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ABSTRACT

Multi-Criteria Decision Analysis (MCDA) is a sub-discipline of operations research that aims to solve multi-
objective optimization problems by evaluating competing factors in decision-making. MCDA supports multidi-
mensional decision-making processes through the analysis of diverse inputs at several levels of description, e.g.
economic, technical, social, and environmental. The use of MCDA has been gaining momentum in the energy
field, especially in endeavors that require evaluating the feasibility of different adoption scenarios for renewable
energy technologies. The study presented in this paper investigates the combined use of multi-agent simulation,
Bayesian modeling and sensitivity analysis for the development of a novel MCDA approach that supports the
analysis of residential solar Photovoltaic (PV) adoption. The ensuing MCDA approach is evaluated alongside four
popular MCDA methods (AHP, TOPSIS, SAW and ELECTREII) in a variety of tests aimed to assess overlap in
criterion rankings and decision-making outcomes, covariation of criteria rankings in alternative scenarios, and
the capacity to provide a model of correct decision-making. The comparative evaluation with AHP, TOPSIS, SAW
and ELECTREII shows that overall ABM-BN-SA is well correlated with most of other MCDA methods and provides
the best performing model of decision-making, with reference to the PV adoption use case under analysis. TOPSIS
shows the closest fit with ABM-BN-SA, as expected since it used a ranking approach considerably closer to ABM-
BN-SA as compared to the other MCDA treatments. ELECTREII yields the lowest degree of ranking overlap with
ABM-BN-SA. All the reviewed methods have been illustrated and evaluated within our residential solar Photo-
voltaic (PV) adoption decision support system. In general, these methods enable a user to select an optimal
solution out of a set of plausible alternatives according to multiple criteria and assist him in the design and
exploration of the decision space. The ensuing decision-making methodology can be applied not only by Solar PV
panel purchasers but also by stakeholders in other industries to logically and straightforwardly model and
simulate the adoption decision-process of the public based on their individual preferences, behavioral rules, and
interaction within a social network, with specific reference to a consumer utility function.

1. Introduction

alternative options. Such an analysis is needed to provide technical and
scientific support to guide decision-making in the field of renewable

The adoption and selection of renewable energy strategies is a multi-
dimensional decision-making process involving a variety of economic,
technological, societal, policy, and environmental factors. As a method
for solving complex decision problems, Multi-Criteria Decision Analysis
(MCDA), also known as Multi-Criteria Decision Making (MCDM),1 pro-
vides an ideal approach for the evaluation of renewable energy strate-
gies. By enabling the analysis of associations between elements that
affect decision-making in renewable energy adoption, MCDA emerges as
a most suitable tool to evaluate the relative impact of factors and explore

* Corresponding author.

energy’.

While technology costs are a paramount concern in choosing among
alternative energy sources, meteorological, environmental, energy
safety and security factors, and ensuing economic outcomes play an
increasingly important role. For example, the adoption of solar PV as a
source of electricity generation is ideal in countries such as Qatar with a
yearly average of nearly six peak sun hours per day, which is among the
highest worldwide. Due to the extreme heat in the summer season,
cooling represents the largest share of electricity demand during the

E-mail addresses: aboumaiza@hbku.edu.qa (A. Boumaiza), asanfilippo@hbku.edu.qa (A. Sanfilippo), nsalim@hbku.edu.qa (N. Mohandes).

1 Henceforth, the term MCDA will be used to refer both to MCDA and MCDM.
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summer months when there is greater sunlight, which solar PV can
effectively harness to satisfy the cooling energy requirements”.

The integration of distributed solar PV systems would contribute also
help curtail infrastructural investments needed to keep the national
power system in lockstep with ongoing economic and population grow.
From 2010 to 2018, electricity demand in Qatar has grown at an annual
average rate of about 6%, with peak loads going from 5090 to 7855 MW
(see Table 1).

