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Solving Set Cover with Pairs 
Problem using Quantum Annealing
Yudong Cao1, Shuxian Jiang1, Debbie Perouli2 & Sabre Kais3,4

Here we consider using quantum annealing to solve Set Cover with Pairs (SCP), an NP-hard 
combinatorial optimization problem that plays an important role in networking, computational biology, 
and biochemistry. We show an explicit construction of Ising Hamiltonians whose ground states encode 
the solution of SCP instances. We numerically simulate the time-dependent Schrödinger equation 
in order to test the performance of quantum annealing for random instances and compare with that 
of simulated annealing. We also discuss explicit embedding strategies for realizing our Hamiltonian 
construction on the D-wave type restricted Ising Hamiltonian based on Chimera graphs. Our embedding 
on the Chimera graph preserves the structure of the original SCP instance and in particular, the 
embedding for general complete bipartite graphs and logical disjunctions may be of broader use than 
that the specific problem we deal with.

Quantum annealing (QA) uses the principles of quantum mechanics for solving unconstrained optimization 
problems1–4. Since the initial proposal of QA, there has been much interest in the search for practical problems 
where it can be advantageous with respect to classical algorithms4–33, particularly simulated annealing (SA)34–36. 
Extensive theoretical, numerical and expeirmental efforts have been dedicated to studying the performance of 
quantum annealing on problems such as satisfiability37–39, exact cover3,39, max independent set39, max clique40, 
integer factorization41, graph isomorphism42,43, ramsey number44, binary classification45,46, unstructured search47 
and search engine ranking48. Many of these approaches3,37,38,40–46 recast the computational problem at hand into 
a problem of finding the ground state of a quantum Ising spin glass model, which is NP-complete to solve in the 
worst case49,50.

The computational difficulty of Ising spin glass has not only given the quantum Ising Hamiltonians the versa-
tility for efficiently encoding many problems in NP50, but also motivated physical realization of QA using systems 
described by the quantum Ising model6,7,9. The notion of adiabatic quantum computing (AQC)3,37,51, which can be 
regarded as a particular class of QA, has further established QA in the context of quantum computation (In this 
work we will use the terms quantum annealing and adiabatic quantum computing synonymously). Although it is 
believed that even universal quantum computers cannot solve NP-hard problems efficiently in general52, there has 
been evidence in experimental quantum Ising systems that suggests quantum speedup over classical computation 
due to quantum tunneling53,54. It is then of great interest to explore more regimes where quantum annealing could 
offer a speedup compared with simulated annealing.

Here we consider a variant of Set Cover (SC) called Set Cover with Pairs (SCP). SC is one of Karp’s 21 
NP-complete problems55 and SCP was first introduced56 as a generalization of SC. Instead of requiring each ele-
ment to be covered by a single object as in SC, the SCP problem is to find a minimum subset of objects so that 
each element is covered by at least one pair of objects. We will present its formal definition in the Preliminaries 
section. SCP and its variants arise in a wide variety of contexts including Internet traffic monitoring and content 
distribution57, computational biology58,59, and biochemistry60. On classical computers, the SCP problem is at least 
as hard to approximate as SC. Specifically, its difficulty on classical computers can be manifested in the results by 
Breslau et al.57, which showed that no polynomial time algorithm can approximately solve Disjoint-Path Facility 
Location, a special case of SCP, on n objects to within a factor that is 

ε−
2 nlog1

 for any ε >​ 0. Due to its complexity, 
various heuristics56 and local search algorithms60 have been proposed.

In this paper we explore using quantum annealing based on Ising spin glass to solve SCP. We start by reducing 
SCP to finding the ground state of Ising spin glass, via integer linear programming (Theorem 1). We then simulate 
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the adiabatic evolution of the time dependent transverse Ising Hamiltonian = − +H s s H sH( ) (1 ) 0 1 which 
interpolates linearly between an initial Hamiltonian H0 of independent spins in uniform transverse field and a 
final Hamiltonian H1 that encodes an SCP instance. For randomly generated SCP instances that lead to Ising 
Hamiltonian constructions of up to 19 spins, we explicitly simulate the time dependent Schrödinger equation. We 
compute the minimum evolution time that each instance needed to accomplish 25% success probability. For 
benchmark purpose we also use simulate annealing to solve the instances and compare its performance with that 
of adiabatic evolution. Results show that the median time for yielding 25% success probablity scales as O(20.33M) 
for quantum annealing and O(20.21M) for simulated annealing, observing no general quantum speedup. However, 
the performance of quantum annealing appears to have wider range of variance from instance to instance than 
simulated annealing, casting hope that perhaps certain subsets of the instance could yield a quantum advantage 
over the classical algorithms.

Aside from the theoretical and numerical studies, we also consider the potential implementation our 
Hamiltonian construction on the large-scale Ising spin systems manufactured by D-Wave Systems6,7,9,14. 
Benchmarking the efficiency of QA is currently of significant interest. An important issue that needs to be 
addressed in such benchmarks is that the physical implementation of the algorithm could be affected by 
instance-specific features. This is manifested in the embedding61,62 of the Ising Hamiltonian construction onto 
the specific topology of the hardware (the Chimera graph21,61,63). Here we present a general embedding of SCP 
instances onto a Chimera graph that preserves the original structure of the instances and requires less qubits than 
the usual approach by complete graph embedding. This allows for efficient physical implementations that are 
untainted by ad hoc constructions that are specific to individual instances.

