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Details of the example SCP instance

In the paper we consider an example SCP instance for illustrating our mappings from SCP to Ising and eventually
to a Chimera graph. Specifically, the ISING(h,J) described in Figure 2b has
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Here the labels above each element of h indicates which spin the coefficient is associated to. The matrix of
interaction coefficients J is shown in Figure S1.

Proof of correctness for Algorithm 1

Here we show that Algorithm 1 indeed samples uniformly from all (2n − 1)m possible “dummy-free” bipartite
graphs for a fixed setting of the ground set U of size n and cover set S of size m. Formally we say a bipartite graph
G(U ∪ S,E) between two sets U and S is dummy-free if for any s ∈ S there exists at least one u ∈ U such that
(s, u) ∈ E. Then we state the following claim.

Claim. Given any set U of n elements and S of m elements, for any dummy-free bipartite graph G(V,E) between
U and S, Algorithm 1 generates G with probability (2n − 1)−m.

Proof. Let Pr(G) be the probability that Algorithm 1 generates G. Recall that if at a particular s ∈ S during the
looping on line 2, when Algorithm 1 scanned through all u ∈ U but did not end up selecting any element in U , the
algorithm enters line 7 to repeat the process from scratch for s. Then depending on how many times the algorithm
entered line 7 during the process of generating G, we could express Pr(G) as

Pr(G) =

∞∑
k=0

Pr(G|Algorithm 1 entered line 7 in total k times) (S2)

If the algorithm never entered line 7 and generated G, then the probability of generating G is essentially the
probability of mn coin flips, namely 2−mn. If the algorithm entered line 7 once, then the probability Pr(G) =
2−mn · m2−n, where the extra factor m2−n is essentially the probability of one hit and m − 1 misses during m
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Figure S1: The matrix of coupling coefficients in the Ising Hamiltonian instance constructed for the example SCP
instance shown in Figure 2. The interpretation of the matrix elements of J follows Definition 2.

independent Bernoulli trial with the hit probability 2−n (if we regard the event of entering line 7 as a hit). Carrying
this argument to the general case if the algorithm enters line 7 k times, then we need to consider all possible ways
of distributing the k hits onto the m iterations on line 2. This gives

Pr(G|Algorithm 1 entered line 7 in total k times) =
∑

(k1,··· ,km)

2−mn ·
(

k
k1, k2, · · · , km

)
·(2−n)k1+k2+···+km (S3)

where the summation is over the set of non-negative integers k1 through km that sums up to k. Then Equation S2
leads to

Pr(G) = 2−mn ·
∞∑
k=0

∑
(k1,··· ,km)

2−kn
(

k
k1, · · · , km

)
= 2−mn(1 + 2−n + 2−2n + · · · )m

= 2−mn

(
1

1− 2−n

)m

= (2n − 1)−m.

(S4)

2


	Details of the example SCP instance
	Proof of correctness for Algorithm 1

