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Abstract

In this paper, we report oxidation time effect on highly porous silver oxide nanowires thin films fabricated using ultrasonic
spray pyrolysis and oxygen plasma etching method. The NW’s morphological, electrical, and optical properties were
investigated under different plasma etching periods and the number of deposition cycles. The increase of plasma etching
and oxidation time increases the surface roughness of the Ag NWs until it fused to form a porous thin film of silver oxide.
AgNWs based thin films were characterized using X-ray diffraction, scanning electron microscope, transmission electron
microscope, X-ray photoemission spectroscopy, and UV-Vis spectroscopy techniques. The obtained results indicate
the formation of mixed mesoporous Ag,0 and AgO NW thin films. The Ag,0 phase of silver oxide appears after 300 s of
oxidation under the same conditions, while the optical transparency of the thin film decreases as plasma etching time
increases. The sheet resistance of the final film is influenced by the oxidation time and the plasma application periodicity.
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1 Introduction

The research of new metal oxide nanomaterials thin films
deposited on glass substrates has gained much attention
in recent years [1, 2] due to their applications in optical
engineering [3], sensors [4], biomedicine [5], energy stor-
age [6], and catalysis [7].

Silver (Ag) is known for its valuable properties in many
aspects of human life. Properties such as electrical con-
ductivity, antimicrobial, photovoltaic, optical properties,
and oxidative catalysis toward many reactions [8-12]
make the element superior to other nanostructured met-
als. Silver has minimal toxicity to humans and has been
widely used as a disinfectant and in drug delivery and
textile hygiene [13].

Silver oxide systems come in different phases, such as
AgO, Ag,0, Ag,0;, and Ag;0,, creating different types
of inorganic materials [12]. Those oxides’ crystal struc-
tures have different shapes that allow for various optical
and electrical properties [14]. As a result, silver oxide has
been used as a photocatalyst and in the photovoltaic
industry [15] and for energy storage as a cathode in alka-
line batteries and many plasmon photonic devices, or
as active cathode materials in silver oxide-zinc alkaline
batteries [16, 17]. Silver and silver oxide NWs can be used
in metal grids to provide high flexibility, high electrical
conductivity, and optical transparency [18-20].

Various methods are employed for growing silver
oxide thin films, such as thermal oxidation, electron
beam evaporation, pulsed laser deposition, chemical
vapor deposition (CVD), and DC sputtering [21-26].

The morphology of Ag NWs during and after the syn-
thesis is affected by factors like the reaction temperature,
oxidation, and reaction time. Several studies reported
the effect of preparation conditions on the length, diam-
eter, and aspect ratio of silver NWs, which result in high
transparency, low sheet resistance, and high mechanical
properties [19]. Kim et al. reported that a reaction time
of 3 h or more could produce Ag NWs with a diameter
of approximately 62.5 mm and a length of 13.5 um [27].
Meanwhile, Atwa et al. reported a high temperature of
170 °C synthesis could yield silver NWs with a length of
15 um and a diameter larger than 35 nm [28]. Finally,
Yang et al. reported an average silver NW with a diameter
of approximately 40 nm and an average length of 120
pm, and an aspect ratio of 2500 [29]. Also, the silver oxide
nanostructures’ morphology and properties depend on
the oxidation process and material growth method [30].
Various ways are used to deposition thin films on sub-
strates, such as thermal oxidation, evaporation, CVD, DC
sputtering, RF sputtering, and spray pyrolysis [11, 30].
Spray pyrolysis allows for excellent controlling of the thin
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film thickness and homogeneity along the substrate. A
low-temperature oxidation method based on the cold
plasma process is reported by [31]. In this research, we
report the influence of oxidation time on the morphol-
ogy, optical, and electrical properties of silver and silver
oxide nonporous NWs This oxidation process is known
for generating nano porosity on the surface of the nano-
structure. This porosity affects the electrical and optical
properties of the nanomaterial film.

