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A B S T R A C T   

Multi-Criteria Decision Analysis (MCDA) is a sub-discipline of operations research that aims to solve multi- 
objective optimization problems by evaluating competing factors in decision-making. MCDA supports multidi
mensional decision-making processes through the analysis of diverse inputs at several levels of description, e.g. 
economic, technical, social, and environmental. The use of MCDA has been gaining momentum in the energy 
field, especially in endeavors that require evaluating the feasibility of different adoption scenarios for renewable 
energy technologies. The study presented in this paper investigates the combined use of multi-agent simulation, 
Bayesian modeling and sensitivity analysis for the development of a novel MCDA approach that supports the 
analysis of residential solar Photovoltaic (PV) adoption. The ensuing MCDA approach is evaluated alongside four 
popular MCDA methods (AHP, TOPSIS, SAW and ELECTREII) in a variety of tests aimed to assess overlap in 
criterion rankings and decision-making outcomes, covariation of criteria rankings in alternative scenarios, and 
the capacity to provide a model of correct decision-making. The comparative evaluation with AHP, TOPSIS, SAW 
and ELECTREII shows that overall ABM-BN-SA is well correlated with most of other MCDA methods and provides 
the best performing model of decision-making, with reference to the PV adoption use case under analysis. TOPSIS 
shows the closest fit with ABM-BN-SA, as expected since it used a ranking approach considerably closer to ABM- 
BN-SA as compared to the other MCDA treatments. ELECTREII yields the lowest degree of ranking overlap with 
ABM-BN-SA. All the reviewed methods have been illustrated and evaluated within our residential solar Photo
voltaic (PV) adoption decision support system. In general, these methods enable a user to select an optimal 
solution out of a set of plausible alternatives according to multiple criteria and assist him in the design and 
exploration of the decision space. The ensuing decision-making methodology can be applied not only by Solar PV 
panel purchasers but also by stakeholders in other industries to logically and straightforwardly model and 
simulate the adoption decision-process of the public based on their individual preferences, behavioral rules, and 
interaction within a social network, with specific reference to a consumer utility function.   

1. Introduction 

The adoption and selection of renewable energy strategies is a multi- 
dimensional decision-making process involving a variety of economic, 
technological, societal, policy, and environmental factors. As a method 
for solving complex decision problems, Multi-Criteria Decision Analysis 
(MCDA), also known as Multi-Criteria Decision Making (MCDM),1 pro
vides an ideal approach for the evaluation of renewable energy strate
gies. By enabling the analysis of associations between elements that 
affect decision-making in renewable energy adoption, MCDA emerges as 
a most suitable tool to evaluate the relative impact of factors and explore 

alternative options. Such an analysis is needed to provide technical and 
scientific support to guide decision-making in the field of renewable 
energy1. 

While technology costs are a paramount concern in choosing among 
alternative energy sources, meteorological, environmental, energy 
safety and security factors, and ensuing economic outcomes play an 
increasingly important role. For example, the adoption of solar PV as a 
source of electricity generation is ideal in countries such as Qatar with a 
yearly average of nearly six peak sun hours per day, which is among the 
highest worldwide. Due to the extreme heat in the summer season, 
cooling represents the largest share of electricity demand during the 
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1 Henceforth, the term MCDA will be used to refer both to MCDA and MCDM. 
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summer months when there is greater sunlight, which solar PV can 
effectively harness to satisfy the cooling energy requirements2. 

The integration of distributed solar PV systems would contribute also 
help curtail infrastructural investments needed to keep the national 
power system in lockstep with ongoing economic and population grow. 
From 2010 to 2018, electricity demand in Qatar has grown at an annual 
average rate of about 6%, with peak loads going from 5090 to 7855 MW 
(see Table 1). 

To ensure that electricity demand be met at peak load times, the 
capacity of the electricity grid needs to be constantly increased, even 
though maximum demand occurs only sporadically, at predictable 
times, e.g. summer afternoons due to high cooling demand, as shown in 
Fig. 1. Costs to upgrade the national electricity grid in Qatar for the 
period 2016–2020 may have reached $9bn in20203 and will continue to 
increase thereafter. These costs can be significantly cut by using 
distributed PV generation to reduce dependence on the grid during pe
riods of peak consumption. In terms of grid security, the integration of 
distributed PV generation contributes to the modularity of the national 
power system, increasing the resiliency of the national electricity system 
in power outage emergencies and strengthening National Energy Secu
rity. From the economic and environmental perspective, the use of solar 
energy to produce electricity will yield significant savings of fossil fuels 
used for electricity production. For oil and gas rich countries, these 
savings can be repurposed for additional trade on the international gas 
market, used to develop a downstream industry based on gas-to-solid 
value-added products, or left untapped to extend the lifetime of the 
country’s natural gas reserves and lower extraction costs. For countries 
which rely heavily of oil and gas imports for energy production, the use 
of solar energy would help reduce trade costs and increase energy in
dependence. In either case, the use of solar energy in place of fossil fuels 
to generate electricity would lead to significant reduction in CO2 
emissions [1]. For example, power plants operating in the US during 
2018 generated on average 2.21 lb. of CO2 for each kWh of electricity 
produced with coal, 2.11 lb. of CO2 or each kWh of electricity produced 
with petroleum, and 0.92 lb. of CO2 or each kWh of electricity produced 

with natural gas.4With reference to technology costs, the situation has 
also been changing dramatically in the last decade. The average cost of 
residential PV in the US came down from $0.52/kWh in 2010 to 
$0.16/kWh in 2017 and is expected to reach $0.10/kWh in 2020 and 
$0.05/kWh in2020.5 

To keep up with the complexity of decision making in the adoption 
and selection of renewable energy strategies, it is necessary to combine 
MCDA with simulation approaches that capture the dynamic aspect of 
alternative energy strategies. The approach described in this paper 
proposes to do so by using a Bayesian approach to MCDA to analyze 
simulation data generated via Agent-Based Modeling (ABM). The paper 
is organized as follow. 

