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Abstract

Background: Restriction site analysis involves determining the locations of restriction sites after the process of digestion
by reconstructing their positions based on the lengths of the cut DNA. Using different reaction times with a single enzyme
to cut DNA is a technique known as a partial digestion. Determining the exact locations of restriction sites following a
partial digestion is challenging due to the computational time required even with the best known practical algorithm.

Results: In this paper, we introduce an efficient algorithm to find the exact solution for the partial digest problem. The
algorithm is able to find all possible solutions for the input and works by traversing the solution tree with a
breadth-first search in two stages and deleting all repeated subproblems. Two types of simulated data, random
and Zhang, are used to measure the efficiency of the algorithm. We also apply the algorithm to real data for the
Luciferase gene and the E. coli K12 genome.

Conclusion: Our algorithm is a fast tool to find the exact solution for the partial digest problem. The percentage of
improvement is more than 75% over the best known practical algorithm for the worst case. For large numbers of inputs,
our algorithm is able to solve the problem in a suitable time, while the best known practical algorithm is unable.

Keywords: Restriction site analysis, Digestion process, Partial digest problem, DNA, Bioinformatics algorithm, Breadth first search

Background
In 1970, Hamilton Smith discovered that long DNA mole-
cules could be digested into a set of restriction fragments
by the restriction enzyme HindII based on the occurrence
of restriction sites with the sequences GTGCAC or
GTTAAC [1]. Since that time, restriction enzymes have
played a crucial role in many biological experiments, in-
cluding genome editing [2], gene cloning [3], protein ex-
pression [4, 5] and genome mapping [6–11]. Restriction
enzymes are commonly used to physically map genomes.
In physical mapping, the restriction enzymes are used to
cut a DNA molecule at restriction sites with the goal of
identifying the locations of the restriction sites after diges-
tion. Their positions in the genome are determined by
analyzing the lengths of the digested DNA. Based on the
experimental assumptions of digestion, there are two main

types of digestions, a partial digest [9] and a double digest
[10]. Constructing an accurate physical map following a
partial digestion is a fundamental problem in genome ana-
lysis. In this work, we consider the partial digestion.
In a partial digestion experiment, one restriction enzyme

is used to cut one or more target DNA molecules at several
specific restriction site. The digestion results in a collection
of short DNA fragments, and the lengths of these frag-
ments are recorded in multiset A. Attempting to recon-
struct the locations of the restriction sites in the target
DNA molecules using multiset A is known as the Partial
Digest Problem, PDP. Some modifications have been intro-
duced into the partial digestion process to produce simpli-
fied variants of PDP. These variants include: the simplified
partial digest problem, SPDP [12], the labeled partial digest
problem, LPDP [13] and the probed partial digest problem,
PPDP [14]. In this work, we consider the PDP.
Several algorithms [15–20] have been developed to solve

the PDP. Some of these algorithms have short running
times, but the solutions are not exact. These algorithms
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[15–17] are based on heuristic and approximation strat-
egies. Other algorithms require a long running time in the
worst case, but the solution is exact for any instance.
These algorithms [18–20] are based on brute force or
branch and bound strategies.
In this research paper, we describe an algorithm with a

suitable run time that generates an exact solution for the
PDP. The previous algorithms that yield an exact PDP solu-
tion can be divided into impractical and practical types. The
impractical solutions are based on the brute force strategy
and polynomial factorization [19]. The best known practical
algorithm for PDP is the algorithm proposed by Skiena et al.
[20], which is based on the branch and bound strategy. The
algorithm is practical because the running time of the algo-
rithm is O (n2 log n) for an average case, while exponential
amounts of time were required for the worst case.

