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In the current work, an innovative eco-friendly sensor using ceria integrated cobalt oxide nanosheets immobi-
lized on LCD monitor (Ce@Co-EcoR) recycled from E-waste is presented. The Ce@Co-EcoR nanocomposite was
thoroughly investigated using appropriate characterization techniques. This nanostructured electrode was
employed to construct an electrochemical sensor to detect mercury. It showed a very low detection limit of 2.8
ppb, a wide detection ranges from 16 to 620 ppb, and a good sensitivity of 158.28 pA cm2.ppm™'. The sensor

applicability was verified by performing interference, repeatability, stability studies. It was also applied to
control the purity of sea water. This work underscores the potential of incorporating recycled materials onto
sensor technology, not only to control environmental pollution, but also to promote sustainable practices in

scientific innovation.

1. Introduction

In recent years, the extensive discharge of pollutants into ecosystems
has become a significant global concern, especially impacting water, a
crucial natural resource. The release of toxic heavy metals through
wastewater further exacerbates environmental degradation, threatening
the integrity of ecosystems worldwide [1]. These metals are assimilated
by aquatic flora and fauna, leading to bioaccumulation and posing in-
direct risks to human health through trophic transfer [2]. Notably,
mercury detection is paramount for monitoring environmental quality,
especially in light of escalating pollution levels driven by rapid urban-
ization and industrialization. In coastlines, mercury compounds
continuously enter marine ecosystems [3], with levels reaching as high
as 15 million tons [4]. Mercury, recognized as the most pernicious heavy
metal even at trace levels [5], can severely impact human health,
affecting the central nervous, immunological systems, respiratory, and
gastrointestinal, and causing conditions such as memory impairment
and sensory deficits [6]. To address these detrimental effects, governing
bodies such as the Environmental Protection Agency (EPA) and the
World Health Organization (WHO) have defined thresholds for Hg2+

ions in freshwater, typically falling between 10.0 and 30.0 nM [7].
Consequently, the development of highly sensitive methodologies for
detecting trace concentrations of mercury is of paramount importance.
Among the diverse methodologies for detecting trace heavy metal ions,
electrochemical detection is broadly known for its exceptional sensi-
tivity, low detection limits, and rapid response times [2]. This technique
involves the measurement of electrical signals generated by the inter-
action of heavy metal ions with an electrode surface. Despite its exten-
sive application, a significant portion of current research is
predominantly empirical, lacking a systematic approach to electrode
design.

Utilizing electrodes manufactured from E-waste recycled materials
(“EcoR” electrode) offers a sustainable and cost-effective solution for
advancing green technologies. This approach not only limits the
dissemination of e-waste—projected to reach approximately 74 million
metric tons globally by 2030—but also promotes sustainability by
repurposing materials that would otherwise contribute to environ-
mental pollution [8]. LCDs are hazardous due to their content of toxic
substances like PBDEs (flame retardants in consumer products), PBBs
(toxic brominated flame retardants), and various heavy metals such as
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mercury arsenic, lead, chromium, and cadmium [9]. E-waste, particu-
larly from liquid crystal displays (LCDs), offers a valuable platform for
reuse as direct electrodes. Recycling LCD screens poses an environ-
mental challenge; however, their potential use as electrodes for con-
structing electrochemical sensors offers a promising solution [10].
Nevertheless, bare LCDs are not particularly effective in detecting a
range of heavy metal ions. To address this, modifying LCD electrodes
with nanomaterials, which provide highly active sites, can significantly
enhance their performance.

Metal oxide-based electrochemical sensors stand out among various
nanomaterials due to their exceptional performance, simplicity in
preparation, and cost-effectiveness [11]. Despite these advantages, pure
metal oxides often lack the necessary electrical conductivity to achieve
the high sensitivity required for effective electrochemical detection.
Therefore, enhancing the surface of metal oxides with additional active
sites is essential to improve the detection capabilities of these sensors.
Cobalt oxide (Co304) is well-known as an ideal electrode material for
sensors due to its unique features, such as its intercalation morphologies,
reversible redox properties (Co**=Co®h), and a large theoretically
specific capacity around 3560 F g~! [12]. These properties enhance
charge transfer at the electrode-electrolyte interface, facilitating greater
signal amplification and detection sensitivity. Therefore, Co304 signifi-
cantly improves the performance of electrochemical sensors [13]. Sci-
entists have extensively explored binary and ternary combinations of
Co304 with various heterogeneous materials, particularly focusing on
the synergistic effects of introducing oxygen vacancies [14].

