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A B S T R A C T

Host defense or antimicrobial peptides (AMPs) are promising candidates for protecting host against microbial pathogens for example bacteria, virus, fungi, yeast. 
Defensins are the type of AMPs that act as potential therapeutic drug agent and perform vital role in various biological process. Conventional Experiments to identify 
defensin peptides (DPs) are time consuming and expensive. Thus, the shortcomings of wet lab experiments are leveraged by computational methods to accurately 
predict the functional types of DPs. In this paper, we aim to propose a novel multi-class ensemble-based prediction model called StackDPPred for identifying the 
properties of DPs. The peptide sequences are encoded using split amino acid composition (SAAC), segmented position specific scoring matrix (SegPSSM), histogram 
of oriented gradients-based PSSM (HOGPSSM) and feature extraction based graphical and statistical (FEGS) descriptors. Next, principal component analysis (PCA) is 
used to select the best subset of attributes. After that, the optimized features are fed into single machine learning and stacking-based ensemble classifiers. Furthermore, 
the ablation study demonstrates the robustness and efficacy of the stacking approach using reduced features for predicting DPs and their families. The proposed 
StackDPPred method improves the overall accuracy by 13.41% and 7.62% compared to existing DPs predictors iDPF-PseRAAC and iDEF-PseRAAC, respectively on 
validation test. Additionally, we applied the local interpretable model-agnostic explanations (LIME) algorithm to understand the contribution of selected features to 
the overall prediction. We believe, StackDPPred could serve as a valuable tool accelerating the screening of large-scale DPs and peptide-based drug discovery process.
1. Introduction

Antimicrobial peptides (AMPs) are naturally occurring small pep-

tides found throughout the body, contributing significantly to the innate 
immune system. Among these, defensins stand out as an evolutionar-

ily ancient class, characterized by their cationic cysteine residues and 
frequent expression in epithelial or neutrophil cells [1]. They serve 
multifaceted roles in the host’s innate immune response against a va-

riety of infections. Defensins exhibit a broad spectrum of antimicrobial 
activities, including combating bacteria, viruses, fungi, and even cer-

tain cancers [2]. Additionally, they have shown promise in overcoming 
bacterial drug resistance, making them valuable candidates for ther-

apeutic development. The antibacterial characteristics and distinctive 
mechanisms of action displayed by defensins have attracted significant 
attention in the development of a new class of natural antibiotic pep-

tides. These peptides are aimed at combating bacterial infections, es-

pecially those that have developed resistance to traditional antibiotics 
[3]. Defensins derived from various sources share structural and func-

tional resemblances, reflecting phylogenetic relationships among differ-
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ent types of defensins. Despite this, the amino acid sequences of mature 
defensins exhibit significant variability within each defensin family and 
subfamily [4]. Precisely identifying the types of defensins proves invalu-

able for analyzing their specificities towards various microbial targets. 
Such identification also offers novel insights into their functional roles 
and aids in the discovery of targets for antimicrobial drug develop-

ment [5]. However, in postgenomic age, the abundance of sequence 
information in online databases, traditional laboratory-based methods 
such as Mass spectrometry [6], AMP Arrays [7] and Nuclear-Magnetic-

Resonance Spectroscopy [8] for screening and characterizing DPs are 
challenging due high cost, long time and resource intensive.

In recent years, there has been a proliferation of designing compu-

tational methods predicting antimicrobial peptides that have defensins 
activity [9]. Some researchers initiated the computational exploration of 
the defensin family in 2009, employing diversity measures. Another re-

search group introduced DEFENSINPRED, a classifier capable of catego-

rizing human defensin proteins and their types based on pseudo amino 
acid compositions [10]. In 2015, they proposed the iDPF-PseRAAAC 
servers, focusing on distinguishing defensin peptides and its subfamilies 
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Fig. 1. Schematic workflow of the proposed StackDPPred model.
using Protein Blocks [11]. In another study, they proposed the improved 
version called iDEF-PseRAAC public method for the identification of the 
defensin peptide based on reduced amino Acid composition descriptor 
[12]. The Subsequent refinements were made using support vector ma-

chines (SVMs) classifier, leading to the development of a free online 
predictor for predicting multiple function of DPs from sequence infor-

mation.

Despite the remarkable advancements, existing DPs-based predictors 
still exhibit unsatisfactory performances, warranting further research. 
The challenges can be classified into two folds: feature extraction-based 
and model construction-based. Firstly, the existing tools used compo-

sitional features and failed to explore the graphical, physicochemical

and evolutionary properties of peptide sequences. These properties con-

tribute to identify the correct function of particular protein/peptide. 
Secondly, the proposed available methods used single classifiers i.e., 
support vector machine to build final prediction model that restrict 
the accurate prediction of true antimicrobial defensin peptides (ADPs). 
Third, the previous developed tools used leave-one-out or jackknife cross 
validation test to train the model and unable to validate their models on 
test data.

Based on the aforementioned challenges, we aimed to develop a 
powerful stacking-based ensemble model for the novel ADPs and their 
types with high accuracy. Fig. 1 shows the designed framework of 
the proposed StackDPPred method. In essence, several discrete steps 
are performed in the development StackDDPred model as like: dataset 
collection, feature encoding, feature ranking and selection, model con-

struction and evaluation. We considered four different types of feature 
descriptors that extracts multiple properties such as evolutionary-based 
information, structural and graphical-based, compositional-based, local 
and global information from peptide sequence. We further fused the ex-

tracted features and applied PCA feature selection method to construct 
the optimal subset from all hybrid features. Then, the selected feature 
subset were input to five base-classifiers for generating 20D (dimen-

sion) probability features (PFs). Furthermore, these 20D PFs were fed 
into meta classifier using 5-fold CV method to build the final prediction 
model. In this research, we summarize our contributions as follows:

(a) We encoded the novel graphical information by FEGS descrip-
130

tor, global and local evolutionary information by SegPSSM and 
Table 1

Sample Tables for reference – Summary of 
Datasets.