2 Experimental

In a typical synthesis, an aqueous solution of silver nanow-
ires (Ag NWs) purchased from Advanced Chemical Supplier
Material, LLC, USA) is used in the experiment. The diameter
of NWs is 50 nm, while the length is 100-200 um. The Ag
NWS are dispersed in 25 mL of ethanol, and the concentra-
tion of the NWs in the solution is 20 mg/mL. The silver NWs
solution is diluted in ethanol to better homogeneous dep-
osition and prevent the NWs from clogging the spraying
machine’s nozzle. An aqueous solution with a 1:20 ratio of
silver NWs to ethanol is sprayed on glass substrates made
from the highest quality sheet glass. The dimensions of
each substrate were 25 x 75 mm, and the thickness was
0.1 mm. The solution is deposited on the substrates using
the ultrasonic spraying deposition machine (Exacta coat
by Sono-tek). It consists of an impact nozzle, heating plate,
and a syringe with a stirrer to pump the solution into the
nozzle. The machine deposits the silver on the substrate
in the form of tiny droplets (size range in microns) to ultra-
sonically form piezoelectric crystals.

The crystals control the size of the droplet’s mean fre-
quency of oscillation. Pumped gas (nitrogen or argon)
then drive the droplets onto the substrate to create a thin
film. A computer attached to the machine used to control
the coordinates, path, time, and a number of deposition
cycles. Pathmaster software is used to program and con-
trol the process parameters. The flow rate is controlled by
the software and set at 0.8 m/L per second, while the air
shaping pressure is placed at 0.7 CMM.

A radio-frequency plasma source Plasma etch” model
PE-100 was used to oxidize the silver NWs. The samples
were placed on one of the three horizontally stacked elec-
trodes inside the chamber. The radiofrequency plasma
with a power of 30 W is then applied to the silver film
under oxygen plasma etching with a mass flow of 15 sccm.
The pressure inside the chamber in the vacuum phase was
200 mTor. During the deposition, the temperature inside
the chamber is set at 30 degrees Celsius.

The SEM imaging was carried out using FEI Quanta
650 FEG. TEM imaging was done using FEI Talos F200X.
Four probe resistance measurements were performed
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using the Keithly 2450 source meter. X-ray photoelectron
spectroscopy (XPS) was performed using Thermo Scien-
tific ESCALab 250Xi with monochromatic Al Ka radiation.
X-ray diffraction (XRD) was performed using the Bruker
D8 advance, 40 kV, Range 3-90 degrees. Perkin-Elmer
1050 UV-Vis was used for optical measurements. Sheet
resistance of the films where measured using the four-
point probe technique. In this method, four electrodes
are arranged in a linear array. The measurement was per-
formed by injecting a current | through the sample sur-
face by the two outer electrodes, making a voltage drop
V across the two high impedance inner electrodes that
measured using a high impedance voltmeter. Assuming a
homogeneous film, the sheet conductance (G) (siemens
(S) unites) is measured by the ratio between voltage to
current ratio according to the following equation

/ V4

AT M

The resistance in ohm (Q). is calculated by the reciprocal
of conductance (1/Gy). Since the sheet resistance doesn't
change under the scaling of the film contact, it can com-
pare the electrical properties of devices that are different
in size [32]. Other researchers widely used this technique
to use the four-point probe method to eliminate the
instrument lead and contact resistance in measuring the
sheet resistance of metal oxide thin films [10].

3 Result and discussion
3.1 X-ray diffraction (XRD)

X-ray Diffraction (XRD) was utilized to understand the for-
mation of the silver oxide phase and its crystalline struc-
ture during the reactive ultrasonic spray pyrolysis and
oxygen plasma etching of the prepared samples. The XRD
pattern of the prepared samples of pristine and plasma-
treated Ag NWs was highly dependent on the oxidation
time, as shown in Fig. 1. X-ray diffraction of the silver oxide
films treated in oxygen plasma at different times showed
four major broad X-ray diffraction peaks at 26 =32.3°, 34.1°,
37.3% and 39.6 ° respectively. The strong diffraction peaks
at 26=32.3° and 37.3° related to (111) and (200) Bragg
reflections of bulk Ag,0 (JCPDS 12-0793, a=0.4736 nm)
with a cubic structure [33]. However, the peak at 26 =34.1°
is related to monoclinic AgO (JCPDS 84-1547) [40]. Finally,
the peak at 26=39.6 ° is associated with the formation of
mixed-phase of Ag/Ag,0, as reported by [33-35]. No other
peaks of other compounds were detected, indicating the
high crystallinity and purity of the synthesized sample.
These results suggest that the grown silver oxide film is
polycrystalline. Upon increasing the oxidation time, the

intensity of Ag,0 (111) reflection was enhanced, indicat-
ing that the crystallinity of the Ag,0 films was increased. It
also suggests a change in the composition of the sample
from pristine silver to silver oxide. There was a detection of
silver and silver oxide AgO peaks. The crystallite diameter
(L) of AgO nanostructures was calculated using XRD. Full
width at half maximum intensity(FWHM) of X-ray diffrac-
tion peaks and found to be 13 nm according to the Scherer
equation:

(kA
B20) = (L cos 6)

)

where B is the broadening of the observed diffraction
line at its half intensity maximum, and k is the shape fac-
tor, which usually takes a value of about 0.94, and A is the
wavelength of the X-rays used in XRD.

The diffractogram of plasma-treated Ag NWs shows
an evolution in the (111) peak intensity of Ag,0 as we
increase the time of exposure to oxygen. The calculated
average silver crystalline sizes are 17, 18, 21, 23, and 24 nm
for 30, 60, 90, 120, and 300 s. The peak disappears after an
oxidation time of 300 s. On the other hand, the calculated
average AgO grain size is between 13 and 17 nm for 120,
300, 600, and 900 s, respectively. The sharp increase in the
crystallite at higher oxidation time was due to oxidation
of Ag to AgO first and then the transformation to Ag,0 at
higher oxidation time.

At zero oxidation time, there is no significant intensity
or evidence of the formation of AgO and Ag,0 peaks. How-
ever, at a greater oxidation time, the rate of formation of
AgO and Ag,0 oxide becomes more noticeable between
60 and 120 s. The results indicate that as oxidation time
increases, the AgO becomes the dominant oxide. At oxi-
dation time >300s, the intensity of AgO peak decreases,
and the peak of Ag,0 (111) and Ag,0 (200) increases and,
the spectrum agrees well with ICDD card no (00-043-1038)
[36]. There was also a formation of a new mixed-phase of
Ag/Ag,0. Our results agreed well with the results obtained
by other researchers [11, 371.

3.2 Film and nanowires morphology

To explore the morphology and size of the generated
NWs, we used scanning electron microscopy (SEM) and
transmission electron microscopy (TEM). The silver NWs
was used in this experiment have a diameter of 100 nm
and a length of 100-200 pm sprayed using an ultrasonic
pyrolysis machine on glass substrates. RF plasma etch-
ing is known and used for silver oxidation and to intro-
duce roughness on the nanowire’s surface [31] and hence
increase the surface area to volume ratio. The impact
of RF plasma exposure time on the morphology and
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Fig. 1 XRD diffraction pattern
of Ag NW thin film after RF
plasma treatment as a function
of oxidation time. For all the
conditions, the pressure and
the electrical power were 0.23
psi and 30 W, respectively
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composition of the nanowire was studied. For this pur-
pose, the oxidation time was varied between 0 and 900 s,
while fixing the RF power to 30 W and the oxygen flow
to 15 sccm as can be seen in Fig. 2b, after 30 s of oxida-
tion, small lumps of silver oxide form on the surface of the
NWs. The mean size of these features is around 20 nm in
diameter. The average diameter of NWs increases to 67 nm
compared to pure silver NW’s shown in Fig. 2a, which have
an average width of 100 nm after oxidation, and part of the
NWs becomes porous. When increasing the plasma oxida-
tion time to 60 s, the amount of oxide particles covering
the Ag NW increases, and the diameter becomes 130 nm
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on average, as seen in Fig. 2c. Also, the clusters tend to coa-
lescence together to form more massive clusters along the
wires. The Ag NWs become porous after 120 s of plasma
etching, and the silver oxide surface clusters almost dis-
appear, and diameter increases to 160 nm, as shown in
Fig. 2d. At higher oxidation time (between 300 and 900 s),
the NWs become completely porous and sintered in some
areas with an average diameter of 300 nm. The aspect
(length to width) ratio of the NWs decreases from 2000
in pure silver to 300 in Ag NW'’s oxidation for 900 s due to
the increase of NW's diameter while the length remains
almost constant.
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Fig.2 SEM micrographs of Ag NW thin film after RF plasma treatment for:a0s,b30s,¢60s,d 120 s, e 300 s, and f 900 s. For all the condi-
tions, the pressure and the electrical power were 0.23 psi and 30 W, respectively

TEM was also used to study the morphological and
structural changes observed in the different oxide thin
film formation stages, as shown in Fig. 3. There is a clear
correlation between oxidation time and oxidation of the
Ag NWs, as observed by SEM. TEM images for the same
samples confirm that nano porosity occurs in the silver
NWs after 120 s of oxidation at the chosen etching condi-
tions, as shown in Fig. 3d-g. Moreover, at higher oxida-
tion times from 300 to 900, the wires disintegrate into
small pieces distant from each other, which may become

brittle as oxides are brittle and tend to break while Ag-
metal is ductile (Fig. 4).