To ensure that electricity demand be met at peak load times, the
capacity of the electricity grid needs to be constantly increased, even
though maximum demand occurs only sporadically, at predictable
times, e.g. summer afternoons due to high cooling demand, as shown in
Fig. 1. Costs to upgrade the national electricity grid in Qatar for the
period 2016-2020 may have reached $9bn in2020° and will continue to
increase thereafter. These costs can be significantly cut by using
distributed PV generation to reduce dependence on the grid during pe-
riods of peak consumption. In terms of grid security, the integration of
distributed PV generation contributes to the modularity of the national
power system, increasing the resiliency of the national electricity system
in power outage emergencies and strengthening National Energy Secu-
rity. From the economic and environmental perspective, the use of solar
energy to produce electricity will yield significant savings of fossil fuels
used for electricity production. For oil and gas rich countries, these
savings can be repurposed for additional trade on the international gas
market, used to develop a downstream industry based on gas-to-solid
value-added products, or left untapped to extend the lifetime of the
country’s natural gas reserves and lower extraction costs. For countries
which rely heavily of oil and gas imports for energy production, the use
of solar energy would help reduce trade costs and increase energy in-
dependence. In either case, the use of solar energy in place of fossil fuels
to generate electricity would lead to significant reduction in CO2
emissions [1]. For example, power plants operating in the US during
2018 generated on average 2.21 Ib. of CO2 for each kWh of electricity
produced with coal, 2.11 1b. of CO2 or each kWh of electricity produced
with petroleum, and 0.92 Ib. of CO2 or each kWh of electricity produced

Table 1
Electricity production and max and min demand in Qatar (source: KAHRAMAA

[(2D.

Year Total demand

a

Max demand day ~ Date Min demand day =~ Date

b b

2010 28,144 5090 14-Jul 1570 8-Feb
2011 30,730 5375 1-Aug 1785 13-
Jan
2012 34,788 6255 6-Aug 1840 26-
Jan
2013 34,668 6000 18-Jul 2046 16-
Jan
2014 36,125 6740 7-Sep 2154 12-
Feb
2015 41,499 7270 1-Sep 2320 24-
Feb
2016 42,306 7435 3-Sep 2410 19-
Jan
2017 43,800 7855 14- 2600 25-
Aug Feb
2018 47,913 7875 12-Jul 2825 21-
Jan
? GWh.
b Mw.

2 “ABM-BN-SA” this term will be used to refer the developed method in this
paper, it is the abbreviation of “Agent-based model-Bayesian Network-Sensi-
tivity Analysis”.

3 Source: Arab Petroleum Investments Corporation (http://www.apicorp.
org).
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with natural gas.“With reference to technology costs, the situation has
also been changing dramatically in the last decade. The average cost of
residential PV in the US came down from $0.52/kWh in 2010 to
$0.16/kWh in 2017 and is expected to reach $0.10/kWh in 2020 and
$0.05/kWh in2020.°

To keep up with the complexity of decision making in the adoption
and selection of renewable energy strategies, it is necessary to combine
MCDA with simulation approaches that capture the dynamic aspect of
alternative energy strategies. The approach described in this paper
proposes to do so by using a Bayesian approach to MCDA to analyze
simulation data generated via Agent-Based Modeling (ABM). The paper
is organized as follow.

Section 2 provides a review of related MCDA work. Section 3 de-
scribes the novel approach developed in the study with specific refer-
ence to its basic components: ABM, Bayesian Networks, and sensitivity
analysis (SA(’). Section 4 provides a comparison of the novel MCDA
approach with existing MCDA approaches. The results of the compara-
tive evaluation in section 4 are discussed in section 5. Conclusive re-
marks and suggestions for further work are laid out in section 6.

2. Multi-Criteria Decision Analysis methods

Due to the multi-dimensional nature of sustainability objectives and
the complexity of socio-economic systems, MCDA methods have become
increasingly popular in sustainable energy decision-making [3]. One of
the basic steps in MCDA models is the assignment of weights to criteria
to determine the relative impact of criteria. MCDA researchers have
proposed various methods to assign weights to criteria in solving
different MCDA problems, see Ref. [4].

This section reviews some of the most well-known approaches.

e Choosing the optimal solution according to multiple criteria out of a
potentially massive solution space is difficult due to several chal-
lenges, such as:

e Circumscribing the decision space from a multitude of criteria with
reference to a decision output.

e Assigning weights to criteria for the dynamic ranking of decision
candidates.

e Representing the solution space as an abstract construct that enables
decision analysis and decision making in a user-friendly fashion.

