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ABSTRACT The pervasive nature of long non-coding RNA (lncRNA) transcription in the mammalian
genomes has changed our protein-centric view of genomes. But the identification of lncRNAs is an
important task to discover their functional role in species. The rapid development of next-generation
sequencing technology leveraged the opportunity to discover many lncRNA transcripts. However, the
cost and time-consuming nature of transcriptomics verification techniques barred the research community
from focusing on lncRNA identification. To overcome these challenges we developed LNCRI (Long Non-
Coding RNA Identifier), a novel machine learning (ML)-based tool for the identification of lncRNA
transcripts. We leveraged weighted k-mer, pseudo nucleotide composition, hexamer usage bias, Fickett
score, information of open reading frame, UTR regions, and HMMER score as a feature set to develop
LNCRI. LNCRI outperformed other existing models in the task of distinguishing lncRNA transcripts from
protein-coding mRNA transcripts with high accuracy in human and mouse. LNCRI also outperformed the
existing tools for cross-species prediction on chimpanzee, monkey, gorilla, orangutan, cow, pig, frog and
zebrafish. We applied the SHAP algorithm to demonstrate the importance of most dominating features that
were leveraged in the model.We believe our tool will support the research community to identify the lncRNA
transcripts in a highly accurate manner. The benchmark datasets and source code are available in GitHub:
http://github.com/smusleh/LNCRI.

INDEX TERMS Long non-coding RNA, lncRNA, mRNA, machine learning, sequence analysis.

I. INTRODUCTION
About About 2% of human genomic regions are involved
in encoding proteins, and the rest are non-coding regions
which do not finally produce proteins [1]. The intricating
transcriptional landscape in humans has opened a new
paradigm of pervasive transcription process which led to
the discovery of novel non-coding RNAs and their role in
cellular and functional processes. Long non-coding RNAs
(lncRNAs), which are defined as a type of ncRNA having
more than 200 nucleotides in length, have recently been
shown to be evident in linking mutations in their sequence
and their role in the dysregulation for many diseases [2].
H19 was one of the earliest discovered lncRNAs having very
similar characteristics to protein coding genes considering the
polyadenylation, splicing, localization, and the transcription
mechanism in support of RNA polymerase II [3]. XIST was
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among the early examples of lncRNAs which are known to be
involved in the silencing of X-chromosome [4]. Since these
pioneering discoveries of H19 and XIST, many lncRNAs
have been discovered in human and other mammalian species
as well as in plants [5]. LncRNAs, predominantly being
considered junk regions for decades [6], are now recognized
as the most cryptic but functionally most crucial player in
biomedical research. Many other lncRNAs are known to
play a significant role in a multitude of human diseases, and
readers are referred to the articles [2], [7]–[9] to have a deeper
understanding of their role in multiple cellular processes and
diseases.

The pervasive transcriptomics nature of the lncRNA
in human [10] and mouse [11] has already been estab-
lished by the FANTOM consortium in their catalogue of
lncRNAs. The FANTOM Consortium proposed over 23K
lncRNA genes with highly accurate 5’ end [12]. Recent
version (version 37 and version 26 for mouse, respectively)
of GENCODE [13] release provides a list of 18K and
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13K lncRNA genes from human and mouse, respectively.
MiTranscriptome has collected over 58K lncRNA genes in
humans [14], however, it is not well established if all of them
have functional evidence. NONCODE version 6.0 prepared
a collection of 96K and 87K lncRNA genes from human
and mouse, respectively [15]. Based on the above-mentioned
landmark projects on lncRNA, we can observe that the
discovery of lncRNAs is continuing. Advances in next-
generation sequencing (NGS) techniques have provided the
scientific community to discover a large number of lncRNA
transcripts and their cellular roles [12]. Although thousands
of lncRNAs transcripts have already been discovered across
species, there is a huge number of lncRNAs that are yet
to be identified and annotated in multiple species and
this is a challenging task. Firstly, lncRNAs may have
similar biogenesis characteristics to those of messenger
RNA (mRNA) as both are mainly transcribed the RNA
Polymerase II [16]. Secondly, lncRNAs can even undergo
the similar transcriptional and post-transcriptional processes
as mRNA transcripts [17]. Thirdly, mRNA and lncRNA
transcripts have similarities in terms of transcript length as
well as splicing structure [18], [19], which make the lncRNA
identification process complicated. Fourthly, the low-level
expression of lncRNAs also hinder their discovery in multiple
cells or tissues [16].