The development of oxygen vacancies on nanometal oxide surfaces is
critical because it generates new active sites that enhance electrical
conductivity. These vacancies accelerate electron conduction rates,
facilitate redox reactions, and improve the ability of nanometal oxides to
adsorb mercury ions. For example, Parwaiz et al. developed cobalt-
doped ceria on reduced graphene, showcasing its efficiency as an elec-
trocatalyst in oxygen reduction reactions [15]. This research un-
derscores the favorable characteristics of CeO,, such as its unique cubic
configuration, ability to transition between different “oxidation states”
and its narrow “band gap” [16]. Additionally, the incorporation of
graphene quantum dots into the Ce-ZnO nanofibers increases the oxy-
gen vacancy sites, allowing the selective detection of Hg?" ions via the
differential pulse voltammetry technique. The electrode achieved a limit
of detection (LOD) value of 267 nM within a current range of 0.1 and
100 pM [17]. Furthermore, iron-doped TiO5 nanoparticles, which cre-
ates numerous oxygen vacancies, generally promotes the formation of
abundant hydroxyl groups (OH ") in water, thereby efficiently capturing
Hg(II) ions. This emphasizes the significant role of doping transition
metals with variable valence states to regulate oxygen vacancy con-
centrations and effectively activate inert metal oxides [18].

In this study, we design an innovative electrochemical sensor
employing cobalt and ceria oxides in the form of nanoparticles and thin
films. These materials serve as effective modifiers of “EcoR” electrodes,
providing easy platforms for detecting mercury using square wave
stripping voltammetry (SWSV). The optimized sensor design was suc-
cessfully validated by monitoring mercury levels in seawater. This
approach not only addresses the recycling issue but also promotes sus-
tainability and cost-efficiency in environmental monitoring
technologies.

2. Experimental methodology
2.1. Chemical reagents

All reagents: mercury (II)nitrate-1-hydrate (Hg (NOs), 99%), Ce
(II)-nitrate hexahydrate (Ce Ce(NO3)3.6H20, 99%), cobalt(Il)-nitrate
hexahydrate (Co(NO3)2.6H50,>98%), Potassium phosphate monobasic
(KH2PO4, >98%), Potassium chloride (KCl, >98%) and sodium chloride
(NaCl, >98%) were purchased from GPR. Hydrochloric acid (HCI,
35-38%) was obtained from qualikems. Sodium phosphate dibasic

Materials Today Sustainability 29 (2025) 101015

(NaaHPOy4, >98%), Potassium ferricyanide (K3[Fe(CN)gl, >99.0%) and
Potassium hexacyanoferrate(Il) trihydrate (K3[Fe(CN)gl, >99.0%) were
acquired from Sigma Aldrich. The production of all solutions included
the use of ultrapure water with a resistivity less than 18.18 MQ cm,
which was obtained by a Milli-Q system. The solvents were obtained
from VWR chemicals.

2.2. Preparation of the nanostructured electrodes

2.2.1. Extraction of LCD and prepare an electrode

The LCD monitor was extracted from the TV screen produced by TCL.
Its outer screen remained intact and devoid of any scratches. Using a
cutter pen, the black-colored section was sliced into pieces roughly 1 cm
wide and 1.5 cm long. To ascertain its conductivity, a digital multimeter
was employed, utilizing the conducting side for electrode preparation.
Subsequently, EcoR (the extracted part of LCD) was subjected to the
nanostructuration.

2.2.2. High-precision electrodeposition: crafting cobalt oxide on LCD

The Co304-EcoR was prepared applying a simple electrodeposition
process represented in Fig. 1 (A). Before the deposition of cobalt oxide,
the -EcoR underwent sequential cleaning in ethanol, acetone and
distilled water. Afterwards, Co(OH), nanosheets were electrochemically
deposited onto the surface of the LCD. This coating occurred at a po-
tential of —1.25V (vs AgCl/Ag) in 0.1 M aqueous solution of Co(NO3)s.
Then, the cobalt film was cleaned with ethanol and dried at room
temperature.

2.2.3. Integration of CeO2 on Co-EcoR electrode

CeO, was progressively coated onto the cobalt film, utilizing the
sonication method [19]. Under ambient conditions, the sonicator probe
was immersed into solution consisting of 0.75 mM of Ce(NOs)s, along
with the LCD slides previously modified by the cobalt film, during 20
min. The modified electrodes were then subjected to an annealing pro-
cess, that included raising the temperature from the surroundings to
300 °C. To ensure that oxides would develop within the nanomaterials,
this temperature was maintained for 2 h.