Preliminaries
Set Cover with Pairs.  Given a ground set U and a collection S of subsets of U, which we call the cover set. 
Each element in S has a non-negative weight, the Set Cover (SC) problem asks to find a minimum weight subset 
of S that covers all elements in U. Define cover function as Q S: 2U  where ∀ ∈s S, Q(s) is the set of all elements 
in U covered by s. Then SC can be formulated as finding a minimum weight ′ ⊆S S  such that 

∪′ = ′ =′∈ ′Q S Q s U( ) ( )s S . Set Cover with Pairs (SCP) can be considered as a generalization of SC in the sense 
that if we define the cover function such that ∀i, ∈j S, i≠​j, Q(i, j) is the set of elements in U covered by the pair 
{i, j}, then SCP asks to find a minimum subset ⊆A S such that ∪= =∈Q A Q i j U( ) ( , )i j S{ , } . Here we restrict to 
cases where each element of S has unit weight.

A graph G(V, E) is a set of vertices V connected by a set of edges E. A bipartite graph is defined as a graph 
whose set of vertices V can be partitioned into two disjoint sets V1 and V2 such that no two vertices within the 
same set are adjacent. We formally define SCP as the following.

Definition 1. (Set Cover with Pairs) Let U and S be disjoint sets of elements and ∪=V U S. Given a bipartite graph 
G(V, E) between U and S with E being the set of all edges, find a subset ⊆A S such that:

1.	 ∀ ∈c Ui , ∃ a i
1
( ), ∈a Ai

2
( )  such that ∈a c E( , )i

i1
( )  and ∈a c E( , )i

i2
( ) . In other words, ci is covered by the pair 

a a{ , }i i
1
( )

2
( ) .

2.	 The size of the set, |A|, is minimized.

We use the notation SCP(G, U, S) to refer to a problem instance with |U| =​ n, |S| =​ m and the connectivity 
between U and S determined by G.

Quantum annealing, adiabatic quantum computing.  In this paper we use QA as a heuristic method 
to solve the SCP problem. QA was proposed2 for solving optimization problems using quantum fluctuations, 
known as quantum tunneling, to escape local minima and discover the lowest energy state. Farhi et al.3 provide 
the framework for using Adiabatic Quantum Computation (AQC), which is closely related to QA, as a quantum 
paradigm to solve NP-hard optimization problems. The first step of the framework is to define a Hamiltonian HP 
whose ground state corresponds to the solution of the combinatorial optimization problem. Then, we initialize a 
system in the ground state of some beginning Hamiltonian HB that is easy to solve, and perform the adiabatic 
evolution = − +H s s H sH( ) (1 ) B P . Here ∈s [0, 1] is a time parameter. In this paper we only consider 
time-dependent function s(t) =​ t/T for total evolution time T, but in general it could be any general functions that 
satisfy s(0) =​ 0 and s(T) =​ 1. The adiabatic evolution is governed by the Schrödinger equation

ψ ψ=i d
dt

t H s t t( ) ( ( )) ( ) (1)

where |ψ(t)〉​ is the state of the system at any time ∈t T[0, ]. Let πi(s) be the i-th instantaneous eigenstate of H(s). 
In other words, let π π=H s s E s s( ) ( ) ( ) ( )i i i  for any s. In particular, let |π0(s)〉​ be the instantaneous ground state of 
H(s).

According to the adiabatic theorem64, for s varying sufficiently slow from 0 to 1, the state of the system |ψ(t)〉​ 
will remain close to the true ground state |π0(s(t))〉​. At the end of the evolution the system is roughly in the 
ground state of HP, which encodes the optimal solution to the problem. If the ground state of HP is NP-complete 
to find (for instance consider the case for Ising spin glass49), then the adiabatic evolution H(s) could be used as a 
heuristic for solving the problem.



www.nature.com/scientificreports/

3Scientific Reports | 6:33957 | DOI: 10.1038/srep33957

An important issue associated with AQC is that the adiabatic evolution needs to be slow enough to avoid 
exciting the system out of its ground state at any point. In order to estimate the scaling of the minimum runtime 
T needed for the adiabatic computation, criteria based on the minimum gap between the ground state and the 
first excited state of H(s) is often used. However, here we do not use the minimum gap as an intermediate for 
estimating the runtime scaling, but instead numerically integrate the time dependent Schrödinger equation (1).

Quantum Ising model with transverse field.  The Hamiltonian for an Ising spin glass on N spins can be 
written as

∑ ∑σ σ σ= +
= <

H h J
(2)i

N

i i
z

i j

N

ij i
z

j
z

1

where  σ = ⊗
−

⊗⊗ − ⊗ −( )1 0
0 1i

z i n i( 1) ( ) acts on the i-th spin with  being a 2 ×​ 2 identity matrix. hi, Jij are coef-

ficients. The Hamiltonian is diagonal in the basis 〉 ∈ | ∈s s{ {0, 1} }N2N
 in the Hilbert space H. In particular 

σz|0〉​ =​ |0〉​ and σz|1〉​ =​ −​|1〉​. We formally define the problem of finding the ground state of an N-qubit Ising 
Hamiltonian in the following.

Definition 2. (Ising Hamiltonian) Given the Hamiltonian H in equation (2), find a quantum state ∈ Hs , where 
H is 2N-dimensional, such that the energy =E Hs s s( )  is minimized. We use the notation ISING (h, J) to refer to 
the problem instance where = h h hh ( , , , )N

T
1 2  and ∈ ×J N N  is a matrix such that the ij-th and the ji-th ele-

ments are equal to Jij/2. The diagonal elements of J are 0. Hence = +E s h p s p s Jp s( ) ( ) ( ) ( )T T  where 
= − ∈ −p s s( ) 1 2 { 1, 1}N .

In this paper, we construct Ising Hamiltonians whose ground state encodes the solution to an arbitrary 
instance of the SCP problem. The physical system used for quantum annealing that we assume is identical to that 
of D-Wave6,7,9,14, namely Ising spin glass with transverse field

∑ ∑ ∑σ σ σ σ= ∆ + +
= = <

H h J
(3)i

N

i i
x

i

N

i i
z

i j

N

ij i
z

j
z

1 1

where  σ = ⊗ ⊗⊗ − ⊗ −( )0 1
1 0i

x i n i( 1) ( ) acts on the i-th spin. The beginning Hamiltonian HB has its hi, jij =​ 0 for 
all i, j and the final Hamiltonian HP has Δ​i =​ 0 for all i while hi and Jij depend on the problem instance at hand. We 
will elaborate on assigning hi and Jij coefficients in HP in Theorem 1.