Both SEM and TEM confirm that AgO and Ag,0 shell
covered on Ag NWs, forming the core-shell structure of
Ag and Ag oxides, which are explained by the observed
increase in Ag diameter. The evolution of oxide forma-
tion starts with surface oxidation, and upon increasing
the oxidation time, Ag NWs, voids begin to form within
the Ag NWS and propagate to the center of Ag nanow-
ire and the loss of internal Ag atoms. Porous AgO/Ag,0
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Fig.3 TEM micrographs of Ag
NW thin film after RF plasma
treatment for:a0s,b30s,
c60s,d120s,e300s,and f
900 s. For all the conditions,
the pressure and the electrical
power were 0.23 psiand 30 W,
respectively

nanostructures were observed after 120 s of oxidation
time. At oxidation time of 300 s, continuous and con-
nected mesoporous AgO and Ag,0 NWs thin-film finally
achieved.

The evolution mechanism of AgO and Ag,O NWs thin
film formation could be explained as follows: The oxygen
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i 100 nm

gas particles (O) are active and can oxidize Ag NWs, produc-
ing heterostructures Ag and AgO/Ag,0 forming the Ag/
Ag,0 or Ag/AgO interface. Further oxidation proceeds via
Ag'* or Ag** rapid out-diffusion by active O particles oxi-
dizing, which lead to the evacuation of central crystallites
atoms and the formation of AgO/Ag,0 as a result of the
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Fig.4 X-ray Photoelectron Spectroscopy (XPS) of the Ag NW thin
film after RF plasma treatment as a function of oxidation time. For
all the conditions, the pressure and the electrical power were 0.23
psi and 30 W, respectively. a Survey scan of X-ray photoelectron

reaction between Ag NWs and O, plasma, which leads to
the formation of mesoporous AgO/Ag,0 nanostructures.
Similar resultswere reported by Li et al. [38]. The transfor-
mation of Ag metal nanowires to mesoporous AgO/Ag,0
process can be explained by the Kirkendall effect where the
Oxygen atom is formed in an O, plasma mainly via electron
impact dissociation to form O + O + e~ or through dissocia-
tive attachment to form O + O~

The following reactions can express the formation mech-
anism of AgO/Ag,0:

2Ag + O, — Ag,0 or 2Ag + O, — 2Ag0O (3)

b —— 0900 Sec
—120 Sec
— 0Sec

Intensity (a.u.)

-t 575l r o rrcr 1T
380 378 376 374 372 370 368 366 364 362 360
Binding Energy (eV)

— 900 Sec
d ——120 Sec
— 0 Sec

Intensity (a.u.)

L I 2 1 £ ) 2 1 b I J 1 L) 1 % 1 = I
298 296 294 292 290 288 286 284 282 280
Binding Energy (eV)

spectroscopy (XPS) spectrum of Ag NW thin film. b High-resolution
Ag3d XPS spectrum of Ag NW thin film. ¢ High-resolution O 1s XPS
spectrum of Ag NW thin film. d High-resolution C 1s XPS spectrum
of Ag NW thin film