Problem formulation and related definitions
Before we give the formal definition of the PDP, we need
the following related definitions.
Definition 1 [21]: The difference of two multisets D

and L denoted by D\L such that D\L = {x|x ∈D and
C(D\L, x) =C(D, x) −C(L, x) > 0}, where C (D, x) denotes the
number of occurrences of element x ∈D in D.
Definition 2 [21]: The sum or (disjoint union) of

two multisets D and L denoted by D ∪+ L such that
D ∪+ L = {x|x ∈D or x ∈ L and C (D ∪+ L, x) = C (D, x) +
C (L, x)}.
Definition 3 [22]: The differences of element y and a set

X denoted by Δ (y,X) such that Δ(y,X) = {|y − xi| : xi ∈X}.
Definition 4 [22]: The differences for a set X, denoted by

ΔX, is a multiset such that: ΔX = {|xj − xi|, 0 ≤ i < j ≤ n − 1}.
Remark 1: We can write ΔX in another form ΔX =

i = 0
n − 1 ∪+ Δ (xi, (X\xi)), where X = {x0, x1,…, xn − 1}.
The Partial Digest Problem, PDP [11]: Given a multiset

of N ¼ n
2

� �
positive integers D = {d0, d1, d2, …, dN− 1}. Is

there a set of n integers X = {x0, x1, x2, …, xn − 1} such that
ΔX =D ?.
We also need two propositions. The first proposition is used

to give another formula for the difference between three mul-
tiple sets. The formula will be used to prove the correctness of
our proposed method. The second proposition is used to illus-
trate how to construct an example for the worst case, which
leads to an exponential time for Skiena’s algorithm [23].
Proposition 1: Let D, L and Z be three multisets, then

(D\L)\Z =D\(L ∪+ Z).
Proposition 2 [23]: Let 0 < ε < 1

12 n , A1 = {1 − nε,…,
1 − 2ε, 1 − ε}, A2 = {ε, 2ε,…, nε}, A3 = {(n + 1)ε, (n + 2)ε,…,
2nε}, A4 = {(2n + 1)ε, (2n + 2)ε,…, 3nε}, A5 = {1 − 3nε,…,
1− (2n + 2)ε, 1− (2n + 1)ε} and D = F ∪G where F and G are
disjoint sets satisfying F ∪G* =A3 and G* = {1− g| ∀ g ∈G}.
Let A=A1 ∪A2 ∪A4 ∪A5 ∪D ∪ {0, 1}, we can choose D such

that giving ΔA to Skiena’s algorithm will take it at least
Ω(2n − 1) time to find A.

Methods
In this section, we present three algorithms. The first
one is the best previous practical algorithm, while the
other two algorithms are the proposed algorithms.

Best previous practical algorithm
The main goal of PDP is to reconstruct the elements, xi, from
a multiset, D, of N= n (n− 1)/2 integers by finding a set X
such that ΔX = D. The best known algorithm for solving the
PDP is based on the branch and bound strategy. The main
idea of this algorithm is to construct the set X incrementally.
The algorithm is based on the depth-first search algorithm
with two bounding conditions. We refer to this method as
Algorithm BBd (branch and bound based on depth).

Observation
Figure 1 represents the execution of the algorithm BBd
on D = {1, 2, 2, 3, 5, 6, 7, 8, 8, 10}. In the figure, we use
the following notations.
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i. Each node in the solution tree for the PDP
represents a pair of sets (Dk

i , Xk
i ) where the index k

represents the level number, and the index i
represents the node number in the level k.

ii. The number t inside the circle at the top right of each
node represents the t-th calling for the procedure Place.

iii. The symbol “⊥” is used when the current node does
not generate any new elements.

It is clear that at the level 0, the root contains the mul-
tiset D0

0 = {1, 2, 2, 3, 5, 6, 7, 8, 8} and the set X0
0 = {0, 10}.

In general, X0
0 = {0, width} and D0

0 =D \ {width}, where D
is the input of the PDP. Additionally, each node (Dk

j , Xk
j )

at the level k, k > 0, of the solution tree generates at most
two nodes at the level k + 1 as follows:

1. Add an element y to Xk
j to generate Xk + 1

i = Xk
j ∪ {y}.

2. Remove the elements of Δ (y,Xk
j ) from Dk

j to generate
Dk + 1
i =Dk

j \Δ(y,Xk
j ).

where y =Max (Dk
j ) or y = width ‐Max(Dk

j ). We also ob-
serve from Fig. 1 the following:

1. There are two identical subproblems (D2
0, X2

0) and (D2
1, X2

1),
such that D2

0 =D2
1 = {1, 3, 5, 7} and X2

0 =X2
1 = {0, 2, 8, 10}.