Factors weighting methods are divided into three categories: sub-
jective weighting, objective weighting, and combined weighting
methods. Several methods based on weighted sum, priority setting,
ranking, fuzzy set method and their combination can be used to address
MCDA problems in renewable energy (RE) adoption. Many interactive
methods have been proposed, and they are different from each other, for
example, on how to express preferences and how to use preferences
when using new solutions [5]. Fig. 2 provides a schematic summary of
most used MCDA approaches. Some of these approaches have been
applied to RE MCDA problems, such as the selection of Combined
Cooling, Heating and Power (CCHP) alternatives [6], the comparisons of
renewable energy plants and the DM of energy policy [7]. A description
of some of these MCDA methods is provided below.

2.1. Unique synthesizing criteria methods

2.1.1. AHP

The Analytic Hierarchy Process (AHP) MCDA method [8] has been
applied to a variety of domains including energy, social, economic,
agricultural, industrial, ecological, and biological systems [9]. This

4 https://www.eia.gov/tools/fags/faq.phpid=74&t=11.
5 https://www.energy.gov/eere/solar/sunshot-2030.
© The term SA will be used to refer to Sensitivity Analysis.
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Fig. 1. Duration of demand levels and distribution of electricity peak demand by day in 2016 (adapted from Ref. [2]).
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Fig. 2. A descriptive summary of the most commonly used MCDA methods.

descriptive decision analysis method computes the scaling importance
of alternatives through pairwise comparison of evaluation criteria and
alternatives.

AHP involves decomposing a complex decision into a hierarchy,
where the goal (target) is at the top of the hierarchy, the criteria, sub-
conditions are at the levels, and sub-levels of the hierarchy and the
decision options are at the bottom of the hierarchy. AHP is a weighted
sum method. The AHP method incorporates the following steps [10]:

a. Define the problem: this step aims to decompose the decision-making
problem into different parts, as the highest-level problem target,
intermediate-level standards (may be decomposed into lower-level
sub-standards), and the lowest-level options.

b. Build a pair-wise comparison matrix (weights): according to Ref. [10],
decision makers should answer questions such as” How important is
criterion A relative to criterion B?“. This must be performed for every
pair of conditions. As the evaluation continues, the relative priority
of each pairing criterion is determined by denoting 1 as” equal
importance” and 9 as” extreme importance”.

c. Judgment of Pair-wise comparison of options on each criterion
(scoring): for each pair within each criterion a better choice will get a
score again between 1 (“equally good™) and 9 (“absolutely better™),
and the other option in the pairing is assigned a rating problem goal.

d. The final stage of AHP technology is to calculate the inconsistency rate
(IR)- a measure of the logical rationality of pairwise comparisons. If
IR is less than 0.10, a pairwise comparison is generally considered
acceptable. AHP assessment assumes that the decision maker is

rational. For example, if A is compared to B, B is preferred, B is
preferred to C, and A is preferred to C [11].
ymax — n

n—1

CIn= (@)

Where:

e n is Consistency Index
e ymax is the Eigenvalue and ymax >n, and
e n is number of comparisons

Next, ymaxmustbecalculated : [Ax = ymaxx| where:
A is the comparison matrix of size n x n, for n criteria, and x is the
Eigenvector of size n x 1.

Cln

R, = — 2
CnRIn (2)

CR, is Consistency Ratio which [8] concluded that if the value of the
consistency ratio is less than or equal to 10%, the inconsistency is
acceptable. If the consistency ratio is greater than 10%, the subjective
judgment needs to be revised, and RIn Random Consistency Index which
n is number of comparisons.

2.1.2. TOPSIS
TOPSIS is presented as a weighting strategy in the literature and can
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also be an MCDA method. TOPSIS [12] relies on the concept that the
ideal alternative has the highest level of impact for all criteria, while in
the worst alternative all criteria present the lowest impact [13]. The
principle is simple: mathematically speaking, the elected best alterna-
tive should have the shortest distance from the positive ideal solution,
and the longest distance from the negative solution.

This strategy assumes that each criterion has a monotonically
expanding or diminishing utility. This makes it simple to find ideal and
negative ideal solutions. TOPSIS uses probably the shortest Euclidean
distance out of the best solution along with the farthest distance out of the
negative ideal solution to establish the worst and best alternative. The
TOPSIS strategy comprises the following steps:

(1) Normalize the decision matrix: the standardization of the deci-
sion matrix is done utilizing the below transformation for every
nij:

aij

_ 3)
\Y Doimiai?

nij =

(2) Then, weights should be multiplied to normalized matrix [14].
(3) Determine the positive and negative ideal alternatives [14]:

AT ={vf vy, v b ={(max;V;|i€l), ((min;V;

jer|i=1,2,---,m)}
C))

J={j=1,2, .., n|j for negative attributes}

Where negative attributes are those with the worst attribute value.
The formula in (4) is used to calculate the weighted normalized decision
matrix: multiply the normalized decision matrix with its related weight.
The weighted standardized value Vj; is determined as V; = wyr;; where wj;
Indicates the weight of j™ attribute or condition.