Label Family type No. of peptides

P1 Insect Defensins 60

P2 Invertebrate Denensins 31

P3 Plant Denensins 42

P4 Unclassified Denensins 38

P5 Vertebrate Denensins 157

transformer-based HOGPSSM descriptors and compositional infor-

mation by split amino acid composition (SAAC) descriptor from 
ADP sequences.

(b) We optimized the hybrid features by applying PCA algorithm to 
eliminate the redundancy and improved the prediction perfor-

mance of the developed model.

(c) We proposed StackDPPred, a powerful ML-based model that target 
multiple classes of ADPs with high accuracy compare to existing 
methods both on training and testing data.

2. Material and methods

2.1. Benchmark dataset

A curated and stringent benchmark dataset is essential for develop-

ing an intelligent predictive model [13–16]. Herein, we collected a high 
quality dataset from previously published method for predicting definsin 
peptides iDPF-PseRAAC [11]. Initially, the authors extracted the ex-

perimentally verified DPs from definsin knowledge-base [17]. Further, 
to overcome the redundancy, CD-HIT program was used with cut-off 
similarity at less or equal to 80%. The final dataset composed of five 
sub-families of DPs primary sequences in which 60 peptides are insect 
defensins denoted by P1, 31 samples are invertebrate defensins denoted 
as P2, 42 peptides are plant defensins denoted by P3, 38 peptides are 
non-classified defensins denoted by P4 and 157 peptides are vertebrate 
defensins denoted by P5 in Table 1. Finally, we partitioned these sam-
ples with 80:20 ratio for training and testing the proposed model.
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2.2. Feature encoding methods

Encoding the biological peptides into numerical feature vectors is a 
challenging but important step in developing machine learning mod-

els [18–21]. Because the accurate prediction of a model highly de-

pends on the hidden concealed information in a peptide sequence. In 
this research, we developed novel PSSM-based, graphical-based and 
compositional-based feature extraction algorithms for DPs prediction.

2.3. Graphical-based statistical features

In scientific research, FEGS is a powerful feature encoding method 
proposed by Zhengchao et al. [22]. The RAAC method, extract the com-

positional features from protein sequence; however, lose of sequence 
information is a major problem that remain unsolved. FEGS descrip-

tor, tackle this issue by extracting the graphical features of peptides or 
protein sequences based on physicochemical (PC) characteristics. We 
describe the working process of this method in the subsequent steps.

First, we need to map the twenty AAs to twenty points in 3D space 
based on the selected PC properties from amino acid index (AAindex). 
The AAindex is an online database repository denoting the biochemical 
and PC characteristics of twenty AA residues [23,24]. The current up-

dated version contain 566 indexes. After removing redundant indexes 
for all duplicate values, we selected 158 indexes for DPs. For detailed 
information on these selected indexes, the readers are referred to supple-

mentary Table T1. Next we arrange the twenty AAs in ascending order 
to for the effective utilization of their PC indices by the give mathemat-

ical expression Eqn. (1)

𝜙(𝛿𝑖) =
(
cos

(2𝜋𝑖
20

)
, sin

(2𝜋𝑖
20

)
,1
)
, 𝑖 = 1,2,… ,20 (1)

where 𝛿𝑖 denotes the twenty AAs on the circumference at the bottom of 
a straight cone with a height of 1. To encode the high order information 
we used pair combination of AAs by adopting dipeptide composition 
(DPC) by the following equation Eqn. (2).

𝜙(𝛿𝑖, 𝛿𝑗 ) = 𝜙(𝛿𝑖) +
1
4
(𝜙(𝛿𝑗 ) − 𝜙(𝛿𝑖)), 𝑖, 𝑗 = 1,2,… ,20 (2)

where 𝛿𝑖, 𝛿𝑗 denotes the 20 by 20 features of AAs. Next to build the 3D 
curve for the given peptide sequence P having length L 𝑃 = 𝑝1𝑝2… 𝑝𝐿, 
the corresponding coordinates 𝑥𝑘, 𝑦𝑘, 𝑧𝑘 for point 𝑆𝑘(𝑥𝑘, 𝑦𝑘, 𝑧𝑘) can be 
computed by the given mathematical formula Eqn. (3)

𝜓(𝑃𝑖) = 𝜓(𝑃𝑖−1) + 𝜙(𝑃𝑖) +
∑

𝛿1 ,𝛿2∈{𝐴,𝐶,𝐷,…,𝑌 }
𝑓𝛿1𝛿2

⋅𝜑(𝛿1𝛿2) (3)

Finally, the 578D feature vector is generated of peptide sequence P.

