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Here we consider using quantum annealing to solve Set Cover with Pairs (SCP), an NP-hard
: combinatorial optimization problem that plays an important role in networking, computational biology,
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. inorder to test the performance of quantum annealing for random instances and compare with that
of simulated annealing. We also discuss explicit embedding strategies for realizing our Hamiltonian
construction on the D-wave type restricted Ising Hamiltonian based on Chimera graphs. Our embedding
on the Chimera graph preserves the structure of the original SCP instance and in particular, the
embedding for general complete bipartite graphs and logical disjunctions may be of broader use than
that the specific problem we deal with.
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Quantum annealing (QA) uses the principles of quantum mechanics for solving unconstrained optimization
problems!. Since the initial proposal of QA, there has been much interest in the search for practical problems
where it can be advantageous with respect to classical algorithms**, particularly simulated annealing (SA)**-%.
Extensive theoretical, numerical and expeirmental efforts have been dedicated to studying the performance of
quantum annealing on problems such as satisfiability®’->, exact cover>*, max independent set*, max clique®’,
integer factorization*!, graph isomorphism*»*, ramsey number*, binary classification*>*, unstructured search*
and search engine ranking*®. Many of these approaches®**#40-%¢ recast the computational problem at hand into
a problem of finding the ground state of a quantum Ising spin glass model, which is NP-complete to solve in the
worst case?>.

The computational difficulty of Ising spin glass has not only given the quantum Ising Hamiltonians the versa-
tility for efficiently encoding many problems in NP, but also motivated physical realization of QA using systems
described by the quantum Ising model®”. The notion of adiabatic quantum computing (AQC)>*”*!, which can be
regarded as a particular class of QA, has further established QA in the context of quantum computation (In this
work we will use the terms quantum annealing and adiabatic quantum computing synonymously). Although it is
believed that even universal quantum computers cannot solve NP-hard problems efficiently in general®?, there has
been evidence in experimental quantum Ising systems that suggests quantum speedup over classical computation
due to quantum tunneling®>**. It is then of great interest to explore more regimes where quantum annealing could
offer a speedup compared with simulated annealing.

Here we consider a variant of Set Cover (SC) called Set Cover with Pairs (SCP). SC is one of Karp’s 21
NP-complete problems® and SCP was first introduced®® as a generalization of SC. Instead of requiring each ele-
ment to be covered by a single object as in SC, the SCP problem is to find a minimum subset of objects so that
each element is covered by at least one pair of objects. We will present its formal definition in the Preliminaries
section. SCP and its variants arise in a wide variety of contexts including Internet traffic monitoring and content
distribution®”, computational biology*®*, and biochemistry®. On classical computers, the SCP problem is at least
as hard to approximate as SC. Specifically, its difficulty on classical computers can be manifested in the results by
Breslau et al.”’, which showed that no polynomial time algorithm can approximately solve Disjoint-Path Facility

I-¢
18" " for any & > 0. Due to its complexity,

Location, a special case of SCP, on # objects to within a factor that is 2
various heuristics®® and local search algorithms® have been proposed.
In this paper we explore using quantum annealing based on Ising spin glass to solve SCP. We start by reducing

SCP to finding the ground state of Ising spin glass, via integer linear programming (Theorem 1). We then simulate
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the adiabatic evolution of the time dependent transverse Ising Hamiltonian H (s) = (1 — s)H, + sH; which
interpolates linearly between an initial Hamiltonian H, of independent spins in uniform transverse field and a
final Hamiltonian H, that encodes an SCP instance. For randomly generated SCP instances that lead to Ising
Hamiltonian constructions of up to 19 spins, we explicitly simulate the time dependent Schrodinger equation. We
compute the minimum evolution time that each instance needed to accomplish 25% success probability. For
benchmark purpose we also use simulate annealing to solve the instances and compare its performance with that
of adiabatic evolution. Results show that the median time for yielding 25% success probablity scales as O(2°33M)
for quantum annealing and O(2%'M) for simulated annealing, observing no general quantum speedup. However,
the performance of quantum annealing appears to have wider range of variance from instance to instance than
simulated annealing, casting hope that perhaps certain subsets of the instance could yield a quantum advantage
over the classical algorithms.

Aside from the theoretical and numerical studies, we also consider the potential implementation our
Hamiltonian construction on the large-scale Ising spin systems manufactured by D-Wave Systems®”*4,
Benchmarking the efficiency of QA is currently of significant interest. An important issue that needs to be
addressed in such benchmarks is that the physical implementation of the algorithm could be affected by
instance-specific features. This is manifested in the embedding®®* of the Ising Hamiltonian construction onto
the specific topology of the hardware (the Chimera graph?°1:6®). Here we present a general embedding of SCP
instances onto a Chimera graph that preserves the original structure of the instances and requires less qubits than
the usual approach by complete graph embedding. This allows for efficient physical implementations that are
untainted by ad hoc constructions that are specific to individual instances.