Section 2 provides a review of related MCDA work. Section 3 de
scribes the novel approach developed in the study with specific refer
ence to its basic components: ABM, Bayesian Networks, and sensitivity 
analysis (SA6). Section 4 provides a comparison of the novel MCDA 
approach with existing MCDA approaches. The results of the compara
tive evaluation in section 4 are discussed in section 5. Conclusive re
marks and suggestions for further work are laid out in section 6. 

2. Multi-Criteria Decision Analysis methods 

Due to the multi-dimensional nature of sustainability objectives and 
the complexity of socio-economic systems, MCDA methods have become 
increasingly popular in sustainable energy decision-making [3]. One of 
the basic steps in MCDA models is the assignment of weights to criteria 
to determine the relative impact of criteria. MCDA researchers have 
proposed various methods to assign weights to criteria in solving 
different MCDA problems, see Ref. [4]. 

This section reviews some of the most well-known approaches.  

• Choosing the optimal solution according to multiple criteria out of a 
potentially massive solution space is difficult due to several chal
lenges, such as:  

• Circumscribing the decision space from a multitude of criteria with 
reference to a decision output.  

• Assigning weights to criteria for the dynamic ranking of decision 
candidates.  

• Representing the solution space as an abstract construct that enables 
decision analysis and decision making in a user-friendly fashion. 

Factors weighting methods are divided into three categories: sub
jective weighting, objective weighting, and combined weighting 
methods. Several methods based on weighted sum, priority setting, 
ranking, fuzzy set method and their combination can be used to address 
MCDA problems in renewable energy (RE) adoption. Many interactive 
methods have been proposed, and they are different from each other, for 
example, on how to express preferences and how to use preferences 
when using new solutions [5]. Fig. 2 provides a schematic summary of 
most used MCDA approaches. Some of these approaches have been 
applied to RE MCDA problems, such as the selection of Combined 
Cooling, Heating and Power (CCHP) alternatives [6], the comparisons of 
renewable energy plants and the DM of energy policy [7]. A description 
of some of these MCDA methods is provided below. 

2.1. Unique synthesizing criteria methods 

2.1.1. AHP 
The Analytic Hierarchy Process (AHP) MCDA method [8] has been 

applied to a variety of domains including energy, social, economic, 
agricultural, industrial, ecological, and biological systems [9]. This 

Table 1 
Electricity production and max and min demand in Qatar (source: KAHRAMAA 
[2]).  

Year Total demand 
a 

Max demand day 
b 

Date Min demand day 
b 

Date 

2010 28,144 5090 14-Jul 1570 8-Feb 
2011 30,730 5375 1-Aug 1785 13- 

Jan 
2012 34,788 6255 6-Aug 1840 26- 

Jan 
2013 34,668 6000 18-Jul 2046 16- 

Jan 
2014 36,125 6740 7-Sep 2154 12- 

Feb 
2015 41,499 7270 1-Sep 2320 24- 

Feb 
2016 42,306 7435 3-Sep 2410 19- 

Jan 
2017 43,800 7855 14- 

Aug 
2600 25- 

Feb 
2018 47,913 7875 12-Jul 2825 21- 

Jan  

a GWh. 
b MW. 

2 “ABM-BN-SA” this term will be used to refer the developed method in this 
paper, it is the abbreviation of “Agent-based model-Bayesian Network-Sensi
tivity Analysis”.  

3 Source: Arab Petroleum Investments Corporation (http://www.apicorp. 
org). 

4 https://www.eia.gov/tools/faqs/faq.phpid=74&t=11.  
5 https://www.energy.gov/eere/solar/sunshot-2030.  
6 The term SA will be used to refer to Sensitivity Analysis. 
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descriptive decision analysis method computes the scaling importance 
of alternatives through pairwise comparison of evaluation criteria and 
alternatives. 

AHP involves decomposing a complex decision into a hierarchy, 
where the goal (target) is at the top of the hierarchy, the criteria, sub- 
conditions are at the levels, and sub-levels of the hierarchy and the 
decision options are at the bottom of the hierarchy. AHP is a weighted 
sum method. The AHP method incorporates the following steps [10]:  

a. Define the problem: this step aims to decompose the decision-making 
problem into different parts, as the highest-level problem target, 
intermediate-level standards (may be decomposed into lower-level 
sub-standards), and the lowest-level options.  

b. Build a pair-wise comparison matrix (weights): according to Ref. [10], 
decision makers should answer questions such as” How important is 
criterion A relative to criterion B?“. This must be performed for every 
pair of conditions. As the evaluation continues, the relative priority 
of each pairing criterion is determined by denoting 1 as” equal 
importance” and 9 as” extreme importance”.  

c. Judgment of Pair-wise comparison of options on each criterion 
(scoring): for each pair within each criterion a better choice will get a 
score again between 1 (“equally good”) and 9 (“absolutely better”), 
and the other option in the pairing is assigned a rating problem goal.  

d. The final stage of AHP technology is to calculate the inconsistency rate 
(IR)- a measure of the logical rationality of pairwise comparisons. If 
IR is less than 0.10, a pairwise comparison is generally considered 
acceptable. AHP assessment assumes that the decision maker is 

rational. For example, if A is compared to B, B is preferred, B is 
preferred to C, and A is preferred to C [11].  

