results in a cost that is no greater than
the critical cost. The formulation for a risk-averse IGDT-based model is
presented as follows:

max a(y, 0) (42)
function(y, ©) < of™ 43)
of™ = (1 + p)of” (44)
h(y,0)=0 (45)
8(y,0) <0 (46)

In a risk-averse IGDT approach, the objective is maximized the
robustness horizon, while ™ represents the nominal optimal cost, ach-
ieved when uncertain input data align with the forecasted values. The
term f" refers to the maximum tolerable cost, known as the critical cost.
p acts as a critical cost deviation factor. Essentially, the primary
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objective in risk-averse IGDT is to configure the decision variables such
that they protect the decision-maker from the adverse impacts of de-
viations in uncertain input data. In essence, risk-averse IGDT ensures
that minimum requirements are met. Notably, lower critical cost values
result in smaller robustness horizons, highlighting the sensitivity of the
model to cost thresholds.

In its risk-seeking application, IGDT focuses on maximizing potential
gains by exploring decisions that perform well under the most favorable
scenarios. For risk-seeking, the best possible scenario is achieved at the
minimum uncertainty horizon. The ’opportunity horizon’ refers to the
level of uncertainty where the decision yields a favorable outcome, such
as meeting or exceeding the target cost of"™8. This approach contrasts
with the risk-averse application of IGDT, which prioritizes minimizing
potential losses. By determining both the decision variables and the
extent of uncertainty (opportunity horizon), IGDT aims to leverage
favorable conditions, effectively balancing robustness and opportunity-
seeking in uncertain environments.

min a(y, ®) 47)
function(y, ®) < of™® (48)
of ™ = (1 — p)of” (49)
h(y,®) =0 (50)
8y, 0) <0 (E2))

The optimistic decision-maker in a risk-seeking scenario aims to
capitalize on favorable deviations of uncertain input data from their
predicted values. As the target cost of", is set lower, the required op-
portunity horizon decreases accordingly. This reflects the strategy of
leveraging positive uncertainties to enhance outcomes.

3.3. Hydrogen vehicles uncertainty modeling by the IGDT approach

The IGDT provides a robust framework for tackling modeling chal-
lenges posed by uncertain input data, distinguishing itself by eschewing
traditional probabilistic and possibilistic methods. In this paper, the
traveled distance of the HVs has been modeled by the IGDT approach.
The risk-averse and risk-seeker models attitudes of the IGDT approach
are as follows:

3.3.1. Risk-averse IGDT optimization model for CECs

This paper introduces a risk-averse IGDT-based model for HVs in
CECs that focuses on maximizing the robustness horizon. The model is
demonstrated as follows:

max o (52)
N¢

Z (ﬂfUY-G (P?UY-G + sze.G) _ nfell.GP;Sell.G) < of” (53)
t=1

of ™ = (14 p)of (54)
HE® = @y (14 @)D (55)

Subject to constraints (2)-(37).

This approach ensures that the operation costs of CECs do not exceed
a predetermined critical or acceptable level as shown in (53). By con-
straining the operation costs to stay within the target under the worst-
case scenario of uncertain input data, the model effectively safeguards
against cost overruns, providing a reliable financial buffer for CEC op-
erations. To accurately model the worst-case scenario regarding the
distance a HV can travel, the term (1 +a) is incorporated into (37). This
modification is designed to account for the maximum potential devia-
tion in travel distance. By making this adjustment, the model provides a
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safeguard for the ECM against adverse variations in the performance of
HVs.

3.3.2. Risk- seeking IGDT optimization model for CECs

This subsection introduces a risk-seeking IGDT-based model
designed for ECM, which minimizes the opportunity threshold necessary
to achieve the target cost.

min o (56)
Ne

Z (J‘c?uy'G (P?uy,G +PFZG.G) _ ntseu'GPf’eH'G) < Oftrg (57)
t=1

of ™ = (1 — p)of (58)
HE =@ (1 — @)Diny 9

Subject to constraints (2)-(37).

The risk-seeking IGDT model is presented, where the minimum op-
portunity horizon is identified to ensure that a specific target operation
cost can be met. To achieve this target operation cost, the operational
cost must be less than or equal to the target operation cost. Therefore, a
reduction factor (1 —a) is incorporated into equation (37) to model the
optimal scenario for uncertain parameters. This adjustment ensures the
model captures the best possible outcome under uncertainty, facilitating
the achievement of ECM’s financial objectives.