The active atomic Oxygen (O) can easily react with Ag
nanowires to form an Ag/Ag,0 interface, which leads to
the formation of an Ag@Ag,0 heterostructure tube. As
the reaction time increased, and due to the rapid out-
diffusion of Ag'* as a result of active atomic Oxygen (O)
species oxidation, the evacuation of central crystallites
and formation of Ag,O shell occurs through the gal-
vanic reaction (Eq. 3) by Ag/Ag,0 interface between
Ag nanowire and O, plasma flowed by the formation
of mesoporous AgO and Ag,O nanostructure due to
the bombardment of the gas molecules. These findings
supported by results obtained by several researchers
[39-44].
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SEM and TEM micrographs of NWS samples oxidized
at different oxidation times also indicate that the sample
morphology changes from wire-like morphology at low
oxidation time to randomly interconnected elongated
particles at high oxidation time (after 600 s). The AgO
and Ag,0 particles had a broad grain size distribution of
25-75 nm at 120 s and an average diameter of ~35 nm.
After 300 s, the grain size distribution becomes 10-50 nm
with an average grain size of ~18 nm. The average silver
oxide crystalline sizes calculated from SEM and TEM are
slightly higher than the average grain size obtained by
X-ray diffraction calculated using the Scherer equation
(~22 nm). It is essential to note that the average grain size
estimated from the XRD was higher since the XRD signal
is from the large particles.

3.3 X-ray photoelectron spectroscopy (XPS)

X-ray photoelectron spectroscopy (XPS) analysis to study
the modification of surface properties and the oxidation of
Ag NWs by ultrasonic spray pyrolysis and oxygen plasma
etching method. To better understand the effect of oxi-
dation time on silver and silver oxide NWs, it is crucial to
determine the core level binding energies present in the
films and the chemical state of both silver and oxygen in
the samples. Since XPS can provide beneficial informa-
tion on the chemical state in the surface of the material,
X-ray photoelectron spectroscopy studies performed on
the films formed at different oxidation times. The survey
scan XPS analysis for the silver and silver oxide NW Film
elemental determination formed at different oxidation
times shown in Fig. 5a. The XPS survey spectrum of Ag
NWs oxidized for 0, 120, 900 min revealed relatively high

Agin AgO
BE=366.4 eV

Agin Ag/Ag,0
BE=365.9 eV

Intensity (a.u.)

T T T T T T T
380 378 376 374 372 370 368 366 364 362 360
Binding Energy (a.u.)

phase purity of silver grown oxide films with major ele-
ments silver and oxygen (Ag 3d and O 1s), and spectrum
of the minor elements such as carbon (C 1s).

In contrast to previously published XPS data for Ag,0,
which revealed a large number of contaminants by other
elements, XPS data shows minor contamination present
on our samples’ surface. Therefore, these spectra are
extremely useful in XPS-studies of Ag-grown oxides [45].
Figure 5b shows the variation of Ag 3d XPS peak intensi-
ties of Ag NWs before and after plasma treatment and as
a function of oxidation time.

For untreated Ag, the NWs spectrum showed the char-
acteristic core level binding energies at about 366.4 eV and
372.5 eV of the 3d;,, and 3d;,, peaks spin-orbit splitting
of energy levels. The full-width at half maximum (FWHM)
for the 3d;,, and 3d;,, peaks are 0.73 eV and 0.6 eV, respec-
tively. These peaks are in good agreement with previously
reported XPS data for Silver oxide [46, 47]. The peaks at
570.9 eV and 601.1 eV, corresponding to Ag 3ps,, and Ag
3p,,, related to the Ag,0 films [48]. The O 1 s peak at a
binding energy of 530.1 eV with full-width at half maxi-
mum (FWHM) of 1.9 eV in Fig. (c). shows Ag NW surface
oxygen is likely due to atmospheric oxygen and hydro-
carbons or oxygen during the synthesis, as reported in the
previous reports [47, 49].

Upon exposing the surface of Ag NW to plasma treat-
ment, the contamination on the surface is removed,
which is indicated by intensity variation of C 1s peak,
at 283.2, and the formation of a new peak at 287.5 as
shown in Fig. 5d. The films formed after 120 s oxidation
time, the core level binding energy of Ag 3d;,, shifted to
366.5 eV, and O 1 s shifted to 530.2 eV, and all the peaks
were broadened, which could be related to the formation

b O1s Oin Ag0
/ \ BE=530.6 eV
oy Oin Ag,0
g BE=529.7 eV
- Oin Ag,CO;
2 BE=531.3
n
c
[]
s
£
——T T T A
540 538 536 534 532 530 528 526

Binding Energy (a.u.)