CIn=
γmax − n

n − 1
(1)   

Where:  

• n is Consistency Index  
• γmax is the Eigenvalue and γmax >n, and  
• n is number of comparisons 

Next, γmaxmustbecalculated : [Ax= γmaxx] where: 
A is the comparison matrix of size n × n, for n criteria, and x is the 

Eigenvector of size n × 1. 

CRn =
CIn
RIn

(2) 

CRn is Consistency Ratio which [8] concluded that if the value of the 
consistency ratio is less than or equal to 10%, the inconsistency is 
acceptable. If the consistency ratio is greater than 10%, the subjective 
judgment needs to be revised, and RIn Random Consistency Index which 
n is number of comparisons. 

2.1.2. TOPSIS 
TOPSIS is presented as a weighting strategy in the literature and can 

Fig. 1. Duration of demand levels and distribution of electricity peak demand by day in 2016 (adapted from Ref. [2]).  

Fig. 2. A descriptive summary of the most commonly used MCDA methods.  
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also be an MCDA method. TOPSIS [12] relies on the concept that the 
ideal alternative has the highest level of impact for all criteria, while in 
the worst alternative all criteria present the lowest impact [13]. The 
principle is simple: mathematically speaking, the elected best alterna
tive should have the shortest distance from the positive ideal solution, 
and the longest distance from the negative solution. 

This strategy assumes that each criterion has a monotonically 
expanding or diminishing utility. This makes it simple to find ideal and 
negative ideal solutions. TOPSIS uses probably the shortest Euclidean 
distance out of the best solution along with the farthest distance out of the 
negative ideal solution to establish the worst and best alternative. The 
TOPSIS strategy comprises the following steps: 

(1) Normalize the decision matrix: the standardization of the deci
sion matrix is done utilizing the below transformation for every 
nij: 

nij =
aij

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑m
i=1aij2

√ (3)    

(2) Then, weights should be multiplied to normalized matrix [14].  
(3) Determine the positive and negative ideal alternatives [14]: 

A+=
{

v+1 ,v
+
2 ,…v+n

}
=
{(

maxiVij
⃒
⃒j∈J

)
,
( (

miniVij
⃒
⃒j∈J,

⃒
⃒i=1,2,⋯,m

)}

(4)   

J = {j = 1, 2, …, n|j for negative attributes} 
Where negative attributes are those with the worst attribute value. 

The formula in (4) is used to calculate the weighted normalized decision 
matrix: multiply the normalized decision matrix with its related weight. 
The weighted standardized value Vij is determined as Vij = wijrij where wj 

Indicates the weight of jth attribute or condition. 
The algorithms of the popular MCDM processes (AHP and TOPSIS) 

are well described and explained in Ref. [15]. This study identifies a 
listing of TOPSIS and AHP applications however it shows some of their 
limitations. For the original TOPSIS introduced by Ref. [16], input data 
should be numeric, definite, monotonically decreasing and increasing, 
and share a commensurate unit. This implies that this technique is un
able to handle qualitative criteria that area unit troublesome to assess 
exactly, and it cannot tackle integrity and uncertainty of the assessment 
data. A review given in Ref. [17] found that AHP and TOPSIS are among 
the most popular methods employed to solve different selection 
problems. 

2.1.3. Simple Additive Weighting (SAW) 
Simple Additive Weighting (SAW) is one of the strategies used to 

solve multi-attribute decision problems. This strategy can be utilized to 
support Geographic Information System with overlay operations [18]. 
The fundamental idea of this technique is to find the weighted sums 
obtained from the performance ratings of each alternative on all criteria 
[19]. SAW requires normalizing the decision matrix (X) to a scale that 
may be compared with all present alternatives’ ratings [20]. The 
method’s evaluation criteria Si is calculated by using equation (5): 

Sj =
∑m

j=1
wj ãij (5)  

where ωj is the weight of the j-th criteria and ãij is normalized by using 
equation (6), the value of the j-th criteria for the i-th alternative. 

ãij =
rij

∑n
i=1rij

(6) 

The Simple Additive Weighting (SAW) approach is an easy-to-use 
technique [18]. describes strong assumptions implicit in the SAW 

method (linearity and preferential independence). 
An interesting work presented in Ref. [21] investigates the impacts of 

using relative weights in multiple criteria decisions making and presents 
a detailed description for the preferential independence condition of 
SAW. 

2.2. The outranking methods 

The basis of the outranking method is the construction and devel
opment of the ranking relationship introduced by Refs. [22,23]. The 
ranking relationship is the binary relationship S defined on the alter
native set A, so that for any pair of alternatives Ai; Ak: AiSAk, if the 
preference of the decision maker is known, the evaluation quality of the 
alternatives and the nature of the problem considered, Then there are 
enough arguments to show that the alternative Ai is at least as good as 
the alternative Ak, but at the same time, there is no sufficient reason to 
reject this statement [24]. 

Compared with other multi-criteria evaluation methods, ranking 
methods have the feature of allowing incomparable alternatives. This 
feature is very important in situations where certain options cannot be 
compared for one reason or another. 

2.2.1. Elimination and choice translating reality (ELECTREE) 
This method was proposed by Benayoun, Roy and Sussman in 1966 

[4,25,26], and was developed and improved by Roy in 1971. It consists 
of a pairwise comparison of alternatives, based on the degree to which in 
turn evaluations of the alternatives along with the preference weights 
ensure or even oppose the pairwise dominance connection somewhere 
between alternatives. It examines both the degree to which the prefer
ence weights agree with pairwise dominance relationships and the de
gree to which weighted evaluations differ from each other. These stages 
are based on a “concordance and discordance” set; hence, this method is 
also called concordance analysis [4]. 