2. The two identical subproblems lead to two identical
solutions, {0, 2, 7, 8, 10} and {0, 2, 3, 8, 10}.

First proposed method
In this subsection, we propose an efficient method that re-
duces the running time of the PDP. The method is based on
traversing the solution tree for the PDP using the breadth-
first strategy instead of the depth-first strategy. We also con-
sider the two bounding conditions that are used in algorithm
BBd. Moreover, we remove all identical subproblems at the
same level. The main steps of our method are as follows:

1. Build the solution tree for the PDP using the
breadth-first strategy, level by level.

2. Before creating the nodes of the new level, we remove
all repeated nodes existing in the current level such that
any node appears only one time in the current level.

Algorithm BBb (branch and bound based on breadth)
shows the steps of our proposed method to solve the
PDP. The input of the algorithm is the multiset D that
consists of n (n − 1)/2 elements. Initially the algorithm
starts with two sets and two lists. The two sets are X0

0 = {0,
width} and D0

0 =D \ {width}. The two lists are LX = {X0
0} and

LD = {D0
0}. In general, LD and LX represent the lists of sets,

Dk
j and Xk

j , respectively, at the current level, k, of the solu-
tion tree. The main step of the proposed algorithm is a
while loop that represents the number of levels in the solu-
tion tree for the PDP. In each iteration k of the while loop,
we will generate the elements of the next level, k + 1, by
calling the procedure GenerateNextLevel (LD, LX, S), k ≥ 0.
The inputs of the procedure are three lists of sets, LD, LX
and S, for the current level k. The outputs of the procedure
are three lists of sets, LD, LX and S, for the level k + 1.
The body of the procedure GenerateNextLevel consists

of an initialization and a loop. In the initialization, we will
use two auxiliary lists, ALD and ALX, which contain the
sets Dk + 1

j and Xk + 1
j , respectively, for the next level in the

solution tree. The initial value of the two lists is empty.
The main loop in the GenerateNextLevel procedure rep-
resents the process of generating the elements of the next
level and storing it in the two auxiliary lists ALD and ALX.
Each pair of sets, Dk

i ∈ LD and Xk
i ∈ LX, will generate at

most two pairs of sets, as follows:

(i) Dk + 1
j =Dk

i \Δ (y, Xk
i ) and Xk + 1

j = Xk
i ∪ {y } if the

condition Δ (y , Xk
i )⊆Dk

i is true.
(ii)Dk+1

l =Dk
i \Δ (width ‐ y, Xk

i ) and Xk+1
l =Xk

i ∪ {width ‐ y }
if the condition Δ (width ‐ y , Xk

i )⊆Dk
i is true.

The two sets, Xk + 1
j and Dk + 1

j and in a similar way,
Xk + 1
l and Dk + 1

l , will be added to the auxiliary lists ALX
and ALD, respectively if set Xk + 1

j does not exist in list
ALX.
The main loop of the GenerateNextLevel procedure

will terminate when list LD is empty. This means that all
of the elements of the current level k are replaced by
new elements in the next level k + 1. In this case, we as-
sign the lists ALD and ALX to LD and LX, respectively.
Figure 2 illustrates how this idea works.

Fig. 1 Tracing the BBd algorithm on D = {1, 2, 2, 3, 5, 6, 7, 8, 8, 10}
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Now, we investigate how to test the equality between
two nodes (Dk

i , Xk
i ) and (Dk

j , Xk
j ) in the solution tree for

the PDP. The test can be performed by comparing the
equality between Dk

i and Dk
j and the equality between Xk

i

and Xk
j . The following theorems and corollary prove that

the two nodes (Dk
i , Xk

i ) and (Dk
j , Xk

j ) are equal if the set
Xk
i is equal to the set Xk

j .
Theorem 1: Given a subproblem (Dk

i , Xk
i ) in the solu-

tion tree for the PDP, the relation Dk
i =D \ ΔXk

i is valid,
where k ≥ 0, D is the input of the PDP, Dk

i is a modified
version of D produced by removing some of its ele-
ments and Xk

i contains k + 2 elements of the candidate
solution.
Proof: We will prove the theorem using mathematical

induction.
First, we prove that the relation is true at k = 0.
The algorithm starts by finding the maximum ele-

ments of the set D, width, and updates the value of the
sets D and X. So, X0

0 = {0, width} and D0
0 = D\{width}.

