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ABSTRACT

Host defense or antimicrobial peptides (AMPs) are promising candidates for protecting host against microbial pathogens for example bacteria, virus, fungi, yeast.
Defensins are the type of AMPs that act as potential therapeutic drug agent and perform vital role in various biological process. Conventional Experiments to identify
defensin peptides (DPs) are time consuming and expensive. Thus, the shortcomings of wet lab experiments are leveraged by computational methods to accurately
predict the functional types of DPs. In this paper, we aim to propose a novel multi-class ensemble-based prediction model called StackDPPred for identifying the
properties of DPs. The peptide sequences are encoded using split amino acid composition (SAAC), segmented position specific scoring matrix (SegPSSM), histogram
of oriented gradients-based PSSM (HOGPSSM) and feature extraction based graphical and statistical (FEGS) descriptors. Next, principal component analysis (PCA) is
used to select the best subset of attributes. After that, the optimized features are fed into single machine learning and stacking-based ensemble classifiers. Furthermore,
the ablation study demonstrates the robustness and efficacy of the stacking approach using reduced features for predicting DPs and their families. The proposed
StackDPPred method improves the overall accuracy by 13.41% and 7.62% compared to existing DPs predictors iDPF-PseRAAC and iDEF-PseRAAC, respectively on
validation test. Additionally, we applied the local interpretable model-agnostic explanations (LIME) algorithm to understand the contribution of selected features to
the overall prediction. We believe, StackDPPred could serve as a valuable tool accelerating the screening of large-scale DPs and peptide-based drug discovery process.

1. Introduction

Antimicrobial peptides (AMPs) are naturally occurring small pep-
tides found throughout the body, contributing significantly to the innate
immune system. Among these, defensins stand out as an evolutionar-
ily ancient class, characterized by their cationic cysteine residues and
frequent expression in epithelial or neutrophil cells [1]. They serve
multifaceted roles in the host’s innate immune response against a va-
riety of infections. Defensins exhibit a broad spectrum of antimicrobial
activities, including combating bacteria, viruses, fungi, and even cer-
tain cancers [2]. Additionally, they have shown promise in overcoming
bacterial drug resistance, making them valuable candidates for ther-
apeutic development. The antibacterial characteristics and distinctive
mechanisms of action displayed by defensins have attracted significant
attention in the development of a new class of natural antibiotic pep-
tides. These peptides are aimed at combating bacterial infections, es-
pecially those that have developed resistance to traditional antibiotics
[3]. Defensins derived from various sources share structural and func-
tional resemblances, reflecting phylogenetic relationships among differ-
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ent types of defensins. Despite this, the amino acid sequences of mature
defensins exhibit significant variability within each defensin family and
subfamily [4]. Precisely identifying the types of defensins proves invalu-
able for analyzing their specificities towards various microbial targets.
Such identification also offers novel insights into their functional roles
and aids in the discovery of targets for antimicrobial drug develop-
ment [5]. However, in postgenomic age, the abundance of sequence
information in online databases, traditional laboratory-based methods
such as Mass spectrometry [6], AMP Arrays [7] and Nuclear-Magnetic-
Resonance Spectroscopy [8] for screening and characterizing DPs are
challenging due high cost, long time and resource intensive.

In recent years, there has been a proliferation of designing compu-
tational methods predicting antimicrobial peptides that have defensins
activity [9]. Some researchers initiated the computational exploration of
the defensin family in 2009, employing diversity measures. Another re-
search group introduced DEFENSINPRED, a classifier capable of catego-
rizing human defensin proteins and their types based on pseudo amino
acid compositions [10]. In 2015, they proposed the iDPF-PseRAAAC
servers, focusing on distinguishing defensin peptides and its subfamilies
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Fig. 1. Schematic workflow of the proposed StackDPPred model.

using Protein Blocks [11]. In another study, they proposed the improved
version called iDEF-PseRAAC public method for the identification of the
defensin peptide based on reduced amino Acid composition descriptor
[12]. The Subsequent refinements were made using support vector ma-
chines (SVMs) classifier, leading to the development of a free online
predictor for predicting multiple function of DPs from sequence infor-
mation.

Despite the remarkable advancements, existing DPs-based predictors
still exhibit unsatisfactory performances, warranting further research.
The challenges can be classified into two folds: feature extraction-based
and model construction-based. Firstly, the existing tools used compo-
sitional features and failed to explore the graphical, physicochemical
and evolutionary properties of peptide sequences. These properties con-
tribute to identify the correct function of particular protein/peptide.
Secondly, the proposed available methods used single classifiers i.e.,
support vector machine to build final prediction model that restrict
the accurate prediction of true antimicrobial defensin peptides (ADPs).
Third, the previous developed tools used leave-one-out or jackknife cross
validation test to train the model and unable to validate their models on
test data.