Graph minor embedding.  The interactions described by the transverse Ising Hamiltonian in equation (3) 
are not restricted by any constrains. However, in practice the topology of interactions is always constrained to the 
connectivity that the hardware permits. Therefore in order to physically implement an arbitrary transverse Ising 
Hamiltonian, one must address the problem of embedding the Hamiltonian into the logical fabric of the hard-
ware61,62. For convenience we define the interaction graph of an Ising Hamiltonian H of the form in equation (2) as 
a graph GH(VH, EH) such that each spin i maps to a distinctive element vi in VH and there is an edge between vi and 
vj iff Jij≠​0. This definition also applies to the transverse Ising system described in equation (3). We use the term 
hardware graph to refer to a graph whose vertices represent the qubits in the hardware and the edges describe the 
allowed set of couplings in the hardware.

In Section Set Cover with Pairs we defined bipartite graphs. Here we define a complete bipartite graph Km,n as 
a bipartite graph where |V1| =​ m, |V2| =​ n and each vertex in V1 is connected with each vertex in V2. A graph H(W, F) 
is a subgraph of G(V, E) if ⊆W V  and ⊆F E . It is possible that the interaction graph of the desired Ising 
Hamiltonian is a subgraph of the hardware connectivity graph. In this case the embedding problem can be solved 
by subgraph embedding, which we define as the following.

Definition 3. A subgraph embedding of G(V, E) into G′​(V′​, E′​) is a mapping ′f V V:  such that each vertex in V 
is mapped to a unique vertex in V′​ and if ∈u v E( , )  then ∈ ′f u f v E( ( ), ( )) .

In more general cases, for an arbitrary Ising Hamiltonian, a subgraph embedding may not be obtainable and we 
will need to embed the interaction graph into the hardware as a graph minor. Before we define minor embedding 
rigorously, recall that a graph is connected if for any pair of vertices u and v there is a path from u to v. A tree is a 
connected graph which does not contain any simple cycles as subgraphs. T is a subtree of G if T is a subgraph of G 
and T is a tree. We then define minor embedding as the following.

Definition 4. A minor embedding of G(V, E) in G′​(V′​, E′​) is defined by a mapping φ ′V V:  such that each vertex 
∈v V  is mapped to a connected subtree Tv of G′​ and if ∈u v E( , )  then there exist iu, ∈ ′i Vv  such that ∈i Tu u, 
∈i Tv v and ∈ ′i i E( , )u v .

If such a mapping φ exists between G and G′​, we say G is a minor of G′​ and we use G ≤​ mG′​ to denote such rela-
tionship. Our goal is to take the interaction graph GH of our Ising Hamiltonian construction and construct the 
mapping φ that embeds GH into the hardware graph as a minor.
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Chimera graphs.  Here we specifically consider the embedding our construction into a particular type of 
hardware graphs used by D-Wave devices44,65 called the Chimera graphs. The basic components of this graph are 
8-spin unit cells6 whose interactions form a K4,4. The K4,4 unit cells are tiled together and the 4 nodes on the left 
half of K4,4 are connected to their counterparts in the cells above and below. The 4 nodes on the right half of K4,4 
are connected to their counterparts in the cells left and right. Furthermore, we define F(p, q, c) as a Chimera graph 
formed by an p ×​ q grid of Kc,c cells. Figure 1a shows F(3, 4) as an example. Note that any Km,n with m, n ≤​ c can be 
trivially embedded in F(p, q, c) with any p, q ≥​ 1 via subgraph embedding. However, it is not clear a priori how to 
embed Km,n with m >​ c or n >​ c onto a Chimera graph, other than using the general embedding of an (m +​ n)-node 
complete graph and consider Km,n as a subgraph. This costs O((m +​ n)2) qubits in general and one may lose the 
intuitive structure of a bipartite graph in the embedding. One of the building blocks of our embedding for our 
Ising Hamiltonian construction (Section Embedding on quantum hardware) is an alternative embedding strategy 
for mapping any Km,n onto ⌈ ⌉ ⌈ ⌉F n c m c c( / , / , ) as a graph minor. Our embedding costs O(mn) qubits and pre-
serves the structure of the bipartite graph.

Quantum annealing for solving SCP
From an arbitrary SCP instance to an Ising Hamiltonian construction.  SCP is NP-complete most 
simply because Set Cover (SC) is a special case of SCP56 and a solution to SCP is clearly efficiently verifiable. Since 
SC is NP-complete itself, any SCP instance can be rewritten as an instance of SC with polynomial overhead. The 
Ising Hamiltonian construction for Set Cover is explicitly known39,50. Hence it is natural to consider using the 
chain of reductions from SCP to SC and then from SC to ISING (Definition 2). If we recast each SCP(G, U, S) with 
|S| =​ m into an SC instance with a cover set of size O(m2). Using the construction by Lucas50 we have an Ising 
Hamiltonian

∑ ∑ ∑= + =





−






+

α α= ∈ =
H H H A x B x1

(4)
A B

n

i V
i

i

N

i
1 :

2

1i

where Vi is the i-th cover set in the SC instance. Since the cover set {Vi} is possibly of size up to O(m2), this leads 
to the Ising Hamiltonian in equation (4) costing O(nm2) qubits.

Here we present an alternative Ising Hamiltonian construction for encoding the solution to any SCP instance. 
We state the result precisely as Theorem 1 below. The qubit cost of our construction is comparable to that of Lucas. 
However, in Section Embedding on quantum hardware we argue that our construction affords more advantages 
in terms of embedding.