To overcome the challenges of the currently available
experimental technologies, many computational methods,
mainly machine learning (ML)-based techniques, have been
leveraged to distinguish lncRNA transcripts from mRNA
transcripts. The common formulation of this ML based
approach is to put the transcripts from lncRNA and mRNA
under a classification framework. There exist multiple ML-
based methods for recognizing lncRNA transcripts from
mRNA transcripts based on ML-based techniques. One of
the pioneering works in this domain was CONC (‘‘coding
or non-coding’’), where the authors applied support vector
machine (SVM) based ML-model to distinguish mRNA
transcripts which are responsible for producing proteins, from
non-coding RNAs (ncRNA) transcripts [20]. The authors
used mammalian and non-mammalian eukaryotic ncRNA
transcripts from RNAdb [21], NONCODE [5] database and
mRNA transcripts from SwissProt [22] database to train ML
models. Lia et al. developed PLEK (‘‘predictor of lncRNAs
and mRNAs based on an improved k-mer scheme’’) to
recognize lncRNAs transcripts from mRNA transcripts by
introducing an improved k-mer scheme [23]. The authors
proposed k-mers (k=1 to 5) with sliding window sizes
up to five with a step size of one to encode the whole
transcripts. Then the proposed k-mer based features were fed
into a SVM-based model to classify lncRNA transcripts from
mRNA transcripts for human, mouse and other vertebrates.
Sun et al. developed the CNCI (‘‘Coding-Non-Coding
Index’’) tool to distinguish protein-coding transcripts from
lncRNA transcripts based on the intrinsic composition of
sequences [24]. The authors proposed a novel encoding
approach of the sequence based on adjoining neighboring

triplets representing all possible two consecutive triplets
(64*64 possible combinations) from the sequence. Out of
six reading frames, the authors selected only one most-like
CDS (MLCDS) and used the length and score of MLCDS as
a feature vector. Using the proposed features, SVM-basedML
model was built to classify lncRNA transcripts and protein-
coding transcripts. CNIT (‘‘Coding-Non-Coding Identifying
Tool’’), an updated version of CNCI, was developed for
the same purpose with higher accuracy and much faster
speed [25]. Han et al. developed LncFinder, an lncRNA
recognition system which recommend 19 different features
summarizing the sequence composition, structural informa-
tion, and physicochemical properties of the nucleotides to
find lncRNA from human, mouse, chicken, zebrafish, and
wheat [26].

Recently, deep learning (DL)-based models have been pro-
posed for the identification of lncRNA transcripts. Baek et al.
developed lncRNAnet [27], a DL-based model by combining
convolutional neural network (CNN) and recursive neural
network (RNN). RNN was used to detect the intrinsic
nature of the input sequence. Variable-length sequences were
handled using the Bucketing technique [28] along with k-
mer embedding vectors, and the network was trained through
the GloVe embedding [29] for the identification of lncRNA.
Yang et al. developed LncADeep for the identification of
partial and full-length lncRNA transcripts by incorporating
hand-curated features like Fickett score, hexamer score,
coding sequence (CDS) length etc. and then feeding into
a deep belief network based model [30]. Tripath proposed
DeepLNC, a deep neural network-based model that used
k-mers (k=1 to 5) from input sequences as a feature set
to classify lncRNA transcripts and mRNA transcripts [31].
Interested readers may check the reviews in [32], [33]
which summarize differentML-basedmethods that have been
proposed to identify lncRNAs.

In this study, we propose LNCRI (Long Non-Coding RNA
Identifier), a novel ML-based pipeline to distinguish lncRNA
transcripts frommRNA transcripts. To evaluate the prediction
performance of LNCRI and compare it with other existing
tools, we used benchmark datasets for multiple species.
We found that LNCRI outperformed the existing state-of-
the-art tools for lncRNA identification in human, mouse and
eight other species. Our contribution in this work can be
summarized as follows:

1) We have used the largest collection of lncRNA
transcripts and mRNA transcripts from GENCODE
and RefSeq for the identification of lncRNA transcripts
in multiple species.