Preliminaries
Set Cover with Pairs. Givena ground set U and a collection S of subsets of U, which we call the cover set.
Each element in S has a non-negative weight, the Set Cover (SC) problem asks to find a minimum weight subset
of S that covers all elements in U. Define cover function as Q: § — 2V where Vs € S, Q(s) is the set of all elements
in U covered by s. Then SC can be formulated as finding a minimum weight & C § such that
Q(§') = U,cg Q(s') = U. Set Cover with Pairs (SCP) can be considered as a generalization of SC in the sense
that if we define the cover function such that Vi, j € S, i=j, Q(i, j) is the set of elements in U covered by the pair
{1, j}, then SCP asks to find a minimum subset A C S such that Q(A) = Ui jjes Q(i, j) = U. Here we restrict to
cases where each element of S has unit weight.

A graph G(V, E) is a set of vertices V connected by a set of edges E. A bipartite graph is defined as a graph
whose set of vertices V can be partitioned into two disjoint sets V; and V, such that no two vertices within the
same set are adjacent. We formally define SCP as the following.

Definition 1. (Set Cover with Pairs) Let U and S be disjoint sets of elements andV = U U S. Given a bipartite graph
G(V, E) between U and S with E being the set of all edges, find a subset A C S such that:

1. Ve, e U,3aal” € Asuchthat(al?, ¢;) € Eand(al", ¢,) € E. In other words, c; is covered by the pair
{al(’n aldy,
2. The size of the set, |A|, is minimized.

We use the notation SCP(G, U, S) to refer to a problem instance with |U| = n, |S| =m and the connectivity
between U and S determined by G.

Quantum annealing, adiabatic quantum computing. In this paper we use QA as a heuristic method
to solve the SCP problem. QA was proposed? for solving optimization problems using quantum fluctuations,
known as quantum tunneling, to escape local minima and discover the lowest energy state. Farhi et al.’ provide
the framework for using Adiabatic Quantum Computation (AQC), which is closely related to QA, as a quantum
paradigm to solve NP-hard optimization problems. The first step of the framework is to define a Hamiltonian H,
whose ground state corresponds to the solution of the combinatorial optimization problem. Then, we initialize a
system in the ground state of some beginning Hamiltonian Hy that is easy to solve, and perform the adiabatic
evolution H(s) = (1 — s)Hy + sHp. Here s € [0, 1] is a time parameter. In this paper we only consider
time-dependent function s(t) =t/T for total evolution time T, but in general it could be any general functions that
satisfy s(0) =0 and s(T) = 1. The adiabatic evolution is governed by the Schrodinger equation

d
i— t)) = H(s(t t
dt\iﬁ()) (s@)[v (@) )
where |)(1)) is the state of the system at any timet € [0, T]. Let 7(s) be the i-th instantaneous eigenstate of H(s).
In other words, let H (s);(s) = E,(s)7,(s) for any s. In particular, let |my(s)) be the instantaneous ground state of
H(s).

According to the adiabatic theorem®, for s varying sufficiently slow from 0 to 1, the state of the system [¢(t))
will remain close to the true ground state |mo(s(t))). At the end of the evolution the system is roughly in the
ground state of Hp, which encodes the optimal solution to the problem. If the ground state of Hp is NP-complete
to find (for instance consider the case for Ising spin glass*’), then the adiabatic evolution H(s) could be used as a
heuristic for solving the problem.
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An important issue associated with AQC is that the adiabatic evolution needs to be slow enough to avoid
exciting the system out of its ground state at any point. In order to estimate the scaling of the minimum runtime
T needed for the adiabatic computation, criteria based on the minimum gap between the ground state and the
first excited state of H(s) is often used. However, here we do not use the minimum gap as an intermediate for
estimating the runtime scaling, but instead numerically integrate the time dependent Schrédinger equation (1).

Quantum Ising model with transverse field. The Hamiltonian for an Ising spin glass on N spins can be
written as

N N
H =23 hoi +3 Jo o]
i=1 i<j 2)

0 —1
ficients. The Hamiltonian is diagonal in the basis {|s) € (CZN|s € {0, 1}V} in the Hilbert space . In particular
0°|0) =10) and 0%|1) = —|1). We formally define the problem of finding the ground state of an N-qubit Ising
Hamiltonian in the following.

where 5% = [%07D @ (1 0 ) ® 19"~ acts on the i-th spin with I being a 2 x 2 identity matrix. h;, J;; are coef-

Definition 2. (Ising Hamiltonian) Given the Hamiltonian H in equation (2), find a quantum state|s) € A, where
H is 2N-dimensional, such that the energy E(s) = (s|H|s) is minimized. We use the notation IsING (h, J) to refer to
the problem instance where h = (hy, h,, ---, hy)" and] € RN"N is a matrix such that the ij-th and the ji-th ele-
ments are equal to J;/2. The diagonal elements of J are 0. Hence E(s) = th(s) + p(s)T]p(s) where
ps) =1—2se{—1,1}".

In this paper, we construct Ising Hamiltonians whose ground state encodes the solution to an arbitrary
instance of the SCP problem. The physical system used for quantum annealing that we assume is identical to that
of D-Wave®”?!4, namely Ising spin glass with transverse field

N N N
H = Ao + 3 ko + 3 07 of
i=1 i=1 i<j (3)

where g* = [%0D @ (0 1) g 190*~) acts on the i-th spin. The beginning Hamiltonian Hy has its f,, j;= 0 for

all 4, jand the final Hamiltonian Hp has A;=0 for all i while /; and J; depend on the problem instance at hand. We
will elaborate on assigning h; and J;; coefficients in Hp in Theorem 1.