From the definition of Δ, we have, ΔX0
0 = {width}. There-

fore, D0
0 = D\ΔX0

0.
Second, we assume that the relation is true at k (i.e.,

Dk
i = D\ΔXk

i ).
Third, we prove that the relation is true at k + 1.
From the algorithm, the set Dk + 1

j can be constructed
from a node at level k, say (Dk

i , Xk
i ). Therefore, Dk + 1

j =
Dk
i \Δ (y, Xk

i ) and Xk+ 1
j =Xk

i ∪ {y}. This implies that Dk+ 1
j =

(D \ ΔXk
i )\Δ(y,Xk

i ), because Dk
i =D \ ΔXk

i . Therefore, Dk+1
j =

D \ (ΔXk
i ∪+Δ(y,Xk

i )) (from Proposition 1). From Definition 4
and because Xk+1

j = {y} ∪Xk
i , then Dk+1

j =D \ ΔXk+1
j .

Theorem 2: If there are two subproblems (Dk
i , Xk

i )
and (Dk

j , Xk
j ) such that Xk

i = Xk
j , then Dk

i =Dk
j .

Proof: From Theorem 1, the following equations are
valid Dk

i =D\ΔXk
i and Dk

j =D\ΔXk
j , for the subproblems

(Dk
i , Xk

i ) and (Dk
j , Xk

j ), respectively. Because Xk
i = Xk

j , then
Dk
i =D\ΔXk

i =D\ΔXk
j =Dk

j .
Corollary 1: If there are two subproblems (Dk

i , Xk
i )

and (Dk
j , Xk

j ) such that Xk
i = Xk

j , then (Dk
i , Xk

i ) = (Dk
j , Xk

j ).

Final proposed algorithm
We proposed an enhanced version of algorithm BBb. The
proposed algorithm improves the running time and stor-
age of the BBb algorithm especially for the worst case. In
the proposed algorithm, we try to reduce the memory
consumption of the BBb algorithm without increasing its
running time. The improved algorithm depends on the
following two steps:

1. Building the solution tree for the PDP until a
specific level α is reached by using the BBb
algorithm.

2. For each node in the level α, building the remainder
subtrees individually with the BBb algorithm.

Figure 3 represents the idea described above for the
proposed algorithm. We called the algorithm BBb2,
branch and bound based on breadth two times.
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To determine the best value of α, we need to compute
the memory complexity of the proposed algorithm for the
worst case. Each node in level k will be replaced by at
most two nodes in the level k + 1, 0 ≤ k < α. Therefore, the
total number of nodes at level α is 2α. In each node, we
store two sets, Dα

i and Xα
i , of total size O (n2). Hence, the

total amount of storage necessary to reach the level α is
O (n2 2α) memory for BBb2. In the second step of the
BBb2 algorithm, we apply BBb on each node individually.
The maximum number of remaining levels is n − α and the
total amount of memory required for the second step for
the worst case is O (n2 2n − α). Hence, the memory complex-
ity of the BBb2 algorithm for the worst case is given by:

M αð Þ ¼ O n2 2α
� �þ O n2 2n−α

� �

Let αM be the number of levels that lead to the mini-
mum memory required by BBb2. The value of αM can
be computed by determining the number of levels, α,
that minimizes the memory consumption M(α), for
0 ≤ α ≤ n − 1.The Find_αM procedure computes the value
of αM for the instance n in O(n) time. The input of the
procedure is the size of the multiset D, N, and the out-
put of the procedure is αM. From the size of the multiset
D, we can compute the value of n by solving the