The algorithms of the popular MCDM processes (AHP and TOPSIS)
are well described and explained in Ref. [15]. This study identifies a
listing of TOPSIS and AHP applications however it shows some of their
limitations. For the original TOPSIS introduced by Ref. [16], input data
should be numeric, definite, monotonically decreasing and increasing,
and share a commensurate unit. This implies that this technique is un-
able to handle qualitative criteria that area unit troublesome to assess
exactly, and it cannot tackle integrity and uncertainty of the assessment
data. A review given in Ref. [17] found that AHP and TOPSIS are among
the most popular methods employed to solve different selection
problems.

2.1.3. Simple Additive Weighting (SAW)

Simple Additive Weighting (SAW) is one of the strategies used to
solve multi-attribute decision problems. This strategy can be utilized to
support Geographic Information System with overlay operations [18].
The fundamental idea of this technique is to find the weighted sums
obtained from the performance ratings of each alternative on all criteria
[19]. SAW requires normalizing the decision matrix (X) to a scale that
may be compared with all present alternatives’ ratings [20]. The
method’s evaluation criteria S; is calculated by using equation (5):

m

Si=">_ wiy (5)
j=1

where wj is the weight of the j-th criteria and a; is normalized by using
equation (6), the value of the j-th criteria for the i-th alternative.
T
DY
The Simple Additive Weighting (SAW) approach is an easy-to-use
technique [18]. describes strong assumptions implicit in the SAW

(6)
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method (linearity and preferential independence).

An interesting work presented in Ref. [21] investigates the impacts of
using relative weights in multiple criteria decisions making and presents
a detailed description for the preferential independence condition of
SAW.

2.2. The outranking methods

The basis of the outranking method is the construction and devel-
opment of the ranking relationship introduced by Refs. [22,23]. The
ranking relationship is the binary relationship S defined on the alter-
native set A, so that for any pair of alternatives A; Ax: AiSAy, if the
preference of the decision maker is known, the evaluation quality of the
alternatives and the nature of the problem considered, Then there are
enough arguments to show that the alternative A; is at least as good as
the alternative Ag, but at the same time, there is no sufficient reason to
reject this statement [24].

Compared with other multi-criteria evaluation methods, ranking
methods have the feature of allowing incomparable alternatives. This
feature is very important in situations where certain options cannot be
compared for one reason or another.

2.2.1. Elimination and choice translating reality (ELECTREE)

This method was proposed by Benayoun, Roy and Sussman in 1966
[4,25,26], and was developed and improved by Roy in 1971. It consists
of a pairwise comparison of alternatives, based on the degree to which in
turn evaluations of the alternatives along with the preference weights
ensure or even oppose the pairwise dominance connection somewhere
between alternatives. It examines both the degree to which the prefer-
ence weights agree with pairwise dominance relationships and the de-
gree to which weighted evaluations differ from each other. These stages
are based on a “concordance and discordance” set; hence, this method is
also called concordance analysis [4].

There are several versions of the ELECTRE method, which provide
improved versions of the initial method. There are two main stages for
ELECTRE methods: (1) the construction of ranking relationships, and (2)
the use of these relationships to obtain the final ranking of alternatives.

Different ELECTREE methods may differ in defining the ranking re-
lationships between alternatives and how to apply these relationships to
obtain the final ranking of alternatives. The ELECTREE method has
evolved through several versions (I, II, III, IV, V). All variations are based
totally on the identical fundamental concept however are operationally
different. The ELECTREE I approach is designed for choice while
ELECTRE II is used for ranking. In this study, the ELECTRE II approach
will be used as a technique for figuring out the doubts of Qatar’s resi-
dents to adopt residential solar photo-voltaic energy. ELECTREE II
approach was chosen due to the fact of its capability in the current al-
ternatives. So that this technique is very excellent to be used to search
for the doubts of the public adopting solar energy.