2.3. Characterization

Scanning electron microscopy (SEM) using a JEOL JSM-67001 in-
strument was used to examine the surface morphology of the nano-
structured electrodes at different stages of their development.
Transmission Electron Microscopy (TEM): TECNAI G2 TEM and TF20
was employed to analyze the particle size and morphology of the sam-
ples. In order to make the samples, a minute quantity of catalyst powder,
weighing a few milligrams, was subjected to sonication in n-propane.
Subsequently, a small droplet of the resulting suspension was carefully
deposited onto a copper grid with a 200-mesh size. Surface chemical
analysis of the LCD was achieved using X-ray photoelectron spectros-
copy (XPS) with a Kratos AXIS Ultra DLD spectrometer, both before and
after modification. Preceding to the XPS study, the sample upper layer
was cleaned with an Ar ion-gun operating at 4 kV. X-ray diffraction
(XRD) profiles were gathered utilizing a “Rigaku-MiniFlex-600°”
benchtop diffractometer to assess the overall crystalline phase compo-
sition of the nanomaterials. This instrument, equipped with a Cu Ka
radiation source functioning at 15 mA and 30 kV, collected data over a
260 range of approximately 5-80° at a scanning speed of 4° per minute.

2.4. Electrochemical analysis techniques

The electrochemical performance of the fabricated electrodes was
assessed using a Gamry Reference 600 electrochemical workstation. All
experiments utilized a three-electrode cell setup, consisting of the
developed LCD-based (EcoR) working electrode, an Ag/AgCl/KCl (3 M)
reference electrode, and a platinum wire as the counter electrode.
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Fig. 1. (A) Fabrication process of the electrochemical sensor for Hg(II) and (B) SWSV analysis with the proposed Ce@Co-EcoR electrode.

Electrochemical impedance spectroscopy (EIS) was utilized to deter- 2.5. Mercury detection

mine the resistance of the prepared electrode. The working electrode

was immersed in a solution of 5 mM K3Fe(CN)g/K4Fe(CN)g with 0.1 M The electrochemical detection of mercury using the proposed
KCl, and measurements were taken across a frequency band of 0.1-100 Ce@Co-EcoR sensor was performed through SWSV measurements.
KHz at 0.2 V. Cyclic voltammetry measurements were conducted using a Mercury was electrochemically deposited on the working electrode
same solution. under specific conditions: a deposition time of 240s and a deposition

potential of —1.0 V (vs. Ag/AgCl), within a phosphate buffer solution at
apH of 5.0 (Fig. 1 (B)). Following this, the reduced form was anodically

1

Fig. 2. SEM images of EcoR (A), Co-EcoR (C), Ce@Co-EcoR (E) and their corresponding elemental mappings (B, D, F), respectively.
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stripped using a voltage that varied between —0.1 to 0.7 V. The pro-
cedure incorporated a pulse amplitude of 25 mV, a frequency of 25 Hz,
and a step amplitude of 2 mV.

3. Results and discussion
3.1. Morphology and structure characterization

The surface morphology of both bare EcoR and modified EcoR
samples was investigated using SEM and energy-dispersive X-ray spec-
troscopy (EDS-mapping), as shown in Fig. 2. The comparison between
the SEM images of the bare EcoR (Fig. 2A) and the post-modification
EcoR (Fig. 2B) highlights the formation of distinct layers in the Co304
sample, achieved through electrodeposition techniques. The EDS map-
ping of the bare EcoR electrode (Fig. 2B) indicates the existence of other
elements such as C, O, Al, Si, and In, which originate from the com-
mercial coating of the LCD. Notably, indium, known for its excellent
conductive properties in the form of indium oxide, was found in sig-
nificant amount (Fig. S1). When cobalt oxide was electrodeposited, it
formed a denser layer in regions containing indium. In the inset of
Fig. 2B, it is evident that the thin layers of Co304 resemble desert-rose
nanosheets positioned on the EcoR electrode, featuring porous struc-
tures with a diameter of approximately 250 nm, offering a substantial
surface area.