4. Numerical study

The Mixed-Integer Linear Programming (MILP) problem, is solved
using the CPLEX solver within the GAMS environment. A computer
equipped with an i7-10750H processor and 16 GB of RAM was used to
solve the problem. The computational time was 6 s, demonstrating the
practical applicability of the proposed model for large CECs with
numerous prosumers. The model is executed over a full year, analyzing
each season individually to assess its performance. To highlight the
model’s capability under peak demand conditions, a 24-h simulation is
conducted for July 15, a representative day in summer with high
demand.

4.1. Input data

The CEC includes a smart building with five prosumer units, each
having rooftop solar panels, HVs, and energy-sharing capabilities. The
HVAC system ensures thermal comfort, while a dedicated HV parking lot
features an electrolyzer, fuel cell, and hydrogen storage. The building’s
optimal operation is managed by an ECM. The average baseload of the
CEC, the electricity purchase and sale prices throughout the year, and
the average total PV generation, along with the temperature data for one
year, are presented in the supplementary materials of the paper. The
parameters associated with the HVAC system have also been taken from
Ref. [15]. The necessary parameters for the CEC’s optimal operation are
sourced from Ref. [44], with electrolyzer and fuel cell parameters from
Ref. [45]. The HVs used are Hyundai NEXO models [46].

4.2. One year’s results

The annual operating costs of the CEC, as analyzed seasonally in
Table 2, show that winter has the highest cost (36.37%) due to increased
heating demand and reduced PV generation. Spring has the lowest cost
(18.22%) due to mild temperatures and improved PV output. Summer
accounts for 21.12%, driven by cooling demands, partially offset by high
PV generation. Autumn’s cost is 24.28%, reflecting balanced heating
and cooling needs with declining PV output. These results highlight the
influence of temperature and daylight on seasonal energy costs.

Fig. 2 shows the seasonal power buying patterns of the CEC, with
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Table 2
Operation cost seasonal result.

Seasons Operation cost ($) Percentage of total
Winter 2419.30 36.37%

Spring 1211.97 18.22%

Summer 1404.65 21.12%

Autumn 1615.08 24.28%

Total operation cost 6651.01 100%

peaks in winter due to high heating demands and reduced PV genera-
tion. Power purchases drop in spring due to milder temperatures and
increased PV output. In summer, cooling needs cause a moderate rise,
but high solar generation offsets costs. Autumn shows balanced heating
and cooling demands, with reduced PV output slightly increasing grid
reliance. These patterns highlight the need for optimized energy man-
agement to balance local generation and grid purchases across seasons.

Fig. 3 illustrates seasonal HVAC power consumption and indoor
temperatures. Winter has the highest consumption (18,000 kW, 34%)
due to heating demands to maintain comfort. Spring sees a significant
drop (10,000 kW, 19%) with minimal heating or cooling needs. Summer
consumption rises to 12,000 kW (22%) for cooling, offset by high PV
generation. Autumn’s usage is 13,000 kW (25%), balancing heating and
cooling demands. These trends show the influence of seasonal temper-
atures on HVAC energy consumption.

Fig. 4 shows seasonal hydrogen production variability. Winter has
the lowest production (15%) due to reduced solar irradiance and high
heating demands limiting surplus electricity. Production increases in
spring (25%) with milder temperatures and higher PV output. Summer
peaks at 35% due to maximum solar availability, despite increased
cooling demands. In autumn, hydrogen production declines to 25% due
to reduced PV generation and moderate energy demands. This seasonal
distribution aligns with HV travel distances, ensuring consistent fuel
availability. The IGDT-based framework optimizes hydrogen produc-
tion, enhancing energy resilience and sustainability despite seasonal
variations.

Fig. 5 depicts the electrical power output from the fuel cell, high-
lighting seasonal variations in production. In winter, fuel cell power
generation is significantly lower due to the reduced hydrogen avail-
ability, resulting from decreased electrolyzer activity during this season
when solar irradiance is limited. Consequently, less hydrogen is stored,
limiting the fuel cell’s ability to generate power. Conversely, in summer,
the fuel cell’s power output is markedly higher. This increase is driven
by the greater hydrogen production from the electrolyzer, fueled by
higher solar panel output. The stored hydrogen is then efficiently con-
verted into electrical power during peak load hours, particularly when
electricity demand peaks in summer. This strategic utilization of stored
hydrogen in summer ensures that the increased electricity demand is
met effectively, demonstrating the fuel cell’s pivotal role in maintaining
energy balance within the community.
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Fig. 2. Seasonal CEC power buying over one year.
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4.3. Daily operation results

The results of the optimal operation for the CEC over a 24-h period
during the annual peak load, which occurs on July 15, are shown in
Fig. 6. This figure illustrates the power purchased from the grid by the
CEC. The results indicate that in the early hours, when electricity prices
are relatively low, the ECM purchases large amounts of power from the
grid.