There are several versions of the ELECTRE method, which provide 
improved versions of the initial method. There are two main stages for 
ELECTRE methods: (1) the construction of ranking relationships, and (2) 
the use of these relationships to obtain the final ranking of alternatives. 

Different ELECTREE methods may differ in defining the ranking re
lationships between alternatives and how to apply these relationships to 
obtain the final ranking of alternatives. The ELECTREE method has 
evolved through several versions (I, II, III, IV, V). All variations are based 
totally on the identical fundamental concept however are operationally 
different. The ELECTREE I approach is designed for choice while 
ELECTRE II is used for ranking. In this study, the ELECTRE II approach 
will be used as a technique for figuring out the doubts of Qatar’s resi
dents to adopt residential solar photo-voltaic energy. ELECTREE II 
approach was chosen due to the fact of its capability in the current al
ternatives. So that this technique is very excellent to be used to search 
for the doubts of the public adopting solar energy. 

3. MCDA with agent-based modeling, bayesian reasoning and 
sensitivity analysis 

Most current MCDA methods help users design and explore the de
cision space, once the data that form the decision space have been 
procured. Our approach differs from these MCDA methods [27] in that it 
includes the automated generation of decision spaces via agent-based 
simulation to enable users to test and select alternative 
decision-making options with ease in an exhaustive and effective 
manner. Another novel aspect of the approach developed regards 
optimization. 

While classical optimization theory deals with problems that aim to 
maximize or minimize a single criterion, most real-world decision- 
making problems [28], such as residential solar Photovoltaic adoption, 
require the optimization of multiple competing criteria. In using MCDA 
to evaluate alternative solar PV adoption scenarios generated via 
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agent-based simulation, our strategy is to estimate the probability dis
tribution of all criteria using a Bayesian reasoning approach [28]. 

Such a strategy provides both the expected value and uncertainty of 
the relevant criteria as an indication of their utility in the decision- 
making process. Factor ranking is performed by validating the proba
bility variables of the Bayesian net by means of sensitivity analysis. The 
ensuing approach is compared with the TOPSIS, ELECTREE, SAW and 
AHP methods described in the previous section. 

3.1. Proposed methodology 

The novelty of the approach described in this paper is the automation 
of the entire MCDA process through the following steps (Fig. 3)7:  

• Generate plausible scenarios to initialize the solution space  
• Augment the solution space with alternative solution.  
• Develop a classification model from the total solution space data to 

derive weights for all criteria.  
• Construct an inference network using the classification model. 

As described in Fig. 3, the input to the proposed MCDA system is a 
pair consisting of a list of factors (f) and a decision output variable (d), 
where each factor can take several values (v) within a certain range 
subject to number of constraints (c): 

([(fi : vii∨,…,∨vin : cii,…, cin),…, (fn : vni∨,…,∨vnn : cni,…, cnn)], di]) (7) 

The approach developed consists of three main components:  

1. Scenario Generation, where most plausible mixture of factors 
leading to an agent PV adoption decision are instantly generated to 
derive a decision space dataset 

〈
[
(f1 : v11∨,…,∨v1n),…,

(
fj : vj1∨,…,∨vjn

)]
, d1〉 (8)  

〈[(fk : vki∨,…,∨vkn),…, (fn : vni∨,…,∨vnn)], dn〉 (9)    

2. Decision Model Creation, where the decision space dataset is used 
as training data to derive a probabilistic belief network where nodes 
describe the PV adoption factors and PV adoption decision outputs 
and links the probabilities across the nodes.  

3. Decision Analysis Solution, where factors are automatically ranked 
to help the user determine optimal decision making under diverse 
value assignments to criteria. 

3.1.1. Scenario Generation-Agent-Based Modeling (ABM) 
We used Agent Based Modeling [30] to generate residential PV 

adoption scenarios for a population of 65,536 households in Qatar 
during the course of 15 years in terms of five factors all expressed in US 
dollars per kilowatt-hour ($/kWh): (1) PV cost; (2) electricity tariff; (3) 
power gain resulting from the use of PV energy” behind the meter” (the 
estimated yearly PowerGAIN in USD for 65,536 5 kW residential solar PV 
systems will vary as indicated in Fig. 4, with an average of 0.036 
¢/kWh); (4) a hypothetical carbon tax, and (5) the hypothetical re
ductions of gas and electricity subsidies [30]. We assume that PV cost 
would fall yearly due to technological maturity (Table .1) as detailed in 
Ref. [30] following [31]. 

A household’s propensity to adopt solar energy in the model is 
determined by the logistic function in Equation.4, where L is a scaling 
constant, e is the natural logarithm, x is the cost of PV minus the cost of 
electricity + carbon tax + power gain + gas/electricity subsidy reductions, 

Fig. 3. Diagrammatic representation of the approach.  

Fig. 4. Estimated yearly power gain in USD for 65,536 5 kW RPV systems 
(x-axis). 

7 The MCDA approach presented in this paper is based on a previous study 
described by the authors in Ref. [29]. 
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and k is a parameter that determines the slope of the adoption curve. 
We specify L = 1 to normalize the result of the logistic function as a 

probability. For the k parameter, we select a value that yields a PV 
market share of 2.5% at the end of the simulation in a scenario where the 
cost of PV stays constant through time. This market share is equivalent 
to the number of innovators in Rogers’ innovation adoption curve [32], 
who by disposition are willing to adopt novel technology at a premium 
price. 

nij =
L

1 + e− k∗x, (10) 

The output of the logistic function in (10) is a probability that ex
presses cost-based propensity to PV adoption. At each simulation round, 
each household agent that has not adopted yet is presented with the 
opportunity of doing so. Adoption is set arbitrarily within regards to the 
output of the logistic function: an arbitrary probability pr might be 
generated, and in case the probability of adoption as estimated by the 
logistic function is over or even identical to pr, adoption comes up. 