2.4. Split amino acid composition

The Split amino acid composition (SAAC) developed by [25], has 
been successfully utilized to predict numerous protein activities, includ-

ing membrane protein types [26], outer membrane protein [27], enzyme 
family class [28] and prediction of heat shock proteins. Saac-based en-

coding scheme split a short length peptide/protein sequence into parts 
and calculating the composition of each part individually. For our inves-

tigation, we partitioned the sequence of the DPs into three segments: (i) 
the first 5 amino acids at the N terminus, (ii) the last 5 amino acids at the 
C terminus, and (iii) the region between these two termini. In contrast to 
conventional amino-acid composition, the resulting feature vector has 
a dimension of 60D instead of 20D. The mathematical expression for 
this can be represented as like ourś previous paper [29]. This paper the 
critical factors influencing symbols N and C denote the N-terminus and 
C-terminus, respectively, whereas the word “integral segment” refers to 
a specific part of the molecule. This work utilizes (SAAC), which in-

volves calculating the composition of the N-termini, C-termini, and the 
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remaining portion of the protein separately in Eqn. (4).
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𝑆 =
[
𝑆1, 𝑆2, 𝑆3, 𝑆4,… , 𝑆20, 𝑆21,… , 𝑆20+𝜆

]𝑇
(4)

2.5. Segmentation-based position specific scoring matrix method

Position-specific scoring matrix (PSSM) is widely used and effective 
feature representation technique in numerous bioinformatics problems 
such as anticancer peptides [30], DNA-binding proteins prediction [31]

etc. PSSM basically extract the evolutionary information that are helpful 
to discover and analyze the function of proteins or peptides [32]. By 
this inspiration, we encode the multiple types of DP sequences to PSSM. 
PSSM construct M by 20 dimension matrix for each peptide sample using 
Swiss-Prot and BSI-BLAST program [33]. Let’s assume that L denotes the 
length of peptide sample and M denotes the twenty residues of amino 
acid in the given peptide sequence then normalized PSSM matrix with 
fixed length feature space can be defined as Eqn (5):

PSSM =
⎡⎢⎢⎢⎣
𝑀1,1 𝑀1,2 ⋯ 𝑀1,20
𝑀2,1 𝑀2,2 ⋯ 𝑀2,20
⋮ ⋮ ⋱ ⋮

𝑀𝐿,1 𝑀𝐿,2 ⋯ 𝑀𝐿,20

⎤⎥⎥⎥⎦
𝐿×20

(5)

However, PSSM failed to retain the sequence-order information. To 
cope with this challenge, we introduce segmentation-based feature en-

coding (SegPSSM) method to capture the significant patterns hidden in 
the PSSM. We considered SagPSSM descriptor to encode the local and 
global complementary features buried in amino acid constituents. The 
SegPSSM based framework method divided the generated PSSM into 
several equal segments by row wise. Each fixed size segment (S-PSSM) 
of the PSSM matrix can be formulated as follows Eqn (6):

SegPSSM(𝜉) =
⎡⎢⎢⎢⎣

𝑆𝑝+1,1 𝑆𝑝+1,2 ⋯ 𝑆𝑝+1,20
𝑆𝑝+2,1 𝑆𝑝+2,2 ⋯ 𝑆𝑝+2,20

⋮ ⋮ ⋱ ⋮
𝑆𝑝+𝐿(𝜉),1 𝑆𝑝+𝐿(𝜉),2 ⋯ 𝑆𝑝+𝐿(𝜉),20

⎤⎥⎥⎥⎦
𝐿(𝜉)×20

(6)

In the above equation s = (𝜉 - 1) ⋅L(𝜉), 𝜉 = 1, 2, 3,... where K rep-

resents the SPSSM and L(𝜉) the number of tuples in each segment 
𝑆_𝑃𝑆𝑆𝑀 Eqn. (7).

𝑁(𝜉) =
⎧⎪⎨⎪⎩
⌊

𝐿

𝜉

⌋
, 𝜉 = 1,2,… ,𝐾 − 1

𝐿−
⌊

𝐿

𝜉

⌋
, 𝜉 =𝐾

(7)

Here 
⌊

𝐿

𝜉

⌋
denotes the (K-1)th and L -

⌊
𝐿

𝜉

⌋
denotes the Kth S-PSSM.

Since DPs are short length peptides ranging from (5-50) residues. 
Therefore, based on the experimental outcomes we kept the value of 
K=2,3. For further detail, the readers are refereed to our published work 
[34].

2.6. Transformed histogram of oriented gradient-based PSSM method

Histogram of oriented gradient (HOG) [34] is widely used descrip-

tor in computer vision and image analysis. Recently, we utilized HOG 
feature encoding method in detecting protein or peptide function char-

acterization. Transforming evolutionary-based PSSM matrix into image-

based feature set called HOGPSSM can be generated in the following 
steps.

After calculating the PSSM for each DP sequence, we need to cal-

culate the vertical 𝐻𝑦(𝑎, 𝑏) and horizontal gradients 𝐻𝑥(𝑎, 𝑏) of the 
extracted PSSM matrix by the following formula (Eqn (8), (9)):

𝐻𝑥(𝑎, 𝑏) =
⎧⎪⎨ 𝑃𝑆𝑆𝑀(𝑎+ 1, 𝑏) − 0, 𝑎 = 1,
𝑃𝑆𝑆𝑀(𝑎+ 1, 𝑏) − 𝑃𝑆𝑆𝑀(𝑎− 1, 𝑏),1 < 𝑎 < 20, (8)
⎪⎩ 0 − 𝑃𝑆𝑆𝑀(𝑎− 1, 𝑏), 𝑎 = 20
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Fig. 2. PCA-based optimal feature selection.
𝐺𝑦(𝑎, 𝑏) =
⎧⎪⎨⎪⎩
𝑃𝑆𝑆𝑀(𝑎, 𝑏+ 1) − 0, 𝑏 = 1,
𝑃𝑆𝑆𝑀(𝑎, 𝑏+ 1) − 𝑃𝑆𝑆𝑀(𝑎, 𝑏− 1),1 < 𝑏 < 𝐿,

0 − 𝑃𝑆𝑆𝑀(𝑎, 𝑏− 1), 𝑏 =𝐿

(9)

Subsequently, the gradient’s direction and magnitude can be calcu-

lated by the below mathematical expression (Eqn (10), (11)):

𝐻(𝑎, 𝑏) =
√

𝐻𝑥(𝑎, 𝑏)2 +𝐻𝑦(𝑎, 𝑏)2, (10)

Θ(𝑎, 𝑏) = tan−1
[
𝐻𝑥(𝑎, 𝑏)
𝐻𝑦(𝑎, 𝑏)

]
, (11)

where denotes the gradient magnitude 𝐻(𝑎, 𝑏) and Θ(𝑎, 𝑏) gradient di-

rection of the PSSM matrix. For the 3rd step, the image is segmented 
into 16 by 16 size connected areas known as cells. Each cell encom-

passes the feature set compressing gradient magnitude and direction 
within the sub-matrix (Eqn (12), (13)).