Based on the aforementioned challenges, we aimed to develop a
powerful stacking-based ensemble model for the novel ADPs and their
types with high accuracy. Fig. 1 shows the designed framework of
the proposed StackDPPred method. In essence, several discrete steps
are performed in the development StackDDPred model as like: dataset
collection, feature encoding, feature ranking and selection, model con-
struction and evaluation. We considered four different types of feature
descriptors that extracts multiple properties such as evolutionary-based
information, structural and graphical-based, compositional-based, local
and global information from peptide sequence. We further fused the ex-
tracted features and applied PCA feature selection method to construct
the optimal subset from all hybrid features. Then, the selected feature
subset were input to five base-classifiers for generating 20D (dimen-
sion) probability features (PFs). Furthermore, these 20D PFs were fed
into meta classifier using 5-fold CV method to build the final prediction
model. In this research, we summarize our contributions as follows:

(a) We encoded the novel graphical information by FEGS descrip-
tor, global and local evolutionary information by SegPSSM and
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Table 1
Sample Tables for reference — Summary of
Datasets.
Label  Family type No. of peptides
P1 Insect Defensins 60
P2 Invertebrate Denensins 31
P3 Plant Denensins 42
P4 Unclassified Denensins 38
P5 Vertebrate Denensins 157

transformer-based HOGPSSM descriptors and compositional infor-
mation by split amino acid composition (SAAC) descriptor from
ADP sequences.

We optimized the hybrid features by applying PCA algorithm to
eliminate the redundancy and improved the prediction perfor-
mance of the developed model.

We proposed StackDPPred, a powerful ML-based model that target
multiple classes of ADPs with high accuracy compare to existing
methods both on training and testing data.

(b

(©

2. Material and methods

2.1. Benchmark dataset

A curated and stringent benchmark dataset is essential for develop-
ing an intelligent predictive model [13-16]. Herein, we collected a high
quality dataset from previously published method for predicting definsin
peptides iDPF-PseRAAC [11]. Initially, the authors extracted the ex-
perimentally verified DPs from definsin knowledge-base [17]. Further,
to overcome the redundancy, CD-HIT program was used with cut-off
similarity at less or equal to 80%. The final dataset composed of five
sub-families of DPs primary sequences in which 60 peptides are insect
defensins denoted by P1, 31 samples are invertebrate defensins denoted
as P2, 42 peptides are plant defensins denoted by P3, 38 peptides are
non-classified defensins denoted by P4 and 157 peptides are vertebrate
defensins denoted by P5 in Table 1. Finally, we partitioned these sam-
ples with 80:20 ratio for training and testing the proposed model.
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2.2. Feature encoding methods

Encoding the biological peptides into numerical feature vectors is a
challenging but important step in developing machine learning mod-
els [18-21]. Because the accurate prediction of a model highly de-
pends on the hidden concealed information in a peptide sequence. In
this research, we developed novel PSSM-based, graphical-based and
compositional-based feature extraction algorithms for DPs prediction.

2.3. Graphical-based statistical features

In scientific research, FEGS is a powerful feature encoding method
proposed by Zhengchao et al. [22]. The RAAC method, extract the com-
positional features from protein sequence; however, lose of sequence
information is a major problem that remain unsolved. FEGS descrip-
tor, tackle this issue by extracting the graphical features of peptides or
protein sequences based on physicochemical (PC) characteristics. We
describe the working process of this method in the subsequent steps.

First, we need to map the twenty AAs to twenty points in 3D space
based on the selected PC properties from amino acid index (AAindex).
The AAindex is an online database repository denoting the biochemical
and PC characteristics of twenty AA residues [23,24]. The current up-
dated version contain 566 indexes. After removing redundant indexes
for all duplicate values, we selected 158 indexes for DPs. For detailed
information on these selected indexes, the readers are referred to supple-
mentary Table T1. Next we arrange the twenty AAs in ascending order
to for the effective utilization of their PC indices by the give mathemat-
ical expression Eqn. (1)

2ri 2ri ) ’ 1) i

¢(6i)=(cos( > ),sin<2—0

where §i denotes the twenty AAs on the circumference at the bottom of
a straight cone with a height of 1. To encode the high order information
we used pair combination of AAs by adopting dipeptide composition
(DPC) by the following equation Eqn. (2).

1,2,...,20 (€Y

2ri
0

86,5 = $5) + T(H6) ~$G). 1. =1.2,...,20 @

where 6;,6 J denotes the 20 by 20 features of AAs. Next to build the 3D
curve for the given peptide sequence P having length L P =p,p, ... p;,
the corresponding coordinates x, y,, z, for point S, (x;, ¥, z;) can be
computed by the given mathematical formula Eqn. (3)

>

61,6,€{AC,D,....Y}

w(P) =w(P_1)+ ¢(P)+ f5,8, - 9(6162) 3

Finally, the 578D feature vector is generated of peptide sequence P.
2.4. Split amino acid composition