Fig.5 High-resolution XPS data of a Ag 3d5/2 and b O1s peaks of Ag oxide NW thin film after 900 s oxidation time
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of AgO and Ag,0 phases [50]. However, at 900 s oxida-
tion time, the shift becomes higher where the Ag 3d;,,
shifted to 366.5 eV. In contrast, O 1s shifted to 530.7 eV
[51], accompanied by the formation of the new O 1s peak
at 527.7 attributed to the formation of mixed-phase of Ag
and Ag,0O and in agreement with observed Ag,O phase
in the literature [52] as seen in the XRD. These core level
binding energies in the films formed at 120 and 900 s oxi-
dation time were in a good agreement with the energies
Ag,0, as reported by Abe et al. [47, 48] in plasma treated
silver nanoparticles. This shift is consistent with previously
published reports where the Ag 3d;,, core level binding
energies in Ag and Ag,0 and O 1 s compared with the pure
metallic silver [47, 52].

XPS studies suggest that the films formed at 120 s con-
tained Ag, AgO, and Ag,0 phases, while those formed at
900 s were of AgO, Ag,0 mixed-phase, and metallic Ag
with Ag,0 dominant at high oxidation time. Although Ag
oxidation state varies in general with a slight difference
and due to other factors [51], it is clear that Ag®, Ag*, Ag**
coexisted in the silver oxide film as shown in the fitting
the binding energy peak of Ag 3d;, in the high-resolu-
tion XPS spectra of Ag,O Fig. 5(a). The peaks located at
365.9, 366.4, and 367.1 eV attributed to Ag®, Ag* and Ag**
respectively. The peak fitting of O1s in Fig. 5(b) Showed
O1s XPS spectra of Ag oxide NW thin film, three peaks

at 529.7, 530.6, 531.3 eV attributed to Ag,0, AgO, and
Ag,CO;, respectively.

It is important to note that, in the Ag,0 compound,
the Ag 3d5/2 core level binding energy in the range
367.6-367.8eVand O 1 s were in the range 529.2-529.5 eV,
while in pure metallic silver was in 368.0-368.3 eV range
[21].

Our results revealed that the films formed after 900 s
oxidation time were of mixed-phase of Ag,0, AgO, and
a mixture of Ag and Ag,0O, which was also confirmed by
X-ray diffraction and X-ray photoelectron spectroscopy
studies.

3.4 Optical properties

The optical absorption properties of the Ag oxide NW
films were investigated by UV-visible spectroscopy to
determine the absorption spectrum in the range of
200-800 nm. Figure 3 shows a comparison of the opti-
cal absorption spectra recorded for the different sil-
ver NW thin film samples at different oxidation times.
Absorption is determined by the light that did not pass
through the substrate and represented by a percentage
after subtracting light transmitted and reflected. All the
samples showed a much higher absorption in the vis-
ible region due to activation by the visible light [53]. In

Fig.6 UV-VIS absorption spec-
tra of Ag NW thin film after RF
plasma treatment as a function
of oxidation time. For all the
conditions, the pressure and
the electrical power were 0.23
psi and 30 W, respectively
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Fig. 6, it is observed that increasing the oxidation time
results in an increase in the absorption of visible light
and a decrease in transmittance. The Ag oxide NWs have
strong absorption in the UV-Visible range with a broad
absorption band centered at ~530 nm and an absorp-
tion tail extending to the NIR region, which indicates
that the increment of the oxidation time increases the
percentage of silver oxide thickness.

Furthermore, for films made of pristine Ag NWs, the
spectra exhibit one peak detected at 357 nm NW [54].
While for samples with oxidation time that varies from
30 s to 900 s, we can notice that absorption increases,
and there is no absorption peak. These results can be
explained by the increase in the NW’s width, as dis-
cussed earlier. Also, the percentage of silver oxide in
the thin film increases further with oxidation time. Ag
NWs showed higher absorption in the blue region of
the visible light spectrum which, can be attributed to
the photoactivation of silver oxides in this area, which
causes the transition from ground to excited states [55].
The absorbance peak of AgNWs in the short wavelength
range of 340-380 nm, which shows a strong absorption
of near-ultraviolet and short-wavelength visible light
around at 356 nm, which is equivalent to a 3.48 eV band
gap. However, this peak is red-shifted as the Ag NWs
film is transferred to AgO/Ag,0 to the visible region
450-650 nm, assuming that the film thickness con-
stant. This peak is centered at approximately 550 nm at
greater oxidation time, corresponding to a 2.16 eV band
gap after 300 s (AgO formation) and 2.25 eV after 900 s
oxidation time (after Ag,0 formation). The optical band
gap (Eg) of starting Ag NW film reported being around
3.48 eV and 2.16 and 2.25 eV for the oxidized Ag NW
(AgO) and (Ag,0) films. These results suggest that Silver
film absorbs less light as the oxidation time increases

and more oxidation results in less absorption. Recent
studies report similar results for increasing the oxida-
tion time [56].

