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ABSTRACT
Cancer immunotherapy is revolutionizing the clinical management of several tumors, but has
demonstrated limited activity in breast cancer. The development of more effective treatments is hindered
by incomplete knowledge of the genetic determinant of immune responsiveness. To fill this gap, we
mined copy number alteration, somatic mutation, and expression data from The Cancer Genome Atlas
(TCGA). By using RNA-sequencing data from 1,004 breast cancers, we defined distinct immune
phenotypes characterized by progressive expression of transcripts previously associated with immune-
mediated rejection. The T helper 1 (Th-1) phenotype (ICR4), which also displays upregulation of immune-
regulatory transcripts such as PDL1, PD1, FOXP3, IDO1, and CTLA4, was associated with prolonged patients’
survival. We validated these findings in an independent meta-cohort of 1,954 breast cancer gene
expression data. Chromosome segment 4q21, which includes genes encoding for the Th-1 chemokines
CXCL9-11, was significantly amplified only in the immune favorable phenotype (ICR4). The mutation and
neoantigen load progressively decreased from ICR4 to ICR1 but could not fully explain immune
phenotypic differences. Mutations of TP53 were enriched in the immune favorable phenotype (ICR4).
Conversely, the presence of MAP3K1 and MAP2K4 mutations were tightly associated with an immune-
unfavorable phenotype (ICR1). Using both the TCGA and the validation dataset, the degree of MAPK
deregulation segregates breast tumors according to their immune disposition. These findings suggest that
mutation-driven perturbations of MAPK pathways are linked to the negative regulation of intratumoral
immune response in breast cancer. Modulations of MAPK pathways could be experimentally tested to
enhance breast cancer immune sensitivity.

Abbreviations: CNA, copy number alteration; DC, dendritic cell; DEG, differentially expressed genes; DMG, differen-
tially mutated gene; DMFS, distant metastasis free survival; FDR, false discovery rate; GO, gene ontology; GSEA,
gene set enrichment analysis; GDP, genome decoration page; GISTIC, genomic identification of significant targets in
cancer; HR, hazard ratio; ICR, immunologic constant of rejection; IMS, intrinsic molecular subtypes; OS, overall sur-
vival; SNP, single nucleotide polymorphism; SML, somatic mutational load; SSP, single sample predictor; Th, T
helper; TCGA, The Cancer Genome Atlas; TNBC, triple-negative breast cancer; TIL, tumor-infiltrating lymphocyte; wt,
wild type
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Introduction

It is now broadly accepted that the presence of an active
immune microenvironment can inhibit tumor growth and

prevent metastatic processes. Several studies in humans across
multiple cancers have conclusively shown that the presence of
tumor-infiltrating lymphocytes (TILs) is often associated with
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favorable prognosis.1 The Immunoscore worldwide consortium
has recently validated and ratified the prognostic role of TILs
by analyzing more than 1,300 individuals affected by stage I–III
colon cancer.2

In breast cancer, the prognostic role of TILs has been con-
clusively demonstrated in patients bearing triple-negative
breast cancer (TNBC).3-5,6 The density of TILs has also been
associated with favorable response to neoadjuvant chemother-
apy6-8 and adjuvant anti-HER2/neu therapy. Transcriptomic
studies added molecular precision to these observations.

Early gene expression profiling investigations in the context
of cancer immunotherapy have defined molecular pathways
activated in responding lesions following immunotherapy.9-14

Overlapping pathways have been observed in tumors with a
better prognostic connotation,15-18 and in those that are more
likely to respond to immune manipulations, such as interleu-
kin-2 (IL-2) 13,14 adoptive therapy,19 vaccination,20,21 and
checkpoint inhibition.22-25

These pathways include activation of the interferon (IFN)-
stimulated genes through the signal transducers and activator
of transcription 1 (STAT1)/IFN-regulatory factor 1 (IRF1) axis,
the recruitment of NK, cytotoxic, and T helper-1 (Th-1) cells
mediated by the release of CXCR3 and CCR5 ligands, like
CXCL9-11 and CCL5, respectively, and the induction of
immune-effector mechanisms, such as perforin (PRF1), gran-
zymes (GZMs), and granulysin (GNLY).

Such modules have been found to be coordinately activated
in other forms of immune-mediated tissue destruction such as
autoimmunity, graft-versus-host disease or allograft rejec-
tion.26-29 We refer to the genes behind these modules as the
Immunologic Constant of Rejection (ICR).9,17,21,30-32 The activa-
tion of this pro-inflammatory cascade is accompanied by the
counter-activation of immune-regulatory mechanisms.30,30,33

In fact, the expression of immune-regulatory markers such as
programmed cell death-ligand 1 (PD-L1) and Indoleamine 2,3-
Dioxygenase 1 (IDO1) associates with better responsiveness to
checkpoint inhibition therapy.22,23,34

In breast cancer, most published prognostic and/or predic-
tive gene signatures invariably include components of the
ICR,8,15,35-46 as reviewed elsewhere.47 Based on this observation,
we have hypothesized that two opposing cancer immune phe-
notypes exist.30

The first phenotype is typified by the presence of an inflamma-
tory status dominated by a Th-1 immune response. Such tumors
also display the counter-activation of suppressive mechanisms
(e.g., expression of IDO1, CTLA4, CD274 [or PD-L1], PDCD1 [or
PD1], and FOXP3) and have a more favorable prognosis and
responsiveness to immune manipulations and to chemotherapy.
The second phenotype lacks such features and is typified by unfa-
vorable prognosis and resistance to immune manipulations and
chemotherapy.30,47 We tested up-front this hypothesis comparing
phenotypes with overall survival (OS) by querying The Cancer
Genome Atlas (TCGA) breast cancer datasets.

Despite checkpoint inhibitor-based immunotherapy is revo-
lutionizing the treatment of several neoplastic conditions such
as melanoma and lung cancer,30,33,47 their efficacy in breast
cancer remains limited.48-50 The development of more effective
treatments is hindered by incomplete knowledge of the genetic
mechanism governing host–tumor interaction.

A recent study in melanoma has convincingly demonstrated
that pathways implicated in neoplastic transformation such as
the b-catenin-WNT signal can exert immune-suppressive
functions leading to T-cell exclusion,51 and corroborating pre-
vious observations.52,53 Mutational load increases the likeli-
hood to express altered proteins that were not subject to
developmental tolerance mechanisms and may constitute neo-
antigens. Indeed, the number of mutations has been correlated
to responsiveness of checkpoint inhibitor therapy in mela-
noma and lung cancer.25,54,55 In summary, efforts to elucidate
molecular determinants of immune responsiveness are
increasing.30,56,57

Since the causality of breast cancer immune phenotype
remains elusive, we sought to disentangle the relationship
between cancer genetic programs and antitumor immunity
using multi-dimensional genome-scale analyses. RNA-sequenc-
ing (RNA-seq) data from TCGA consortium were used to
define discrete cancer immune phenotypes. Somatic mutations
and copy number alterations (CNAs) were mined to capture
genetic features associated with such immune phenotypes. The
main findings were validated in an independent meta-cohort of
breast cancer samples.