Furthermore, Fig. 2E illustrates the integration of CeOy on the
nanosheet-structured Coz0y4, evidenced by a change in image contrast
[20], confirming the successful formation of Ce@Co-EcoR. The Co304
nanosheets are more uniformly interconnected, while the Ce-Co304
nanosheets are more aggregated with wrinkles [21], as shown in the
inset of Fig. 2E, further confirms the effective incorporation of cerium on
the cobalt oxide surface. The EDS-mapping demonstrates the successful
and uniform formation of Co304, and CeO;@Co304, as depicted in
Fig. 2D and F, respectively. Specifically, Fig. 2S reveals the presence of
oxygen (41.72%), cobalt (54.35%), and cerium (3.93%) elements,
confirming the successful incorporation of cerium oxide into Co304.

The porous, free-standing structure of the modified-EcoR revealed

#75-0076 CeO,

] #734701 Go,0,
R A
3 Ce@Co@LCD
s %
2 0
g v-\Lg Co@LCD
E T
\)\L Ce@LCD
' LcD
20 40 60 80 100

20 (degree)
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through TEM an ensemble of interconnected nanoparticles (Fig. 3A),
each measuring approximately 5 nm in size. Fig. 3B shows lattices
fringes measuring 0.24 nm was assigned to the (311) plane of Co304
[22] and 0.31 nm was attributed to the (111) plane of CeO5 [21]. In
Fig. 3C, the XRD patterns of Ce@Co-EcoR approve the presence of ceria
nanoparticles on the modified-electrodes. This is evident from the
appearance of the characteristic diffraction peaks at 28.7°, 33.5°, 47.6°
and 56.4°, conforming to the crystal planes (11 1), (200), (220) and (3
1 1), respectively [23]. Conversely, these peaks are absent in the XRD
pattern of LCD modified with solely ceria. Therefore, this observation
confirms that the porous structure of the cobalt nanosheets facilitate the
intercalation of the ceria nanoparticles.

XPS was employed to identify the elemental composition and elec-
tronic states on the material surfaces. The XPS survey (Fig. 4A) revealed
distinct peaks for C, O, Al N, Si, and In, confirming the surface
composition of EcoR (a component of the LCD). Additionally, the pres-
ence of peaks corresponding to Ce, Co, and O confirmed the successful
modification to Ce@Co-EcoR. The high-resolution deconvoluted XPS
spectra of Co 2p (Fig. 4B) showed three distinct parts: i) peaks at 777.8
and 792.8 eV attributed to C02+; ii) peaks at 779.2 eV and 794.3 eV
attributed to Co3+; and iii) their satellite peaks at 785.1 eV and 803.2 eV.
The Ce 3d spectrum (Fig. 4C) displayed noticeable shakeup satellite
peaks. The characteristic peaks of Ce 3ds,» and Ce 3ds/, were fitted in
accordance with established references [24]. The presence of CeO; was
verified based on the binding energies of Cesds,» and Cesds >, which
were observed at 880, 896.7, 899.6, and 915 eV. Additionally, two
satellite peaks, denoted sat., appeared at 887.7 and 905.4 eV, respec-
tively. Furthermore, the existence of Ce®* jons was demonstrated by the
appearance of two sub-bands at 882.5 and 901.2 eV [25,26]. The
interaction between ceria and cobalt generally lead to shifts in the
binding energies, indicating changes in oxidation states and electronic
structure. This is supported by the observation that, following ceria
insertion, the highest binding energy of Co 2p in Ce@Co-EcoR shifts by
approximately 1.7eV towards higher binding energy (Fig. 4A) [27].
Fig. 4 (D, E) displays the photoelectron peaks of O 1s for the Co-EcoR
and Ce@Co-EcoR electrodes. The O 1s spectrum revealed the presence

Fig. 3. (A-B) TEM of CeO,@Co-EcoR and (C) XRD pattern of EcoR, Ce-EcoR, Co-EcoR, Ce@Co-EcoR.
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Fig. 4. (A) An XPS scan for different electrodes, high-resolution spectra were acquired for the (B) Co 2p and, (C) Ce 3d, (D) O 1 s of the Ce@Co-EcoR and (E) O 1 s of

the Co-EcoR.

of three distinct peaks for both electrodes: the lattice oxygen peak
(528.4 eV, 526.6 eV), the oxygen vacancy peak (530.8 eV, 528.4 eV),
and the adsorbed oxygen peak (533.5 eV, 529.7 eV), respectively.
Moreover, Ce@Co-EcoR exhibited a higher concentration of oxygen
vacancies compared to Co-EcoR, indicated by the peak area ratio of
oxygen vacancies: 37.4% for Ce@Co-EcoR versus 27.5% for Co-EcoR.