Graph minor embedding. The interactions described by the transverse Ising Hamiltonian in equation (3)
are not restricted by any constrains. However, in practice the topology of interactions is always constrained to the
connectivity that the hardware permits. Therefore in order to physically implement an arbitrary transverse Ising
Hamiltonian, one must address the problem of embedding the Hamiltonian into the logical fabric of the hard-
ware®2, For convenience we define the interaction graph of an Ising Hamiltonian H of the form in equation (2) as
a graph Gy(Vy, Ep) such that each spin i maps to a distinctive element v;in V}; and there is an edge between v; and
v; iff J;7=0. This definition also applies to the transverse Ising system described in equation (3). We use the term
hardware graph to refer to a graph whose vertices represent the qubits in the hardware and the edges describe the
allowed set of couplings in the hardware.

In Section Set Cover with Pairs we defined bipartite graphs. Here we define a complete bipartite graph K,,, , as
a bipartite graph where |V;| =m, | V,| =n and each vertex in V| is connected with each vertex in V,. A graph H(W, F)
is a subgraph of G(V, E) if W C V and F C E. It is possible that the interaction graph of the desired Ising
Hamiltonian is a subgraph of the hardware connectivity graph. In this case the embedding problem can be solved
by subgraph embedding, which we define as the following.

Definition 3. A subgraph embedding of G(V, E) into G'(V', E') is a mapping f: V — V' such that each vertex in V
is mapped to a unique vertex in V' and if (u, v) € E then (f (u), f (v)) € E".

In more general cases, for an arbitrary Ising Hamiltonian, a subgraph embedding may not be obtainable and we
will need to embed the interaction graph into the hardware as a graph minor. Before we define minor embedding
rigorously, recall that a graph is connected if for any pair of vertices u and v there is a path from u to v. A treeis a
connected graph which does not contain any simple cycles as subgraphs. T'is a subtree of G if T is a subgraph of G
and T'is a tree. We then define minor embedding as the following.

Definition 4. A minor embedding of G(V, E) in G'(V', E') is defined by a mapping ¢: V — V' such that each vertex
v € V is mapped to a connected subtree T, of G' and if (u, v) € E then there exist i,,i, € V' such thati, € T,
i€ T, and(i,i,) € E'.

If such a mapping ¢ exists between G and G', we say G is a minor of G’ and we use G <,,G’ to denote such rela-
tionship. Our goal is to take the interaction graph Gy of our Ising Hamiltonian construction and construct the
mapping ¢ that embeds Gy into the hardware graph as a minor.
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Figure 1. The Chimera graph that represents the qubit connectivity of D-Wave hardware. (a) Example of a
3 x 3 grid of K, , cells, denoted as F(3, 3, 4). (b) Labelling of nodes within a particular cell on the a-th row and
b-th column. Here we use the cell on the 2nd row and 3rd column as an example.

Chimera graphs. Here we specifically consider the embedding our construction into a particular type of
hardware graphs used by D-Wave devices** called the Chimera graphs. The basic components of this graph are
8-spin unit cells® whose interactions form a K, ;. The K, , unit cells are tiled together and the 4 nodes on the left
half of K, , are connected to their counterparts in the cells above and below. The 4 nodes on the right half of K, ,
are connected to their counterparts in the cells left and right. Furthermore, we define F(p, g, ¢) as a Chimera graph
formed by an p x g grid of K, cells. Figure 1a shows F(3, 4) as an example. Note that any K, , with m, n < ¢ can be
trivially embedded in F(p, g, ¢) with any p, g > 1 via subgraph embedding. However, it is not clear a priori how to
embed K, , with #m > ¢ or n > c onto a Chimera graph, other than using the general embedding of an (1 4- n)-node
complete graph and consider K,, , as a subgraph. This costs O((m + n)*) qubits in general and one may lose the
intuitive structure of a bipartite graph in the embedding. One of the building blocks of our embedding for our
Ising Hamiltonian construction (Section Embedding on quantum hardware) is an alternative embedding strategy
for mapping any K, , onto F([n/c], [m/c], c) as a graph minor. Our embedding costs O(mn) qubits and pre-
serves the structure of the bipartite graph.

Quantum annealing for solving SCP

From an arbitrary SCP instance to an Ising Hamiltonian construction. SCP is NP-complete most
simply because Set Cover (SC) is a special case of SCP* and a solution to SCP is clearly efficiently verifiable. Since
SC is NP-complete itself, any SCP instance can be rewritten as an instance of SC with polynomial overhead. The
Ising Hamiltonian construction for Set Cover is explicitly known®”*°. Hence it is natural to consider using the
chain of reductions from SCP to SC and then from SC to IsiNG (Definition 2). If we recast each SCP(G, U, S) with
|S| = m into an SC instance with a cover set of size O(m?). Using the construction by Lucas® we have an Ising
Hamiltonian

2

n N
H=H,+Hz=A) + BY x;
i=1

a=1

1— 3 x

i:a€V;

4)

where V; is the i-th cover set in the SC instance. Since the cover set {V}} is possibly of size up to O(m?), this leads
to the Ising Hamiltonian in equation (4) costing O(nm?) qubits.