Results

Breast cancer immune phenotypes

To define discrete categories of breast cancer according to their
immune composition, we mined RNA-seq data from 1,004
breast cancer samples collected by the TCGA consortium. We
used the ICR genes and classic immune-regulatory genes (e.g.,
CD274/PD-L1, PDCD1/PD1, CTLA4, FOXP3, and IDO1). The
ICR reflects the activation of the following pathways: Th-1 sig-
naling (IFNG, TXB21, CD8B, CD8A, IL12B, STAT1, and IRF1),
CXCR3/CCR5 chemokine ligands (CXCL9, CXCL10, and
CCL5) and effector immune functions (GNLY, PRF1, GZMA,
GZMB, and GZMH).9,17,21 As shown in Fig. 1A, these tran-
scripts strongly correlated with each other (average correlation
coefficient D 0.72).

We then performed unsupervised consensus clustering
based on the expression of these 20, a priori selected, represen-
tative immune genes (Fig. 1B; gene list is recapitulated in
Fig. 1A and C). The optimal number of clusters was selected
using the Calinski index. This metrics indicated that the best
segregation a part trivial solution (i.e., number of clusters D 2)
was obtained by dividing the cohort into four clusters that
reflect differing magnitudes of overall gene expression (K D 4;
Fig. S1). The four clusters were designated as ICR1 (N D 213),
ICR2 (N D 322), ICR3 (N D 327), and ICR4 (N D 142;
Fig. 1C). We posited that ICR4 tumors, marked by the highest
levels of immune gene expression, equate with a strong and
coordinated Th-1 immune activation, whereas by contrast,
ICR1 tumors characterized by the lowest immune gene expres-
sion lack an activated immune polarization. Furthermore, these
opposing immune phenotypes were separated by two interme-
diate expression groups exhibiting medium-low (ICR2) and
medium-high (ICR3) levels of immune activation (Fig. 1C).
Indeed, functional pathway analysis of the differentially
expressed genes (DEG; File S1) corroborated that ICR1 and

e1253654-2 W. HENDRICKX ET AL.



Figure 1. Consensus clustering of TCGA RNA-seq dataset defines distinct immune phenotypes of breast cancer. (A) Spearman correlation of immune activatory (red) and
immune regulatory (blue) transcripts, ND 1,004; correlation coefficients are represented numerically on the top and by green color gradient on the bottom. (B) Consensus
cluster matrix generated by ConsensusClusterPlus R package, repeats D 5,000, and agglomerative hierarchical clustering with ward criterion (Ward.D2) inner and com-
plete outer linkage, N D 1,004. Both rows and columns represent RNA-seq samples: consensus values range from 0 (never clustered together) to 1 (always clustered
together) marked by white to dark blue. The consensus matrices are ordered by the consensus clustering which is depicted as a dendrogram in the top the heatmap. The
cluster memberships are marked by colored rectangles between the dendrogram. (C) RNA-seq expression heatmap, N D 1,004. Clusters assignment is the one generated
by the consensus clustering (panel B). The clusters are reordered from ICR4 to ICR1 (left to right) according to the decreasing average level of expression of the signature
genes; no reordering within the clusters. (D) Unsupervised hierarchical cluster of ICR1 and ICR4 samples (N D 355, color labeled as in panels B and C) using cell-specific
immune-signatures. Hierarchical clustering with ward criterion (Ward.D2) was applied to the matrix of the enrichment scores calculated through single sample GSEA.
Cell-specific signatures enriched in ICR4 vs ICR1 (q-value < 0.05) are in red, and those significantly depleted in blue. (E) Functional enrichment of supervised differentially
analysis between ICR4 and ICR1 clusters using GSEA (genes were ranked according to absolute log FC). Cytoscape and enrichment map tools have been used for net-
work-visualization of the GSEA results (p � 0.05, q-value� 0.01, and similarity� 0.5). Nodes represent enriched gene sets, which are grouped and annotated by their sim-
ilarity. Node size is proportional to the total number of genes within each gene set. Proportion of shared genes between gene sets is represented as the thickness of the
line between nodes. Nodes highly enriched with up-regulated genes in ICR4 tumors are shown in red, whereas those with downregulated genes are shown in blue (ICR:
Immunological Constant of Rejection). (F) Circos Plot for ICR cluster vs stage, N D 987. (G) Circos Plot for ICR cluster vs intrinsic molecular subtype, N D1,002.
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ICR4 tumors dramatically differ in terms of immune composi-
tion. As expected, the ICR4 tumors exhibited an intense activa-
tion of pathways associated with other forms of immune
mediated rejection such as thyroiditis, rheumatoid arthritis,
type-1 diabetes, allograft rejection, and graft-versus-host dis-
ease, reflecting an immune response and adaptive immunity
cross talk consistent with Th-1 activation (Ingenuity Pathway
Analysis; Fig. S2). Additional functional analyses further con-
firmed the broad immune divergence of the opposing ICR
phenotypes.

First, we wanted to identify the specific immune cell types
activated among the ICR clusters. In particular, we deconvolved
the gene-expression signals of the ICR1 and ICR4 samples with
single sample GSEA 58 using 24 cell-specific signatures (597

genes).59 Doing so we obtained a vector of cell-specific enrich-
ment scores (ES) for each patient. When hierarchical clustering
was applied to the matrix of the ES, samples naturally segregate
in two major clusters that perfectly separated ICR1 and ICR4
samples (Fig. 1D; statistics in File S2). Overall, ICR4 tumors
were enriched in B- and T-cell transcripts. In ICR4 specimens,
T cells infiltration was clearly associated with a Th-1 immune
polarization, with overrepresentation of transcripts associated
with cytotoxic and Th-1 cells. T-regulatory (T-reg) cells, mono-
cyte, macrophages, neutrophils, and dendritic cells (DCs) were
also more represented in the ICR4 tumors. Conversely, in
ICR1, the cell-specific signatures were consistent with a scant
adaptive immune response oriented toward a Th-17 polariza-
tion. Eosinophil-related transcripts were also more abundant in

Figure 2. The T-helper 1 immune phenotype (ICR4) is associated with prolonged survival. (A) Kaplan–Meier overall survival curves of TCGA breast cancer RNA-seq dataset.
(B) Kaplan–Meier distant metastasis free survival curves of the validation micro array meta-cohort; p value determined by log-rank test comparing ICR4 vs ICR1 (left) or
ICR4 vs ICR1, ICR2, and ICR3 (right); Hazard ratio (HR) determined by Cox proportional hazards regression model (95% CI).
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ICR1 samples. NK cells displayed a differential enrichment,
being NK CD56dim and NK CD56bright transcripts more repre-
sented in ICR4 and ICR1 clusters, respectively.

Second, we performed supervised differential expression
analysis between ICR4 vs ICR1. Network visualization based on
Gene Set Enrichment Analysis (GSEA) of Gene Ontology gene
sets demonstrated, in ICR4, a strong and coordinate positive
regulation of adaptive immune response including pathways
involved in leukocyte differentiation, cytokine production,
immune effector processes, B-/T-cell activation, T-cell prolifera-
tion, and metabolic processes (Fig. 1E). Conversely, only few
pathways were activated in ICR1 (e.g., synaptic transmission,
structural component of muscle, and hormonal activity).