As the day progresses and photovoltaic production increases, there is
a significant reduction in grid purchases, aligning with higher daytime
electricity prices and encouraging reliance on locally generated energy.
Despite the high solar output, the community does not sell significant
power to the grid; instead, the ECM converts the excess power into
hydrogen using an electrolyzer (As shown in Fig. 7) and stores it in the
storage tank. In the evening, as solar production declines and electricity
prices rise, the manager converts the stored hydrogen back into
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electricity via fuel cells to meet the community’s power needs. In the
final hour, the community purchases additional power to meet demand,
highlighting the challenge of managing costs and balancing consump-
tion with the availability of renewable resources.

Fig. 7 illustrates the operational strategy of the electrolyzer and fuel
cells throughout the day in the proposed CEC. During the early hours,
the electrolyzer converts electricity purchased from the grid into
hydrogen, taking advantage of lower electricity prices. This conversion
activity peaks around 6:00 a.m., coinciding with the most favorable grid
prices. As solar PV generation increases during the day, the electro-
lyzer’s operation diminishes, prioritizing the use of surplus PV energy to
either meet the immediate needs of the community or to be converted
into hydrogen for storage, rather than exporting the excess to the grid. In
the late afternoon and evening, when solar output declines and both
electricity demand and prices rise, the stored hydrogen is utilized by fuel
cells to generate electricity, with peak operation occurring between 4:00
p-m. and 8:00 p.m. This strategy reflects an optimal operational
approach for the CEC, balancing generation, storage, and consumption
to maximize economic and energy efficiency.

The performance and dynamics of both processes, including the
allocation of hydrogen to vehicles and storage management, are depic-
ted in Figs. 8 and 9. This strategy not only enhances the flexibility of the
energy system but also optimizes the use of renewable resources within
the community.

As shown in Figs. 8 and 9, in the early hours, the ECM purchases low-
cost electricity and converts it into hydrogen, which is primarily used for
charging HVs, with any excess stored in the hydrogen tank, as indicated
by the SOC. As the day progresses and solar panels generate electricity,
surplus energy is also converted into hydrogen and stored, especially
when vehicles are away during working hours. In the late afternoon and
evening, when electricity demand and prices peak, the stored hydrogen
is discharged to generate electricity, reducing reliance on expensive grid
power. Fig. 9 illustrates that HVs typically leave the parking lot in the
morning and return later in the day, aligning with daily routines. This
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Fig. 8. The performance of the hydrogen tank.

flexible vehicle usage complements the CEC’s strategy of utilizing stored
hydrogen during peak demand periods, optimizing energy costs, and
enhancing system resilience.

4.4. IGDT results

This study applies IGDT for a peak day in the summer to examine the
impact of uncertainty during peak load conditions. Additionally, the
study operates under the assumption that the distance traveled by each
HV is forecasted one day in advance. To address the inherent un-
certainties in these travel predictions, the IGDT framework is employed
to model and analyze the potential deviations.

4.4.1. Risk-averse strategy result

Fig. 10 presents the relationship between the robustness horizon of
HV travel distances and various critical operation cost deviation factors.
The figure demonstrates a steady, linear growth in the robustness ho-
rizon as the critical cost deviation factor increases from 0 to 0.8. At a 0%
deviation factor, the robustness horizon is nearly zero, indicating no
allowance for any deviation in travel distance without incurring addi-
tional expenses. As the deviation factor increments from 0.1 to 0.8, the
robustness horizon proportionally expands, with each 10% increase in
the critical cost deviation factor corresponding to approximately a
12.5% expansion in the robustness horizon for HV travel distances.

When the critical cost deviation factor reaches 40%, the robustness
horizon extends to 50%. This means the system can tolerate up to a 50%
variability in travel distance within this deviation level without
exceeding the critical cost limit. At an 80% deviation factor, the
robustness horizon grows to about 100%, effectively doubling the
permissible variability in travel distance compared to the 40% deviation
factor. This linear trend underscores that the system’s ability to
accommodate variations in HV travel distances is directly and propor-
tionally tied to the critical cost deviation factor, offering greater flexi-
bility in managing uncertainties as the deviation factor increases.