2) We proposed a novel combination of features represent-
ing weighted k-mer, pseudo nucleotide composition,
hexamer usage bias, Fickett score, information of open
reading frame, UTR regions, and HMMER score to
distinguish lncRNA transcripts from protein-coding
transcripts.

3) We proposed a CatBoost based model LNCRI, which
achieved the best performance compared to other
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existing methods considering multiple evaluation met-
rics for human and mouse.

4) LNCRI outperformed other existing models for eight
other species in the cross-species transcript prediction
task.

II. MATERIALS AND METHODS
A. DATA COLLECTION
We collected all the lncRNA transcripts from GENCODE
release 37 for human and release 26 for mouse. GEN-
CODE database, launched by Human Genome Research
Institute (NHGRI) under a project named The ENCyclopedia
Of DNA Elements (ENCODE), is one of the largest and
most reliable sources for human and mouse functional
elements [34]. The GENCODE database mainly incorporates
four types of functional elements: (a) protein-coding genes,
(b) pseudo genes, (c) long non-coding RNA genes, and
(d) small non-coding RNA genes [35]. The genes/transcripts
in GENCODE were annotated based on computational
approach supported by manual annotation and experimental
validation. For lncRNA annotation, GENCODE does not
a apply strict 200bp length threshold, albeit very few
annotated lncRNAs fall below this threshold [35]. For
protein-coding transcripts, we collected all the transcripts
from RefSeq [36]. RefSeq database, established by the
National Center for Biotechnology in the United States,
provides a comprehensive collection of well annotated, non-
redundant set of sequences for mRNA transcripts and other
non-coding RNA transcripts. RefSeq covers sequence from
multiple species including human and mouse. From RefSeq,
we considered only the transcript that had clear potential
for clear protein-coding (i.e., having an NM RefSeqID)
capability. Interested readers are suggested to check [37]
to compare the annotation pipeline of GENCODE and
RefSeq. All the transcript sequences were collected from
the genome assembly version GRCh37 and GRCm10 for
human and mouse, respectively. The collection contains
97,482 lncRNA transcripts and 104,760 protein-coding
transcripts from human. The collection also contains 18,833
lncRNA transcripts and 37,907 protein-coding transcripts
from mouse.

B. DATA SET PREPROCESSING
From the collected dataset, transcript sequences having char-
acters other than ‘‘A’’, ‘‘C’’, ‘‘G’’, or ‘‘T’’ (represents U in the
corresponding RNA) were discarded. Then, we removed the
duplicate sequences. To avoid redundancy from the collected
dataset, we applied CD-HIT [38]. As suggested in [39],
sequences having more than 80% similarity, based on CD-
HIT, were dropped to avoid any bias for the ML model.
Moreover, sequences shorter than 200 nucleotides (nt) or
longer than 3000 nt were removed from our analysis as pre-
scribed in lncRNAnet [27]. Tomake both lncRNA andmRNA
transcript datasets balanced, we down sampled the mRNA
transcript dataset to be in bar with the lncRNA transcript
dataset. After all the pre-processing steps, we had 43,839

and 43,383 transcripts from human lncRNA and mRNA,
respectively. We also found 3,295 and 2,828 transcripts from
mouse lncRNA and mRNA, respectively. Hereafter we will
refer this collection of dataset from human and mouse as
permissive dataset. To avoid any bias and to check if the CD-
HIT cut-off has any significant effect on the performance of
machine learning model, we generated another dataset for
both human and mouse based on 60% CD-HIT cut-off. This
cut-off generated 41,817 and 36,433 transcripts from human
lncRNA and mRNA, respectively as well as 3,292 and 2,381
transcripts from mouse lncRNA and mRNA, respectively.
Hereafter we will refer this dataset as stringent dataset.

C. K-MER RELATED FEATURES
For each sequence we counted the frequencies of mono-,
di-, tri-consecutive nucleotides in the whole transcript body.
Then we normalize the k-mer count by the sequence length
and calibrated by the possible combination of k-mer. This
generated 84 features (4 frommono-, 16 from di- and 64 from
tri-consecutive nucleotides), for the development of ML
models based on the following equation.