𝐻𝑖,𝑗 (𝑠, 𝑡) =𝐻

(
5 × 𝑖+ 1 + 𝑠, 𝑗 × 𝐿

4
+ 1 + 𝑡

)
(12)

Θ𝑖,𝑗 (𝑠, 𝑡) = Θ
(
5 × 𝑖+ 1+, 𝑛 × 𝐿

4
+ 1 + 𝑡

)
(13)

here 𝑖, 𝑗 represents the sub-matrix subscripts (0 ≤ 𝑖 ≤ 2, 0 ≤ 𝑗 ≤ 2) and 
the subscripts inside the sub-matrix locations (0 ≤ 𝑣 ≤ 9, 0 ≤ 𝑣 ≤𝐿∕2 −1)
are denoted by 𝑠, 𝑡. Each sub-matrix produces sixteen different histogram 
channels on the basis of gradient direction. As a result, for each peptide 
sample HOG-PSSM generates 16*16=256-D (dimensions) feature vec-

tor.

2.7. Feature selection-based on principal component analysis

We extracted the compositional-based, graphical-based, image-

based and evolutionary-based features from the raw peptide sequence. 
However, sometimes these techniques unable to dig out wide rang of 
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valuable features that are helpful for defensin peptide family predic-
tion. Therefore, feature selection methods perform an integral role in 
developing an accurate predictor. Herein, we implemented principal 
component analysis (PCA), a well-known feature selection algorithm 
proposed by Kirbby et al. for the compression of images in face recog-

nition [35]. PCA not only reduce the dimension of noisy and irrelevant 
features but also help to decrease the time complexity of the proposed 
model. The core idea of PCA is the transformation of high dimension fea-

ture space to low dimension features so that to preserve the maximum 
variance of the extracted attributes. When we applied the PCA algorithm 
on the hybrid features (FEGS+SAAC+SegPSSM and HOGPSSM), it per-

formed the following operation to reduce the feature dimension. Firstly, 
transformed the given two dimension feature vector into one dimension, 
next, the eigenvalues and corresponding eigenvectors are obtained by 
decomposing the eigenvalues of the covariance matrix. These eigenvec-

tors form the principal components of the data (training and testing 
samples), and the eigenvalues represent the magnitude of the variance 
in the direction of the corresponding principal components [36]. After 
the entire process, 160 best features were selected as shown in Fig. 2. 
Among the top ranked features 98 are selected from FEGS descriptor, 27 
from SAAC descriptor, 28 from HOGPSSM and 7 from SegPSSM descrip-

tors as illustrated in Fig. 3. The ranked features and its three dimensional 
structure generated by PCA are provided in the Supplementary Table 
T2 and Fig. S1.

2.8. Stack-ensemble framework

Over the past years, several prior research in bioinformatics and pat-

tern recognition reveal that ensemble models can achieve superior pre-

dictive performance compared to individual models or classifiers [37]. 
Generally, ensemble learning (EL) can be categorized into three types 
from broad spectrum: majority voting-based EL, average-based EL and 
stacking-based EL. Here in, we adopted stack EL method, that leverage 
the discriminating power of the baseline models to enhance the pre-
diction performance of the system [38–40]. The framework of Stack 
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Fig. 3. The statistics of PCA-based optimal and original features.

Fig. 4. Diagrammatic representation of stacked ensemble classifier.
EL process is depicted Fig. 4. The stacking-based EL models work in 
two phases (layers). The first-layer classifiers are called base-learners 
and second-layer classifier is called meta-learner. The base-classifiers 
are trained by using the optimal feature vectors and generate the prob-

ability features (PFs). Then meta-classifier use these M number of PFs 
as input and predict the final output. In this research, we used five base 
classifiers i.e., CatBoost, decision tree (DT), Gaussian naive base (GNB), 
multilayer perceptran (MLP) and extreme gradient boost (xGB) with four 
types of feature encoders i.e. FEGS, SegPSSM, SAAC and HOGPSSM in 
the first layer. In the second layer, we used Catboost algorithm as meta 
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classifier that takes the generated PFs as input and build the final pre-
diction model. The description of each step in stacking EL strategy is 
elaborated in the given pseudo code Algorithm 1 and Eqn (14).

𝑛𝐹𝑒𝑎𝑡(𝑆) =
[
𝑓 (𝐵𝐶1(𝑆)), 𝑓 (𝐵𝐶2(𝑆)), ⋯ , 𝑓 (𝐵𝐶20(𝑆))

]𝑇
(14)

where the 𝑓 (𝐵𝐶1(𝑆)) represents the probability feature (PF) generated 
by the baseclassifier (𝐵𝐶𝑖) of DP sequence S.

2.9. Performance measure and model evaluation

In case of multi-class classification scenario, some classes are imbal-
anced. To tackle this situation, we used five evaluation measures i.e., 
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Algorithm 1 Pseudo-code of the proposed Stacking-based ensemble 
learning.