Here we present an alternative Ising Hamiltonian construction for encoding the solution to any SCP instance.
We state the result precisely as Theorem 1 below. The qubit cost of our construction is comparable to that of Lucas.
However, in Section Embedding on quantum hardware we argue that our construction affords more advantages
in terms of embedding.

Theorem 1. Given an instance of the Set Cover with Pairs Problem SCP(G, U, S) as in Definition 1, there exists an
efficient (classical) algorithm that computes an instance of the Ising Hamiltonian ground state problem IsiNG(h, J)
withh € R and] € RM™*M where the number of qubits involved in the Hamiltonian is M= O(nm?) with n=|U|
and m=|S|.

Proof. First, we recast an SCP instance to an instance of integer programming, which is NP-hard in the worst case.
Then, we convert the integer programming problem to an instance of the ISING problem. Recall Definition 1 of an
SCP(G, U, S) instance, where G(V, E) is a graph on the vertices V= UUS. For each pair fi R fj € S define a set

i = o € Ul(f,, ¢) € E and (fj, ¢;) € E}. The problem can be recast as an integer program by
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fies (LP)

s. t. Ztijzl Ve eU

EQ;; (LP.1)
ty < sjandt; <s; Vf, ::fj, wherefi,fj €Sandi<j (LP.2)
Sp by € {0, 1} Vfi ¢fj, wherefi,fj S (LP.3)

We have introduced the variable s; to indicate whether f; is chosen for the cover A C S (s;= 1 means that f; is
chosen, otherwise s;=0). We have also introduced the auxiliary variable ; to indicate whether f; and f; are both
chosen. Hence, constraint LP.1 ensures that each element ¢, € U is covered by at least one pair in S. LP.2 ensures
that a pair of elements in S cannot cover any ¢; € U unless both elements are chosen.

To convert the integer program to an ISING instance, we first convert the constraints into expressions of logical
operations. LP.1 can be rewritten as

\/ték)zl, VckEU
kEQ; (5)

LP.2 can be translated to a truth table for the binary operation involving #; and s(s;) where only the entry
{s;,=0, b = 1}(s; = 0, t;, = 1) evaluates to 0 and the other three entries evaluate to 1. Using the following
Hamiltonians we could translate the logic operations V, A and < into the ground states of Ising model, see ref. 66
for more details.

H(sp 55, 8) = i(?:]l —of —oy + 207+ 0f0; — 20007 —20,07)
1
H,(sp, 55 5,) = 1(4]1 +of + 05 =207 + 2000, — 3070’ —30,07)
1
H.(s,s,) = —(I — o+ of — o0y).
<5y 5, 2 1 2 102 6)

Note that H.(s,, s,) is essentially |10) (10[ .In other words we are penalizing the only 2-bit string s;s,
1°2

that violates the constraint s; <s,. The ground state subspace of H, is spanned by
{1515,8, )51 V 53 =5, 5, 55, 5, € {0, 1}}. Similarly, the ground state subspace of H, is spanned by
{|s15,5,) [s) A s, = s } and that of H. spanned by {|s;s,) |s; < s,}.

By linearly combining the above constraint Hamiltonians, we can enforce multiple constraints to hold at the
same time. For example, the statement s; V s, A s; = 1 can be decomposed as simultaneously ensuring
sV s, =y, ¥ A s3 = z,and z= 1. In other words we have used auxiliary variables y and z to transform the con-
straints; V s, A s; = 1, which involves a clause s, VV s, A s; of three variables, to a set of constraints involving
only clauses of two variables. Then, the Ising Hamiltonian H = H,/(s;, s,, ) + H,(», s3, 2) + |0) (o], has its
ground state spanned by states|s,s,s;yz) with s, 5,, and s; satisfyings; VV s, A s; = 1. The third term in H ensures
that z=1 by penalizing states with |z) = |1).

Therefore, we can translate (5) to an Ising Hamiltonian. For a fixed k, the constraint (5) takes the form of
tl(k) \Y tz(k) Vo V tﬁj‘; = 1 where each t](k) € {0, I}and N, < %m(m — 1) = O(m?). Similarly to the example

above, we introduce N — 1 auxiliary variables xl(k), xz(k), X 1(\;(,371 such that

k k .
0 tHved j=1
A (5] (k)
xj_lvth ]—2,"',Nk71 (7)

Thus, x ;\;‘:71 =0 v P v ... v 1P In order to ensure the first constrain holds, it is needed to ensure that

x 1(‘;{;3—1 = 1. Then we could write down the corresponding Ising Hamiltonian for the constraint as

Ny-1
k k k k k k
Hy, = H, (", {9, x) + 3 H, P, ¢, ) + |0) <0‘X1(\2,1.

j=2 (8)
(®)

The last term is meant to make sure that x;”_; = 1in the ground state of H. Therefore the Hamiltonian whose
ground state subspace is spanned by all states that obey both of the constraints in the integer program (5) can be
written as
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Figure 2. Example of converting an SCP instance to Ising Hamiltonian. (a) The SCP instance. Here
S={f,.f,,f; f,}andU = {c,, c,}. The solution is the set A = {f , f, }. The circles represent the covering set
elements S and the squares are the ground elements U. (b) The interaction of Ising instance Hgcp converted from
the SCP instance in (a). Every node corresponds to a qubit. The s;’s are the output bits that correspond to the
covering set elements S. The others are auxiliary variables. Every edge represents an interaction term between
the corresponding spins. Here we do not show the 1-local terms in our construction of Hgcp (for example the
terms in Hy,, for enforcing the minimization of the target function). The bold dashed black line exemplifies the
edges between the t,.(.k) nodes and the s; nodes, which come from the constraints ti(k) <s;and ti(.k) < s, for each
pair{f,, f ; } that covers ;. Each of the inequality constraints is enforced by a H. term in (6). The bold triangle
exemplifies the H,, constraints in (6) that are used to enforce the logical relationship between the ték) variables
and the auxiliary variables as shown in (7). The areas marked by Gl(l), Gl(z) etc outline the structure of the Ising
Hamiltonian that is relevant in the discussion of hardware embedding.