We then investigated the distribution of tumor stage and
intrinsic molecular subtypes (IMS) within the ICR clusters. While
stage distribution was similar across ICR groups (being stage II
the most frequently represented in each subtype, Fig. 1F), an
imbalance in term of IMSwas noticed (Fig. 1G). Only a small pro-
portion of Luminal A (5.4%) and Luminal B (10.9%) tumors dis-
played the Th-1/ICR4 phenotype in contrast with 31.9% of Basal-
like and 28.6% of HER2-enriched tumors. However, as themajor-
ity of breast tumors are Luminals, the relative small proportion of
Luminal cancers harboring the ICR4 phenotype constituted
almost 40% of the ICR4 group. More in detail, 57% of ICR4
tumors consisted of non-Basal like subtypes (21.8% Luminal A,
15.5% Luminal B, 16.9%HER2-enriched, and 2.8%Normal-like).

We then proceeded to compare the different immune subtypes
in term of survival. Although the ICR4 cluster was enriched in
Basal-like tumors, which are classically characterized by worse
prognosis, OS of patients bearing such immune phenotype was
greater as compared with subjects bearing the other immune phe-
notypes (overall p value D 0.02; ICR1–ICR2–ICR3 vs ICR4: HR
[95% CI] D 2.88 [1.34–6.19], p D 0.005; ICR1 vs ICR4: HR [95%
CI]D 3.48 [1.54–7.87], pD 0.001); Fig. 2A).

Using quantile classifications (i.e., comparing either the low-
est or the highest quartile or tertile), all the transcripts tended
to be associated with increased OS (Fig. S3A). A statically sig-
nificant level of association was reached using both the tertile
and quartile classifications by GZMH, PRF1, GZMA, CD8A,
IL12B, CCL5, and IRF1; by PDCD1/PD1, GZMB, and TBX21
using the tertile classification, and by STAT1 in the quartile
comparison. The ICR score (Z-score) based on all the selected
immune genes was significantly associated with improved sur-
vival in both tertile and quartile classifications. Importantly, the
ICR classification was more tightly predictive of OS than quan-
tile classifications. The median expression of all the ICR tran-
scripts progressively decreased from ICR4 to ICR1 (Fig. S3B).

We validated our findings by applying the same stratifica-
tion criteria to an integrated dataset of publicly available breast
cancer gene expression data (Fig. 2B). Again, patients bearing
ICR4 tumors experienced prolonged distant metastasis free sur-
vival (DMFS) as compared with other subgroups (heatmap,
consensus cluster matrix, and Calinski metrics for this data set
can be found in Fig. S4).

Breast cancer immune phenotypes and mutational burden

Recent work suggests an association between number of muta-
tions and responsiveness to immunotherapy.25,54,55 Therefore,

we compared the mutational load among the ICR groups. The
number of non-silent mutations significantly differed among
the four immune phenotypes (p D 1.10e¡5, Kruskal–Wallis
test), progressively increasing from ICR1 to ICR4 cluster
(Fig. 3A). Nevertheless, a considerable proportion of samples
belonging to ICR4 group had a relatively low mutational bur-
den and, vice versa, a fraction of ICR1 tumors had a relatively
high number of mutations, suggesting that mutational load
cannot fully explain the observed differences in term of
immune activations. However, mutational burden was strongly
related to the IMS (p D 1.20e¡32, Fig. 3A). The median (and
average) number of mutations was the highest in Basal-like and
HER2-enriched tumors followed by Luminal B and Luminal A
subtypes, consistent with the observations of Kobolt et al.60 As
expected, the number of mutations of Normal-like tumors,
which are often believed to represent a mere contamination of
samples with normal breast tissue,61 was extremely low. When
comparison of mutational burden was performed within spe-
cific IMS, the association between mutational load and immune
phenotype was lost in HER2-enriched and Basal-like subtypes.
A non-statistically significant trend was still observed in Lumi-
nal A and Luminal B tumors, which became significant when
Luminal A and B samples were considered together (p D
7.57e¡3). Identical results were obtained by considering both
silent and non-silent mutations (Fig. S5A).

The increased responsiveness to immunotherapy of hyper
mutated tumors has been attributed to enrichment in mutated
antigens (neoantigens) that could be recognized by T
cells.25,54,55 According to such model, antitumor immune
responses directed against neoantigens and counteracted by
immune regulatory mechanisms might be re-activated by
immunomodulatory interventions such as the administration
of checkpoint inhibitors. Although the total number of pre-
dicted neoepitopes or the total number of mutations potentially
yielding neoepitopes differed among ICRs (similarly to what
observed for mutational load; Fig. S5B and C), variations disap-
peared when corrected for the total number of mutations
(Fig. 3B).

Finally, no differences in types of mutation (i.e., missense,
non-sense, frameshift, etc.) were observed among the ICR sub-
types (Fig. 3C).

Specific mutations and immune phenotypes

To identify mutations specifically associated with the level of
immune activations, we compared the two extreme immune
phenotypes (e.g., ICR1 and ICR4) by mining exome sequencing
data. We identified 64 differentially mutated genes (DMGs) by
the two groups under comparison (p < 0.01, Fisher’s exact test:
Fig. 4A and File S3). Five of these genes (e.g., MAP3K1,
MAP2K4, TP53, RPGR, and POM121) were mutated more
often than expected by chance given background mutation pro-
cesses according to the MUTSIG analysis and were, therefore,
considered driver mutations (highlighted in Fig. 4A).62 The
majority of the DMGs showed a higher frequency of mutations
in the ICR4 cluster, in part as a consequence of the greater
overall mutation rate observed in these tumors (Fig. 4B).
Among those genes, the most significantly DMG was TP53
(Fig. 4B), with a degree of association with immune phenotype

ONCOIMMUNOLOGY e1253654-5



Figure 3. A high mutational load is associated with the T-helper 1 immune phenotype (ICR4) and with Basal-like and HER-2 enriched subtypes. (A) Non-silent mutation
frequencies by sample, with outlier mutation numbers of > 250 have not been plotted but are included in the statistics. (B) Proportion of mutations yielding strong neo-
epitopes vs all mutations per sample, with outlier mutation numbers of > 25% have not been plotted but are included in the statistics. Both plots A and B are stratified
by ICR cluster, IMS subtype, and ICR cluster within different subtypes, N D 904; p values determined by Kruskal–Wallis test (�without Normal-like p value: 4.75e¡31);
labels in the y-axis represent median (top) and average (bottom) per sample. The central line of the notched box plots shows the median of the data. The box represents
the interquartile range (IQR). The wiskers add 1.5 times the IQR to the third quartile and subtract 1.5 times from the first quartile. The notch displays the 95% CI around
the median. Horns in the notch plot occur when the notch is larger than the hinges of the boxplots. A skewed shape of the notched box plots is an indication of asymmet-
ric distribution of the data. (C) Mutation type for the four ICR clusters, scaled to the log of the total number of mutations, ordered by decreasing mutation load; IMS: intrin-
sic molecular subtype.
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Figure 4. Specific somatic mutations typify breast cancer immune phenotypes. (A) Specific differentially mutated genes in ICR’s 1 and 4, identified using all genes show-
ing a p value < 0.01 when applying the fisher test. Genes identified by MUTSIG are indicated in purple on top. Dark red is mutated light blue is wild type. (B) Non-silent
mutation type distribution for “genes of interest” by ICR Cluster, p values determined by Cochran–Armitage test for trend. Mutation Class frequency has been scaled to
represent the frequency of non-silent mutation per ICR cluster. (C) Box plot showing the distribution of the proportion of mutations yielding strong epitopes between the
differentially mutated genes (DMG) and the other genes (non-DMG); This proportion is expressed as ratio of count of distinct mutations leading to strong neoepitoes
over total count of distinct mutations; p value of “non-DMG” vs “DMG” D 4e¡136 (Mann–Whitney test). IMS: intrinsic molecular subtype, SML: somatic mutational load,
DMG: differentially mutated genes.
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much higher than that observed by the mutational burden (p D
3.7e¡16, Fisher’s exact test). TTN was another DMG strongly
enriched in ICR4 (p D 2.3 e¡4 Fisher’s exact test). TTN is the
largest polypeptide encoded by the human genome and its
mutations are considered to be passenger.63 Consistently, the
TTN mutation pattern was tightly associated with the degree of
mutational load, whereas TP53 mutations were mostly linked
to other variables such as IMS (Fig. 4A).