By running n simulation rounds, in addition to iterating every single 
round i times to smooth the impact of probabilistic adoption, we attain 
n*i adoption strategies, where every single solution could be repre
sented, as shown in Table 2. For further details about this approach to 
the modeling of residential PV adoption, see Ref. [33]. 

3.1.2. Decision Model Creation-Bayesian Network (BN) 
The dataset described in Table 2 is used as training material to derive 

a Bayesian Network (BN) (see Fig. 5) classifier that is capable of pre
dicting the adoption decision of an agent (“YES” or “NO”) according to a 
certain range of factor-value pairs, like those contained in Table 2. A BN 
represents a probability distribution. 

p(U)=Πu ∈ Up(u|parents(u)) (11)  

where U is the set of domain variables, and parents(u) denotes the 
parents of u. Within a BN approach to classification, the probability of a 
class variable C given a set of attribute variables X U is calculated as 
argmaxy p (C), where p (C X) = p(U)/p(X). The network structure of a BN 
and its parameters can be learned from a dataset such as the one 
described in Table 2 as detailed in Ref. [34]. 

Initially, a node does not have parents, and then parents are incre
mentally introduced to the node to take full advantage of the probability 
of the ensuing framework, before the probability of the ensuing network 
structure cannot be longer elevated with the inclusion of yet another 
parent. Once established structure of the BN, its parameters are learned 
using the empirical conditional frequencies from the data. The evalua
tion of the BN classifier trained from the data described in Table 3 using 
precision, recall and F-Measure [35] yields a high level of accuracy in the 
identification of PV adopters vs. non-adopters, as shown in Table 4. 

3.1.3. Decision analysis & solution criteria assessment 
As soon as the Bayesian network classifiers is created (Fig. 5) as part 

of the Decision Model Creation component from the datasets generated by 
means of ABM within the Scenario Generation component, the factors in 
the decision model are automatically ranked in the Decision Analysis and 
Solution component (Fig. 3). 

These rankings assist the user in determining optimal value assign
ment alternatives to factors that can be used as user-driven input to the 
Bayesian net to generate decision-making choices as shown in Fig. 6. 

Factor ranking is carried out by validating the probability parame
ters of the Bayesian network using sensitivity analysis [36], which 
evaluates the effect of small numerical changes of the probabilities 
related to factor nodes on output nodes. Extremely sensitive factor nodes 
impact output node much more drastically. Various methods for per
forming sensitivity analysis in Bayesian networks exists, as detailed in 
Refs. [36,37]. The present work assumes the approach described in 
Ref. [37]. 

Given a set of target nodes (e.g. ADOPTION CLASS), the sensitivity 
analysis algorithm calculates a complete set of derivatives of the pos
terior probability distributions over the target nodes for each of the 
numerical parameters of the Bayesian network (PVCOST, ELEC
TRICITYTARIFF, ELECTRICITYSUBSIDY, GASSUBSIDY, CARBONT AX and 
POWERGAIN) (see Fig. 6). 

These derivatives provide an indication of significance of accuracy of 
network numerical parameters for calculating the posterior probabilities 
of the goals. If the derivative is large for a parameter, then a small de
viation in the parameter may lead to a large difference in the posteriors 
of the target node. If the derivative is small, consequently even signifi
cant deviations in the parameter produce little difference in the poste
riors of the target node. See Ref. [37] for further details. 

Fig. 7 shows a sample of sensitivity results for the Bayesian net 
described above, with reference to the impact of various factor-value 
pairs (e.g.PVCOST= High/Medium/Low, POWER GAIN = High/Me
dium/Low) on the target node (ADOPTION CLASS= Positive/Negative). 
In the present approach, sensitivity analysis is performed by changing 
the probabilities of all factor nodes by 10% and then observing how 
much change occurred in the probability the target node. For example, 
the probability of” ADOPTIONCLASS = Positive” left tornado graph in 
Fig. 7) goes from 0,443,792 to 0,459,527 when factor parameters are 
increased by 10%. Each factor can have a different impact on the output 
node in terms of strength (length of each bar in Fig. 4) and polarity (red 
bars indicate negative polarity, while green bars indicate positive po
larity) (see Fig. 8). 

For example, “PVCOST = High” is the strongest inversely correlated 
factor with positive PV adoption (left tornado graph in Fig. 7(a)) and 
directly correlated with negative PV adoption (left tornado graph in 
Fig. 7(a)). Analogous remarks apply to the remaining factor-value pairs 
in the two tornado graphs in Fig. 7. The user can now use the ranking 
provided through sensitivity analysis to compile diverse collections of 
optimal factor-values inputs for the Bayesian classifiers to receive as 
output the ensuing decision-making choices for each input, as shown in 
Table 5. 