Hcons = Z Hk + Hg
€U
< Z (Hg(tij) 5;’) + Hg(ti]‘) Sj))-
i,j:fi,fjes 9)

T
A
Il

The target function 3/ ¢ s; which we seek to minimize can be directly mapped to an Ising Hamiltonian
Hyg = Spes| (1], = Xy es %(1 — 0,)- This is because we would like to essentially minimize the number of
Us in the set of s; values and penalize choices with more 1’s. Therefore the final Hamiltonian whose ground state
contains the solution to the original SCP instance becomes

HSCP = aHtarg + Hcons (10)
for some weight factor a.

We now estimate the overhead for the mapping. Hi,,, acts on |S| = m qubits. In H,,, H- acts on O(mm?) qubits,
since there are O(m?) variables t;. Each Hy in H,,, requires N;, = O(m?) qubits. There are in total |U| = n of the H;
terms, which gives O(nm?) qubits in total. O

Example. Consider the SCP instance shown in Fig. 2a. With the mapping presented in Theorem 1, we arrive at
an Ising instance ISING (h, J) where a=1/4 in (10) and h, J are presented in Supplementary Material Details of the
example SCP instance. The ground state subspace of the Hamiltonian in (2) with k; and J; coefficients defined
above, restricted to the s; elements is spanned by [|1)) = [s;s,--x,%)such that|ss,s,5,) = |1001)]. This corre-
sponds to A = {f;, f,}, the solution to the SCP instance. Figure 2b illustrates the interaction graph of the spins in
the Ising Hamiltonian that corresponds to the SCP instance.

Numerical simulation of quantum annealing. In order to test the time complexity of using quantum
annealing to solve SCP instances via the construction in Theorem 1, we generate random instances of SCP that
lead to Ising Hamiltonian Hgcp of N = 3, 4, --+, 19 spins. In Definition 1 we use a bipartite graph between the
ground state U of size n and the cover set S of size m to describe an SCP instance. For fixed n and m, there are in
total 2" such possible bipartite graphs (if we consider each bipartite graph as a subgraph of K, , and count the
cardinality of the power set of the edges of K,,, ). Therefore to generate random bipartite graphs we only need to
flip mn fair coins to uniformly choose from all possibile bipartite graphs between U and S. However, we would
like to exclude the bipartite graphs where some element of S is not connected to any element in U. These “dummy
nodes” are not pertinent to the computational problem at hand and should be removed from consideration before
converting the SCP instance to an Ising Hamiltonian Hgcp. We thus use a scheme for generating random instances
of SCP without dummy nodes as described in Algorithm 1. Under the constraint that no dummy element in S is
allowed, there are in total (2” — 1)™ possible bipartite graphs. In Supplementary Material Proof of correctness for
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Algorithm 1 we rigorously show that Algorithm 1 indeed samples uniformly among the (2" — 1)" possible
“dummy-free” bipartite graphs.

Algorithm 1 Algorithm for generating a random SCP (G, U, S) without dummy elements in the cover set

Input: The ground set U and the cover set S

Procedure:

1: Initialize the output graph G — @;

2: forallsc Sdo

3: foralluc Udo

4: With probability 1/2, add edge (s, u) to G;

5: end for

6: if s is still unattached to any element in U then

7 Repeat steps 3 through 5 until s is attached to some
element in U.

8: end if

9: end for

10: return G.

For each randomly generated instance from Algorithm 1 we construct an Ising Hamiltonian Hgp according to
Theorem 1. We then perform a numerical simulation of the time dependent Schrédinger equation (1) from time
t=0to t=T with time step At=1 and the time dependent Hamiltonian defined as

HGs() = [1 - %]HB+ Ho

M
Hy =27
i=1 (11)
where Hgcp is defined in equation (10). Here because of the construction of Hgcp, our total Hamiltonian H(s(t)) acts not
only on the spinss € {0, 1} indicating our choice of elements in the cover set S, but also auxiliary variables ti(k) and
x®, for which we use t and x to denote their respective collections. Our initial state is the ground state of Hy, namely

WO) = — 3 s t,x).
27 ¢ txefo,1M (12)

To obtain the final state|+) (T') ) where T'is some positive integer, we use the ode45 subroutine of MATLAB under
default settings to numerically integrate Schrédinger equation to obtain|¢/(1)) from|/(0)), and then use|¢(1)) as an
initial state to obtain|1/(2)) in the same fashion, and so on. We define the success probability p as a function of the
total annealing time T'as p(T) = ||II|¢/(T)) |, where ITis a projector onto the subspace spanned by states with s

being a solution of the original SCP instance. Using binary search we determine the minimum time T* to achieve
p(T*) > 0.25 for each instance of SCP. Figure 3 shows the distribution of T* for SCP instances that lead to Ising
Hamiltonians Hgcp of the same sizes, as well as how the median annealing time scales as a function of number of
spins M. Results show that for instances with M up to 19, the median annealing time scales roughly as O(2%31M),