Input: Data set 𝑀 = {(𝑎1, 𝑏1), (𝑎2, 𝑏2), … , (𝑎𝑚, 𝑏𝑚)};

Base-learners 𝐵1, 𝐵2, … , 𝐵𝑇 ;

Meta-learner .

Process:

for 𝑡 = 1, 2, … , 𝑇 do %Train the base-model by employing the

ℎ𝑡 =𝐵𝑡(𝑀); %1st-layer model 𝐵𝑡;

end for

𝑀 ′ = ∅; %Create a new data set

for 𝑖 = 1, … , 𝑚 do

for 𝑡 = 1, … , 𝑇 do

𝑧𝑖𝑡 = ℎ𝑡(𝑎𝑖);
end for

𝑀 ′ =𝑀 ′ ∪ ((𝑧𝑖1, … , 𝑧𝑖𝑇 ), 𝑏𝑖);
end for

ℎ′ =𝐴(𝑀 ′); %Train the 2𝑛𝑑 layer model ℎ′ by employing;

%The meta-model A to the new data set 𝑀 ′;

Output: 𝐻(𝑎) = ℎ′(ℎ1(𝑎), … , ℎ𝑇 (𝑎))

Table 2

Ablation Study of base-classifiers with FEGS descriptor 
using 5-Fold CV.

Model/Class Pr Sn Acc Sp F1

CatBoost

S1 1.00 0.98 1.00 1.00 0.99

P2 1.00 1.00 1.00 1.00 1.00

P3 1.00 0.97 1.00 1.00 0.99

P4 1.00 0.71 0.97 1.00 0.83

P5 0.92 1.00 0.96 0.92 0.96

avg 0.98 0.93 0.98 0.98 0.95

DT

P1 0.81 0.86 0.94 0.96 0.83

P2 0.76 0.85 0.96 0.97 0.80

P3 0.71 0.71 0.93 0.96 0.71

P4 0.48 0.61 0.88 0.91 0.54

P5 0.89 0.79 0.85 0.91 0.83

avg 0.73 0.76 0.91 0.94 0.74

GNB

P1 1.00 0.94 0.99 1.00 0.97

P2 1.00 1.00 1.00 1.00 1.00

P3 1.00 0.57 0.95 1.00 0.73

P4 0.93 0.90 0.98 0.99 0.92

P5 0.87 1.00 0.93 0.87 0.93

avg 0.96 0.88 0.97 0.97 0.91

MLP

P1 1.00 0.98 1.00 1.00 0.99

P2 0.96 1.00 1.00 1.00 0.98

P3 0.97 0.94 0.99 1.00 0.96

P4 1.00 0.90 0.99 1.00 0.95

P5 0.96 0.99 0.98 0.96 0.98

avg 0.98 0.96 0.99 0.99 0.97

xGB

P1 0.94 0.96 0.98 0.99 0.95

P2 1.00 0.92 0.99 1.00 0.96

P3 0.94 0.86 0.97 0.99 0.90

P4 0.92 0.74 0.96 0.99 0.82

P5 0.93 1.00 0.96 0.93 0.96

avg 0.95 0.90 0.98 0.98 0.92

precision (Pr), F1-score(F1), overall accuracy (Acc), sensitivity (Sn), and 
specificity (Sp) to evaluate the predictive efficacy our proposed Stack-

DPPred method [41–44]. The equation of the evaluation metrics are 
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shown below (Eqn (15), (16), (17), (18), (19)):
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Table 3

Ablation Study of base-classifiers with SAAC descrip-

tor using 5-Fold CV.

Model/Class Pr Sn Acc Sp F1

CatBoost

P1 0.80 0.94 0.95 0.95 0.86

P2 0.59 0.38 0.92 0.97 0.47

P3 0.88 0.86 0.97 0.98 0.87

P4 0.43 0.10 0.88 0.98 0.16

P5 0.81 0.97 0.88 0.80 0.89

avg 0.70 0.65 0.92 0.94 0.65

DT

P1 0.63 0.60 0.86 0.92 0.61

P2 0.26 0.23 0.86 0.93 0.24

P3 0.72 0.74 0.93 0.96 0.73

P4 0.21 0.23 0.81 0.89 0.22

P5 0.80 0.81 0.81 0.82 0.81

avg 0.52 0.52 0.86 0.90 0.52

GNB

P1 0.93 0.54 0.91 0.99 0.68

P2 0.23 0.81 0.72 0.71 0.35

P3 0.61 0.57 0.90 0.95 0.59

P4 0.18 0.13 0.84 0.93 0.15

P5 0.83 0.61 0.75 0.89 0.70

avg 0.56 0.53 0.82 0.89 0.50

MLP

P1 0.86 0.84 0.95 0.97 0.85

P2 0.67 0.54 0.93 0.97 0.60

P3 0.71 0.77 0.93 0.95 0.74

P4 0.44 0.35 0.88 0.94 0.39

P5 0.86 0.92 0.89 0.86 0.89

avg 0.71 0.68 0.91 0.94 0.69

xGB

P1 0.80 0.86 0.93 0.95 0.83

P2 0.50 0.35 0.90 0.96 0.41

P3 0.83 0.86 0.96 0.97 0.85

P4 0.37 0.23 0.87 0.95 0.28

P5 0.82 0.92 0.86 0.82 0.87

avg 0.66 0.64 0.91 0.93 0.65

𝐴𝑐𝑐 = (𝑡𝑝+ 𝑡𝑛)
(𝑡𝑝+ 𝑡𝑛+ 𝑓𝑝+ 𝑓𝑛)

(15)

𝑆𝑒𝑛 = 𝑡𝑝

𝑡𝑝+ 𝑓𝑛
(16)