When the analysis was expanded to the other immune phe-
notypes, TP53 mutations displayed a coherent trend of enrich-
ment proceeding from ICR1 to ICR4 clusters, being mutated in
14.3%, 25.7%, 36.0%, and 58.3% of ICR1, ICR2, ICR3, and
ICR4 tumors, respectively (p D 2.1e¡17, Cochran–Armitage
test for trend; Fig. 4B).

The mutational frequency was higher in ICR1 over ICR4
groups only for two genes (i.e., MAP3K1 and MAP2K4, p D
0.0002 and p D 0.006, respectively, Fisher’s exact test, Fig. 4B).
Both genes are considered driver mutations and have been
implicated in breast cancer oncogenesis.64,65

A progressive and significant trend, in this case in the
reverse direction of the one noticed for TP53, was observed
between these two MAPK mutations and immune phenotypes
(Fig. 4B). MAP2K4 and MAP3K1 mutations, which occur in
the same pathways, were mutually exclusive. Globally, 18% of
ICR1 tumors carried either MAP3K1 or MAP2K4 mutations
(MAPK-mut) vs only 1.8% of the ICR4 tumors (p D 1.13e¡6,
Fisher’s exact test; Fig. 4B). An enrichment trend for MAPK-
mut was noticed progressing from ICR4 to ICR1, being the

Figure 5. Specific somatic mutations of driver genes typify immune phenotypes of breast cancer within specific intrinsic molecular subtypes. Distribution of TP53,
MAP3K1, and MAP2K mutations by ICR within each IMS. Mutation class frequency has been scaled to represent the frequency of non-silent mutation per ICR cluster and
subtype; p values determined by Cochran–Armitage test for trend; IMS: intrinsic molecular subtype.
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MAPK-mut rate 10.8% and 8.9% in ICR2 and ICR3 tumors,
respectively (p D 3.72e¡6, Cochran–Armitage test for trend).
The median proportion of mutations yielding strong neoepi-
topes was overall lower in the DMG group as compared to the
other genes (Fig. 4D, left panel). Nevertheless, regarding
MAP2K4 and MAP3K1, such proportion was within the range
of the non-DMGs (Fig. 4C, right panel).

TP53 is more frequently mutated in Basal-like and HER2-
enriched tumors, while MAP3K1 and MAP2K4 mutations
occur almost uniquely in Luminal cancers.65,60 We, therefore,
performed a correlative analysis within each IMS (Fig. 5). As
for TP53 mutations, the association with ICR phenotype was
lost in Basal-like tumors (p D 0.53), but still present in HER2-
enriched (p D 0.048), Luminal A (p D 0.006) and Luminal B
(p D 0.044) subtypes. MAP3K1 mutations remained signifi-
cantly associated with ICR in Luminal A subtypes (p D 0.005),
as did MAP2K4 mutations in Luminal B tumors (p D 0.023).
Globally,MAP2K4 andMAP3K1mutations were strongly asso-
ciated with ICRs in Luminal samples. In particular, no ICR4
tumors carried MAP3K1 or MAP2K4 mutations, which were
present in 10.5%, 12.9% and 21.5% of ICR3, ICR2, and ICR1
tumors (p D 5.3e¡5). However, both TP53 and MAPK muta-
tions (i.e., either MAP3K1 or MAP2K4) were statistically and
independently associated with the immune phenotypes when
tested in a multivariate model together with the IMS, whereas
the number of non-silent mutations was not (data not shown).

As single parameter, TP53 mutation was associated with
poor OS, without, however, reaching the significant level
(Fig. S6A, left panel). Quite interestingly, when the analysis was
stratified according to the ICRs, the putative detrimental effect
of TP53 was reverted by the immune phenotype. Indeed, both
ICR4 groups (i.e., ICR4-TP53 mut and ICR4-TP53 wt) have
excellent prognosis while the two ICR1 groups (i.e., ICR1-TP53
mut and ICR1-TP53 wt) had a relative poor prognosis
(Fig. S6B, left panel). Similarly, no association between MAPK
mutations and OS was observed (Fig. S6A, right panel). When
MAPK-mut status was combined with ICR status, patients
bearing the ICR1 phenotype had the worse prognosis, indepen-
dently of theMAPK mutational status (Fig. S6B, right panel).

Copy number alterations and immune phenotypes

To detect genomic imbalances related to the immune-pheno-
typic differences among the four immune phenotypes, SNPs
data were processed using GISTIC v2.0 to identify broad and
focal CNAs specific for each group.

Collectively, the most frequently gained regions were
detected on the chromosomal arms 1q, 8q, and 16p, whereas
the regions frequently lost were on 8p, 11q, and 16q (Fig. S7).
Although all four ICR groups showed a similar variation in
copy number changes partially reflecting the IMSs, ICR4 had a
more stable CNA pattern on chromosome 16 with less amplifi-
cations in 16p and a lower number of losses in 16q (Fig. 6A).

Comparative analyses of GISTIC-defined regions with fre-
quent low and/or high level CNA in the four ICR groups
revealed very similar results in terms of number of significantly
(q � 0.05) altered regions (16, 18, 27, and 18 gained and 24, 37,
36, and 23 lost respectively in ICR1–ICR4; File S4A and B).
The comparisons showed many aberrant regions were

commonly altered in all the four ICR groups. However, some
were specifically and significantly altered in a single ICR cluster
(specific alterations are listed in File S4C). By comparing the
number of specific and significant regions involved in CNA
events in each ICR group, we found that specific chromosomal
losses occurred more frequently than specific gains (6, 13, 14,
and 8 losses vs 3, 4, 4, and 4 gains in ICR1, ICR2, ICR3, and
ICR4, respectively).

To identify significant imbalances among immune pheno-
types, we compared the frequencies of losses and gains
between ICR1 and ICR4 groups at the single-gene level (File
S5). Globally, 3268 and 4542 genes showed enrichment
respectively in amplification or deletions in ICR4 vs ICR1
tumors. Conversely, just 35 genes, many of them located on
16p, were enriched in amplifications in ICR1 vs ICR4 samples,
whereas 672 genic sequences showed a strong enrichment in
deletions. More than half of the latter (n D 369) mapped to
16q chromosomal arm. Interestingly, after collecting the set of
846 immune-related genes from the Immunome database,66

we observed that 89 genes significantly amplified more fre-
quently in ICR4 were involved in immune functions. Con-
versely, no immune-related genes showed significantly higher
frequencies of amplification in ICR1 over ICR4. Analogously,
ICR1 tumors included less immune-related genes with
enhanced frequency of deletions compared to ICR4 (26 vs
137, ICR1 vs IRCR4, respectively). A graphical representation
of this analysis is reported in Fig. 6B.