Numerical experiment with Simulated Annealing. Simulated annealing, first introduced three dec-
ades ago®, has been widely used as a heuristic for handling hard combinatorial optimization problems. It is espe-
cially of interest as a benchmark for quantum annealing®-¢ because of similarities between the two algorithms.
While quantum annealing employs quantum tunneling to escape from local minima, simulated annealing relies
on thermal excitation to avoid being trapped in local minima. The general procedure we adopt for simulated
annealing to approach the ground state of an Ising spin glass can be summarized as the following®:

1. Repeat R times the following:

(a) Initialize s < s, randomly;
(b)  Perform S times the following: (leti = 0, 1, ---, S — 1index the steps)

(i) SetthetemperatureT; « 7 (i);

(ii) Perform a sweep ons; to obtain s'; (a sweep is a sequence of steps each of which randomly selects a
spin and flips its state, so that on average each spin is flipped once during a sweep)

(iii) With probability exp (w), lets;, , = s’. Otherwiselets, ; < s,.

2. Return s as the answer.

SCIENTIFICREPORTS | 6:33957 | DOI: 10.1038/srep33957 7
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Figure 3. Plot of the optimal quantum annealing time T* versus the number of spins involved in the
construction of Hycp. Here we fit the logarithm of median T* with a straight line. The size M of our Ising
systems ranges from 3 to 19. From the fitting function we observe that the annealing time scales as roughly
O(2%31M). We also provide on the bottom plot the number of instances for each M.

For the purpose of comparison we also used simulated annealing to solve the same set of instances generated
by Algorithm 1 for testing quantum annealing. The program implementation that we use is built by Isakov et al.,
which is a highly optimized implementation of simulated annealing with care taken to exploit the structures
of the interaction graph, such as being bipartite and of bounded degree. Here we use the program’s most basic
realization of single-spin code for general interactions with magnetic field on an interaction graph of any degree.

As mentioned by Isakov et al., to improve the solution returned by simulated annealing, one could increase
either the number of sweeps S or number of repetitions R in the implementation, or both of them. However, note
that the total annealing time is proportional to the product S - R and there is a trade-off between S and R. For a
fixed number of sweeps S let the success probability (i.e. the fraction of s; that is satisfactory) be w(S). In order to
achieve a constant success probability p (say 25%, which is what we use here), we need at least
R = [log(1 — p)/log(1 — w(S))]repetitions. Hence the total time of simulated annealing can be written as

log(1 — p)

T(S) = |28~ — F) |,
) log(1 — w(S))

(13)

In general w(S) increases as S increases, leading to a decrease in R. We numerically investigate this with an
Ising system of N =17 spins generated from an SCP instance via the construction in Theorem 1. We plot the
annealing time T versus S in Fig. 4a. For each SCP instance with the number of spin M we compute the optimal
S* such that T* = T (S*)is the optimized runtime (Fig. 4a). We further explore how the optimal runtime T* scales
as a function of the number of spins M. As shown in Fig. 4b, a linear fit on a semilog plot shows that roughly
T = O(2021M),

The units of time used for both Fig. 4a,b are arbitrary and thus do not support a point-to-point comparison.
But the scaling difference seems apparent. For quantum annealing we restrict to systems of at most 19 spins due
to computational limitations faced in representing the full Ising Hamiltonian when numerically integrating the
time-dependent Schrédinger equation (1).

Although there is no quantum speedup observed in terms of median runtime over all randomly generated
instances of the same size, we notice that for a fixed number of spins M the performances of both quantum
annealing and simulated annealing are sensitive to the specific instance of Ising Hamiltonian Hgcp than simulated
annealing. This can be seen by considering at the same time the quantum annealing results in Fig. 3 and the test
results for simulated annealing shown in Fig. 4b. One could then speculate that perhaps by focusing on a specific
subset of SCP instances could yield a quantum advantage.
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www.nature.com/scientificreports/

!

103

Results for a specific SCP instance with A/ = 17

~
P =
+ E
10-3 8 =
. =5 £ 1w
+ 3 B
++ 2
g c
~ + + o 100k
o =+ 3 g
£ Ridigse -t £
2 +i3ﬁﬁ;fﬁ £ 10
‘a:“; L = -iif + © Fo o
Gl +'*‘ #4@1‘;'..**' 10-2 |ﬂdljidug\ instances
?9 i + +# 'l + © Median time
2 L : "y _(fryl'*#’ 1 — Fitting (20211831} | -
+— i - 1 2
gl o #+ i L 10 10 15 20 25 30 35 10
e +1 |+ + Number of qubits 1/
L] e s e s T g 9
* i ] g 3
100 10" 102 = g‘
Number of sweeps S s 4
> 3
2 1
£ e [ 10 15 20 25 30 35 10
z i
Number of qubits 1/
(a) (b)

Figure 4. (a) Plot of annealing time T versus number of sweeps S using the simulated annealing
implementation® on an Ising Hamiltonians of 17 spins constructed from an SCP instance. We use the default
settings for all parameters other than S and R. Also we mark the optimal runtime T.. (b) Plot of optimized
annealing time T* versus the number of spins involved in the Ising Hamiltonian HSCP corresponding to
randomly generated SCP instances according to Algorithm 1. We also provide on the bottom plot the number
of instances for each M.