4. Comparative analysis and results 

In this section, the MCDA approach developed in this study (hence
forth ABM-BN-SA, short for Agent-Based-Modelling, Bayesian Net clas
sification and Sensitivity Analysis) is compared with the MCDA 
treatments reviewed in section 2 (i.e. AHP, TOPSIS, SAW and ELEC
TREII) with reference to the contributing criteria and emphasis on 
criteria relevance weighting as described in Fig. 9. The degree of ranking 
overlap for criteria contributing to PV adoption across the different 
MDCA treatments is evaluated using diverse methods. The output data 
out of the simulation process described in section 3.1.1 are first used to 
rank MCDA criteria for Residential PV adoption (Fig. 9) with all MCDA 
treatments. Then, ABM-BN-SA rankings are compared against those 
obtained with TOPSIS, SAW, AHP and ELECTREII. The first comparison 
is based on Spearman rank-order correlation coefficient8 and Kendall’s 
coefficient concordance.9 The second comparison uses Sensitivity anal
ysis to measure the ranking overlap with alternative criteria settings. 
After comparing MCDA criteria, a comparison of the decision-making 
outcomes across the MCDA treatments under analysis is carried out. 
Finally, the capacity of each MCDA method to provide a model of correct 
decision-making for PV adoption is assessed. 

8 Spearman’s rank correlation coefficient: A non-parametric measure of sta
tistical dependence between two variables that assesses how well the rela
tionship between two variables can be described using a monotonic function.  

9 Kendall’s coefficient of concordance is a non-parametric statistic. It is a 
normalization of the statistic of the Friedman test, and may be employed for 
evaluating agreement among raters. Kendall W ranges out of 0 (no agreement) 
to 1 (complete agreement). 
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4.1. TOPSIS, SAW, AHP and ELECTREII rankings 

The computation procedure in ELECTRE II consist of three steps: (1) 
partition a set of variants; (2) build a complete pre- order, and (3) 

determine a full pre-order along with defining the partial pre-order. 
For TOPSIS, the weighting vectors are computed by considering the 

distances to both the Positive and Negative Ideal Alternatives (PIA, 
NIA), in addition to a preference order that is ranked according to the 
relative closeness and a mix of these two distances measures. The best 
option in TOPSIS is the one that has the shortest distance from the PIA 
and the farthest distance to the NIA. The procedure used for SAW re
quires the normalization of the decision matrix to a scale similar to all 
current alternative ratings. AHP strategy incorporates a pair-wise com
parison judgement of options on each criterion and a measurement of 
the logical rationality of pairwise comparisons (more details about each 
technique can be found in section 2). 

4.2. Degree of criteria ranking overlap 

The Spearman rank-order correlation coefficient rs described in (12) 
was first used to quantify the correspondence between the ABM-BN-SA 
rankings with those obtained with SAW, TOPSIS, ELECTRE II and AHP 
MCDA. In (13), the value of rs ranges from − 1 to 1, d2 is the sum of the 
squared differences between the pairs of ranks, and n is the number of 
comparison pairs. 

Fig. 10 displays the degree of overlap of rankings between ABM-BN- 
SA and SAW, TOPSIS, ELECTRE II and AHP in terms of the rs coefficient. 
TOPSIS shows the closest fit with ABM-BN-SA (rs = 0.83), as expected 
since it used a ranking approach considerably closer to ABM-BN-SA as 
compared to the other MCDA treatments. ELECTREII yields the lowest 

Table 2 
Estimated Residential PV costs through 15 years.  

Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

PV Cost (¢/kWh) 11.68 10.22 8.76 7.3 5.84 5.61 5.37 5.14 4.91 4.67 4.44 4.2 3.97 3.74 3.5  

Fig. 5. Bayesian Network for the PV adoption decision-making scenarios with the GeNIe tool (Johansson Martenson, 2010).  

Table 3 
Sample data output from ABM simulation [33].  

Year  Agent1 

values 
Agent2 

values 
.. 

Adopt Decision 
Variable 

Adopt Class Yes No … 

Factor Variables PVCost 4.44¢/kWh 5.84¢/kWh …  
ElectricityTari f f 3.55¢/kWh 3.55¢/kWh …  
ElectricityS ubsidy 0.38¢/kWh 0.77¢/kWh …  
GasS ubsidy 0.21¢/kWh 0.42¢/kWh …  
CarbonTax 0.040¢/kWh 0.005¢/kWh …  
PowerGain 0.036¢/kWh 0.011¢/kWh …  

Table 4 
Evaluation results: C is the adoption class which can take two values (T = ” 
True”, F = ” False”) [33].   

TP Rate FP Rate Precision Recall F-Measure C 

Weighted Avg. 0.985 0 1 0.985 0.993 T 
1 0.015 0.953 1 0.976 F 
0.989 0.003 0.989 0.989 0.989   

Fig. 6. Sensitivity Analysis conducted using the created BN: Bayesian Network with the order of preference of criteria influencing the PV adoption decision-making 
problem, Target nodes influencing the PV adoption decision-making. 
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degree of ranking overlap with ABM-BN-SA (rs = 0.33). 

rs = 1 −
6
∑

d2

n(n2 − 1)
(12) 

In the second comparison, the degree of criteria ranking overlap 
across all MCDA treatments was evaluated using Kendall’s coefficient of 
concordance. As shown in Table 5, TOPSIS, SAW and ABM-BN-SA 
display the highest concordance (0.762–0.583). TOPSIS yields the 
highest concordance with ABM-BN-SA (0.762), closely followed by SAW 
(0.673). AHP has a lower degree of concordance with all other methods 
than TOPSIS, SAW and ABM-BN-SA (0.290–0.201). This may be due to 

AHP’s “Decision Maker” strategy according to which criteria ranking is 
performed through pairwise criteria comparisons. One of the primary 
concerns of this strategy regards the degree of consistency required to 
generate efficient results. When the strategy is not consistent enough, 
resulting scores and weights values become questionable. ELECTREEII is 
the least correlated method to all others in terms of concordance. 