3.2. Electrochemical characterization of the Ce@Co-EcoR electrode

To evaluate the efficacy of the modified electrode, EIS and CV were
employed. EIS provided crucial information about the transformations
occurring on the electrode surface. These insights were particularly
valuable during the modification process. In Fig. 5A, EIS Nyquist plots of
GCE (a), bare EcoR (extracted part of LCD) (b), and Ce@Co-EcoR (c)
electrodes, are presented in the presence of 5 mM of [Fe(CN)6]3/ 4 asa
redox probe. The Faradaic EIS of both GCE and EcoR electrodes
exhibited a similar shape characterized by the equivalent circuit R(QR)
(Fig. 5A (a,b)), with a noticeable decrease in transfer resistance of the
EcoR electrode. This diminution was evidenced by the LCD electrode
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4004

displaying the smallest diameter of the semicircle portion in the Nyquist
plots, which provides information about the charge-transfer resistance
(Rer = 2644 Q cm™2). On the other hand, the GCE electrode had an Rer
value of (Rgr = 5297 Q cm’z). Upon modification of the EcoR with
Ce@Co nanomaterials, the shape of the circle changed to reveal two
semicircles and an appropriate equivalent circuit was well modeled by a
Voigt type R(QR)(QR) containing two capacitive loops Fig. 5A (c), with
the Rer value dropping to (Rer = 1042 Q cm™2). The significant
reduction in transfer resistance demonstrated that the modified elec-
trode displayed enhanced electron-transfer kinetics. In Fig. 5A, the
electrolyte resistance is indicated by Rs while the constant phase
element (CPE) and resistance of the porous modified electrode are
represented by Q. and R, respectively. Similarly, Qg and R correspond
to the constant phase element and resistance of the interface between
electrolyte resistance and the electrode. The constant phase element,
was strategically employed in the circuit as an alternative to the pure
double-layer capacitor. This substitution was performed to accurately
model the electrode surface, which exhibited inherent heterogeneity
due to factors such as surface roughness, dislocations, impurities,
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Fig. 5. (A) EIS plots obtained from bare GCE (a), LCD (b) and Ce@Co-EcoR (c) in a KCl (0.1 M) solution with 5 mM [Fe(CN)61¥/# as a redox probe and (B) The

double-layer capacitance histogram.
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inhibitor adsorption, grain boundaries, and the formation of porous
layers [28,29]. By integrating the CPE into the circuit, a more accurate
fit [30] was achieved, allowing a comprehensive understanding of
impedance dynamics. The impedance of the CPE can be described by the
following expression:

Zepe = Ya ' (i0)™ 1)

In this context, Yq represents the magnitude of the constant phase
element (CPE) (in Q' s" cm’z), o indicates the angular frequency of the
sine wave modulation (in rad s_l), ip = —1 denotes the imaginary unit,
and n is an empirical exponent ranging from 0 to 1, which measures the
deviation from ideal capacitive behavior [31,32]. The fitting results are
provided in Table 1. Fig. 5B presents the calculated double-layer
capacitance (Cdl), which is derived from the CPE parameters and ob-
tained using the equation below [33]:

1
(YaiRee)ndl

Cy =
dl ch

2

Furthermore, the electrochemically active surface area (ECSA) of the
Ce@Co-EcoR was estimated through double-layer capacitance (Cqp)
using the EIS technique, as defined by the following expression:

Cal

ECSA=S ———
CSA=S 22 pF.cm—2

3

Here, S represents the geometric surface area of the thin films
(approximately 1 cm?). The electrochemical surface area (ECSA) of
Ce@Co-EcoR was determined to be 13.75 cm?.

Fig. 6A visually demonstrates the superior electron-transfer kinetics
of the electrode, further confirmed by CV. The analysis revealed that
Ce@Co-EcoR exhibited a smaller potential difference between its peak
points and a higher maximum current value compared to the bare
electrodes. This improvement is credited to the remarkable conductivity
and extensive porosity of the modifying material, which facilitates easier
diffusion of the redox probe to the electrode surface due to its large
electroactive surface area.

The electrochemically active surface area (ECSA) of the Ce@Co-EcoR
sensing platform was also determined using the Randles Sevcik equation
[341.