Theorem 1. Given an instance of the Set Cover with Pairs Problem SCP(G, U, S) as in Definition 1, there exists an 
efficient (classical) algorithm that computes an instance of the Ising Hamiltonian ground state problem ISING(h, J) 
with ∈h M and ∈ ×J M M where the number of qubits involved in the Hamiltonian is M =​ O(nm2) with n =​ |U| 
and m =​ |S|.

Proof. First, we recast an SCP instance to an instance of integer programming, which is NP-hard in the worst case. 
Then, we convert the integer programming problem to an instance of the ISING problem. Recall Definition 1 of an 
SCP(G, U, S) instance, where G(V, E) is a graph on the vertices V =​ U ∪​ S. For each pair ∈f f S,i j  define a set 
= ∈ | ∈ ∈Q c U f c E f c E{ ( , ) and ( , ) }ij k i k j k . The problem can be recast as an integer program by

Figure 1.  The Chimera graph that represents the qubit connectivity of D-Wave hardware. (a) Example of a 
3 ×​ 3 grid of K4,4 cells, denoted as F(3, 3, 4). (b) Labelling of nodes within a particular cell on the a-th row and 
b-th column. Here we use the cell on the 2nd row and 3rd column as an example.
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∑
∈

smin
(LP)f S

i
i

∑. . ≥ ∀ ∈
.∈

t c Us t 1
(LP 1)c Q

ij k
k ij

≤ ≤ ∀ ≠ ∈ < .t s t s f f f f S i jand , where , and (LP 2)ij i ij j i j i j

∈ ∀ ≠ ∈ .s t f f f f S, {0, 1} , where , (LP 3)i ij i j i j

We have introduced the variable si to indicate whether fi is chosen for the cover A ⊆​ S (si =​ 1 means that fi is 
chosen, otherwise si =​ 0). We have also introduced the auxiliary variable tij to indicate whether fi and fj are both 
chosen. Hence, constraint LP.1 ensures that each element ck ∈​ U is covered by at least one pair in S. LP.2 ensures 
that a pair of elements in S cannot cover any ck ∈​ U unless both elements are chosen.

To convert the integer program to an ISING instance, we first convert the constraints into expressions of logical 
operations. LP.1 can be rewritten as

∨ = ∀ ∈
∈

t c U1,
(5)c Q

ij
k

k
( )

k ij

LP.2 can be translated to a truth table for the binary operation involving tij and si(sj) where only the entry 
= = = =s t s t{ 0, 1}( 0, 1)i ij j ij  evaluates to 0 and the other three entries evaluate to 1. Using the following 

Hamiltonians we could translate the logic operations ∨​, ∧​ and ≤​ into the ground states of Ising model, see ref. 66 
for more details.







σ σ σ σ σ σ σ σ σ

σ σ σ σ σ σ σ σ σ

σ σ σ σ

= − − + + − −

= + + − + − −

= − + − .

∨

∧

≤

⁎ ⁎ ⁎ ⁎

⁎ ⁎ ⁎ ⁎

H s s s

H s s s

H s s

( , , ) 1
4

(3 2 2 2 )

( , , ) 1
4

(4 2 2 3 3 )

( , ) 1
4

( )
(6)

z z z z z z z z z

z z z z z z z z z

z z z z

1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2

1 2 1 2 1 2

Note that H≤(s1, s2) is essentially 10 10 s s1 2
. In other words we are penalizing the only 2-bit string s1s2  

t hat  v io lates  t he  const raint  s 1 ≤ ​ s 2.  The  ground s t ate  subspace  of  H∨  i s  spanned by 
∨ = ∈⁎ ⁎ ⁎s s s s s s s s s{ , , , {0, 1}}1 2 1 2 1 2 . Similarly, the ground state subspace of H∧ is spanned by 
∧ =⁎ ⁎s s s s s s{ }1 2 1 2  and that of H≤ spanned by | 〉 ≤s s s s{ }1 2 1 2 .

By linearly combining the above constraint Hamiltonians, we can enforce multiple constraints to hold at the 
same time. For example, the statement ∨ ∧ =s s s 11 2 3  can be decomposed as simultaneously ensuring 
∨ =s s y1 2 , ∧ =y s z3 , and z =​ 1. In other words we have used auxiliary variables y and z to transform the con-

straint ∨ ∧ =s s s 11 2 3 , which involves a clause ∨ ∧s s s1 2 3 of three variables, to a set of constraints involving 
only clauses of two variables. Then, the Ising Hamiltonian = + +∨ ∧H H s s y H y s z( , , ) ( , , ) 0 0 z1 2 3  has its 
ground state spanned by states s s s yz1 2 3  with s1, s2, and s3 satisfying ∨ ∧ =s s s 11 2 3 . The third term in H ensures 
that z =​ 1 by penalizing states with =z 1 .

Therefore, we can translate (5) to an Ising Hamiltonian. For a fixed k, the constraint (5) takes the form of 
∨ ∨ ∨ =t t t 1k k

N
k

1
( )

2
( ) ( )

k
 where each ∈t {0, 1}j

k( )  and ≤ − =N m m O m( 1) ( )k
1
2

2 . Similarly to the example 
above, we introduce Nk −​ 1 auxiliary variables x k

1
( ), −x x, ,k

N
k

2
( )

1
( )

k
 such that

=







∨ =

∨ = −− + 

x
t t j

x t j N

1

2, , 1 (7)
j
k

k k

j
k

j
k

k

( ) 1
( )

2
( )

1
( )

1
( )

Thus, = ∨ ∨ ∨− x t t tN
k k k

N
k

1
( )

1
( )

2
( ) ( )

k k
. In order to ensure the first constrain holds, it is needed to ensure that 

=−x 1N
k

1
( )

k
. Then we could write down the corresponding Ising Hamiltonian for the constraint as

∑= + + .∨
=

−

∨ − +
−

H H t t x H x t x( , , ) ( , , ) 0 0
(8)

k
k k k

j

N

j
k

j
k

j
k

x1
( )