The Split amino acid composition (SAAC) developed by [25], has
been successfully utilized to predict numerous protein activities, includ-
ing membrane protein types [26], outer membrane protein [27], enzyme
family class [28] and prediction of heat shock proteins. Saac-based en-
coding scheme split a short length peptide/protein sequence into parts
and calculating the composition of each part individually. For our inves-
tigation, we partitioned the sequence of the DPs into three segments: (i)
the first 5 amino acids at the N terminus, (ii) the last 5 amino acids at the
C terminus, and (iii) the region between these two termini. In contrast to
conventional amino-acid composition, the resulting feature vector has
a dimension of 60D instead of 20D. The mathematical expression for
this can be represented as like ours previous paper [29]. This paper the
critical factors influencing symbols N and C denote the N-terminus and
C-terminus, respectively, whereas the word “integral segment” refers to
a specific part of the molecule. This work utilizes (SAAC), which in-
volves calculating the composition of the N-termini, C-termini, and the
remaining portion of the protein separately in Eqn. (4).
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2.5. Segmentation-based position specific scoring matrix method

Position-specific scoring matrix (PSSM) is widely used and effective
feature representation technique in numerous bioinformatics problems
such as anticancer peptides [30], DNA-binding proteins prediction [31]
etc. PSSM basically extract the evolutionary information that are helpful
to discover and analyze the function of proteins or peptides [32]. By
this inspiration, we encode the multiple types of DP sequences to PSSM.
PSSM construct M by 20 dimension matrix for each peptide sample using
Swiss-Prot and BSI-BLAST program [33]. Let’s assume that L denotes the
length of peptide sample and M denotes the twenty residues of amino
acid in the given peptide sequence then normalized PSSM matrix with
fixed length feature space can be defined as Eqn (5):

M, M, M; 5
PSSM = M2,1 M.z,z M?,zo )
My, Mp, My 20 1500

However, PSSM failed to retain the sequence-order information. To
cope with this challenge, we introduce segmentation-based feature en-
coding (SegPSSM) method to capture the significant patterns hidden in
the PSSM. We considered SagPSSM descriptor to encode the local and
global complementary features buried in amino acid constituents. The
SegPSSM based framework method divided the generated PSSM into
several equal segments by row wise. Each fixed size segment (S-PSSM)
of the PSSM matrix can be formulated as follows Eqn (6):

Spi11 Spi12 Spi120
SegpssM(e)=| Sr2l Se2 Sy ©
SprL@nt SprL@2 7 Spr©20 dpepan

In the above equation s (& -1) L&), € =1,2,3,... where K rep-
resents the SPSSM and L(£) the number of tuples in each segment

S_PSSM Eqn. (7).

N@©)= ?J ’ : @

Here [%J denotes the (K-1)™ and L - [%J denotes the K™ S-PSSM.

Since DPs are short length peptides ranging from (5-50) residues.
Therefore, based on the experimental outcomes we kept the value of
K=2,3. For further detail, the readers are refereed to our published work
[34].

2.6. Transformed histogram of oriented gradient-based PSSM method

Histogram of oriented gradient (HOG) [34] is widely used descrip-
tor in computer vision and image analysis. Recently, we utilized HOG
feature encoding method in detecting protein or peptide function char-
acterization. Transforming evolutionary-based PSSM matrix into image-
based feature set called HOGPSSM can be generated in the following
steps.

After calculating the PSSM for each DP sequence, we need to cal-
culate the vertical H (a,b) and horizontal gradients H,(a,b) of the
extracted PSSM matrix by the following formula (Eqn (8), (9)):

PSSM(a+1,b)—0,a=1,
PSSM(a+1,b)— PSSM(a—1,b),1<a<?20,
0—PSSM(a—1,b),a=20

H.(a,b) = (€))
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Fig. 2. PCA-based optimal feature selection.
PSSM(a,b+1)-0,b=1, tion. Therefore, feature selection methods perform an integral role in
G, (a,b)={ PSSM(a,b+1)— PSSM(a,b—1),1<b< L, 9 developing an accurate predictor. Herein, we implemented principal

0-PSSM(a,b—1),b=L

Subsequently, the gradient’s direction and magnitude can be calcu-
lated by the below mathematical expression (Eqn (10), (11)):

H(a,b)= \/ H,(a,b? + H,(a,b?, (10)
O(a.b) = tan~! | 2x(4:0) an
CO=M | H @b

where denotes the gradient magnitude H (a,b) and ®(a, b) gradient di-
rection of the PSSM matrix. For the 3rd step, the image is segmented
into 16 by 16 size connected areas known as cells. Each cell encom-
passes the feature set compressing gradient magnitude and direction
within the sub-matrix (Eqn (12), (13)).

H,-’j(s,t)=H(5><i+1+s,jx%+1+t) (12)

('),-J(s,t)=®<5><i+1+,n><%+1+t) 13)

here i, j represents the sub-matrix subscripts (0 <i <2,0 < <2) and
the subscripts inside the sub-matrix locations (0 < v <9,0<v < L/2-1)
are denoted by s, . Each sub-matrix produces sixteen different histogram
channels on the basis of gradient direction. As a result, for each peptide
sample HOG-PSSM generates 16*16 =256-D (dimensions) feature vec-
tor.