WeightedKmeri =
Ci
L
∗

1
43−k
; k = 1, 2, 3 (1)

where, Ci represents the count of k-mer in the transcript
and L represents the transcript length. We also checked
the observed/expected ratio of nucleotide combinations in
lncRNAs and mRNAs as suggested in [40]. Supplementary
File 01 provides the details of observed/expected ratio of all
mono-, di- and tri-nucleotides.

D. PSEUDO K-TUPLE NUCLEOTIDE COMPOSITION
(PseKNC)
The pseudo k-tuple nucleotide composition (PseKNC)
reflects the physicochemical properties and sequence-order
effects of nucleotides in DNAs [41], [42]. The sequence-
order information is preserved through the physiochemical
properties of the constituent oligonucleotides. The dimension
of this feature vector is of (4k+λ) where k represents k-mer
(having a positive integer value), and λ represents the highest
counted rank of the correlation along a DNA sequence. In our
case: k=3 and λ=10 were used to generate a 74-dimension
feature vector.

E. ORF RELATED INFORMATION
Open reading frame (ORF) is a well-known property of
mRNA transcripts. ORF information has been used in
multiple previous studies [27], [30] to distinguish lncRNA
transcripts from mRNA transcripts. We considered the length
of the longest ORF from three forward frames, starting with
the start codon (‘‘ATG’’) and ending with any of the stop
codons (‘‘TAG’’, ‘‘TAA’’, or ‘‘TGA’’). We also considered
the longest ORF coverage defined as the ratio of the longest
ORF length to the whole transcript length. This provided a
total of two features for the development of ML models.
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F. HEXAMER USAGE BIAS
Hexamer has shown to be effective in the discrimination
of protein-coding sequence from the non-coding sequence
they can capture potential adjacent amino acids based on
codons [43]. Inspired by this phenomena, we calculated the
hexamer score representing the log-likelihood ratio of the
presence of hexamer in coding to non-coding sequence. For
the longest ORF, we calculated the average hexamer score of
all the hexamers as suggested in [30] in the following way.

AverageHexamerScore =
1
n

n∑
i=1

log
FC(hi)
FNC(hi)

(2)

where n is the total number of hexamers in a sequence.
FC(hi) and FNC(hi), i=1, 2, . . . , 4096 represent the frequency
of hexamer hi in all the training coding and non-coding
sequences, respectively. This provided one feature for the
development of ML models.

G. FICKETT SCORE
In 1982, Fickett [44] demonstrated that coding regions may
have asymmetric codon bias and nucleotide content that could
be considered to distinguish non-coding regions from protein-
coding regions. We calculated the nucleotide (A, C, G, or T)
composition that is favored by the first, second and the third
position of codon in a transcript.

Afickett =
Max(A1,A2,A3)

Min(A1,A2,A3)+ 1
(3)

whereA1,A2,A3 represent the number ofA in the first, second
and the third position of codon in a transcript. We calculated
the Fickett score for C, G, and T as well. This provided four
features for the development of ML models.

H. UTR REGIONS
For mRNA transcripts, untranslated regions (UTR) may
contain some specific pattern compared to lncRNA tran-
scripts [30]. To capture such characteristics, we first iden-
tified the longest ORF. Then we considered the upstream
region of the start codon and the downstream region of
the stop codon as 5’ UTR and 3’ UTR, respectively as
suggested in [30]. Then we calculated the ratio of UTR length
to the transcript length as coverage of UTR. In this way,
we generated two features. We also computed the CG content
of the 5’ UTR and 3’ UTR, which provided twomore features
for the development of ML models.

I. CONSERVATION SCORE
As lncRNAs genes are less conserved than the protein-coding
genes, conservation profile would be a good distinguishing
feature for separating mRNA transcripts from lncRNA
transcripts. We aligned each transcript against Pfam [45]
version 34 using HMMER [46]. Based on the alignment we
extracted eleven features for the development of ML models.
We considered bit score of overall sequence alignment
and the matched domain, e-value for overall sequence

alignment and thematched domain, length of query and target
sequence, mean posterior probability reflecting how reliable
the alignment was, etc. Additionally, we used the HMM
alignment ration (ratio of the length of the aligned region to
the input sequence) for the development of ML models.