2
( )

1
( )

2

1

1
( )

1
( ) ( )k

Nk
k

1
( )

The last term is meant to make sure that =−x 1N
k

1
( )

k
 in the ground state of Hk. Therefore the Hamiltonian whose 

ground state subspace is spanned by all states that obey both of the constraints in the integer program (5) can be 
written as
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∑

∑

= +

= + .
∈

≤

≤
∈

≤ ≤

H H H

H H t s H t s( ( , ) ( , ))
(9)

c U
k

i j f f S
ij i ij j

cons

, : ,

k

i j

The target function ∑ ∈ sf S ii
 which we seek to minimize can be directly mapped to an Ising Hamiltonian 

σ= ∑ = ∑ −∈ ∈H 1 1 (1 )f S s f S starg
1
2i i i i

. This is because we would like to essentially minimize the number of 
1’s in the set of si values and penalize choices with more 1’s. Therefore the final Hamiltonian whose ground state 
contains the solution to the original SCP instance becomes

α= +H H H (10)SCP targ cons

for some weight factor α.
We now estimate the overhead for the mapping. Htarg acts on |S| =​ m qubits. In Hcons, H≤ acts on O(m2) qubits, 

since there are O(m2) variables tij. Each Hk in Hcons requires Nk =​ O(m2) qubits. There are in total |U| =​ n of the Hk 
terms, which gives O(nm2) qubits in total. 						                      □​

Example.  Consider the SCP instance shown in Fig. 2a. With the mapping presented in Theorem 1, we arrive at 
an Ising instance ISING (h, J) where α =​ 1/4 in (10) and h, J are presented in Supplementary Material Details of the 
example SCP instance. The ground state subspace of the Hamiltonian in (2) with hi and Jij coefficients defined 
above, restricted to the si elements is spanned by ψ = =s s x s s s s[ such that 1001 ]1 2 2

(2)
1 2 3 4 . This corre-

sponds to A =​ {f1, f4}, the solution to the SCP instance. Figure 2b illustrates the interaction graph of the spins in 
the Ising Hamiltonian that corresponds to the SCP instance.

Numerical simulation of quantum annealing.  In order to test the time complexity of using quantum 
annealing to solve SCP instances via the construction in Theorem 1, we generate random instances of SCP that 
lead to Ising Hamiltonian HSCP of = N 3, 4, , 19 spins. In Definition 1 we use a bipartite graph between the 
ground state U of size n and the cover set S of size m to describe an SCP instance. For fixed n and m, there are in 
total 2mn such possible bipartite graphs (if we consider each bipartite graph as a subgraph of Km,n and count the 
cardinality of the power set of the edges of Km,n). Therefore to generate random bipartite graphs we only need to 
flip mn fair coins to uniformly choose from all possibile bipartite graphs between U and S. However, we would 
like to exclude the bipartite graphs where some element of S is not connected to any element in U. These “dummy 
nodes” are not pertinent to the computational problem at hand and should be removed from consideration before 
converting the SCP instance to an Ising Hamiltonian HSCP. We thus use a scheme for generating random instances 
of SCP without dummy nodes as described in Algorithm 1. Under the constraint that no dummy element in S is 
allowed, there are in total (2n −​ 1)m possible bipartite graphs. In Supplementary Material Proof of correctness for 

Figure 2.  Example of converting an SCP instance to Ising Hamiltonian. (a) The SCP instance. Here 
=S f f f f{ , , , }1 2 3 4  and =U c c{ , }1 2 . The solution is the set =A f f{ , }1 4 . The circles represent the covering set 

elements S and the squares are the ground elements U. (b) The interaction of Ising instance HSCP converted from 
the SCP instance in (a). Every node corresponds to a qubit. The si’s are the output bits that correspond to the 
covering set elements S. The others are auxiliary variables. Every edge represents an interaction term between 
the corresponding spins. Here we do not show the 1-local terms in our construction of HSCP (for example the 
terms in Htarg for enforcing the minimization of the target function). The bold dashed black line exemplifies the 
edges between the tij

k( ) nodes and the si nodes, which come from the constraints ≤t sij
k

i
( )  and ≤t sij

k
j

( )  for each 
pair f f{ , }i j  that covers ck. Each of the inequality constraints is enforced by a H≤ term in (6). The bold triangle 
exemplifies the H∨ constraints in (6) that are used to enforce the logical relationship between the tij

k( ) variables 
and the auxiliary variables as shown in (7). The areas marked by G1

(1), G1
(2) etc outline the structure of the Ising 

Hamiltonian that is relevant in the discussion of hardware embedding.
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Algorithm 1 we rigorously show that Algorithm 1 indeed samples uniformly among the (2n −​ 1)m possible 
“dummy-free” bipartite graphs.

Algorithm 1 Algorithm for generating a random SCP (G, U, S) without dummy elements in the cover set

Input: The ground set U and the cover set S

Procedure:

1: Initialize the output graph G ←​ ∅​;

2: for all s ∈​ S do

3:   for all u ∈​ U do

4:     With probability 1/2, add edge (s, u) to G;

5:   end for

6:   if s is still unattached to any element in U then

7:     Repeat steps 3 through 5 until s is attached to some 
element in U.

8:   end if

9: end for

10: return G.