quadratic equation n n−1ð Þ
2 ¼ N . The pseudocode of the

Find_αM procedure is as follows:
Procedure Find_αM (N, αM)
Begin

1: n ¼ 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8N

p

2
2: α ¼ αM ¼ 1

3: Mmin ¼ n2 2α þ 2n−αð Þ
4. for α = 2 to n do

5: M ¼ n2 2α þ 2n−αð Þ
6. if M <Mmin then

7: Mmin ¼ M

8: αM ¼ α

9. end if

10. end for

End

Fig. 3 Strategy of the BBb2 algorithm

Fig. 2 Tracing the BBb algorithm on D = {1, 2, 2, 3, 5, 6, 7, 8, 8, 10}
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In Algorithm BBb2, we start by finding the value of
αM and then we build the solution tree until the level αM
is reached by using the breadth-first strategy and delet-
ing all similar elements. At the level αM, we have at most
2αM elements. After obtaining these elements, we con-
sider each node as a root and then expand this node
using the BBb algorithm. For the worst case, the number
of handled elements at levels αM + 1, αM +2, …,n are 2,
22, …, 2n−αM respectively, while the number of handled
elements during execution of the BBb algorithm at levels
αM + 1, αM + 2,…,n are 2αMþ1 , 2αMþ2 , …,2n respectively.
Therefore, BBb2 reduces the memory required by the
BBb algorithm.

Test methodology
In this section, we present the methodology that is used
to evaluate the performance of the algorithms, BBd, BBb
and BBb2, according to their running times and memory
consumptions.

Platform Specification
We implemented the algorithms on a Dual Octa-core
processor machine (Intel Xeon E5-2690) with 128 GB
RAM. Each processor has a 2.9 GHz speed with 20 MB
of cache. The algorithms were implemented in C++ pro-
grams. The programs were compiled using g++ with the
-O3 flag under 64-bit Red Hat Enterprise Linux 4.4. In
the experiments, we used a single core only.

Simulated data
We studied the performance of the three algorithms, BBd,
BBb and BBb2, on different types of data and different

sized data sets. We used two types of data described in
previous studies. The first data set was a random data set
(RD) [16], while the second data set is the Zhang data
(ZD) [16, 17, 23]. The RD was used to measure the per-
formance of the algorithm for an average case; while the
ZD was used to measure the performance of the algorithm
for the worst case. In terms of data set size, there are two
factors that affect the performance of the algorithms for
each data set. The first factor is the number of elements in
the set X, n, while the second factor is the values of the n
elements, M (maximum elements of X).
In the case of the RD, we assumed that there were n

restriction sites in the DNA segments distributed randomly.
Each input instance of the simulated data is a multiset
D = ΔX such that the set X contains n positive numbers
randomly selected and each number is less than or equal
to M. In the ZD, the locations of the restriction sites were
selected randomly according to Proposition 2 [23].
The values of n in the case of the RD are 100, 200, 300,…

and 1000, while the values of n in the case of ZD are 15, 20,
25, 30,… and 90. The range of n for the ZD is small because
the running time for the algorithm was greater than 1 day
when n > 90. We also used different values of M as follows:
M = n*q, where q = 10, 100, 1000 and 10,000.

Running time and memory
For each value of n, we ran each algorithm 50 times with
different inputs for the RD. For the ZD, we reduced this
number to 20 due to the increased running time of the
algorithms, especially BBd. The running time for each
algorithm for a fixed n represents the average time for
all instances studied. If the running time of an algorithm
was greater than 24 h for an input instance then the
algorithm was terminated. Therefore, the value of the
algorithm for this input instance was omitted from the
figures and the results.
We also measured the standard error of the mean (SEM)

and coefficient of variation (CV) for the three algorithms
for RD and ZD. Finally, we used a non-parametric statis-
tical test which is Wilcoxon-signed-rank test [24] to deter-
mine if there are a significant differences between the three
algorithms in running time or memory consumption on
RD and ZD. We applied the Wilcoxon-signed-rank test,
at a significance level of 0.05, to the following pairs:
BBd & BBb, BBd & BBb2 and BBb & BBb2 algorithms
with respect to running time and memory consumption
for RD and ZD.
We measured the running time in seconds using a C++

function. We also measured the memory consumed by the
algorithm in megabytes using the Linux command top.