𝑆𝑝𝑒 = 𝑡𝑛

𝑡𝑛+ 𝑓𝑝
(17)

𝑃𝑟 = 𝑡𝑝

𝑡𝑝+ 𝑓𝑝
(18)

𝐹1 = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
(19)

In the above-mentioned notation tp denotes the ADPs, and tn denotes 
the peptides with non-ADPs. Similarly, fp denotes the number of incor-

rect samples that have no ADP properties and fn means the number of 
incorrect samples having ADPs activity. The aforementioned assessment 
metrics are threshold dependent. Furthermore, we used the receiver op-

erating characteristic (ROC) curve, along with the area under the ROC 
curve (AUC) as threshold-independent indexes to evaluate the overall 
effectiveness of the proposed method [45]. The closer the prediction 
value is to 1, the better the predictive performance of the classification 
algorithm and vice versa. We adopted 5-fold CV method to build the ro-

bust DPs-based predictor and then validate the generalization power by 

test data.
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Table 4

Ablation Study of base-classifiers with HOGPSSM de-

scriptor using 5-Fold CV.

Model/Class Pr Sn Acc Sp F1

CatBoost

P1 0.92 0.90 0.97 0.98 0.91

P2 0.88 0.27 0.93 1.00 0.41

P3 0.96 0.66 0.95 1.00 0.78

P4 0.95 0.68 0.96 1.00 0.79

P5 0.75 0.98 0.84 0.70 0.85

avg 0.89 0.70 0.93 0.93 0.75

DT

P1 0.55 0.52 0.84 0.91 0.54

P2 0.27 0.27 0.86 0.92 0.27

P3 0.56 0.51 0.89 0.94 0.54

P4 0.51 0.71 0.89 0.91 0.59

P5 0.70 0.67 0.71 0.74 0.69

avg 0.52 0.54 0.84 0.88 0.52

GNB

P1 0.85 0.82 0.94 0.97 0.84

P2 0.48 0.42 0.90 0.95 0.45

P3 0.90 0.77 0.96 0.99 0.83

P4 0.48 0.35 0.88 0.95 0.41

P5 0.80 0.91 0.85 0.79 0.85

avg 0.70 0.66 0.91 0.93 0.67

MLP

P1 0.87 0.92 0.96 0.97 0.89

P2 0.68 0.58 0.93 0.97 0.62

P3 0.96 0.77 0.97 1.00 0.86

P4 0.84 0.87 0.97 0.98 0.86

P5 0.89 0.94 0.92 0.89 0.91

avg 0.85 0.82 0.95 0.96 0.83

xGB

P1 0.88 0.86 0.95 0.97 0.87

P2 0.85 0.42 0.94 0.99 0.56

P3 0.81 0.63 0.93 0.98 0.71

P4 0.85 0.74 0.96 0.98 0.79

P5 0.79 0.95 0.85 0.77 0.86

avg 0.84 0.72 0.93 0.94 0.76

3. Results and discussion

3.1. Ablation experiment of individual features and baseline models

In this subsection, we conducted an ablation study of five baseline 
models (CatBoost, DT, xGB, MLP and GNB) using four different types of 
feature descriptors (FEGS, SAAC, HOGPSSM and SegPSSM) using 5-fold 
CV method. In order to compare the effectiveness of individual features 
using different ML models, the performances are reported in Tables 2–5. 
We used average Acc and F1 as performance indicators to evaluate the 
best classification model. We can observe from Tables 2–5, that amongst 
the 20 base-models, MLP is the best performer obtained the highest Acc 
of 0.990 and F1 score 0.970 using FEGS descriptor, Acc of 0.91 and F1 
of 0.690 using SAAC descriptor, Acc of 0.950 and F1 of 0.830 using 
HOGPSSM encoding method, Acc of 0.960 and F1 of 0.870 respectively. 
CatBoost learning model, was reported the second best performer in 
predicting all families of definsin peptides. In contrast, DT base classi-

fier was reported the worst prediction model. The obtained Acc of DT 
model are 0.910, 0.860, 0.840 and 0.900 using FEGS, SAAC, HOGPSSM 
and SegPSSM feature representation methods. So, from the foregoing 
discussion about the individual features we can observe that each en-

coding method behaves differently in characterizing the families of DPs. 
In other context, we can say that one descriptor can perform better than 
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the other using the same learning model due to some circumstances.
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Table 5

Ablation Study of base-classifiers with SegPSSM3 de-

scriptor using 5-Fold CV.