UV-Vis spectra are generally used to describe the mor-
phology of nanostructured materials. Silver and silver
oxide nanostructures can display surface plasmon reso-
nance (SPR) bands at different frequency ranges [57]. The
absorbance peak of Ag NWs occurred in the wavelength
range of 340-380 nm and showed strong absorption of
near-ultraviolet and short-wavelength visible light, with a
significant peak at 369.14 nm and a shoulder at 354.79 nm,
both corresponding to typical absorption peaks of Ag
NWs [58, 59]. A broad peak was observed between 450-
650 nm, which is associated with Ag,0 metallic nano-
particles [60]. Fakhri et al. studied the effect of annealing
Opto-electronic properties of Ag,O Films. They found that
the incident light wavelength is directly related to the
increase in the oxidation temperature and is caused by
the transformation of metallic Ag thin films to Ag,O [56].
The UV-VIS analysis showed that the optical properties
and the film absorption increase as the plasma exposure
time increases.

3.5 Electrical properties

The electrical parameters of sheet resistance (Rs) for Ag
NW thin films were measured using the four-probe resist-
ance measurement method. The measurement is done by
spraying the Ag NW on a glass substrate with four gold
electrodes deposited by magnetron sputtering (Fig. 7).
Each electrode is connected to a Keithly 2450 source meter
with four-probe resistance measurement. The results show
that as we increase the plasma oxidation time, the thin
film’s sheet resistance increases. After 20 s of oxidation, a
sharp rise in resistance is observed, and the film becomes

Fig.7 Top view of the gold
electrode locations and dimen-
sions on the glass substrate

for sheet resistance measure-
ments

5mm

10mm
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Fig.8 Sheet resistance of

1E9

—a— Discrete Oxidation (10 Sec)
—a— Continous Oxidation

AgNW thin film after RF plasma 4
treatment. Data in red shows 1
the resistance for samples oxi- 'a- 1ES8 ~
dized for a continuous period. ) 3
Data in black shows the resist- -
ance for samples oxidized for E 1E7 P
discrete periods of 10 s each -g 3
~— 1000000 +
Q d
© 100000 -
S
% 10000
n ]
® 1000
f"; 3
o 100 -
5 3
10 4
0

an insulator (Fig. 8), which may be due to the increase of
silver oxide amount in the film because silver oxide is a
semiconductive material. The increase in porosity and NWs
degradation with increased oxidation time reduces the
amount of material that can conduct the electrical current
along with the film. Also, it might be due to the increase in
the grain size of silver, as it was found through XRD analy-
sis that it increases the material’s resistance. Applying
oxygen plasma for 10 s each result in less sheet resistance
compared to an equal period of oxidation in one round.
These results could be attributed to the localized heating
of NWs acquired through the plasma and accelerated the
overall oxidation. In continuous oxidation, the localized
heating is no longer there, which delays the transition of
silver NWs into silver oxide. Moreover, the nozzle position
during spraying pyrolysis plays a crucial role in the resis-
tivity of the film. We found that the closer the nozzle to
the substrate, the less resistance of the film with the same
number of deposition cycles.

4 Conclusion

Porous Ag,0 NW thin films deposited on a glass substrate
have been successfully fabricated by ultrasonic spray
pyrolysis and oxygen plasma etching method by exposing
the silver NWs to atomic oxygen and transforming them
into nanoporous silver oxide NWs upon plasma exposure
and oxidation for 120 s. The film morphology, porosity,

20 40 60 80
Oxidation time (sec)

electrical, and optical properties are highly influenced
by varying oxygen plasma exposure time. XRD and XPS
showed that the silver oxide formed at different oxidation
times exists in various states of Ag, such as AgO and Ag,0
or Ag/Ag,0 mixed phases. The thin film’s electrical sheet
resistance increases exponentially with an increase in the
plasma oxidation time and the plasma exposure periodic-
ity as a result of the formation of an interconnecting thin
film.
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