The criteria ranking overlap results discussed in this section (Fig. 10 
and Table 5) indicate that ranking order may differ considerably across 
MCDA strategies. 

Fig. 7. Sensitivity Analysis conducted using the created BN-Tornado diagram of diverse criteria influencing Residential PV adoption decision-making.  

Fig. 8. Sensitivity Analysis conducted using the created BN-Correlation between diverse criteria influencing the PV adoption decision-making.  

Table 5 
Input/output sample for classifier model. 
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4.3. Ranking disagreement through sensitivity analysis 

The stability of the rankings produced by the five MCDA treatments 
under analysis was assessed through sensitivity analysis. The six criteria 
in Table 6 and the two target decision alternatives (adoption vs. no 
adoption) served as the parameters of this analysis. The six criteria were 
associated with weighting vectors from the simulation data described in 
section 3.1.1 (Table 7). 

In the first sensitivity analysis test Experiment1, the six criteria were 
assigned the same weight. In the second test, Experiment2 the criteria 
weights were changed by using the mean of weights from the simulated 
dataset. In the next two tests, all weights were first set to the same value 
(0.1) and the weight for ElectricityTariff and PVCost were reduced by 50% 

in Experiment3 and Experiment4 respectively. The rest of rest of criteria 
were considered as equally important. Table 7 summarizes all the 
experimental scenarios used in the sensitivity analysis evaluation. 

Notes: 

• ci (0<i<7)− PVCost, ElectricityTariff, CarbonTax, GasSubsidy, Elec
tricitySubsidy, PowerGain  

• E1− Same weight: all criteria are equally important for all MCDA 
methods.  

• E2− Average weight: the weights of the criteria were obtained from 
the dataset.  

• E3− “ElectricityTariff” reduced by 50%.  
• E4− “PV_Cost” reduced by 50%.  
• The asterisk character (*) indicates that scores are equal in the same 

experiment across all 200 iterations. 

Fig. 11 provides a sampling of the criteria rankings for the MDCA 
treatments under analysis in the four experiments scenarios described in 
Table 6. This sampling was obtained by performing the sensitivity 
analysis within a numerical ranking system from 1 (top rank) to 7 (lowest 
possible rank) over 200 iterations and taking the average of all iterations 
as the final result. 

The sensitivity analysis indicates that there is a fair amount of sim
ilarity across the five MCDA methods in all experimental scenarios. For 
example, the first three criteria (ElectricityTariff, CarbonTax and PVCost) 
consistently show higher ranking across MCDA methods and scenarios, 
while the last three criteria (GasSubsidy, ElectricitySubsidy, PowerGain) are 
associated with lower rankings. This distribution corroborates ABM-BN- 
SA results. 

4.4. Overlap in decision making outcomes 

Overlap in the decision to adopt or not across the five MCDA methods 
was computed by averaging alternatives adoption rates for each MCDA 
technique across the 200 iterations (see Fig. 12). Not all iterations 
yielded an adoption decision results. The results in Fig. 13 show that 
there is agreement in that all MCDA methods have higher adoption than 
non-adoption. 

As observed in the analysis of the degree of criteria ranking overlap 
(4.2), ABM-BN-SA and TOPSIS show the highest overlap with reference 
to adoption. As compared to the other MCDA methods, ABM-BN-SA 
displays the lowest “no adoption” rate, and is in the mid-range with 

Fig. 9. MCDA criteria in Residential PV adoption.  

Fig. 10. Average rs correlation between the ABM-BN-SA rankings with the rankings calculated by the SAW TOPSIS, ELECTRE II and AHP MCDA methods.  

Table 6 
Degree of criteria ranking overlap with Kendallâs coefficient of concordance.   

SAW TOPSIS AHP ELECTREEII ABM-BN-SA 

SAW 1.000     
TOPSIS 0.583 1.000    
AHP 0.290 0.275 1.000   
ELECTREEII − 0.086 0.112 0.210 1.000  
ABM-BN-SA 0.673 0.762 0.201 − 0.095 1.000  
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Table 7 
Obtained criteria weights.  

Criteria Experiment Experiment1 Experiment2 Experiment3 Experiment4 

Weight 0 < i < 7 Weight 0 < i < 7 Weight 0 < i < 7 Weight 0 < i < 7 

PV_Cost 0.142857142857 0.331 0.1 0.5 
Electricity_Tariff 0.142857142857 0.25 0.5 0.1 
Carbon_Tax 0.142857142857 0.31 0.1 0.1 
Gas_Subsidy 0.142857142857 0.038 0.1 0.1 
Electricity_Subsidy 0.142857142857 0.016 0.1 0.1 
Power_Gain 0.142857142857 0.055 0.1 0.1 
Sum (

∑
)  1.0 1.0 1.0 1.0  

Fig. 11. Criteria ranking for the four experiments (E1,…,E4) calculated as the average weight for each of the six criteria in Table 6 (c1, …,c6) by MCDA technique over 
200 iterations. 

Fig. 12. Sample of training data for Bayesian net classifier. Feature values have been discretized.  

Fig. 13. Adoption decision rates across MDCA methods.  
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reference to missing decisions, where TOPSIS shows the lowest rates, 
and ELECTREII the highest. 

4.5. Accuracy 

The final test aimed at evaluating the capacity of each MCDA method 
to provide a model of correct decision-making for PV adoption. To do so, 
a training dataset was created for each MCDA method where each row 
contains a sequence of values for the six relevant adoption criteria 
(Table 8) and the associated adoption decision, as shown in Fig. 13. 