2.7. Feature selection-based on principal component analysis

We extracted the compositional-based, graphical-based, image-
based and evolutionary-based features from the raw peptide sequence.
However, sometimes these techniques unable to dig out wide rang of
valuable features that are helpful for defensin peptide family predic-
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component analysis (PCA), a well-known feature selection algorithm
proposed by Kirbby et al. for the compression of images in face recog-
nition [35]. PCA not only reduce the dimension of noisy and irrelevant
features but also help to decrease the time complexity of the proposed
model. The core idea of PCA is the transformation of high dimension fea-
ture space to low dimension features so that to preserve the maximum
variance of the extracted attributes. When we applied the PCA algorithm
on the hybrid features (FEGS+SAAC+SegPSSM and HOGPSSM), it per-
formed the following operation to reduce the feature dimension. Firstly,
transformed the given two dimension feature vector into one dimension,
next, the eigenvalues and corresponding eigenvectors are obtained by
decomposing the eigenvalues of the covariance matrix. These eigenvec-
tors form the principal components of the data (training and testing
samples), and the eigenvalues represent the magnitude of the variance
in the direction of the corresponding principal components [36]. After
the entire process, 160 best features were selected as shown in Fig. 2.
Among the top ranked features 98 are selected from FEGS descriptor, 27
from SAAC descriptor, 28 from HOGPSSM and 7 from SegPSSM descrip-
tors as illustrated in Fig. 3. The ranked features and its three dimensional
structure generated by PCA are provided in the Supplementary Table
T2 and Fig. S1.

2.8. Stack-ensemble framework

Over the past years, several prior research in bioinformatics and pat-
tern recognition reveal that ensemble models can achieve superior pre-
dictive performance compared to individual models or classifiers [37].
Generally, ensemble learning (EL) can be categorized into three types
from broad spectrum: majority voting-based EL, average-based EL and
stacking-based EL. Here in, we adopted stack EL method, that leverage
the discriminating power of the baseline models to enhance the pre-
diction performance of the system [38-40]. The framework of Stack
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Fig. 4. Diagrammatic representation of stacked ensemble classifier.

EL process is depicted Fig. 4. The stacking-based EL models work in
two phases (layers). The first-layer classifiers are called base-learners
and second-layer classifier is called meta-learner. The base-classifiers
are trained by using the optimal feature vectors and generate the prob-
ability features (PFs). Then meta-classifier use these M number of PFs
as input and predict the final output. In this research, we used five base
classifiers i.e., CatBoost, decision tree (DT), Gaussian naive base (GNB),
multilayer perceptran (MLP) and extreme gradient boost (xGB) with four
types of feature encoders i.e. FEGS, SegPSSM, SAAC and HOGPSSM in
the first layer. In the second layer, we used Catboost algorithm as meta
classifier that takes the generated PFs as input and build the final pre-
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diction model. The description of each step in stacking EL strategy is
elaborated in the given pseudo code Algorithm 1 and Eqn (14).

nFeat(S)z[f(BCl(S)), f(BC2(S)), -, f(BCZO(S))]T a4

where the f(BC1(S)) represents the probability feature (PF) generated
by the baseclassifier (BC;) of DP sequence S.

2.9. Performance measure and model evaluation

In case of multi-class classification scenario, some classes are imbal-
anced. To tackle this situation, we used five evaluation measures i.e.,
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Algorithm 1 Pseudo-code of the proposed Stacking-based ensemble

learning.

Input: Data set M = {(a,, b)), (ay, b,), ..., (a,, b)) };

Base-learners B, B,, ..

Meta-learner A.

Process:

forr=1,2,...,T do
h,= B,(M);

end for

M'=0;

fori=1,...,mdo
fort=1,...,T do

z;, = hy(ay);

end for

M'=M'"U((z,....27): b;);

end for
R = AM");

%Train the base-model by employing the
%1st-layer model B,;

;P

%Create a new data set

%Train the 2" layer model h' by employing;
9%The meta-model A to the new data set M’ ;

Output: H(a)=h'(h(a),..., hy(a))

Table 2

Ablation Study of base-classifiers with FEGS descriptor

using 5-Fold CV.

Model/Class  Pr Sn Acc Sp F1
CatBoost

S1 1.00 0.98 1.00 1.00 0.99
P2 1.00 1.00 1.00 1.00 1.00
P3 1.00 0.97 1.00 1.00 0.99
P4 1.00 0.71 0.97 1.00 0.83
P5 0.92 1.00 0.96 0.92 0.96
avg 0.98 0.93 0.98 0.98 0.95
DT

P1 0.81 0.86 0.94 0.96 0.83
P2 0.76 0.85 0.96 0.97 0.80
P3 0.71 0.71 0.93 0.96 0.71
P4 0.48 0.61 0.88 0.91 0.54
P5 0.89 0.79 0.85 0.91 0.83
avg 0.73 0.76 0.91 0.94 0.74
GNB