Embedding on quantum hardware

In this section we deal with the physical realization of quantum annealing for solving SCP instances using D-Wave
type hardwares. There are mainly two aspects®>% of this effort: 1) The embedding problem®?, namely embedding
the interaction graph of the Ising Hamiltonian construction Hgcp as a graph minor of a Chimera graph (refer to
Section Graph minor embedding for definitions of the graph terminologies). 2) The parameter setting problem®,
namely assigning the strengths of the couplings and local magnetic fields for embedded graph on the hardware,
in a way that minimizes the energy scaling (or control precision) required for implementing the embedding. Here
we focus on the former issue.

We start with an observation on the structures of Hycp. For any instance SCP(G, U, S) according to Definition 1,
the interaction graph Iscp(g ) of the corresponding Ising Hamiltonian Hgcp can be regarded as a union of # sub-
graphs, namely I'scp 6 y.5) = GY' U G? - U G™. Each subgraph G? is associated with an element of the
ground setc; € U as in Fig. 2a. Each G could be further partitioned into two parts, G, Dand Gz’). For any k, Gl(k )
is a bipartite graph between {s,}7", and {¢¥’ If,» f j € Scover ¢ € U}. G¥ essentially describes the interaction

i
between the auxiliary variables ¢(* and x{® as described in equation (7). In Fig. 2b we illustrate such partition
using the example from Fig. 2b. Our goal is then to show constructively that Isp(G,U,S) < ,.F(f,, f5, ¢) for some f;,
£, that depend on m, n and c =4, which describes the Chimera graph realized by D-Wave hardware (Fig. 1a).

It is known®! that one could embed a complete graph on cm + 1 nodes onto Chimera graph F (m, m, c). Since
any n-node graph is a subgraph of the n-node complete graph, in principle any n-node graph can be embedded
onto Chimera graphs of size O(n?) using the complete graph embedding. A downside of this approach is that it
may fail to embed many graphs that are in fact embeddable®’. Also, using embeddings based on complete graph
embeddings will likely lose the intuition on the structure of the original graph. For graphs with specific structures,
such as bipartite graphs one may be able to find an embedding that is also in some sense structured. We show in
the following Lemma an embedding for any complete bipartite graph K, , onto a Chimera graph. The ability to do
so enables us to embed any bipartite graph onto a Chimera graph.

Lemma 1. For any positive integers p, g and ¢, K, , <,, F([q/c], [p/c], ¢)-

Proof. By the definition of graph minor embedding in Section Graph minor embedding, it suffices to construct a
mapping ¢, - K, .+ F([q/c], [p/c], c) where each v in F, ; is mapped to a tree T, in F([q/c], [p/c], ¢) and
each edge e=(u, v) in K,,, is mapped to an edge (i,, i,) withi, € T, andi, € T,.

Leti = I, 2, ---, p label the nodes on one side of K, and j' = 1, 2, ---, g label the nodes in the other. Using
the labelling scheme on the nodes of Chimera graphs introduced in Section Chimera graphs and Fig. 1b, we
define our mapping ¢,  as
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where ¢, (1, v) maps an edge (u, v) in Kj,,; to the Chimera graph. If we choose the edges in the Chimera graph
properly, it could be checked that ¢, (K, ;) is a subgraph of F([q/c], [p/c], c). O

In Fig. 5 we show an example of embedding K, into F(3, 2, 4). A natural corollary of Lemma 1 is that any
bipartite graph between p and g nodes can be minor embedded in F([q/c], [p/c], ¢). We are then prepared to
handle embedding the G parts of the interaction graphs of Hycp, which are but bipartite graphs (see Fig. 2b for
example).

We then proceed to treat the G!” parts of the interaction graph. The connectivity of G{¥' is completely speci-
fied by (7). To describe such connectivity we define a family of graph L, (V,, E,)asV, = T, U X,_, where

T,={tyty -, t,and X, | = {x}, x5, ---, x,,_4} are two disjoint sets of nodes, the former representing the
intermediate variables ték) and the latter representing the x; variables in equation (7). The set of edges takes the
form

n—1
En = {(tp tz); (tp x1)> (t2> xl)} U U {(x,;p x,‘)) (xifp ti+1)> (x,‘s ti+1)} . (15)
i=2

In Fig. 6 we show an example of L. For any k = 1, 2, -+, |U], let r; be the number of pairs f, fj € S that
cover k. Then G{P = L, - Hence in order to show that we could embed any G onto a Chimera graph, it suffices
to show that we can embed any L, onto a Chimera graph. We show this in the following Lemma for c =4.

Lemma 2. For any positive integer n, L, <, F([2n/c], 2, c) where we restrict to c=4.