Overall, this figure emphasizes the significance of selecting appro-
priate critical cost deviation factors. Higher deviation factors substan-
tially enhance the robustness horizon, thereby increasing the system’s
capacity to manage uncertainties in travel distances while keeping costs
within acceptable ranges.

4.4.2. Risk-seeking strategy result

To model the system using a risk-seeking approach for managing the
uncertainties related to HV travel distances, the critical operation cost
deviation factors are varied within a range of 0-1. The opportunity-
based objective function is then optimized while adhering to the speci-
fied constraints. The results indicate that the minimum deviation from
the forecasted HV travel distances is sufficient to achieve costs that
remain below the target threshold.

Fig. 11 in this study illustrates how the opportunity horizon for HV
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travel distances varies with different critical operation cost deviation
factors under a risk-seeking strategy. At a deviation factor of 0% (0), the
opportunity horizon begins at approximately 0%, aligning with the risk-
neutral scenario where the critical cost matches the deterministic cost.
As the critical cost deviation factor rises, the opportunity horizon
correspondingly broadens. For example, when the deviation factor is 0.5
(50%), the opportunity horizon reaches about 60%, meaning the system
can handle up to a 60% variation in travel distances without exceeding
the target cost threshold. This trend indicates that each 10% increment
in the critical cost deviation factor is associated with roughly a 10%
increase in the opportunity horizon, up until the deviation factor ap-
proaches 0.7 (70%). Beyond this point, the graph levels off, with the
opportunity horizon stabilizing between 90% and 100%. This plateau
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Fig. 11. Opportunity horizon of HV travel distance for different critical oper-
ation cost deviation factors.
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suggests that further increases in the deviation factor beyond 0.7 do not
significantly extend the opportunity horizon.

5. Real-world applications of the proposed framework

Hydrogen is crucial for sustainable energy, offering zero emissions
and supporting renewable energy storage in CECs. This study highlights
HVs as key to decarbonizing transportation and enabling energy storage
and sharing within CECs. Using IGDT, it models HV user behavior to
optimize energy management and reduce operational costs. According
to the obtained results, the main aspects of the real-world applications
are summarized as follows:

o The model emphasizes storing surplus solar energy as hydrogen
during summer. This directly addresses the real-world challenge of
managing excess PV generation and reduces reliance on grid power
during peak cooling periods.

By converting low-cost electricity into hydrogen during off-peak

hours, the model aligns with real-world efforts to reduce energy

expenses and manage storage for use during high-price periods.

Seasonal HVAC energy use patterns allow CECs to balance heating

and cooling demands efficiently, reducing costs while maintaining

indoor comfort, and directly improving energy management in
varying climates.

e The model’s ability to accommodate up to 60% variability in HV
travel distances under risk-seeking strategies ensures practical HV
adoption, addressing uncertainties in user behavior often faced in
real-world mobility planning.

. Conclusion

This study introduces a robust framework based on IGDT to address
uncertainties in driving and refueling behaviors, ensuring seamless and
efficient integration of HVs within community hydrogen parking lots.
These findings have practical implications for policymakers and energy
community managers, particularly in designing adaptive and cost-
effective systems that align with energy transition goals. The proposed
model enables energy management by storing surplus solar energy as
hydrogen, optimizing off-peak electricity use for cost-effective storage,
balancing seasonal HVAC demands, and addressing uncertainties in
hydrogen vehicle usage to support real-world mobility and energy
challenges. The obtained results demonstrate seasonal variations in
operational costs and highlight actionable strategies to optimize per-
formance. Winter incurs the highest costs at 36.37 % due to heating
demands and reduced PV generation, whereas spring benefits from
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milder temperatures and higher solar output, resulting in the lowest
costs at 18.22 %. The IGDT-based framework equips energy community
managers with the tools to withstand variability in HV usage patterns.
Under risk-averse strategies, the system tolerates up to 50 % variability
in travel distances without exceeding cost thresholds, while risk-seeking
strategies allow for even greater flexibility with 60 % variation. This
study’s IGDT-based approach uses simplified assumptions about
hydrogen vehicle user behavior. Future research should develop
advanced behavioral models and transition from day-ahead operations
to real-time algorithms for improved accuracy, responsiveness, and ef-
ficiency. Moreover, future research could explore peer-to-peer negawatt
trading to optimize energy exchanges and promote sustainable, equi-
table, and participatory energy systems.
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