P1 1.00 0.94 0.99 1.00 0.97
P2 1.00 1.00 1.00 1.00 1.00
P3 1.00 0.57 0.95 1.00 0.73
P4 0.93 0.90 0.98 0.99 0.92
P5 0.87 1.00 0.93 0.87 0.93
avg 0.96 0.88 0.97 0.97 0.91
MLP

P1 1.00 0.98 1.00 1.00 0.99
P2 0.96 1.00 1.00 1.00 0.98
P3 0.97 0.94 0.99 1.00 0.96
P4 1.00 0.90 0.99 1.00 0.95
P5 0.96 0.99 0.98 0.96 0.98
avg 0.98 0.96 0.99 0.99 0.97
xGB

P1 0.94 0.96 0.98 0.99 0.95
P2 1.00 0.92 0.99 1.00 0.96
P3 0.94 0.86 0.97 0.99 0.90
P4 0.92 0.74 0.96 0.99 0.82
P5 0.93 1.00 0.96 0.93 0.96
avg 0.95 0.90 0.98 0.98 0.92

precision (Pr), F1-score(F1), overall accuracy (Acc), sensitivity (Sn), and
specificity (Sp) to evaluate the predictive efficacy our proposed Stack-
DPPred method [41-44]. The equation of the evaluation metrics are
shown below (Eqn (15), (16), (17), (18), (19)):
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Table 3

Ablation Study of base-classifiers with SAAC descrip-

tor using 5-Fold CV.
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Model/Class  Pr Sn Acc Sp F1
CatBoost
P1 0.80 0.94 0.95 0.95 0.86
P2 0.59 0.38 0.92 0.97 0.47
P3 0.88 0.86 0.97 0.98 0.87
P4 0.43 0.10 0.88 0.98 0.16
P5 0.81 0.97 0.88 0.80 0.89
avg 0.70 0.65 0.92 0.94 0.65
DT
P1 0.63 0.60 0.86 0.92 0.61
P2 0.26 0.23 0.86 0.93 0.24
P3 0.72 0.74 0.93 0.96 0.73
P4 0.21 0.23 0.81 0.89 0.22
P5 0.80 0.81 0.81 0.82 0.81
avg 0.52 0.52 0.86 0.90 0.52
GNB
P1 0.93 0.54 0.91 0.99 0.68
P2 0.23 0.81 0.72 0.71 0.35
P3 0.61 0.57 0.90 0.95 0.59
P4 0.18 0.13 0.84 0.93 0.15
P5 0.83 0.61 0.75 0.89 0.70
avg 0.56 0.53 0.82 0.89 0.50
MLP
P1 0.86 0.84 0.95 0.97 0.85
P2 0.67 0.54 0.93 0.97 0.60
P3 0.71 0.77 0.93 0.95 0.74
P4 0.44 0.35 0.88 0.94 0.39
P5 0.86 0.92 0.89 0.86 0.89
avg 0.71 0.68 0.91 0.94 0.69
xGB
P1 0.80 0.86 0.93 0.95 0.83
P2 0.50 0.35 0.90 0.96 0.41
P3 0.83 0.86 0.96 0.97 0.85
P4 0.37 0.23 0.87 0.95 0.28
P5 0.82 0.92 0.86 0.82 0.87
avg 0.66 0.64 0.91 0.93 0.65
tp+tn
Acc= —_Up¥mW
(tp+tn+ fp+ fn)
t
Sen= P __
tp+ fn
tn
Spe= ————
tn+ fp
p
= —
tp+ fp
Precision * Recall
Fl1=2x

Precision + Recall

(15)

1e)

a7

18

19)

In the above-mentioned notation tp denotes the ADPs, and tn denotes
the peptides with non-ADPs. Similarly, fp denotes the number of incor-
rect samples that have no ADP properties and fn means the number of
incorrect samples having ADPs activity. The aforementioned assessment
metrics are threshold dependent. Furthermore, we used the receiver op-
erating characteristic (ROC) curve, along with the area under the ROC
curve (AUC) as threshold-independent indexes to evaluate the overall
effectiveness of the proposed method [45]. The closer the prediction
value is to 1, the better the predictive performance of the classification
algorithm and vice versa. We adopted 5-fold CV method to build the ro-
bust DPs-based predictor and then validate the generalization power by

test data.
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Table 4
Ablation Study of base-classifiers with HOGPSSM de-
scriptor using 5-Fold CV.