Immune-related genes more frequently amplified in ICR4
tumors include those encoding cytokines (IL1A–ILB [2q13],
IL12A [3q25.33], IL28–IL29 [19q13.2], IL17F [6p12.2], and
IL17C [16q24.3]), chemokines (CXCL12 [10q11.21], CXCL9–
10–11 [4q21.1]), cytokine and chemokine receptors (IL1R1
[2q12.1], ILR2 [2q11.2], IL15RA [10p15.1], IL20RA [6q23.3],
IL22RA-RA2 [6q23.3], IFNGR1 [6q23.3], and CXCR4
[2q22.1]), and interferon signaling modulators (STAT1
[2q32.2], STAT4 [2q23.2], and IFI44L [1p31]). Conversely,
ICR1 tumor exhibited deletions of cytokine receptors located in
2q (IL1R1–2, and IL18R1-AP [2q12.1]), and deletions of cyto-
kines, chemokine, and chemokine receptor genes located in
16q (IL17C, CCL22 [16q13], CX3CL1 [16q21], and CCL17
[16q21]). Deletions of CC chemokines, CC receptors (CCR1–
2–3–5 [3p21.31], CCRL2 [3p21.31], CCR4 [3p22.3], CCR7
[17q21.2], and CCL5–7–8 [17q12]), and some CXC chemo-
kines (CXCL14 [5p31.1] and CXCL16 [17p31.2]) were more
frequent in ICR4 tumors. Additional relevant immunomodula-
tory genes significantly deleted in ICR4 samples include cyto-
kine and cytokine-receptor genes mostly located on the
chromosome arm 5q (IL4 [5q31.1], IL5 [5q31.1], IL9 [5q31.1],
IL12B [5q33.3] IL13 [5q31.1], IL6ST [5q11.2], IL17B [5q32],
IL31RA [5q11.2]). Other immune-related genes significantly
more deleted in ICR4 over ICR1 include IL17RB [3p21.1],
IL17RD [3p14.3], IL32 [16p13.3], and GZMA-K [5q11.2]) and
genes involved in interferon signaling (STAT3 [17q21.2], IRF1
[5q31.1], IRF2 [4q35.1], IFI27 [14q32.12], and IFI35
[17q21.31]).

To add specificity to the analysis, we intersected the results
of the differentially amplified or deleted genes with those of
ICR-specific regions (File S4D). Only eight immune-related
genes were at the same time differentially altered in the two
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opposite immune phenotypes and included in ICR-specific
regions. Interestingly, such genes included the CXCR3 ligands,
CXCL9, CXCL10, and CXCL11 (q D 7e¡4), that are involved in
the recruitment of cytotoxic and Th-1 cells and are central in
the immunologic-constant of rejection signature (focal amplifi-
cation of 4q21in ICR4 groups is highlighted in Fig. 6; distribu-
tion of CXCL9–11 amplifications and deletion according to the
ICR subtype is showed in Fig. S8A). Although the effect of
amplification on transcript expression was modest, the expres-
sion level of CXCL9, CXCL10, and CXCL11 was significantly
higher in samples with gain compared to those with loss or no

alterations (Fig. S8A and B). It should be mentioned that the
interpretation of correlative analysis between CXCL9–11 copy
number and transcript expression is challenging. In fact, upre-
gulation of CXCL9–11, which are IFN-inducible transcripts,
could occur in absence of amplification, for example, following
production of IFNg by activated T cell. In addition, such che-
mokines are also produced by stromal cells (lymphocytes and
endothelial cells).17,19 This microenviromental interference can
therefore dilute the effect of functional amplifications or dele-
tions on transcript expression. However, CXCL9–11 copy num-
ber was inversely correlated with survival (Fig. S8C, left panel).

Figure 6. Copy number alterations characterize opposing immune phenotypes of breast cancer. (A) Visualization of CNV profiles for ICR1 and ICR4 tumors (first annotation
column) by IMS (second sample annotation column). Within the chromosome plots, red indicates DNA copy number gain; blue indicates DNA copy number loss. (B) Idio-
gram of genes significantly different deleted or amplified between ICR1 (blue) and ICR4 (red). Genes involved in the regulation of the immune system are indicated in
green, color indicators are located below the chromosome; IMS: intrinsic molecular subtype.

e1253654-10 W. HENDRICKX ET AL.



Nevertheless, ICR4 tumors had excellent prognosis indepen-
dently of the CXCL9–11 amplification, whereas ICR1 tumors
amplifying CXCL9–11 had the poorer prognosis (Fig. S8C, right
panel). In ICR1 tumors, the gene amplification did not equate
to upregulation of the corresponding transcripts (CXCL9–11
expression was invariably very low in such tumors, see Fig. S3),
suggesting that such amplification was not functionally relevant
and therefore cautioning the interpretation of the survival
analysis.

In summary, the correlative analyses suggest that 4q21
amplification is implicated in modulating the expression of

CXCL9, CXCL10, and CXCL11, but is not sufficient to confer
the protective immune phenotype.

Transcriptional pattern of MAPK-mutated cancers

Since MAPK mutations were enriched overall and within the
specific IMSs (i.e., Luminal samples), we assessed the functional
relevance of MAP3K1/MAP2K4 mutations by integrating muta-
tional with transcriptomic data. We compared genes known to
be part of the MAPK pathways between MAP3K1/MAP2K4-
mutated vs wild-type (wt) Luminal tumors. In order to quantify

Figure 7. The MAPK-mutation score can segregate different immune phenotypes of breast cancer within intrinsic molecular subtypes. (A) Left panel: MAPK-pathway
genes differentially expressed between MAP3K1 or MAP2K4 mutated (MAPK-mut) and wild-type TCGA Luminal samples are used to segregate ICR1–ICR4 TCGA Luminal
samples (N D 206). Right panel: MAPK-mut transcripts defined in the TCGA dataset are used to segregate ICR1–ICR4 Luminal samples of the validation dataset (N D 428).
(B) The same transcripts are used to segregate ICR1–ICR4 Basal-like and HER2-enriched samples in the TCGA cohort (N D 74 and N D 29, respectively) and in the valida-
tion dataset (N D 140 and N D 109, respectively). Samples are ordered by MAPK-mut score, which is the average ranking of the samples in upregulated and downregu-
lated Z-scores (see Materials and Methods section for detail). The TCGA heatmaps are based on the TCGA samples for which mutational data were available.
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the degree of MAPK deregulation, transcripts associated with
MAPK mutations (MAPK-mut transcripts) were used to gener-
ate a MAPK-mut score (see Materials and Methods section).
The MAPK-mut score could perfectly segregate Luminal sam-
ples according to the ICR classification (Fig. 7A, left panel). We
then extended the same score to the entire ICR1–ICR4 TCGA
dataset (Fig. S9, left panel). Strikingly, MAPK-mut transcripts
precisely separated the entire cohort of samples according to
the ICR classification, with coherent changes proceeding from
ICR1 to ICR4 from most of the genes (Fig. S10). Moreover, the
degree of the MAPK-pathway deregulation could stratify sam-
ples according to their immune orientation not only across but
also within the IMSs (Fig. 7B, left panel). Superimposable
results were obtained on the validation dataset using the
MAPK-mut score (Fig. 7A and B, right panels, and Fig. S9,
right panel). A schematic representation of the dysregulation of
the MAPK pathways is proposed in Fig. 8.