Results and discussion
The results from measuring the running times of the
three algorithms on the simulated data are shown in
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Fig. 4 and (Additional file 1: Figure F1) for the RD and
Fig. 5 for the ZD.
In the case of the RD, the results showed that the run-

ning times of the proposed algorithms, BBb and BBb2,
were less than the running time of BBd for all values of
n and M as shown in Fig. 4. For large values of n and
small values of q, the BBd algorithm required a large
amount of time to find a solution, while the proposed al-
gorithms, BBb and BBb2, found the solution in a suitable
time. For example, in the case of n ≥ 300 and M = n * 10,
the running time for the BBd algorithm was greater than
24 h, while both proposed algorithms found the solution
in time less than 13 min, as shown in Fig. 4a and b.
However, the difference in running times between the
BBd algorithm and the proposed algorithms, BBb and
BBb2, decreased with increasing values of M. This behav-
ior is attributed to the probability of repeated subproblems
decreasing with increasing values of M. Therefore, both
algorithms, BBb and BBb2, spend a large amount of time
checking for the repetition of elements with a low prob-
ability of repetitions. Additionally, for small M values
the probability of repeated subproblems is high,
thereby increasing the running time of the BBd algo-
rithm. If we fixed the value of n, the running time for
all algorithms decreased with increasing M values as
shown in (Additional file 1: Figures F1 a-c). Both proposed
algorithms behaved similarly with increasing M values.
We also observed that the difference in the running times

for two successive values of M is relatively small for both
proposed algorithms (especially when M is large) as shown
in (Additional file 1: Figures F1 b and c). On the other
hand, the difference in the running times for the BBd algo-
rithm for two successive values of M is large when M =
n * 100 and M = n * 1000 as shown in (Additional file 1:
Figure F1a). Finally, we found that there was little dif-
ference, increasing or decreasing, between the running
times of BBb and BBb2 for all values of n and M. In
general, with large values of n and M, the BBb2 algo-
rithm was faster than the BBb algorithm. For example,
in the case of n ≥700 and M = n * q and q = 1000 and
10,000, BBb2 was slightly better than BBb.
For the ZD, there was no change in the running time

when we used different values of M for the three algo-
rithms. Therefore, we used the ZD with the M value fixed
at M = n*1000. The consistent performance of the algo-
rithms using the ZD with different values of M was due to
the systematic selection of the elements of A according to
Proposition 2.
The performance of the three algorithms for the Zhang

data set instances is given in Fig. 5. We observed that the
running time of BBb2 was less than BBb and BBb was less
than BBd for all instances. The percentage of running time
improvement for BBb and BBb2 with respect to BBd
increased with increasing n. In our studied cases, the
running time was improved by at least 75%. Moreover,
the BBd and BBb algorithms cannot solve any instances

Fig. 4 Running times of the BBd, BBb and BBb2 algorithms for the RD. The line for BBd algorithm is not complete because the running time is
greater than the maximum value of y-axis or 24 h
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with n ≥ 60 and n ≥ 80 in time less than 24 h respect-
ively. In the other side, the BBb2 algorithm solves any
instance with n≤90 in time less than 24 h.
The improved running time of BBb algorithm can be

attributed to its reduction of the number of subproblems
handled at the levels αM + 1, αM + 2,…,n in the solution
tree for the PDP. Therefore, the time spent checking
subproblem repetition is reduced.
The results of measuring SEM and CV for the running

time of the three algorithms are shown in (Additional
file 2: Tables S1–S5) for RD and ZD. The results show
that the values of SEM and CV for BBd algorithm were
very large compared to the values of SEM and CV for
BBb and BBb2 algorithms in case of RD. For the ZD, the
values of SEM and CV of BBb and BB2 algorithms were
less than the values of SEM and CV of BBd algorithm in
the most instances. Moreover, the application of Wilcoxon-
signed-rank test shows that there was a significant differ-
ence between the following pairs of the algorithms as
shown in (Additional file 2: Tables S6–S14):

i. BBd and BBb in case of RD and ZD.
ii. BBd and BBb2 in case of RD and ZD.
iii. BBb and BBb2 in case of ZD.