Model/Class  Pr Sn Acc Sp F1
CatBoost

P1 0.92 0.90 0.97 0.98 0.91
P2 0.88 0.27 0.93 1.00 0.41
P3 0.96 0.66 0.95 1.00 0.78
P4 0.95 0.68 0.96 1.00 0.79
P5 0.75 0.98 0.84 0.70 0.85
avg 0.89 0.70 0.93 0.93 0.75
DT

P1 0.55 0.52 0.84 0.91 0.54
P2 0.27 0.27 0.86 0.92 0.27
P3 0.56 0.51 0.89 0.94 0.54
P4 0.51 0.71 0.89 0.91 0.59
P5 0.70 0.67 0.71 0.74 0.69
avg 0.52 0.54 0.84 0.88 0.52
GNB

P1 0.85 0.82 0.94 0.97 0.84
P2 0.48 0.42 0.90 0.95 0.45
P3 0.90 0.77 0.96 0.99 0.83
P4 0.48 0.35 0.88 0.95 0.41
P5 0.80 0.91 0.85 0.79 0.85
avg 0.70 0.66 0.91 0.93 0.67
MLP

P1 0.87 0.92 0.96 0.97 0.89
P2 0.68 0.58 0.93 0.97 0.62
P3 0.96 0.77 0.97 1.00 0.86
P4 0.84 0.87 0.97 0.98 0.86
P5 0.89 0.94 0.92 0.89 0.91
avg 0.85 0.82 0.95 0.96 0.83
xGB

P1 0.88 0.86 0.95 0.97 0.87
P2 0.85 0.42 0.94 0.99 0.56
P3 0.81 0.63 0.93 0.98 0.71
P4 0.85 0.74 0.96 0.98 0.79
P5 0.79 0.95 0.85 0.77 0.86
avg 0.84 0.72 0.93 0.94 0.76

3. Results and discussion
3.1. Ablation experiment of individual features and baseline models

In this subsection, we conducted an ablation study of five baseline
models (CatBoost, DT, xGB, MLP and GNB) using four different types of
feature descriptors (FEGS, SAAC, HOGPSSM and SegPSSM) using 5-fold
CV method. In order to compare the effectiveness of individual features
using different ML models, the performances are reported in Tables 2-5.
We used average Acc and F1 as performance indicators to evaluate the
best classification model. We can observe from Tables 2-5, that amongst
the 20 base-models, MLP is the best performer obtained the highest Acc
of 0.990 and F1 score 0.970 using FEGS descriptor, Acc of 0.91 and F1
of 0.690 using SAAC descriptor, Acc of 0.950 and F1 of 0.830 using
HOGPSSM encoding method, Acc of 0.960 and F1 of 0.870 respectively.
CatBoost learning model, was reported the second best performer in
predicting all families of definsin peptides. In contrast, DT base classi-
fier was reported the worst prediction model. The obtained Acc of DT
model are 0.910, 0.860, 0.840 and 0.900 using FEGS, SAAC, HOGPSSM
and SegPSSM feature representation methods. So, from the foregoing
discussion about the individual features we can observe that each en-
coding method behaves differently in characterizing the families of DPs.
In other context, we can say that one descriptor can perform better than
the other using the same learning model due to some circumstances.
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Table 5
Ablation Study of base-classifiers with SegPSSM3 de-
scriptor using 5-Fold CV.

Model/Class  Pr Sn Acc Sp F1
CatBoost

P1 0.94 0.92 0.97 0.99 0.93
P2 1.00 0.54 0.96 1.00 0.70
P3 0.97 0.80 0.97 1.00 0.87
P4 0.85 0.74 0.96 0.98 0.79
P5 0.84 0.99 0.91 0.83 0.91
avg 0.92 0.80 0.95 0.96 0.84
DT

P1 0.78 0.80 0.92 0.95 0.79
P2 0.47 0.54 0.90 0.94 0.50
P3 0.73 0.77 0.93 0.96 0.75
P4 0.68 0.61 0.92 0.96 0.64
P5 0.81 0.79 0.81 0.83 0.80
avg 0.69 0.70 0.90 0.93 0.70
GNB

P1 0.91 0.82 0.95 0.98 0.86
P2 0.68 0.65 0.94 0.97 0.67
P3 1.00 0.77 0.97 1.00 0.87
P4 0.60 0.58 0.91 0.95 0.59
P5 0.85 0.95 0.89 0.85 0.90
avg 0.81 0.75 0.93 0.95 0.78
MLP

P1 0.92 0.90 0.97 0.98 0.91
P2 0.94 0.65 0.96 1.00 0.77
P3 0.94 0.91 0.98 0.99 0.93
P4 0.81 0.81 0.96 0.98 0.81
P5 0.91 0.98 0.94 0.91 0.94
avg 0.90 0.85 0.96 0.97 0.87
xGB

P1 0.94 0.90 0.97 0.99 0.92
P2 0.94 0.58 0.96 1.00 0.71
P3 0.91 0.83 0.97 0.99 0.87
P4 0.79 0.71 0.95 0.98 0.75
P5 0.86 0.98 0.91 0.85 0.91
avg 0.89 0.80 0.95 0.96 0.83