J. DEVELOPMENT OF CLASSIFICATION MODELS
After the Data collection step, we used the selected features
to build different classifiers to distinguish lncRANs from
protein coding ones. We used Decision Tree (DT), Support
Vector Machine (SVM), Artificial Neural Network (ANN),
Random Forest (RF), eXtreme Gradient Boosting (XGB),
CatBoost algorithms to classify these two types of transcripts.
The mRNA and lncRNA transcripts were considered as
the positive and the negative set, respectively for the
development of ML models. We used Python Scikit-learn
GridSearchCV for hyperparameter tuning with five-fold
cross validation. The details of parameter optimization are
provided in Supplementary File 02. We applied a five-fold
cross validation technique to evaluate the performance of
the model. We used 80% data as the training set and the
remaining 20% data as the test set. We used the following
performance evaluation metrics for the models:

Accuracy(ACC ) =
(tp+ tn)

(tp+ tn+ fp+ fn)
(4)

Sensitivity(Sn) =
tp

tp+ fn
(5)

Specificity(Sp) =
tn

tn+ fp
(6)

MCC =
(tp ∗ tn− fp ∗ fn)

√
(tp+fp) ∗ (fp+fn) ∗ (tn+fp) ∗ (tn+fn)

(7)

where tp, fp, tn and fn represent number of true positive,
false positive, true negative and false negative samples,
respectively predicted by the model.

III. RESULTS
A. FICKETT SCORE AND HEXAMER SCORE PATTERNS AT
THE lncRNA AND mRNA TRANSCRIPTS
Fickett score represents the combined effect of nucleotide (nt)
composition and their codon usage bias [43]. It also reflects
the degree at which a nt is favored in codon positions. Figure 1
shows the distribution of Fickett scores for nts in human. The
Fickett score was relatively high for C in lncRNA transcripts
compared to mRNA transcripts (lncRNA:mRNA = 0.054
± 0.017: 0.023 ± 0.016). On the other hand, Fickett score
for T in was relatively high in mRNA compared to lncRNA
(lncRNA:mRNA = 0.016 ± 0.011: 0.039 ± 0.032). This
summarily represents higher codon usage bias of C and T in
lncRNA and mRNA, respectively.

Figure 2 shows that the distribution of hexamer scores was
relatively higher in mRNA transcripts compared to lncRNA
transcripts representing the specific hexamer patterns that
are prevalent in mRNA transcripts compared to lncRNA
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FIGURE 1. Distribution of Fickett score in human lncRNA transcripts and mRNA transcripts.

transcripts. It perfectly aligns with previous studies showing
that protein-coding genes contain specific hexamer patterns,
which are rare in the rest of the genome [47], [48].

B. SEQUENCE PATTERNS AT THE UTR REGIONS OF
lncRNA AND mRNA TRANSCRIPTS
3’ UTR regions generally have longer length than the 5’ UTR
region [49] and the same pattern is observed for both lncRNA
transcripts andmRNA transcripts (Figure 3a and 3b). For both
5’ and 3’ UTR, the length (UTR ratio) was relatively high
for mRNA transcripts compared to the lncRNA transcripts.
The GC content in the genic region of lncRNA [50] and in
the promoter region of lncRNA models [33], [48] are not as
enriched as protein coding genes. But the UTR regions of
lncRNA transcripts are more GC enriched than the mRNA
transcripts (Figure 3a and 3b). UTR with high GC content
tend to enhance the gene regulation ability [49], which is one
of the known functions of lncRNAs [51].

C. ORF AND HOMOLOGY OF lncRNA AND mRNA
TRANSCRIPTS
Long putative ORF is highly unlikely to be present in any
random sequence including noncoding sequences and ORF

FIGURE 2. Distribution of Hexamer score in human lncRNA transcripts
and mRNA transcripts.

over 100 length codons is usually considered to be a highly
likely protein-coding sequence. Therefore, we observed
higher ORF length and coverage in the protein coding
transcripts Figures 4a and 4b, though some lncRNAs may
have long ORF length. And this perfectly aligns with the
known ORF length distribution in literature [50].
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FIGURE 3. Length and GC content distribution of UTR regions in transcripts. Figure 3a shows the ratios and GC contents at 3’ UTR, while Figure 3b
shows ratios and GC contents at 5’ UTR.