We also evaluated the algorithms in terms of their
memory consumptions. The results of measuring the
memory consumed by the three algorithms on the simu-
lated data are shown in (Additional file 3: Figures F2 a–d)
for the RD and Fig. 6 for the ZD. For the RD, the results
show that for small values of M such as M = n * 10 and
n * 100, the BBb and BBb2 algorithms consumed less
memory than the BBd algorithm. In the case of large M
values, the BBd algorithm consumed less memory than

the BBb and BBb2 algorithms, but small M values in-
creased the number of repeated subproblems. Thus, the
number of elements in each level is large for the BBd
algorithm. Therefore, the BBd algorithm consumed more
memory than the two proposed algorithms. In general, the
memory consumption of the BBb algorithm is a little
better than that of the BBb2 algorithm.
For the ZD, less memory was consumed by BBb2 than

BBb for all instances. So, the BBb2 algorithm significantly
reduced the memory required by the BBb algorithm. The
percentage of improvement in memory consumption of
BBb2 compared to BBb increases as n increases. In gen-
eral, the memory required by the BBd algorithm is less
than the BBb and BBb2 algorithms.
The results of measuring SEM and CV for the memory

of the three algorithms are shown in (Additional file 4:
Tables S15–S19) for the RD and the ZD. The results
show that there were differences, decreasing and increasing,

Fig. 6 Memory consumed of BBd, BBb, and BBb2 algorithms on ZD.
The values on the y-axis are in log-scale

Fig. 5 Running times of the BBd, BBb and BBb2 algorithms for the ZD. The values on the y-axis are in log-scale
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in the values of SEM and CV of the three algorithms for
the RD. For the ZD, the values of SEM and CV of BBd al-
gorithm were less than the proposed algorithms in the most
instances. Moreover, the application of Wilcoxon-signed-
rank test, see (Additional file 4: Tables S20-S28), shows that
there was a significant difference between the following
pairs of the algorithms in the following cases:

i. BBd and BBb on ZD.
ii. BBd and BBb2 on ZD.
iii. BBb and BBb2 on ZD.

Real data
We tested the final proposed BBb2 algorithm on real di-
gestion experiments and simulated digestion experiments.

Luciferase gene
We extracted the data from a partial digestion of the lu-
ciferase gene [25] of length 2009. The partial digestion
was performed with the enzyme TaqI, which cuts the
gene at the tcga sequence motif. The output of the par-
tial digestion process is the multiset D consisting of the
distances between the tcga locations on the luciferase
gene, which is D = {9, 30, 100, 170, 293, 302, 393, 402,
462, 562, 632, 732, 855, 864, 945, 954, 975, 984, 1025,
1034, 1247, 1277, 1347, 1377, 1809, 1839, 1979, 2009}.
Our proposed algorithms take the multiset D as input
and output two solutions in the set S = {{0, 170, 632, 732,
1025, 1034, 1979, 2009}, {0, 30, 975, 984, 1277, 1377, 1839,
2009}}. The solution X = {0, 30, 975, 984, 1277, 1377,
1839, 2009}, represents the solution for the real data. This
means that the map of tcga on luciferase gene at the
locations 30, 975, 984, 1277, 1377, and 1839.

E. Coli K12 genome digestion simulation
We also tested our proposed algorithms with a simulated
partial digestion experiment using the E. coli K12 genome
version 3 (NC_000913.3, downloaded 11 March 2016) and
a set of restriction enzymes (https://www.en.wikipedia.org/
wiki/Restriction_enzyme). The size of the genome is

4,641,652 bp. For each restriction enzyme, we simulated
the partial digestion experiment by cutting the E. coli
K12 genome at all occurrences of the corresponding re-
striction site. Then, we recorded the lengths of N cut
fragments in D. The restriction enzymes, restriction
sites, the number of cut fragments (N), n, times and
memory consumptions are shown in Table 1. Finally,
we applied the final proposed algorithm to the extracted
sets and in all cases the outputs contained the correct set
of restriction site positions. It is clear that from Table 1,
the running time and memory consumed of the algorithm
increases with increase the value of n and N.