Ip=2.69 x 10° A Cn%2 D2 y!/2 4

where Ip is the peak current density (A.cm™~2), n = 1 corresponds to the
number of electrons involved in the redox reaction, A denoted the
electroactive area (cmz), C designates the molar concentration of the
probe molecule, D refers to the diffusion coefficient of probe molecule
(cmz.s ’1) and v represents the scan rate (V.s~ 1).

Cyclic voltammetry was conducted at various scan rates (as depicted
in Fig. 6B). Utilizing the diffusion constant of 7.6 x 10-6 em?s ! of [Fe
(CN)gl 3/ 4’, the electrochemical surface area (ECSA) was calculated to be
12 cm? from the slope of the linear plot of Ip versus v.

3.3. Influence of the operation parameters on mercury detection

3.3.1. Electrode modification effects on the mercury sensing

To verify the feasibility of the Ce@Co-EcoR sensing electrode for Hg
(I), a series of SWSV were carried out in phosphate buffer solution
(PBS). Square-wave stripping voltammetry (SWSV) was chosen for
electrochemical testing due to its distinct advantages, like rapid analysis

Table 1

Impedance parameters of the different electrodes.
Electrodes Yq (uF.cm™2) ng Re (Q.cm?)
GCE 5.2 0.52 4599
EcoR 11.26 0.89 2646
Ce@Co- EcoR 1020 0.3371 527.7

Materials Today Sustainability 29 (2025) 101015

with high sensitivity [35] particularly in a heavy metals detection [36].
While differential pulse voltammetry (DPV) was also widely recognized
as the most sensitive method [37,38], but as comparable to SWSV. It
provides high sensitivity with the additional advantage of faster anal-
ysis, and unaffected by dissolved oxygen, as a common interference
which makes it ideal for quantitative analytical applications [39].

As shown in Fig. 7, when the unmodified EcoR electrode (Fig. 7a)
was used to detect mercury, a peak appeared at 0.15V with the lowest
current density. However, after modifying the EcoR electrode with co-
balt oxide (Fig. 7b), the peak position remained unchanged, but the
current density increased significantly. This improvement is attributed
to the catalytic effect of cobalt oxide, which enhances the electrodepo-
sition of Hg(II) by increasing the electrode’s surface area and generating
oxygen vacancies in the oxide structure. To further enhance sensitivity,
the Co/EcoR electrode was modified with cerium oxide (Fig. 7c), which
resulted in an even higher current density due to the additional oxygen
vacancies created on the electrode surface, further improving the elec-
trode’s performance for mercury detection.

3.3.2. Time and potential effects of cobalt oxide nanosheet
electrodeposition

To further improve the Ce@Co-EcoR -based sensor performances, the
impact of electrodeposition potential and duration on the formation of
cobalt oxide nanosheets was investigated. One potential was tested
along with different durations of the cobalt oxide deposition. The elec-
trodes were maintained at —1.25V, by reducing potential of cobalt ni-
trate. It was observed that the highest detection currents of Hg(II) were
achieved at 6 min. Interestingly, when the deposition time exceeds this
value dense layers of cobalt oxides were formed, while the mercury
detection capabilities were not improved (Fig. 8). These thick coatings
might slow down the speed at which electrons transfer at the electrode-
to-electrolyte interface [40].

3.3.3. The influence of pH, mercury deposition potential and time on
electrode activity

The influence of pH on the response of the modified electrode was
further studied in a phosphate buffer solution with a pH spanning in the
range between 2.0 and 6.0. The extracted data is displayed in Fig. 9A.
The amperometric response reached its optimal value at pH = 5.0
because mercury existed as Hg?" in acidic pH. However, if the pH was
lower than this value, higher H" concentration led to hydrogen gener-
ation during of electroreduction process. This could occupy active sites
on the electrode surface by bubbles. Moreover, hydrogen evolution re-
action would compete with the reduction of Hg?*, thereby influencing
the preconcentration of Hg?t and diminishing the resulting current.
Conversely, in basic pH solution, it precipitated out as insoluble Hg
(OH),. Similarly, the E-pH diagram reveals that the electrode does not
follow a clear linear trend across various pH values, indicating that H"
or OH™ ions are not significantly involved in the reaction.