Proof. Similar to Lemma 1, we construct a mapping . : L, — F([2n/c], 2, c) where we fix c=4. Following the
notation for nodes in L, in Fig. 6 and the notation for nodes in F (p, ¢, ¢) in Fig. 1b, we construct 1 as

ﬂ,,(ti) = l"((z[icl) Jnlo)d o VC(L[(ZiJII))mod c]] U gt(ti)
/'Ln(xi) = !1/((2[1‘)c 1:251 I Vc([r[(l:))mod ]’ chr[(lzj))mod c]] U fx(xi) ( )
16
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Figure 6. An example of embedding L,, onto F(5, 2, 4). Each color in the left diagram represents a node u in
L,y and the nodes of the same color in the right diagram shows ju,,(14).

where { and ¢ are defined as
%] ifi=1,2
2i-1
éLt(ti) = [ ([T]Z) ] otherwise.

1/H»[(Zifl) mod c]

(17)
({%12) ‘%]H’z) if [ d 2= d2i
Vi) mod @ V(i) mod » if [i/2] mod 2=1and2i +4 <2n—1
R TN (0 .
Vit2i) mod o1 Vi(2i) mod o] -1 if [i/2] mod 2 =0and2i + 4 <2n — 1
(7] otherwise. (18)

With the vertex mapping (1, a mapping of edges in L, onto the Chimera graph F([2n/c], 2, ¢)is easy to find.

In Fig. 6 we show an example of embedding L,, onto F(5, 2, 4). We could then proceed to embed the inter-
action graph Iscp(g us) Such as the one shown in Fig. 2b, in a Chimera graph. Specifically, we state the following
theorem.

Theorem 2. For any instance SCP(G, U, S) with |U| = n and |S| = m, Iscp(6,u.5) Sm F(frfz’ c) where
f1 = O(nm?), f2 = O(m) and c=4 is a constant.
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Figure 7. Embedding the interaction graph of the example physical system in Fig. 2b onto F(4, 4, 4). Note
that the structure of Fig. 2 is preserved on the Chimera graph.

Proof. Our embedding combines ideas from Lemma 1 and 2. We modify the mapping ¢,,, constructed in Lemma
1 to produce a new mapping 6,,, that produces more spacing between the embedded nodes (see for example el
and G in Fig. 7):

i (t,[(2i=1)/c])
0,,) = {v

(2i—1) mod ¢ t=1,-, [-q/c]}
; 2j'=1)/c
01”‘7(]/) = {Vc(J[r((i’]’fl)n;loél) ) t=1,-, [P/C]} (19)

Let u(’ ) denote a mapping ;« described in Lemma 2 that maps the upper left node (Fig. 6) , to v,"* instead of
v . The rest of the mapping then proceeds from v"*). In other words, ;1 ( ) is the mapping ;1 that is shifted by
p — 1 cells to the right and g — 1 cells below. Trivially ,u(l b = p. Similarly we define 8('{;) as the shifted embedding
under 0, , where 0(’ ) (1) = (’ ), Recall that for any ground setelementc;, € U, ry is the number of pairs in S that
covers ck We coulpd then spec1fy the embedding from Iscp g i) ONt0 F(f |, f,, c)as

(r,s)
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n
o) = Uarzljtfdf’l)(i), wherei=1, ---, m
j=1
§ d, d; ; i
S = 00 @) U gD (), where i = 1, -, rjand j =1,

‘I)(xi(j)) — /L,(_Hd"’lemM)(ti)’ wherei=1, -+, ri— 1 andj =1, n
J

(20)

whered; = Zi;ﬂﬂk/ c‘ is the total number of rows of cells occupied by the embedded graphs for handling the
ground elements ¢, through ¢;_. In total ®(Iscp(s,us) Will occupy f, =i M2/ < n(’;) - 2/c = O(nm?)

rowsand f, = [2m/c] + 2 = O(m) columns.

In Fig. 7 we show an embedding I SCP(G,U.S) of the example instance in Fig. 2 onto F(4, 4, 4). Note that our
embedding preserves the original structure of the interaction graph as shown in Fig. 2b. Furthermore, note that
the interaction graph Iscpgus) has M = O(nm?) nodes. Using the complete graph embedding requires
oM?) = O(n’m?) qubits. For the same reason, the construction of Ising Hamiltonian described in equation (4)
is likely going to cost O(nm*) in the worst case of embeding in a Chimera graph since the interaction graph of the
Hamiltonian could involve complete graphs of size O(m?) due to the square term H,. By comparison our embed-
ding costs f f, - 2c = O (nm?) qubits and preserves the structure of the original instance, which affords slightly
more advantage for scalable physical implementations.

Discussion

Our interest in SCP is largely motivated by its important applications in various areas® . We have shown a
complete pipeline of reductions that converts an arbitrary SCP instance to an interaction graph on a D-Wave
type hardware based on Chimera graphs, in a way that preserves the structure of the instance throughout (Figs 2b
and 7) and is more qubit efficient than the usual approach by complete graph embedding. Although no quantum
speedup is observed at this stage based on comparison of median annealing times, the large variance of runtimes
observed in Fig. 3a from instance to instance might suggest that specific subsets of instances could provide quan-
tum speedup. Of course, a clearer understanding of the performance of quantum annealing on solving SCP could
only be brought forth by both scaling up the numerical simulation of the quantum annealing process to include
instances with larger number of spins and actual experimental implementation of the quantum annealing process.
Both of them are of interest to us in our future work.
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