Discussion

In the present study, we defined discrete breast cancer immune
phenotypes according to the disposition of immune transcripts

related to the presence of an active Th-1 immune response
(e.g., ICR1, ICR2, ICR3, and ICR4). Using a discovery set of
1,004 tumor samples and a validation set of 1,954 samples, we
confirmed that the Th-1 immune cancer phenotype, also dis-
playing the activation of immune-regulatory mechanisms, is
associated with favorable prognosis in breast cancer. Con-
versely, the scant immune response of the lymphocyte-depleted
phenotype (ICR1) was oriented toward a Th-17 polarization,
previously associated with unfavorable prognosis in other
tumor types such as colon cancer.18 Interestingly, ICR1 cancers
were enriched in eosinophil-related transcripts, which have
been recently correlated with adverse prognosis in solid
tumors.67

Confirmation of the prognostic significance of the immune
phenotypes encouraged an analysis of genetic variables associ-
ated with and potentially determining them.

ICR4 tumors exhibited a higher frequency of amplifications
and deletions as compared to ICR1 samples. These imbalances
affected a considerable proportion of genes with potential
immune-regulatory effect. Although it is not possible to define
the net immunomodulatory impact that such alterations might
have caused, some findings captured our attention. For

Figure 8. Deregulations of the MAPK-pathway associated with MAP3K1 and MAP2K4 mutations. Summarized representation of the MAPK pathways with the stimulants
and kinase cascade from top to bottom. Key molecules are represented in the figure. The red and green color gradients indicate the downregulation or upregulation of
the genes in Luminal ICR1 vs ICR4 samples or in MAP3K1/MAP2K4 mutated (mut) vs wild-type (wt) samples. The red and green stars represent genes upregulated or
downregulated in ICR1 vs ICR4 regardless of the molecular subtype. “Upregulated in both” category highlights genes that are downregulated in both Luminal ICR1 vs
ICR4 samples and in MAP3K1/MAP2K4 mutated vs wild-type samples. “Down-regulated in both” category was for genes that are downregulated in both Luminal ICR1 vs
ICR4 samples and in MAP3K1/MAP2K4 mutated vs wild-type samples. No genes met this requirement.
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example, ICR4 tumors were enriched in amplification of STAT1
and deletion of STAT3, which are believed to play opposing
roles in the oncogenic process.68 Although STAT1 orchestrates
antitumor inflammatory response, STAT3 promotes tolero-
genic mechanisms and tumor growth.17,69-71 Moreover, ICR4
cancers uniquely displayed focal amplification on chromosome
segment 4q21. This region contains the CXCR3 chemokines
CXCL9, CXCL10, and CXCL11, which represent another critical
component, together with STAT1, of the ICR. As these chemo-
kines are implicated in the recruitment of cytotoxic and Th-1
cells,72,73 it is reasonable to speculate that constitutive amplifi-
cation of such transcripts in tumor cells can enhance the pro-
duction of chemo-attractant molecules favoring immune
infiltrations. Indeed, amplification of such chemokine genes
was association with increased transcript expression. Similarly,
Bindea et al. observed in colon cancer cases that CXCL9 expres-
sion was higher in patient who had gain.59 Although increased
production of such chemokines mediated by gene amplification
could have influenced the recruitment of T cell, it is important
to notice that such chemokines (especially CXCL10) exert both
tumor-suppressing and tumor-promoting effects.17,19,31

Because of their pleiotropic effects, it is possible that the ampli-
fication of such genes could have conferred a growth advantage
in certain phases of the oncogenic process while at the same
time having influenced T-cell chemotaxis, which however was
not able to mediate a complete tumor rejection.

Even though we detected a statistically significant correla-
tion between mutational or neoepitope burden and strength of
intratumoral response, the relationship was weak and could
not fully explain immune phenotypic differences. The median
number of somatic mutations in ICR4 tumors overlapped sig-
nificantly with that in the ICR1 ones. Thus, it is likely that other
variables contribute to the development of spontaneous antitu-
mor immunity.

A recent analysis of the TCGA datasets reported a linear cor-
relation between the number of somatic mutations and cytolytic
activity (defined as mean expression of GZMA and PRF1 tran-
scripts) but highly differs across multiple cancers.74 Although it
is possible that a higher number of mutations increase the prob-
ability of generating mutated peptide sequences recognized as
foreign by T cells, we did not detect an enrichment of neoepi-
topes in the immune favorable phenotype when the counts were
normalized for the overall number of mutations. These observa-
tions suggest that mutations in the Th-1 enriched ICR4 tumors
are not intrinsically more immunogenic than the ones in ICR1
cancers. We also observed that the correlation between muta-
tional load and immune phenotypes was strongly dependent on
IMS. The Th-1/ICR4 phenotype was enriched in Basal-like
tumors, which had the highest mutational burden. Vice versa,
the Th-1 depleted ICR1 phenotype was enriched in Luminal
tumors, in which the number of somatic mutations was rela-
tively low. The association between immune phenotypes and
IMS is in line with previous findings showing that the highest
level of immune infiltration is observed in HER2/NeuC and tri-
ple negative/Basal-like breast cancers.75,76

When the analysis was performed within each IMS, the
number of non-silent or total mutations did not differ across
the four ICR clusters in Basal-like and HER-2 tumors. How-
ever, it remained significant in the Luminal tumors, mostly

influenced by the small proportion of Luminal A tumors that
carry a much higher number of mutations than the median for
that group, (i.e., ICR4 Luminal A plot, Fig. 3A, third panel
from the left). Such heterogeneity implies a strong and complex
interaction between intrinsic genetic programs (in part cap-
tured by IMS), mutational burden, and intratumoral immune
response.

A positive association was noticed between frequency of
TP53 mutations and Th-1 infiltration. A possible explanation is
that TP53 mutations are particularly immunogenic leading
more frequently to the generation of neoepitopes. However, the
observation that the proportion of mutations leading to neoepi-
topes was not higher for TP53 compared to other genes does
not support this speculation. This was also the case for most
other differentially mutated genes enriched in ICR4 but not for
those enriched in ICR1. This interesting divergence might be
the results of immune-selection processes.

In a multi-cancer study of the TCGA datasets, Rooney et al.
found that TP53mutations were inversely associated with cyto-
tolytic activity in some tumors such as stomach, ovarian, cervi-
cal, and head and neck cancers.74 Because mutant forms of
TP53 can perturb genomic-stabilizing mechanisms,77 the effect
of TP53 mutations could differentially interact with other
mechanisms potentially implicated with immunomodulatory
functions in distinct cancer types. In breast cancer, when the
analysis was carried out for each IMS, TP53 mutations were
associated with the degree of the Th-1 status in Luminal sam-
ples and, to a lesser extent in HER2-enriched tumor. This was
not the case for Basal-like subtypes, which displayed overall the
higher frequency of TP53 mutations and the highest propor-
tions of Th-1/ICR4 tumors. Similarly, no significant association
between TP53 mutation and intratumoral immune response, as
evaluated by immunohistochemistry, was observed by Kriegs-
mann et al.78 In the analysis of the METABRIC dataset, Quigley
et al. reported that the expression of representative genes
related with immune infiltration (e.g., CCR7, CD2, CD3E, LY9,
PRF1) was overall the highest in Basal-like tumors.79 However,
when samples were stratified according to IMS, TP53-mutant
samples had the highest expression of immune related genes in
Luminal tumors, whereas the reverse was observed for HER2-
enriched and Basal-like tumors.79 It is tempting to speculate
that globally, in breast cancer, TP53 mutations associate with
perturbations that increase the likelihood to develop an antitu-
mor immune response. Yet, in specific breast cancer subtypes,
such as Basal-like and HER-2 tumors, other factors might sig-
nificantly influence the development of intratumoral immune
response, attenuating, or perhaps reverting, the putative immu-
nomodulatory effect induced by TP53mutations.