Model/Class Pr Sn Acc Sp F1

CatBoost

P1 0.94 0.92 0.97 0.99 0.93

P2 1.00 0.54 0.96 1.00 0.70

P3 0.97 0.80 0.97 1.00 0.87

P4 0.85 0.74 0.96 0.98 0.79

P5 0.84 0.99 0.91 0.83 0.91

avg 0.92 0.80 0.95 0.96 0.84

DT

P1 0.78 0.80 0.92 0.95 0.79

P2 0.47 0.54 0.90 0.94 0.50

P3 0.73 0.77 0.93 0.96 0.75

P4 0.68 0.61 0.92 0.96 0.64

P5 0.81 0.79 0.81 0.83 0.80

avg 0.69 0.70 0.90 0.93 0.70

GNB

P1 0.91 0.82 0.95 0.98 0.86

P2 0.68 0.65 0.94 0.97 0.67

P3 1.00 0.77 0.97 1.00 0.87

P4 0.60 0.58 0.91 0.95 0.59

P5 0.85 0.95 0.89 0.85 0.90

avg 0.81 0.75 0.93 0.95 0.78

MLP

P1 0.92 0.90 0.97 0.98 0.91

P2 0.94 0.65 0.96 1.00 0.77

P3 0.94 0.91 0.98 0.99 0.93

P4 0.81 0.81 0.96 0.98 0.81

P5 0.91 0.98 0.94 0.91 0.94

avg 0.90 0.85 0.96 0.97 0.87

xGB

P1 0.94 0.90 0.97 0.99 0.92

P2 0.94 0.58 0.96 1.00 0.71

P3 0.91 0.83 0.97 0.99 0.87

P4 0.79 0.71 0.95 0.98 0.75

P5 0.86 0.98 0.91 0.85 0.91

avg 0.89 0.80 0.95 0.96 0.83

3.2. Ablation experiment of baseline and stacked models on hybrid features

In this section, we performed another ablation study on hybrid fea-

tures, to demonstrate the effectiveness of using various models. It is 
known that, Prominent features are crucial in designing an intelligent 
predictor using ML models. We enhanced the overall performance of 
the proposed StackDPPred model for predicting five families of defensin 
peptides, by serially combining four types of compositional, evolution-

ary, and graphical features extracted from raw sequences. We experi-

mentally validated the performance of base-classifiers and stacked en-

semble classifier on fused features. The empirical outcomes of the base-

classifiers and stacking model on test dataset are reported in Table 6. We 
can observe from Table 6 that StackDDPred accurately predicted DPs 
families on test dataset with Acc of 0.980 and F1 of 0.920. However, 
MLP is nominated as the best model amongst the base-classifiers, pre-

dicted more false positives than ourś model and achieved Acc of 0.974 
and F1 of 0.912. Similarly, xGB mode also produced slightly similar 
results which are Acc of 0.974 and F1 of 0.910. In contrast, DT pro-

duced the worst outcomes on the hybrid features. This example demon-

strates that, stacked ensemble learning has the superior ability to predict 
DPs families as compare to baseline classifiers. The underline reason is 
the stacking strategy leverages multiple individual predictors to deliver 

more stable and accurate predictions [46–48].
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Fig. 5. Performance comparison of the proposed methods.
3.3. Feature selection improves the prediction performance

Feature selection is an essential step in machine learning for selecting 
the prominent features [49,50]. The extracted features might contain re-

dundant information that affects the performance of the trained model 
predicting multiple types of DPs. Since, we trained the proposed model 
by single and hybrid features. The hybrid feature (954D) is a serial com-

bination of four types of single features i.e., SAAC (60D), FEGS (578D), 
SegPSSM (60D) and HOGPSSM (256D) that might cause the overfit-

ting problem due curse of dimension disaster and noise. To cope with 
this dilemma, we applied PCA on the hybrid features to select enrich 
subset of features (160D) for training our proposed ensemble model. 
The ratio of optimal subset of features, selected by PCA algorithm is 
FEGS (98/578), SAAC (30/60), SegPSSM (27/60), HOGPSSM (28/60) 
as shown in Fig. 3.

This statistical calculation shows that the graphical-based features 
(FEGS) and evolutionary-based (SegPSSM) significantly contribute in 
predicting DPs and its family types. In order to investigate whether the 
PCA-based features are effective or not in enhancing the overall perfor-

mance of the proposed method for DPs prediction. We report the valida-

tion success rates of single and ensemble classifiers in Table 7 to analyze 
the prediction efficacy before and after feature selection. We compare 
the prediction efficacy of the baseline and stack ensemble model using 
the optimal features consisting of properties of FEGS, SAAC, SegPSSM, 
and HOGPSSM. The contribution of each feature descriptor to the identi-

fication of DPs and their families are listed in Supplementary Table T2. 
From Table 7 we can observe that, the proposed StackDPPred model 
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exhibited the superior prediction performance with respected to all per-
formance indicators (Pr, Sn, Acc, Sp and F1) as compared to baseline 
models CatBoost, DT, MLP, xGB and GNB on the test set. The achieved 
validation Acc and F1 of StackDPPred model is 0.990 and 0.970 respec-

tively. The prediction power of the best baseline models CatBoost, MLP 
and xGB did not reach that of the stack ensemble learning model. The 
Acc of CatBosst, MLP and xGB are 0.984, 0.972 and 0.966 and F1 scores 
are 0.966,0.926 and 0,906 respectively. Thus, based on the aforemen-

tioned discussion, we conclude that feature selection particularly FEGS 
descriptor mostly Incorporated in discriminating multi-functions of DPs 
from sequence information. The enriched features selected by PCA as 
elaborated in the above section, the top 160 high ranked correlated fea-

tures are shown in Fig. 2.

3.4. StackDPPred performance comparison with existing methods

We compare the prediction performance of our proposed multi-

class StackDPPred method with advanced existing methods for iden-

tifying different families of defensing peptides. In order to avoid bias 
and demonstrate the effectiveness of the proposed method [51,52], we

used the same dataset as adopted by iDPF-PseRAAAC [11] and iDEF-

PseRAAAC [12]. As shown in Table 8 and Fig. 5, it is apparent that 
StackDPPred outperformed all the available methods by all performance 
measures i.e. overall accuracy (OA), F1, Sp and Sn. Our proposed model 
beat the second best predictor by 7.84% and 13.41% OA on testing data. 
This impressive success rates reflect the robustness and high generaliza-
tion power of our developed definsin peptide-based model.
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Table 6

Baseline and Stack models evaluation on the hybrid features.