FIGURE 4. Distribution of ORF length and coverage in human lncRNA transcripts and mRNA transcripts. Figure 4a shows ORF Length, while
Figure 4b shows ORF Coverage.

As protein coding genes are more conserved than lncRNA
genes, searching homology using HMMER against Pfam
database would provide higher similarity for mRNA genes
than lncRNA genes and this pattern is clearly observed
in Figure 5a and 5b. Supplementary File 03 provides the
distribution of hexamer usage bias, Fickett score, open
reading frame, UTR regions, HMMER score in mouse.

D. PERFORMANCE OF LNCRI IN HUMAN AND MOUSE
DATASETS
Table 1 highlights the performance ofMLmodels on different
types of features that were used in the model. Based on
ablation study, we can observe that the CatBoost based model
performed the best among all the models we evaluated. The
performance of the XGBoost and CatBoost models were very
close but CatBoost based model slightly outperformed the
XGBoost model (Table 1).

Among the type of features, weighted k-mer, PseKNC and
UTR-based features had the distinguishing capability level
of ∼85%, ∼85%, ∼80% Acc, respectively in both human

and mouse (Figure 6). Fickett Score (Acc of∼79%:∼73% in
human:mouse) and Hexamer Score (Acc of ∼76%:∼73% in
human:mouse) based features showed better performance
in human compared to mouse (Figure 6). Interestingly
we observed more distinguishing capability of ORF (Acc of
∼77%:∼84% in human:mouse) and HMMER based feature
(Acc of ∼88%:∼97% in human:mouse) in mouse compared
to the human (Figure 6). Combining all the features the
CatBoost based model achieved the best performance with
93% Sn and 95% Sp for human and 97% Sn and 99% Sp for
mouse (Figure 6, Table 1).

E. PERFORMANCE OF LNCRI AND OTHER EXISTING
TOOLS ON PERMISSIVE DATASET
We compared the performance of LNCRI against state-of-
the-art model for the classification of lncRNA transcripts
from mRNA transcripts. We used the benchmark dataset for
human and mouse to compare the performance of LNCRI
against six other tools: CPC2, CNCI, PLEK, CNIT, CPAT
and LncADeep. LNCRI outperformed all the tools for mRNA
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FIGURE 5. HMMER based feature distribution in human lncRNA transcripts and mRNA transcripts. Figure 5a shows domain score distribution, while
Figure 5b shows align ratio distribution.

TABLE 1. Performance of ML models based on ablation study for Human and Mouse permissive dataset.

transcript prediction (Table 2) for human and very close to
lncADeep for lncRNA transcript prediction in human. For
mouse, LNCRI outperformed all the tools we compared for
mRNA and lncRNA transcripts.

F. PERFORMANCE OF LNCRI IN CROSS-SPECIES
PREDICTION TASK
We also compared the performance of LNCRI against
multiple species: Danio rerio (Zebrafish), Xenopus tropicalis
(Frog), Bos taurus (Cow), Pan troglodytes (Chimpanzee),
Sus scrofa (Pig), Macaca mulatta (Monkey), Gorilla gorilla
(Gorilla), Pongo abelii (Orangutan). The benchmark datasets
for multiple species was collected from [23]. For this purpose,

TABLE 2. Performance of LNCRI and other tools on permissive dataset.

we trained the model using Human dataset and fed the other
species dataset into the trained model for inference purpose
only. For evaluating cross-species prediction performance of
LNCRI, we compared it against two other tools: CNCI and
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FIGURE 6. Results based on ablation study for CatBoost based model.

TABLE 3. Results on cross-species prediction task for LNCRI and other
tools.

PLEK. For almost all species LNCRI outperformed the tools
that we tested (Table 3).