3.2. Ablation experiment of baseline and stacked models on hybrid features

In this section, we performed another ablation study on hybrid fea-
tures, to demonstrate the effectiveness of using various models. It is
known that, Prominent features are crucial in designing an intelligent
predictor using ML models. We enhanced the overall performance of
the proposed StackDPPred model for predicting five families of defensin
peptides, by serially combining four types of compositional, evolution-
ary, and graphical features extracted from raw sequences. We experi-
mentally validated the performance of base-classifiers and stacked en-
semble classifier on fused features. The empirical outcomes of the base-
classifiers and stacking model on test dataset are reported in Table 6. We
can observe from Table 6 that StackDDPred accurately predicted DPs
families on test dataset with Acc of 0.980 and F1 of 0.920. However,
MLP is nominated as the best model amongst the base-classifiers, pre-
dicted more false positives than our§ model and achieved Acc of 0.974
and F1 of 0.912. Similarly, xGB mode also produced slightly similar
results which are Acc of 0.974 and F1 of 0.910. In contrast, DT pro-
duced the worst outcomes on the hybrid features. This example demon-
strates that, stacked ensemble learning has the superior ability to predict
DPs families as compare to baseline classifiers. The underline reason is
the stacking strategy leverages multiple individual predictors to deliver
more stable and accurate predictions [46-48].
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Performance comparison of the proposed methods
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Fig. 5. Performance comparison of the proposed methods.

3.3. Feature selection improves the prediction performance

Feature selection is an essential step in machine learning for selecting
the prominent features [49,50]. The extracted features might contain re-
dundant information that affects the performance of the trained model
predicting multiple types of DPs. Since, we trained the proposed model
by single and hybrid features. The hybrid feature (954D) is a serial com-
bination of four types of single features i.e., SAAC (60D), FEGS (578D),
SegPSSM (60D) and HOGPSSM (256D) that might cause the overfit-
ting problem due curse of dimension disaster and noise. To cope with
this dilemma, we applied PCA on the hybrid features to select enrich
subset of features (160D) for training our proposed ensemble model.
The ratio of optimal subset of features, selected by PCA algorithm is
FEGS (98/578), SAAC (30/60), SegPSSM (27/60), HOGPSSM (28/60)
as shown in Fig. 3.

This statistical calculation shows that the graphical-based features
(FEGS) and evolutionary-based (SegPSSM) significantly contribute in
predicting DPs and its family types. In order to investigate whether the
PCA-based features are effective or not in enhancing the overall perfor-
mance of the proposed method for DPs prediction. We report the valida-
tion success rates of single and ensemble classifiers in Table 7 to analyze
the prediction efficacy before and after feature selection. We compare
the prediction efficacy of the baseline and stack ensemble model using
the optimal features consisting of properties of FEGS, SAAC, SegPSSM,
and HOGPSSM. The contribution of each feature descriptor to the identi-
fication of DPs and their families are listed in Supplementary Table T2.
From Table 7 we can observe that, the proposed StackDPPred model
exhibited the superior prediction performance with respected to all per-
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formance indicators (Pr, Sn, Acc, Sp and F1) as compared to baseline
models CatBoost, DT, MLP, xGB and GNB on the test set. The achieved
validation Acc and F1 of StackDPPred model is 0.990 and 0.970 respec-
tively. The prediction power of the best baseline models CatBoost, MLP
and xGB did not reach that of the stack ensemble learning model. The
Acc of CatBosst, MLP and xGB are 0.984, 0.972 and 0.966 and F1 scores
are 0.966,0.926 and 0,906 respectively. Thus, based on the aforemen-
tioned discussion, we conclude that feature selection particularly FEGS
descriptor mostly Incorporated in discriminating multi-functions of DPs
from sequence information. The enriched features selected by PCA as
elaborated in the above section, the top 160 high ranked correlated fea-
tures are shown in Fig. 2.