For each randomly generated instance from Algorithm 1 we construct an Ising Hamiltonian HSCP according to 
Theorem 1. We then perform a numerical simulation of the time dependent Schrödinger equation (1) from time 
t =​ 0 to t =​ T with time step Δ​t =​ 1 and the time dependent Hamiltonian defined as

∑σ

=


 −



 +

=
=

H s t t
T

H t
T

H

H

( ( )) 1

(11)

B SCP

B
i

M

i
x

1

where HSCP is defined in equation (10). Here because of the construction of HSCP, our total Hamiltonian H(s(t)) acts not 
only on the spins ∈s {0, 1}m indicating our choice of elements in the cover set S, but also auxiliary variables tij

k( ) and 
xi

k( ), for which we use t and x to denote their respective collections. Our initial state is the ground state of HB, namely

∑ψ = .
∈

s t x(0) 1
2

, ,
(12)

M
s t x, , {0,1}M

To obtain the final state ψ T( )  where T is some positive integer, we use the ode45 subroutine of MATLAB under 
default settings to numerically integrate Schrödinger equation to obtain ψ(1)  from ψ(0) , and then use ψ(1)  as an 
initial state to obtain ψ(2)  in the same fashion, and so on. We define the success probability p as a function of the 
total annealing time T as ψ= Πp T T( ) ( ) 2

 where Π​ is a projector onto the subspace spanned by states with s 
being a solution of the original SCP instance. Using binary search we determine the minimum time T* to achieve 

≥ .⁎p T( ) 0 25 for each instance of SCP. Figure 3 shows the distribution of T* for SCP instances that lead to Ising 
Hamiltonians HSCP of the same sizes, as well as how the median annealing time scales as a function of number of 
spins M. Results show that for instances with M up to 19, the median annealing time scales roughly as O(20.31M).

Numerical experiment with Simulated Annealing.  Simulated annealing, first introduced three dec-
ades ago67, has been widely used as a heuristic for handling hard combinatorial optimization problems. It is espe-
cially of interest as a benchmark for quantum annealing34–36 because of similarities between the two algorithms. 
While quantum annealing employs quantum tunneling to escape from local minima, simulated annealing relies 
on thermal excitation to avoid being trapped in local minima. The general procedure we adopt for simulated 
annealing to approach the ground state of an Ising spin glass can be summarized as the following68:

1.	 Repeat R times the following:

		  (a)	 Initialize s ←​ s0 randomly;
		  (b)	 Perform S times the following: (let = −i S0, 1, , 1 index the steps)

			   (i)	 Set the temperature τ←T i( )i ;
			   (ii)	 � Perform a sweep on si to obtain s′​; (a sweep is a sequence of steps each of which randomly selects a 

spin and flips its state, so that on average each spin is flipped once during a sweep)
			   (iii)	 With probability ′ −( )exp E E

T
s s( ) ( )

i
, let ′=+s si 1 . Otherwise let ←+s si i1 .

2.	 Return sS as the answer.
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For the purpose of comparison we also used simulated annealing to solve the same set of instances generated 
by Algorithm 1 for testing quantum annealing. The program implementation that we use is built by Isakov et al.68,  
which is a highly optimized implementation of simulated annealing with care taken to exploit the structures 
of the interaction graph, such as being bipartite and of bounded degree. Here we use the program’s most basic 
realization of single-spin code for general interactions with magnetic field on an interaction graph of any degree.

As mentioned by Isakov et al., to improve the solution returned by simulated annealing, one could increase 
either the number of sweeps S or number of repetitions R in the implementation, or both of them. However, note 
that the total annealing time is proportional to the product ⋅S R and there is a trade-off between S and R. For a 
fixed number of sweeps S let the success probability (i.e. the fraction of si that is satisfactory) be w(S). In order to 
achieve a constant success probability p (say 25%, which is what we use here), we need at least 
= − −⌈ ⌉R p w Slog(1 )/log(1 ( ))  repetitions. Hence the total time of simulated annealing can be written as

=






−
−





 ⋅ .T S p

w S
S( ) log(1 )

log(1 ( )) (13)

In general w(S) increases as S increases, leading to a decrease in R. We numerically investigate this with an 
Ising system of N =​ 17 spins generated from an SCP instance via the construction in Theorem 1. We plot the 
annealing time T versus S in Fig. 4a. For each SCP instance with the number of spin M we compute the optimal 
S* such that =⁎ ⁎T T S( ) is the optimized runtime (Fig. 4a). We further explore how the optimal runtime T* scales 
as a function of the number of spins M. As shown in Fig. 4b, a linear fit on a semilog plot shows that roughly 
= .⁎T O(2 )M0 21 .
The units of time used for both Fig. 4a,b are arbitrary and thus do not support a point-to-point comparison. 

But the scaling difference seems apparent. For quantum annealing we restrict to systems of at most 19 spins due 
to computational limitations faced in representing the full Ising Hamiltonian when numerically integrating the 
time-dependent Schrödinger equation (1).

Although there is no quantum speedup observed in terms of median runtime over all randomly generated 
instances of the same size, we notice that for a fixed number of spins M the performances of both quantum 
annealing and simulated annealing are sensitive to the specific instance of Ising Hamiltonian HSCP than simulated 
annealing. This can be seen by considering at the same time the quantum annealing results in Fig. 3 and the test 
results for simulated annealing shown in Fig. 4b. One could then speculate that perhaps by focusing on a specific 
subset of SCP instances could yield a quantum advantage.

Figure 3.  Plot of the optimal quantum annealing time T* versus the number of spins involved in the 
construction of HSCP. Here we fit the logarithm of median T* with a straight line. The size M of our Ising 
systems ranges from 3 to 19. From the fitting function we observe that the annealing time scales as roughly 
O(20.31M). We also provide on the bottom plot the number of instances for each M.



www.nature.com/scientificreports/

9Scientific Reports | 6:33957 | DOI: 10.1038/srep33957

Embedding on quantum hardware
In this section we deal with the physical realization of quantum annealing for solving SCP instances using D-Wave 
type hardwares. There are mainly two aspects62,69 of this effort: 1) The embedding problem62, namely embedding 
the interaction graph of the Ising Hamiltonian construction HSCP as a graph minor of a Chimera graph (refer to 
Section Graph minor embedding for definitions of the graph terminologies). 2) The parameter setting problem69, 
namely assigning the strengths of the couplings and local magnetic fields for embedded graph on the hardware, 
in a way that minimizes the energy scaling (or control precision) required for implementing the embedding. Here 
we focus on the former issue.