G. PERFORMANCE OF LNCRI AND OTHER EXISTING
TOOLS ON STRINGENT DATASET
To avoid any bias and to check if the CD-HIT cut-off
has any significant effect on the performance of LNCRI,
we generated stringent datasets for both human and mouse
based on 60% CD-HIT cut-off. The performance of LNCRI
against other existing tools based on the stringent datasets
is highlighted in Table 4. We can observe that LNCRI
performed almost at the similar level in both permissive
and stringent human datasets (Table 2 and Table 4). As like
the human permissive dataset, LNCRI and CNIT performed
the best for mRNA and lncRNA transcript prediction,
respectively for the stringent dataset (Table 2 and Table 4).
For mouse stringent dataset, the performance of LNCRI
and the majority of other existing tools dropped slightly
(Table 4) compared to their performance on permissive
dataset (Table 2). But LNCRI performed the best for
mouse mRNA transcript prediction task with 94.43% Acc.
For lncRNA transcript prediction in mouse, performance
of LNCRI (96.05% Acc) was very close to the highest
performing tool CNCI (97.04% Acc) (Table 4).

IV. DISCUSSIONS
In this article we proposed LNCRI, a ML based model to
identify lncRNAs in human, mouse and eight other species.

TABLE 4. Performance of LNCRI and other tools on stringent dataset.

FIGURE 7. Summary plot highlighting the most influential features based
on SHAP values for distinguishing lncRNA transcripts from mRNA in
human.

The proposed model considered seven different types of
features, namely: Weighted k-mer, PseKNC, ORF, Fickett
Score, UTR information, Hexamer Score, and HMMER
features to distinguish lncRNAs from mRNAs. LNCRI
demonstrated better performance in the assigned task of
classifying lncRNA transcripts from mRNA transcripts in
both human and mouse compared to other existing tools
(Table 2, Table 4). As LNCRI performed almost at the similar
level for both the permissive and the stringent dataset, it is
highly unlikely to have any bias in the proposed model.
Moreover, LNCRI trained on human dataset achieved high
Acc in the cross-species prediction task for almost all species
we tested, indicating the effectiveness of LNCRI in poorly
annotated species (Table 3).
To explain the proposed LNCRI model, we investigated

the features that contributed in the CatBoost-based model
most in distinguishing lncRNA transcripts from mRNA
transcripts in human. We leveraged the SHapley Additive
exPlanations (SHAP) algorithm [52] to identify the features
that contributed most in this task. Figure 7 highlighted the
top-ranked nine features based on these SHAP values as
identified from the boosting model. The positive SHAP
values for the influential features drive the model towards the
mRNA class, whereas the negative SHAP values influence
the model towards the lncRNA class. Among these dominant
features, two features were from the weighted k-mer group:
TAA and CAC. The higher values of TAA and CAC drive the
model towards lncRNA prediction (Figure 7). The obs/exp
ration of TAA and CAC were also higher in lncRNA
transcripts compared to mRNA transcripts (Supplementary
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File 01). Figure 7 also showed that the Fickett score for
T-, G- and A-base positions were identified as influential
features and the impact of T was more dominant than
G and A. Hexamer score and ORF length were also
influential features and they hold relatively lower values in
lncRNA. Query sequence length (qlen) and conserved region
alignment ration (HMM_align_ratio) were also suggested by
the SHAP algorithm as dominating features indicating the
importance of incorporating sequence length and alignment
length information into the prediction model.

V. CONCLUSION
This article proposes LNCRI, a novel ML-based model to
distinguish lncRNA transcripts from mRNA transcripts in
human, mouse, and other species. LNCRI outperformed
many of the existing state-of-the-art tools for lncRNA tran-
script identification in the considered species. Considering
the low expression level and evolving annotations of lncRNA,
its identification is a challenging task. To overcome the chal-
lenges, we have used themost extensive collection of lncRNA
and mRNA transcripts to build a highly accurate ML-based
model for the task of lncRNA identification. We believe
LNCRI will provide more insights into lncRNAome by
enabling the discovery of lncRNA transcripts with increased
accuracy.

SUPPLEMENTARY FILES
1) Supplementary File 01: Obs/Exp ration of k-mers
2) Supplementary File 02: Details for parameter optimiza-

tion for both human and mouse models.
3) Supplementary File 03: Graphs represent probability

density function for Fickett, Average HEX, ORF, UTR,
and HMM Features and SHAP values in Mouse.
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