In addition to TP53, all but two differentially mutated genes
were enriched in the ICR4 group. Although this enrichment
could have occurred by chance as a consequence of the higher
mutational load of ICR4 samples, mutations of two genes (e.g.,
MAP3K1 and MAP2K4) were absent in the ICR4 group, with a
gradual and significant enrichment trend proceeding from
ICR4 to ICR1 tumors. Most of these alterations include frame
shift deletions or insertions and missense or nonsense muta-
tions, and are predicted to be deleterious.64 Interestingly,
MAP3K1 and MAP2K4 mutations were accompanied by the
upregulation of their corresponding transcripts, possibly as the
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result of compensatory mechanisms. MAP3K1 and MAP2K4
mutations were almost exclusively observed in Luminal A and
Luminal B samples, and their correlation with immune pheno-
types was present within these specific subtypes. When the
association with ICR was tested in a multivariate analysis
together with IMS, both MAPK and TP53 mutations were
retained in the model, whereas the mutational load was not.

The MAPK pathway is classically divided in four distinct
MAPK cascades (e.g., ERK, JNK, p38, and BMK), which modu-
late a wide spectrum of cellular responses from basis to highly
complex programs such as differentiation, proliferation, and
apoptosis (Fig. 8).80,81 MAP3K1 (MEKK1) stimulates both
MAP2K1/2-ERK1/2 and MAP2K4/7-JNK.82,83 Originally
described as oncosuppressor genes, in vitro and in vivo experi-
ments have demonstrated that MAP2K4 and MAP3K1 have
both tumorigenic and tumor suppressive functions depending
on cell type and experimental condition.82,83 Our transcrip-
tomic analysis revealed that MAP2K4 and MAP3K1 mutations
associate with a profound deregulation of the MAPK pathway.
Importantly, the degree of MAPK-mut driven perturbations of
the MAPK pathways was tightly connected with the tumor
immune orientation. MAPK-mutation related transcripts could
precisely segregate not only the Luminal cohorts but also the
other subtypes according to the ICR status. The direction of
such deregulation proceeded gradually from MAPK-mut Lumi-
nal ICR1 to wt HER2-enriched and Basal-like ICR4 tumors.

Since MAPK mutations were extremely rare in non-Lumi-
nal samples, it is possible that, in other IMSs, the described
MAPK perturbations are sustained by other mechanisms. As
for the different MAPK-cascades, MAPK-mutant/ICR1 sam-
ples display upregulation of the downstream mediator of the
ERK and JNK cascades, (e.g., MAPK3 [or ERK1], MAPK8 [or
JNK1], and MAPK9 [or JNK3]) together with overexpression
of the effector of the BMK cascade, which has similar effect to
that of the ERK cascade (Fig. 8).81 Activation of the JNK cas-
cade has been shown to modulate the production of several
pro-inflammatory cytokines.84 Notably, activation of the ERK
cascade is critical for the production of IL-10 and implicated
in the negative regulation of IL-12,85-87 with consequent
impediment of Th-1 differentiation. The p38 cascade, which
was also differentially deregulated in MAPK-mut and wt sam-
ples, is involved in the induction of IL-12 production, and
therefore in the modulation of Th-1 polarization.85,87,88 Stud-
ies in melanoma patients have reported that ERK-cascade
inhibition through BRAF-targeted therapy decreases the pro-
duction of immune suppressive factors including IL-6, IL-10,
and TGF-b,89 whereas BRAF-related transcripts could segre-
gate Th-1 vs Th-17 immune phenotypes.90 Moreover, the dou-
ble blockade of the ERK cascade through combined BRAF and
MEK inhibition was able to upregulate the expression of
tumor-associated antigens, MHC, as well as those of several
others immune-related genes.91 These combinations demon-
strated synergy with anti-PD1 therapy in melanoma mouse
models.91 Similar results have been recently described in triple
negative breast cancer, where genomic activation of the ERK
cascade was associated with lower frequency of TILs after neo-
adjuvant chemotherapy.92

As perturbations of the MAPK pathway are linked with dif-
ferent immune dispositions, our findings suggest that MAPK

modulation might enhance the therapeutic efficacy of immuno-
modulatory approaches in breast cancer. This approach could
possibly broaden the benefit of immunotherapy to Luminal
samples, which are in general excluded from immunotherapeu-
tic trials.

By unveiling the putative immunomodulatory proprieties of
MAP3K1 and MAP2K4 mutations, our study adds to the grow-
ing evidence that cancer genetic programs influence the devel-
opment of intratumoral immune response.30 Our results may
also provide indication on potential subpopulation of patients
with breast cancer who may benefit from immune therapeutics.
Further studies are needed to validate the determinism of our
findings and give mechanist insights into the immunomodula-
tory proprieties ofMAP3K1 andMAP2K4 in breast cancer.

Materials and methods

Data acquisition and filtering

TCGA dataset: All data acquisition and analysis was accom-
plished using R (3.2.2) unless mentioned otherwise. Packages
used are mentioned throughout article sections. RNA-seq, clin-
ical and copy SNP data were downloaded using TCGA assem-
bler and our TCGAbioloinks R/Bioconductor package.93,94

Mutation data (genome.wustl.edu__IlluminaGA_curated_
DNA_sequencing_level2.maf) were downloaded using the
TCGA portal (N D 1,097). Data were filtered to exclude
patients without RNA-seq data or clinical information. Other
exclusion criteria were male gender, an unclear histology, use
of neo-adjuvant therapy, and a history of other malignancy
(N D 3, 9, 1, 13, 66, 12). After exclusion, analysis was per-
formed on a dataset of 1,004 patients, 903 of which also have
mutation data, 995 have CNA data, and 953 have available sur-
vival data. Normalization of TCGA RNA-seq data was per-
formed within lanes, between lanes, and per quantile using the
EDASeq package. This normalization accounts for gene-spe-
cific effects on read counts within lanes, such as those related to
gene length or GC-content, and for differences between lanes
in the distribution of read counts (e.g., sequencing depth).
Tumor IMS (i.e., Basal-like, HER-2/neu enriched, Luminal A,
and Luminal B) based on RNA-seq data were determined using
the method described by Ciriello et al.95