We start with an observation on the structures of HSCP. For any instance SCP(G, U, S) according to Definition 1,  
the interaction graph ISCP(G,U,S) of the corresponding Ising Hamiltonian HSCP can be regarded as a union of n sub-
graphs, namely ∪ ∪ ∪= I G G GSCP G U S

n
( , , )

(1) (2) ( ). Each subgraph G(i) is associated with an element of the 
ground set ∈c Ui  as in Fig. 2a. Each G(i) could be further partitioned into two parts, G i

1
( ) and G i

2
( ). For any k, G k

1
( ) 

is a bipartite graph between =s{ }i i
m

1 and | ∈ ∈t f f S c U{ , cover }ij
k

i j k
( ) . G k

2
( ) essentially describes the interaction 

between the auxiliary variables tij
k( ) and xi

k( ) as described in equation (7). In Fig. 2b we illustrate such partition 
using the example from Fig. 2b. Our goal is then to show constructively that ISCP(G,U,S) ≤​ mF(f1, f2, c) for some f1, 
f2 that depend on m, n and c =​ 4, which describes the Chimera graph realized by D-Wave hardware (Fig. 1a).

It is known61 that one could embed a complete graph on cm +​ 1 nodes onto Chimera graph F m m c( , , ). Since 
any n-node graph is a subgraph of the n-node complete graph, in principle any n-node graph can be embedded 
onto Chimera graphs of size O(n2) using the complete graph embedding. A downside of this approach is that it 
may fail to embed many graphs that are in fact embeddable61. Also, using embeddings based on complete graph 
embeddings will likely lose the intuition on the structure of the original graph. For graphs with specific structures, 
such as bipartite graphs one may be able to find an embedding that is also in some sense structured. We show in 
the following Lemma an embedding for any complete bipartite graph Kp,q onto a Chimera graph. The ability to do 
so enables us to embed any bipartite graph onto a Chimera graph.

Lemma 1. For any positive integers p, q and c, ≤ ⌈ ⌉ ⌈ ⌉K F q c p c c( / , / , )p q m, .

Proof. By the definition of graph minor embedding in Section Graph minor embedding, it suffices to construct a 
mapping φ  ⌈ ⌉ ⌈ ⌉K F q c p c c: ( / , / , )p q p q, ,  where each v in Fp,q is mapped to a tree Tv in ⌈ ⌉ ⌈ ⌉F q c p c c( / , / , ) and 
each edge e =​ (u, v) in Kp,q is mapped to an edge i i( , )u v  with ∈i Tu u and ∈i Tv v.

Let = i p1, 2, ,  label the nodes on one side of Kp,q and ′ = j q1, 2, ,  label the nodes in the other. Using 
the labelling scheme on the nodes of Chimera graphs introduced in Section Chimera graphs and Fig. 1b, we 
define our mapping φ p q,  as

Figure 4.  (a) Plot of annealing time T versus number of sweeps S using the simulated annealing 
implementation68 on an Ising Hamiltonians of 17 spins constructed from an SCP instance. We use the default 
settings for all parameters other than S and R. Also we mark the optimal runtime T*. (b) Plot of optimized 
annealing time T* versus the number of spins involved in the Ising Hamiltonian HSCP corresponding to 
randomly generated SCP instances according to Algorithm 1. We also provide on the bottom plot the number  
of instances for each M.
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φ

φ

φ
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⌈ ⌉

⌈ ⌉
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{ }
( )

i v t q c
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( ) 1, , /
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p q i c
t i c

p q c j c
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p q i c
i c j c

c j c
i c j c
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( , / )

, ( mod )
( / , )
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( / , / )

( mod )
( / , / )

where φ u v( , )p q,  maps an edge (u, v) in Kp,q to the Chimera graph. If we choose the edges in the Chimera graph 
properly, it could be checked that φ K( )p q p q, ,  is a subgraph of ⌈ ⌉ ⌈ ⌉F q c p c c( / , / , ).	 □​

In Fig. 5 we show an example of embedding K7,10 into F(3, 2, 4). A natural corollary of Lemma 1 is that any 
bipartite graph between p and q nodes can be minor embedded in ⌈ ⌉ ⌈ ⌉F q c p c c( / , / , ). We are then prepared to 
handle embedding the G i

1
( ) parts of the interaction graphs of HSCP, which are but bipartite graphs (see Fig. 2b for 

example).
We then proceed to treat the G i

2
( ) parts of the interaction graph. The connectivity of G k

2
( ) is completely speci-

fied by (7). To describe such connectivity we define a family of graph L V E( , )n n n  as ∪= −V T Xn n n 1 where 
= T t t t{ , , , }n n1 2  and =− −X x x x{ , , , }n n1 1 2 1  are two disjoint sets of nodes, the former representing the 

intermediate variables tij
k( ) and the latter representing the xk variables in equation (7). The set of edges takes the 

form

∪ ∪=









.

=

−

− − + +E t t t x t x x x x t x t{( , ), ( , ), ( , )} {( , ), ( , ), ( , )}
(15)

n
i

n

i i i i i i1 2 1 1 2 1
2

1

1 1 1 1

In Fig. 6 we show an example of L10. For any = k U1, 2, , , let rk be the number of pairs ∈f f S,i j  that 
cover k. Then =G Lk

r2
( )

k
. Hence in order to show that we could embed any G i

2
( ) onto a Chimera graph, it suffices 

to show that we can embed any Ln onto a Chimera graph. We show this in the following Lemma for c =​ 4.

Lemma 2. For any positive integer n, ≤ ⌈ ⌉L F n c c( 2 / , 2, )n m  where we restrict to c =​ 4.