The optimal working potential of the sensor corresponds to the
maximum of the oxidation current produced by the deposited mercury.
A sequence of prospective experiments was conducted to achieve an
optimal equilibrium between the generated electric current and the
operational potential. Fig. 9B exposes the histogram plotting the current
vs. the applied potential for fixed amount of mercury (0.3 ppm). The
data prove that a potential of —1.0 V vs. AgCl/Ag represents a favorable
compromise between the mercury addition and the current density,
since it generates enough current to detect of mercury.

It can be noticed that, at the optimal deposition potential (—1.0 V),
the performance of the electrode raises with the increase of the depo-
sition time until reaching 240 s (Fig. 9C).

3.4. Sensormetrics

3.4.1. Quantitative analysis of mercury
The newly designed Ce@Co-EcoR-based sensor was used under
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optimum circumstances for the electroanalytical monitoring of Hg?*
ions. As shown in Fig. 10A, the SWSV voltammograms for mercuric ions
indicate a progressive increase in the stripping peak current response
with higher concentrations of Hg?*. The current-concentration rela-
tionship demonstrates a linear rise in peak current as the Hg(II) con-
centration increases, following the linear equation Y (pA.cm’z) =22.37
+ 158.28X (ppm) with R? = 0.993 (Fig. 10B). The sensor shows quite a
dynamic range of response comprised between 16 and 620 ppb with
high sensitivity estimated at 158.28 pA.cm™2 ppm ™. This is likely due to
two factors: the large surface area of the working electrode and the
stable existence of various oxidation states for both (Ce®>*/Ce*") and
(Co%"/Co®"). These features improve the sensor’s electrical properties,
enabling effective electron transfer from the target substance to the
redox-active electrode.

The limit of detection (LOD) was determined using Equation (5),
which involves multiplying the standard deviation of the blank signal
(sp) by three and dividing it by the response sensitivity (S). Similarly, the
limit of quantification (LOQ) for the lower concentration range was
determined by multiplying the standard deviation of the blank signal by
ten and then dividing by the response sensitivity [41].

LOD(Q)=(nxsp)/S 5)
where n = 3 (D) or 10 (Q). The calculated limits of detection and
quantification of the sensor were equal to 2.8 ppb and 9.6 ppb,
respectively. They complied with the allowable limits established by the
US EPA for heavy metal ions in a drinking water.

3.4.2. Adsorption mechanism explored by XPS

In order to delve deeper into the adsorption mechanism of Hg(II) on
the modified electrode, XPS was utilized to analyze the structural al-
terations of Ce@Co-EcoR following Hg(II) adsorption. Notably, the
survey-scan (Fig. 11A) showed a new binding energy peak at 101.5 eV
attributed to Hg4f photoelectron and signifying the adsorption of Hg(II)
onto Ce@Co-EcoR. Deconvolution of the Hg 4f spectrum (Fig. 11B) re-
veals two peaks at 100.8 and 104.9 eV, indicating Hg(II) adsorption.
This equates to a spin-orbit separation of 4.1 eV for the 4f5,, and 4f;,
olevels, respectively [42]. Additionally, the analysis of Co 2p and Ce 3d
spectrum after Hg(II) adsorption reveals a shift toward the positive en-
ergy, suggesting an electron-deficient state (Fig. 11C,D). Also, the XPS O
1 s spectrum of Ce@Co-EcoR demonstrates a downward shift in the OV
and Oy, peaks, probably because of the electron gain during the ab-
sorption reaction.

3.5. Validation experiments

To validate the analytical method, experiments were conducted to
assess interference, stability and reproducibility. The effectiveness of the
electrochemical sensors was evaluated based on their ability to resist the
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interference. The activity of the modified electrode towards mercury
was further tested by current-time response (Fig. 3S) for potential
interference from ions such as copper, lead, cobalt, carbonate, and
chloride, all at physiological concentrations (1 pM) typically found in

real-world samples. The histogram presented in Fig. 12 reveals that the
addition of mercury led to a noticeable increase in current density. This
also shows that the addition of other ions did not cause any significant
increase in current, highlighting the sensor’s high anti-jamming ability.
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The repeatability and stability tests of the sensor were conducted by
recording the current density response of 5 different modified-electrodes
over a five-weeks period (Fig. 13A). The sensor’s exceptional repeat-
ability was demonstrated by the relative standard deviation (RSD) of
five repeated readings, which was 3%, well below the 5% threshold.
Additionally, the modified-EcoR electrode maintained over 80% reten-
tion, indicating their exceptional stability. Moreover, Fig. 13B demon-
strate reproducibility of the developed Ce@Co-EcoR electrode, which
evaluated by using three identical parallel electrodes. These electrodes
were prepared separately and subjected to the same experimental con-
ditions. Through SWSV method it shows the maximum gap in current
density was observed 0.332 pA/cm?.