Conclusions
In this paper, we addressed the PDP and proposed two
algorithms, BBb and BBb2. In the BBb algorithm, we
built the solution tree for the PDP in the breadth-first
manner instead of the depth-first manner taking into
consideration two conditions of pruning and deleting all
repeated subproblems in the same level. The BBb solves
many instances which are not solved by BBd in time less
than 24 h. The main disadvantage of BBb is that the
memory consumed grows exponentially. In BBb2, we
reduced the memory required by BBb by solving the
problem using two stages, with each stage working in
the breadth-first manner. We also determined the num-
ber of the levels, which leads to reduced memory con-
sumption without increasing the running time.
We measured the efficiency of the proposed algorithm

compared to the best known practical algorithm on the
basis of time and memory consumption. In the evaluation,
we considered the following parameters: (1) types of data,
RD and ZD; (2) value of n; and (3) value of M. In the case
of running time, the BBb2 algorithm is faster than other
algorithms. The efficiency increased when the ZD was
used. In the case of memory, the BBd algorithm consumed
less memory than other algorithms, but the running time
was very slow especially for the ZD. Finally, we applied
the BBb2 algorithm on Luciferase gene and the E. coli K12
genome.

Table 1 The Performance of the BBb2 algorithm for the restriction enzymes used in this study

Restriction enzyme Restriction site N n Time (Seconds) Memory (MB)

NotI GCGGCCGC 780 40 0.007 0.2

XbaI TCTAGA 1891 62 0.017 3.6

SmaI CCCGGG 103,285 455 56.2 8.9

BamHI GGATCC 135,460 521 72 11.7

HindIII AAGCTT 170,820 585 138.6 13.6

EcoRI GAATTC 228,826 677 360 15.5

PvuII CAGCTG 1,599,366 1789 24,012 98.8

EcoRV GATATC 1,999,000 2000 42,840 979

Abbreviations: N is the number of cut fragments, n is the number of restriction sites
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Additional files

Additional file 1: Supplementary figure. Figure F1 a–c represents the
behavior of the running time for BBd, BBb, and BBb2 algorithms with
different values of M and fixed value of n. The values on the y-axis are in
log-scale. In Figure a, the x-axis does not include the value of M = n * 10,
because the running time is greater than 24 h. (PDF 8 kb)

Additional file 2: Supplementary data. Calculation of the Standard Error
of Mean (SEM), Coefficient of Variation (CV), and Wilcoxon Signed-Rank
test for the running time. Tables S1-S5. in Sheet 1 and 2, represent the
calculation of SEM and CV for the running time of BBd, BBb, and BBb2
algorithms in case of random data and Zhang data respectively.
Tables S6–S8. in Sheet 3, represent the Wilcoxon Signed-Rank test
between BBd and BBb algorithms for the running time of Random and
Zhang data. Tables S9–S11. in Sheet 4, represent the Wilcoxon Signed-Rank
test between BBb and BBb2 algorithms for the running time of Random
and Zhang data. Tables S12–S14. in Sheet 5, represent the Wilcoxon
Signed-Rank test between BBd and BBb2 algorithms for the running time of
Random and Zhang data. (XLS 168 kb)

Additional file 3: Supplementary figure. Figure F2 a–d represents the
memory consumed for BBd, BBb, and BBb2 algorithms on random data.
(PDF 88 kb)

Additional file 4: Supplementary data. Calculation of the Standard Error
of Mean (SEM), Coefficient of Variation (CV), and Wilcoxon Signed-Rank
test for the memory. Tables S15-S19. in Sheet 1 and 2, represent the
calculation of SEM and CV for the memory consumption of BBd, BBb, and
BBb2 algorithms in case of random data and Zhang data respectively. Tables
S20–S22. in Sheet 3, represents the Wilcoxon Signed-Rank test between BBd
and BBb algorithms for the memory consumption of Random and
Zhang data. Tables S23–S25. in Sheet 4, represent the Wilcoxon
Signed-Rank test between BBb and BBb2 algorithms for the memory
consumption of Random and Zhang data. Tables S26-S28. in Sheet 5,
represent the Wilcoxon Signed-Rank test between BBd and BBb2 algorithms
for the memory consumption of Random and Zhang data. (XLS 167 kb)
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