Proof. Similar to Lemma 1, we construct a mapping µ  ⌈ ⌉L F n c c: ( 2 / , 2, )n n  where we fix c =​ 4. Following the 
notation for nodes in Ln in Fig. 6 and the notation for nodes in F p q c( , , ) in Fig. 1b, we construct μ as

∪

∪

µ ξ

µ ξ

=









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
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

− 
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(16)

n i i c

i
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c i c

i
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n i i c

i
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i
c
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i
c

x i

(2 1) mod

2 1 ,1

[(2 1) mod ]

2 1 ,1
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2 ,1

[(2 ) mod ]

2 ,1

[(2 ) mod ]

2 ,2

Figure 5.  An example showing the embedding scheme outlined in Lemma 1. The nodes and the trees 
mapped from the nodes are marked with the same colors.
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where ξt and ξx are defined as
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





∅ =














.+ −



− 
( )t

i

v( )

if 1, 2

otherwise
(17)

t i
c i c

i
c

[(2 1) mod ]

2 1 ,2

ξ =

























= + < −















= + < −

∅ .










+

−






−





+

⌈ ⌉

⌈ ⌉

( ) ( )

( ) ( )x

v v i i n

v v i i n
( )

, if /2 mod 2 1 and 2 4 2 1

, if /2 mod 2 0 and 2 4 2 1

otherwise (18)

x i

i c

i
c

i c

i
c

i c

i
c
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With the vertex mapping μn, a mapping of edges in Ln onto the Chimera graph ⌈ ⌉F n c c( 2 / , 2, ) is easy to find.
In Fig. 6 we show an example of embedding L10 onto F(5, 2, 4). We could then proceed to embed the inter-

action graph ISCP(G,U,S), such as the one shown in Fig. 2b, in a Chimera graph. Specifically, we state the following 
theorem.

Theorem 2. For any instance G U SSCP( , , ) with =U n and =S m, ≤I F f f c( , , )SCP G U S m( , , ) 1 2  where 
=f O nm( )1

2 , =f O m( )2  and c =​ 4 is a constant.

Figure 6.  An example of embedding L10 onto F(5, 2, 4). Each color in the left diagram represents a node u in 
L10 and the nodes of the same color in the right diagram shows μ10(u).
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Proof. Our embedding combines ideas from Lemma 1 and 2. We modify the mapping φp,q constructed in Lemma 
1 to produce a new mapping θp,q that produces more spacing between the embedded nodes (see for example G1

(1) 
and G1

(2) in Fig. 7):

θ

θ

= =

′ = =

−
−

+ ′−
′−





⌈ ⌉

⌈ ⌉

⌈ ⌉

⌈ ⌉

{ }
{ }

i v t q c

j v t p c

( ) 1, , /

( ) 1, , / (19)

p q i c
t i c

p q c j c
j c t

, (2 1) mod
( , (2 1)/ )

, (2 1 mod )
( (2 1)/ , )

Let µn
r s( , ) denote a mapping μ described in Lemma 2 that maps the upper left node (Fig. 6) t1 to v r s

1
( , ) instead of 

v1
(1,1). The rest of the mapping then proceeds from v r s

1
( , ). In other words, µn

r s( , ) is the mapping μ that is shifted by 
p −​ 1 cells to the right and q −​ 1 cells below. Trivially µ µ=n

(1,1) . Similarly we define θp q
r s
,

( , ) as the shifted embedding 
under θp,q where θ = v(1)p q

r s r s
,

( , )
1
( , ). Recall that for any ground set element ∈c Uk , rk is the number of pairs in S that 

covers ck. We could then specify the embedding from I G U SSCP( , , ) onto F f f c( , , )1 2  as

Figure 7.  Embedding the interaction graph of the example physical system in Fig. 2b onto F(4, 4, 4). Note 
that the structure of Fig. 2 is preserved on the Chimera graph.
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where = ∑ 



=

−d r c2 /j k
j

k1
1  is the total number of rows of cells occupied by the embedded graphs for handling the 

ground elements c1 through cj−1. In total Φ​(ISCP(G,U,S)) will occupy = ∑ ≤ ⋅ == ⌈ ⌉ ( )f r c n m c O nm2 / 2 2/ ( )k
n

k1 1
2  

rows and = + =⌈ ⌉f m c O m2 / 2 ( )2  columns.	 □
In Fig. 7 we show an embedding I G U SSCP( , , ) of the example instance in Fig. 2 onto F(4, 4, 4). Note that our 

embedding preserves the original structure of the interaction graph as shown in Fig. 2b. Furthermore, note that 
the interaction graph ISCP(G,U,S) has =M O nm( )2  nodes. Using the complete graph embedding requires 

=O M O n m( ) ( )2 2 4  qubits. For the same reason, the construction of Ising Hamiltonian described in equation (4) 
is likely going to cost O(nm4) in the worst case of embeding in a Chimera graph since the interaction graph of the 
Hamiltonian could involve complete graphs of size O(m2) due to the square term HA. By comparison our embed-
ding costs ⋅ =f f c O nm2 ( )1 2

3  qubits and preserves the structure of the original instance, which affords slightly 
more advantage for scalable physical implementations.

Discussion
Our interest in SCP is largely motivated by its important applications in various areas57–60. We have shown a 
complete pipeline of reductions that converts an arbitrary SCP instance to an interaction graph on a D-Wave 
type hardware based on Chimera graphs, in a way that preserves the structure of the instance throughout (Figs 2b 
and 7) and is more qubit efficient than the usual approach by complete graph embedding. Although no quantum 
speedup is observed at this stage based on comparison of median annealing times, the large variance of runtimes 
observed in Fig. 3a from instance to instance might suggest that specific subsets of instances could provide quan-
tum speedup. Of course, a clearer understanding of the performance of quantum annealing on solving SCP could 
only be brought forth by both scaling up the numerical simulation of the quantum annealing process to include 
instances with larger number of spins and actual experimental implementation of the quantum annealing process. 
Both of them are of interest to us in our future work.
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