3.6. Electro-analysis for sea water sample

The proposed method was assessed for its analytical reliability and
practical applicability by employing an electrochemical sensor to detect
mercury in aquatic environments. Specifically, real water sample were
collected from Al Wakra sea, in Qatar. Prior testing, the sea water was
filtered and used directly, without dilution or any additional treatment.
Afterwards, the standard Hg?' was introduced to the solution and
analyzed via SWSV (Fig. 14). The SWSV spectra revealed that the

oxidation peak increased linearly by adding the mercury, showing a
-1
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determined from the linear fitting curve, demonstrating 5 times the
sensitivity compared to that obtained using the phosphate buffer solu-
tion (pH 5). This ratio reflects the difference between the conductivity of
the sea water and PBS mediums. Subsequent calculation of recovery
(Table 2), based on two concentration of Hg(II) (0.016, 0.090 and 0.113
ppm), yielded a 100%, 89% and 97%, respectively. Generally, the
accepted range for recovery falls between 80% and 120% [43]. This
finding validates the applicability of the proposed sensor.

3.7. Comparison with literature

The as-prepared sensor, developed using an eco-recycled electrode,
was compared with others electrochemical sensors based on commercial
electrodes from previous studies. Table 3, summarizing the collected
data, indicates that the Ce@Co-EcoR-based sensor possesses exceptional
electrochemical characteristics, making it a viable option for the ultra-
sensitive detection of Hg" in undiluted and unaltered pH sea water.

4. Conclusion

This study concludes by emphasizing the groundbreaking invention
and first-time application of an electrochemical sensor based on an LCD
for the precise measurement of Hg?" ions in seawater. The sensor,
featuring a ceria/cobalt nanocomposite deposited on a modified EcoR,
exhibited a remarkable performance. The Ce@Co-EcoR sensor exhibited
an excellent linear detection range from 16 to 620 ppb, a trace-level
detection limit of around ~3 ppb, and high sensitivity of 158.28 pA.
ppm ‘em™2 for Hg?* detection. The electrochemical measurements
demonstrated that the Ce@Co-EcoR sensor exhibits outstanding anti-
interference performance, effectively withstanding various common
interferents. The proposed EcoRelectrode for mercury sensing shows
great potential for Hg?" detection in real-time environmental moni-
toring. It demonstrated robust analytical reliability, reproducibility, and
stability, highlighting its suitability for practical use. This innovative
sensor paves the way for advancements in heavy metal detection
technologies.
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Table 2
Application of sensor to determine of Hg (II) levels in sea water.
Sample Detected (mg/ Added (mg/ Found Recovery % + RSD
L) (P) L) Q (mg/L) (%, n=3)
(R) (R-P/Q)*100
Sea 0 — ND _
water 0 0.016 0.016 100 + 2.59
0 0.090 0.080 89 + 2.35
0 0.113 0.110 97 + 4.57

ND: Not detected.

Table 3

Summary of studies introducing mercury sensing devices utilizing various
electrode modification materials with SWSV is used as the principal investiga-
tion technique.

Sensors Linear LOD/ Real-Time Refs.
range/pM pM sample
Ni-doped Co304/GCE 0-1.6 0.009 Lake/tap [44]
water
Alk-Ti3Co/GCE 1.0-1.9 0.066 - [45]
Pd NPs/porous activated 0.24-7.5 0.027 Milk [46]
carbons/GCE
TiO2/GCE 0.1-2.3 0.017 - [471
Ce-Zr oxide/GCE 0.02-0.5 0.006 Waste water [48]
CNFs/AuNPs/SPCE 0.1-1.2 0.03 River water [49]
Ru/CeO, nanocomposites 0.04-0.8 0.019 Tap water [50]
NaPb,,Cdx(PO4)3/CE 0.9-100 0.0135 Sea water [51]
Ce@Co-EcoR 0.049-1.9 0.008 Sea water This
work

Note: GCE: glassy carbon electrode; CE: carbon electrode; SPCE: screen printed
carbon electrode; NPs: nanoparticles; CNFs: Carbon nanofibers; Au: gold nano-
particles; Ru: ruthenium; NaPb,_,Cdy(PO4)3: lacunar apatite.
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