Validation dataset: Validation cohort comprised of 1,954
tumor expression profiles of primary invasive breast cancer not
receiving neo-adjuvant chemotherapy profiled with Affymetrix
microarray platforms (i.e., U133A, U133A2, and U133 PLUS
2.0). Data represent different patients’ populations from 16
medical centers in the USA, Europe, and Asia. Construction of
this dataset is described in detail elsewhere.43,96 Briefly, raw
data (CEL files) were extracted from Gene Expression Omnibus
(GSE1456, GSE2034, GSE5327, GSE12093, GSE7390, GSE6532,
GSE9195, GSE2603, GSE7378, GSE8193, GSE4922, GSE11121,
and GSE45255), NCI’s caArray database (accession: mille-
00271), and the EMBL-EBI’s ArrayExpress database (accession:
E-TABM-158). Transcripts analyzed included the 22,268 probe
sets common to the U133A, U133A2, and U133 PLUS 2.0 array
platforms. Data were MAS5.0 normalized using the justMAS
function in the simpleaffy library from Bioconductor97 using a
trimmed mean target intensity of 600 without background
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correction. COMBAT empirical Bayes method was used to cor-
rect for batch effects.98 IMS (i.e., Basal-like, HER2-enriched,
Luminal A, and Luminal B) were defined using the Single Sam-
ple Predictor (SSP) algorithm by Hu et al.99 utilized by Fan
et al.100 Claudin-low tumors were identified by using the
method of Prat et al.101 Because the algorithm used to classify
the TCGA samples did not include the Claudin-low subtype,
such samples were omitted in the heatmap representation of
the validation dataset (Figs. 7 and S9).

Correlation matrix and consensus clustering

The correlation matrix was calculated using Spearman test and
plotted using corrplot 0.73, with genes being ordered by first
principal component. The consensus matrix plots were gener-
ated using the ConsensusClusterPlus 102 1.24.0 package with
the following parameters: 5000 repeats, a maximum of 7 clus-
ters, and agglomerative hierarchical clustering with ward crite-
rion (Ward.D2) inner and complete outer linkage. Genes used
for consensus clustering analyses are the 20 a priori selected
immune genes (listed in Fig. 1A and C).

Heat maps and Kaplan–Meier survival plots
For the heatmaps, gplots 2.17.0 was used, and a modified version
of the ggkm 103 function was created to generate the Kaplan–
Meier survival curves. OS data was available for TCGA dataset
and distant DMFS data for the validation data sets and were used
to generate Kaplan–Meier curves. Normal-like samples, and those
with missing IMS assignment or with less than 1 d follow-up,
were excluded from survival analysis. To minimize population-
specific bias due to patient follow-up duration, survival analysis
was limited to a 10-y window; p values are based on Log-rank
test. The MAPK-mut score was calculated as follows: first the
Z-score of the differentially upregulated and downregulated genes
betweenMAP3K1/MAP2K4 Luminal mutant vs Luminal wt sam-
ples belonging to the MAPK pathway (as for KEGG http://www.
genome.jp/kegg/) is calculated separately. Then the up and down
rank of the samples is determined based on the Z-scores. The
mean of the up and down ranks for each sample is then defined as
the MAPK-mut score. Finally, by using the same genes, MAPK-
mut score is portrayed to the other samples.

Differential gene expression and functional analysis

Differential gene expression analysis was carried out using the
Bioconductor edgeR analysis package,104 which uses a general-
ized linear model with a logarithmic link function and a nega-
tive binomial error distribution in the analysis. To minimize
spurious statistical tests, gene counts with low expression values
were filtered out. The threshold cutoffs to identify significant
DEGs were False Discovery Rate (FDR)-adjusted p value (q
value) < 0.05 and absolute log-fold change (log FC) > 0.5
Gene Ontology (GO) term enrichment analysis was performed
using GSEA 105 (1,000 permutations; genes ranked according
to ICR4 vs ICR1 absolute log FC) and visualized by the Enrich-
ment Map tool (The Bader lab, University of Toronto) as a
plug-in of Cytoscape.106 In order to identify possible enriched
molecular networks and canonical pathways, functional charac-
terization of the DEGs with absolute log FC > 1 was performed

using Ingenuity� Pathway Analysis (IPA�, QIAGEN Redwood
City, www.qiagen.com/ingenuity).

Cell type deconvolution

To estimate the enrichment of various immune cell types, gene
expression deconvolution analyses were performed with single
sample GSEA58 implemented in the GSVA package using the
24 immune-signatures reported in Bindea et al. 59 Hierarchical
clustering with ward criterion (Ward.D2) was then applied to
the matrix of the ES, in order to segregate the samples based on
their immune cell composition. Differentially expressed ESs
between ICR1 and ICR4 were calculated through t-test, using a
cut-off of FDR-adjusted p value (q value) < 0.05.

Somatic mutations

The distribution of somatic mutations and neoepitopes among
classes in comparisons was tested by Kruskal–Wallis test.
DMGs between ICR1 and ICR4 were identified by Fisher’s
exact test for those 5,037 genes that have at least 1% mutation
in one of the four CR cluster (cut-off p value D 0.01). We used
the Cochran–Armitage test for trend to exclude the presence of
a linear trend between the proportions of mutated samples
within each ICR subtype.

Neoepitope analysis

Predicted patient-specific HLA class I binding peptides result-
ing from somatic mutations for individual tumor samples
were obtained from Rooney et al.74 For a given mutation, the
pipeline calculated binding affinities of all possible 9- and
10-mer mutant amino acid peptides overlapping the mutation
site using NetMHCpan (v2.4) 107 either in the presence or
absence of the somatic mutation. The corresponding germline
four-digit HLA class I alleles for each sample was inferred
using POLYSOLVER Bayesian classifier genotype.108 To mini-
mize false positives, investigators considered only peptides
that originate from expressed genes (median > 10 TPM in
the tumor type) and show a binding affinity of < 500 nM.
Using this dataset, we defined high affinity peptides as those
predicted to have IC50 � 50 nm or Rank score � 0.5%
(default cutoffs of NetMHCpan). For alleles distant to the
MHC molecules included in the training of the method, Rank
score is calculated as the percentage rank relative to a set of
200,000 random natural peptides. If a peptide harboring a
given mutation is predicted to be a high affinity binder,
whereas the original unmutated germline peptide is not pre-
dicted as such, this mutated peptide was defined as a potential
strong neoepitope. We calculated immunogenic profiles for
individual samples or genes as the ratio between the distinct
count of mutations that lead to at least one putative strong
neoepitope and the total number of distinct mutations
observed in the sample or gene.

Copy number alterations

Significant genomic imbalances were based on Affymetrix
SNP6.0 GeneChip arrays and processed using Genomic
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Identification of Significant Targets in Cancer (GISTIC) version
2.0 algorithm109 to identify broad and focal CNAs specific for
each group. GISTIC computes, for each segment through the
genome, a score based on the frequency of CNA combined
with its amplitude, with bootstrapping to calculate the signifi-
cance level in terms of FDR-adjusted p values (q values). GIS-
TIC thresholds for calling gain and loss were set to absolute
log 2 ratio > 0.1 and only CNAs with a q value < 0.05 were
considered relevant for further analysis. For the generation of
the ideogram plot, we made use of NCBI’s Genome Decoration
Page (GDP, source: http://www.ncbi.nlm.nih.gov/genome/
tools/gdp). BED files were generated for significant (FDR-
adjusted p value (q value) � 0.001, x2 test) differently amplified
or deleted genes between ICR1 and ICR4 and uploaded to the
GDP tool to create an ideogram for amplification and deletion.
The Immunone database66 (846 genes) was used to filter the
“immune-related” genes among the all genes differentially
amplified or deleted between ICR1 and ICR4.
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