Model/Class Pr Sn (%) Acc (%) Sp (%) F1 (%)

CatBoost

P1 1 1 1 1 1

P2 1 1 1 1 1

P3 1 1 1 1 1

P4 0.94 0.63 0.95 1 0.67

P5 0.91 1 0.95 0.91 0.93

Avg 0.97 0.926 0.971 0.982 0.913

DT

P1 0.85 0.92 0.95 0.96 0.88

P2 0.71 0.83 0.95 0.97 0.77

P3 0.89 1 0.98 0.98 0.94

P4 0.5 0.25 0.88 0.97 0.33

P5 0.88 0.91 0.89 0.88 0.89

Avg 0.766 0.782 0.93 0.952 0.762

GNB

P1 1 0.92 0.98 1 0.96

P2 0.67 1 0.95 0.95 0.8

P3 1 1 1 1 1

P4 1 0.63 0.95 1 0.77

P5 0.97 1 0.98 0.97 0.98

Avg 0.928 0.91 0.972 0.984 0.902

MLP

P1 0.92 1 0.98 0.98 0.96

P2 0.75 1 0.97 0.97 0.86

P3 1 1 1 1 1

P4 1 0.63 0.95 1 0.77

P5 0.97 0.97 0.97 0.97 0.97

Avg 0.928 0.92 0.974 0.984 0.912

xGB

P1 1 1 1 1 1

P2 0.86 1 0.98 0.98 0.92

P3 1 1 1 1 1

P4 1 0.5 0.94 1 0.67

P5 0.91 1 0.95 0.91 0.96

Avg 0.954 0.9 0.974 0.978 0.91

Stack Ensemble

P1 1 1 1 1 1

P2 0.75 1 0.97 0.97 0.86

P3 1 1 1 1 1

P4 1 0.63 0.95 1 0.77

P5 0.97 1 0.98 0.97 0.98

Avg 0.94 0.93 0.98 0.99 0.92

Table 7

Classifiers evaluation on the optimal features.

Model/Class Pr Sn Acc Sp F1

CatBoost

P1 1 1 1 1 1

P2 1 1 1 1 1

P3 1 1 1 1 1

P4 0.95 0.75 0.95 1 0.86

P5 0.94 1 0.97 0.94 0.97

Avg 0.978 0.95 0.984 0.988 0.966

DT

P1 0.85 0.92 0.95 0.96 0.88

P2 0.67 1 0.95 0.95 0.8

P3 0.67 0.75 0.92 0.95 0.71

P4 0.67 0.5 0.91 0.97 0.57

P5 0.97 0.88 0.92 0.97 0.92

Avg 0.766 0.81 0.93 0.96 0.776

GNB

P1 0.91 0.83 0.95 0.98 0.87

P2 0.67 0.67 0.94 0.97 0.67

P3 1 0.88 0.98 1 0.93

P4 0.86 0.75 0.95 0.98 0.8

P5 0.89 0.97 0.92 0.88 0.93

Avg 0.866 0.82 0.948 0.962 0.84

MLP

P1 1 0.92 0.98 1 0.96

P2 1 0.83 0.98 1 0.91

P3 0.89 1 0.98 0.98 0.94

P4 1 0.75 0.97 1 0.86

P5 0.91 1 0.95 0.91 0.96

Avg 0.96 0.9 0.972 0.978 0.926

xGB

P1 1 0.92 0.98 1 0.96

P2 0.86 1 0.98 0.98 0.92

P3 0.89 1 0.98 0.98 0.94

P4 1 0.63 0.95 1 0.77

P5 0.91 0.97 0.94 0.91 0.94

Avg 0.932 0.904 0.966 0.974 0.906

Stack Ensemble

P1 1 1 1 1 1

P2 1 1 1 1 1

P3 1 1 1 1 1

P4 1 0.75 0.97 1 0.86

P5 0.94 1 0.97 0.94 0.97

Avg 0.99 0.95 0.99 0.99 0.97

Table 8

Performance comparison of the proposed methods.

Method Features Family type Sn (%) Sp (%) F1 (%) OA (%)

iDPF-PseRAAAC 169D Insect (P1) 90 97.07 - 85.59

Invertebrate (P2) 61.76 97.32 -

Plant (P3) 90.48 98.97 -

Unclassified (P4) 40 96.63 -

Vertebrate (P5) 99.36 88.64 -

iDEF-PseRAAC 329D Insect (P1) 96.67 98.13 - 91.16

Invertebrate (P2) 74.19 97.64 -

Plant (P3) 92.86 98.6 -

Unclassified (P4) 68.42 97.23 -

Vertebrate (P5) 97.45 97.08 -

StackDPPred 20D Insect (P1) 100 100 100 99.00

Invertebrate (P2) 100 100 100

Plant (P3) 100 100 100

Unclassified (P4) 75 100 86
137

Vertebrate (P5) 100 94 97
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4. Conclusion

In this study, we developed an accurate machine learning-based 
tool, StackDPPred, for predicting the functional types of DPs from se-

quence only. The proposed method uses compositional-based (SAAC), 
graphical-based (FEGS) and evolutionary-based (HOGPSSM and Seg-

PSSM) properties as feature descriptors. Then, PCA algorithm was em-

ployed to remove the noisy features. Finally, the optimal features are 
input to stack ensemble model to predict DP’s families with high accu-

racy. Further, we analyzed the interpretability of ML classifiers by LIME 
algorithm. Thus, StackDPPred protocol can provide valuable insights 
in accelerating the discovery of novel DPs in particularly and other 
therapeutic peptides in general. Despite the superior performance, the 
StackDPPred method also has some research gaps that needs to address 
in near future: (a) small number of samples (b) reliance on handcrafted 
feature descriptors (c) imbalance phenomena among different classes 
(d) deploying an interpretable ensemble deep learning algorithms using 
pre-trained protein language models.
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