A Bayesian net classifier was then used to predict adoption class as a 
function of the associated criterion values. The classifier was trained on 
65% of the training data and tested on the remaining 35% using the 
accuracy metric shown in (13). As shown in Table 8, ABM-BN-SA, SAW 
and TOPSIS are the top-performing methods, with ABM-BN-SA showing 

a clear lead (89.14% vs 81.67 and 79.43%). AHP and ELECTRE display 
significantly lower accuracy. 

Accuracy=
|True Positives(TP) + TrueNegatives(TN)|

|TP + TN + FP + FN|
(13)  

5. Discussion 

As discussed in Section 4, the ABM-BN-SA approach developed in 
this study was evaluated alongside four popular MCDA methods (AHP, 
TOPSIS, SAW and ELECTREII) with reference to overlap in criteria 
ranking and decision making, and the capacity to provide a model of 
correct decision-making for PV adoption. 

First, Spearman’s correlation and Kendall’s concordance were used 
to assess the overlap in criteria weighting and ranking. The Spearman 
and Kendall coefficients show that ABM-BN-SA is strongly correlated 
with TOPSIS and SAW, has a mild correlation with AHP, and exhibits the 
least overlap with ELECTRE II. Then, the covariation of criteria rankings 
in alternative scenarios is assessed across the five MCDA methods 
through sensitivity analysis. The sensitivity analysis indicates that the 
five MCDA methods exhibit similar criterion-ranking responses to 
changing criteria weightings in diverse experimental scenarios. 

Table 8 
Accuracy in the identification of adoption decisions across MDCA methods.  

Alternative TOPSIS SAW AHP ELECTRE ABM-BN-SA 

Adoption 81.67% 79.43% 47.02% 32.89% 89.14% 
No Adoption 18.33% 20.57% 52.98% 67.11% 10.86%  

Fig. 14. Snapshots of the developed residential solar PV decision-support platform. The Online Platform for PV adoption connecting all implemented components: 
Database, Agent-based Model, Bayesian network and the sensitivity analysis component. 
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Next, the overlap in decision-making is computed across the five 
MCDA methods by comparing rates of adoption decisions across the five 
MCDA techniques. ABM-BN-SA shows the highest overlap with TOPSIS 
on the decision to adopt, displays the lowest “no adoption” rate, and is in 
the mid-range with reference to missing decisions, where TOPSIS shows 
the lowest rates, and ELECTREII the highest. 

The final test evaluates the capacity of each MCDA method to pro
vide a model of correct decision-making for PV adoption. 

Results show that ABM-BN-SA, SAW and TOPSIS are the top- 
performing methods, with ABM-BN-SA showing a clear lead. Overall, 
the results of this comparative evaluation show that ABM-BN-SA is well 
correlated with the other MCDA methods and provides the best per
forming model of decision-making, with reference to the PV adoption 
use case under analysis. 

6. Conclusion 

The study presented in this paper focuses on the development of a 
novel MCDA method, using decision-making in residential solar PV 
adoption as use case. The novel MCDA method, ABM-BN-SA, combines 
multi-agent simulation to enable automated scenario generation, 
Bayesian modeling to assign weights to criteria, and sensitivity analysis 
to validate the relative impact of criteria. 

The application of ABM-BN-SA to the use case exemplifies how a 
dataset of residential PV adoption scenarios generated through multi- 
agent simulation can be harnessed to derive a probabilistic belief 
network where PV adoption criteria are automatically weighted and 
ranked. The ensuing rankings are then evaluated through sensitivity 
analysis to verify their covariation in alternative scenarios. This appli
cation of sensitivity analysis enables the user to interact dynamically 
with criteria ranking by altering criteria weights to explore alternative 
scenarios in” what-if” games. 

The comparative evaluation with AHP, TOPSIS, SAW and ELECTREII 
shows that overall ABM-BN-SA is well correlated with most of other 
MCDA methods and provides the best performing model of decision- 
making, with reference to the PV adoption use case under analysis. 

The proposed method and its associated data and analytics compo
nents are made available as web application based on a Software as a 
Service (SAAS integration platform that provides data integration, pre
dictive modeling, data analytics and visualization as services, and en
ables cloud and high performance computing. 

The high-level graphical user interface (GUI) has been implemented 
as a web browser (see Fig. 14) provides a flexible way of interacting with 
the front-end part of the app and the back-end app. The user will be able 
to pose a range of queries from very simple (such as a simple value of the 
electricity subsidy for example) to complex (such as the results of one or 
more models) that take input from the analysis of data collection over a 
long period of time. 

The developed application provides a decision support system to 
study and analyze which is the best combination of incentives and 
regulations to promote the adoption of solar energy systems by resi
dents, businesses and utility companies in Qatar and identify the in
vestments necessary to maintain the reliability and stability of the 
electricity system. 

The ensuing decision-making methodology can be applied not only 
by Solar PV panel purchasers but also by stakeholders in other industries 
to logically and straightforwardly model and analyze the acceptance 
decision-process of the consumers based on their individual preferences, 
behavioral rules, and interaction within a social network, with specific 
reference to a consumer utility function. 

The system is based on a modular approach that can be used to 
characterize residential solar Photovoltaic (PV) adoption in other GCC 
countries and worldwide through the reconfiguration of model param
eters and model input data. The ensuing platform provides a computer 
implementation of the techno-economic analysis framework that 
together with the insights developed by the green energy roadmap and 

regulatory framework provides an evaluation of alternative green en
ergy strategies. Future work will be devoted to the improvement of 
MCDA through the development of a hybrid method that combines the 
best aspects of each of the MCDA methods reviewed in this study. 
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