3.4. StackDPPred performance comparison with existing methods

We compare the prediction performance of our proposed multi-
class StackDPPred method with advanced existing methods for iden-
tifying different families of defensing peptides. In order to avoid bias
and demonstrate the effectiveness of the proposed method [51,52], we
used the same dataset as adopted by iDPF-PseRAAAC [11] and iDEF-
PseRAAAC [12]. As shown in Table 8 and Fig. 5, it is apparent that
StackDPPred outperformed all the available methods by all performance
measures i.e. overall accuracy (OA), F1, Sp and Sn. Our proposed model
beat the second best predictor by 7.84% and 13.41% OA on testing data.
This impressive success rates reflect the robustness and high generaliza-
tion power of our developed definsin peptide-based model.
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Table 6 Table 7
Baseline and Stack models evaluation on the hybrid features. Classifiers evaluation on the optimal features.
Model/Class Pr Sn (%) Acc (%) Sp (%) F1 (%) Model/Class Pr Sn Acc Sp F1
CatBoost CatBoost
P1 1 1 1 1 1 P1 1 1 1 1 1
P2 1 1 1 1 1 P2 1 1 1 1 1
P3 1 1 1 1 1 P3 1 1 1 1 1
P4 0.94 0.63 0.95 1 0.67 P4 0.95 0.75 0.95 1 0.86
P5 0.91 1 0.95 0.91 0.93 P5 0.94 1 0.97 0.94 0.97
Avg 0.97 0.926 0.971 0.982 0.913 Avg 0.978 0.95 0.984 0.988 0.966
DT DT
P1 0.85 0.92 0.95 0.96 0.88 P1 0.85 0.92 0.95 0.96 0.88
P2 0.71 0.83 0.95 0.97 0.77 P2 0.67 1 0.95 0.95 0.8
P3 0.89 1 0.98 0.98 0.94 P3 0.67 0.75 0.92 0.95 0.71
P4 0.5 0.25 0.88 0.97 0.33 P4 0.67 0.5 0.91 0.97 0.57
P5 0.88 0.91 0.89 0.88 0.89 P5 0.97 0.88 0.92 0.97 0.92
Avg 0.766 0.782 0.93 0.952 0.762 Avg 0.766 0.81 0.93 0.96 0.776
GNB GNB
P1 1 0.92 0.98 1 0.96 P1 0.91 0.83 0.95 0.98 0.87
P2 0.67 1 0.95 0.95 0.8 P2 0.67 0.67 0.94 0.97 0.67
P3 1 1 1 1 1 P3 1 0.88 0.98 1 0.93
P4 1 0.63 0.95 1 0.77 P4 0.86 0.75 0.95 0.98 0.8
P5 0.97 1 0.98 0.97 0.98 P5 0.89 0.97 0.92 0.88 0.93
Avg 0.928 0.91 0.972 0.984 0.902 Avg 0.866 0.82 0.948 0.962 0.84
MLP MLP
P1 0.92 1 0.98 0.98 0.96 P1 1 0.92 0.98 1 0.96
P2 0.75 1 0.97 0.97 0.86 P2 1 0.83 0.98 1 0.91
P3 1 1 1 1 1 P3 0.89 1 0.98 0.98 0.94
P4 1 0.63 0.95 1 0.77 P4 1 0.75 0.97 1 0.86
P5 0.97 0.97 0.97 0.97 0.97 P5 0.91 1 0.95 0.91 0.96
Avg 0.928 0.92 0.974 0.984 0.912 Avg 0.96 0.9 0.972 0.978 0.926
xGB xGB
P1 1 1 1 1 1 P1 1 0.92 0.98 1 0.96
P2 0.86 1 0.98 0.98 0.92 P2 0.86 1 0.98 0.98 0.92
P3 1 1 1 1 1 P3 0.89 1 0.98 0.98 0.94
P4 1 0.5 0.94 1 0.67 P4 1 0.63 0.95 1 0.77
P5 0.91 1 0.95 0.91 0.96 P5 0.91 0.97 0.94 0.91 0.94
Avg 0.954 0.9 0.974 0.978 0.91 Avg 0.932 0.904 0.966 0.974 0.906
Stack Ensemble Stack Ensemble
P1 1 1 1 1 1 P1 1 1 1 1 1
P2 0.75 1 0.97 0.97 0.86 P2 1 1 1 1 1
P3 1 1 1 1 1 P3 1 1 1 1 1
P4 1 0.63 0.95 1 0.77 P4 1 0.75 0.97 1 0.86
P5 0.97 1 0.98 0.97 0.98 P5 0.94 1 0.97 0.94 0.97
Avg 094  0.93 0.98 0.99 0.92 Avg 099 095 099 099 097
Table 8
Performance comparison of the proposed methods.
Method Features  Family type Sn (%) Sp(%) Fl (%) OA (%)
iDPF-PseRAAAC 169D Insect (P1) 90 97.07 - 85.59
Invertebrate (P2) 61.76 97.32 -
Plant (P3) 90.48 98.97 -
Unclassified (P4) 40 96.63 -
Vertebrate (P5) 99.36 88.64 -
iDEF-PseRAAC 329D Insect (P1) 96.67 98.13 - 91.16
Invertebrate (P2) 74.19 97.64 -
Plant (P3) 92.86 98.6 -
Unclassified (P4) 68.42 97.23 -
Vertebrate (P5) 97.45 97.08 -
StackDPPred 20D Insect (P1) 100 100 100 99.00
Invertebrate (P2) 100 100 100
Plant (P3) 100 100 100
Unclassified (P4) 75 100 86
Vertebrate (P5) 100 94 97
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4. Conclusion

In this study, we developed an accurate machine learning-based
tool, StackDPPred, for predicting the functional types of DPs from se-
quence only. The proposed method uses compositional-based (SAAC),
graphical-based (FEGS) and evolutionary-based (HOGPSSM and Seg-
PSSM) properties as feature descriptors. Then, PCA algorithm was em-
ployed to remove the noisy features. Finally, the optimal features are
input to stack ensemble model to predict DP’s families with high accu-
racy. Further, we analyzed the interpretability of ML classifiers by LIME
algorithm. Thus, StackDPPred protocol can provide valuable insights
in accelerating the discovery of novel DPs in particularly and other
therapeutic peptides in general. Despite the superior performance, the
StackDPPred method also has some research gaps that needs to address
in near future: (a) small number of samples (b) reliance on handcrafted
feature descriptors (c) imbalance phenomena among different classes
(d) deploying an interpretable ensemble deep learning algorithms using
pre-trained protein language models.
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