3. MCDA with agent-based modeling, bayesian reasoning and
sensitivity analysis

Most current MCDA methods help users design and explore the de-
cision space, once the data that form the decision space have been
procured. Our approach differs from these MCDA methods [27] in that it
includes the automated generation of decision spaces via agent-based
simulation to enable users to test and select alternative
decision-making options with ease in an exhaustive and effective
manner. Another novel aspect of the approach developed regards
optimization.

While classical optimization theory deals with problems that aim to
maximize or minimize a single criterion, most real-world decision-
making problems [28], such as residential solar Photovoltaic adoption,
require the optimization of multiple competing criteria. In using MCDA
to evaluate alternative solar PV adoption scenarios generated via
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agent-based simulation, our strategy is to estimate the probability dis-
tribution of all criteria using a Bayesian reasoning approach [28].

Such a strategy provides both the expected value and uncertainty of
the relevant criteria as an indication of their utility in the decision-
making process. Factor ranking is performed by validating the proba-
bility variables of the Bayesian net by means of sensitivity analysis. The
ensuing approach is compared with the TOPSIS, ELECTREE, SAW and
AHP methods described in the previous section.

3.1. Proposed methodology

The novelty of the approach described in this paper is the automation
of the entire MCDA process through the following steps (Fig. 3)”:

(factors:values:constraints}

Scenario Generation

Scenario1:{{factors:values}:decision}1

Scenarion:{{factors:values}:decision}n

Decision Model Creation

Decision Node

Evidence

\ Evidence /

Decision Analysis & Solution

- <>-

Evidence1

Evidencen

Factorn Evidence1

Evidencen

\ Decision Solution .=

Fig. 3. Diagrammatic representation of the approach.

7 The MCDA approach presented in this paper is based on a previous study
described by the authors in Ref. [29].
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e Generate plausible scenarios to initialize the solution space

o Augment the solution space with alternative solution.

e Develop a classification model from the total solution space data to
derive weights for all criteria.

e Construct an inference network using the classification model.

As described in Fig. 3, the input to the proposed MCDA system is a
pair consisting of a list of factors (f) and a decision output variable (d),
where each factor can take several values (v) within a certain range
subject to number of constraints (c):

([(F; = ViV, ooy Vi 2 City ey Cin)y oeey (B 0 ViV ooty ViV 2 Gty ey )], i) (7))

The approach developed consists of three main components:

1. Scenario Generation, where most plausible mixture of factors
leading to an agent PV adoption decision are instantly generated to
derive a decision space dataset

vV Vi) o (6 v Vs oo Vo) ] di) (8)

vV e, V) ooy (Fr 2 ViV, ey Vo) ], di) 9)

2. Decision Model Creation, where the decision space dataset is used
as training data to derive a probabilistic belief network where nodes
describe the PV adoption factors and PV adoption decision outputs
and links the probabilities across the nodes.

3. Decision Analysis Solution, where factors are automatically ranked
to help the user determine optimal decision making under diverse
value assignments to criteria.

3.1.1. Scenario Generation-Agent-Based Modeling (ABM)

We used Agent Based Modeling [30] to generate residential PV
adoption scenarios for a population of 65,536 households in Qatar
during the course of 15 years in terms of five factors all expressed in US
dollars per kilowatt-hour ($/kWh): (1) PV cost; (2) electricity tariff; (3)
power gain resulting from the use of PV energy” behind the meter” (the
estimated yearly Powergay in USD for 65,536 5 kW residential solar PV
systems will vary as indicated in Fig. 4, with an average of 0.036
¢/kWh); (4) a hypothetical carbon tax, and (5) the hypothetical re-
ductions of gas and electricity subsidies [30]. We assume that PV cost
would fall yearly due to technological maturity (Table .1) as detailed in
Ref. [30] following [31].

A household’s propensity to adopt solar energy in the model is
determined by the logistic function in Equation.4, where L is a scaling
constant, e is the natural logarithm, x is the cost of PV minus the cost of
electricity + carbon tax + power gain + gas/electricity subsidy reductions,

$45
$40
$35
$30
$25
$20
$15
$10

$5

9-

3030

6059

9088
12117
15146
18175
21204
24233
27262
30291
33320
36349
39378
42407
45436
48465
51494
54523
57552
60581
63610

Fig. 4. Estimated yearly power gain in USD for 65,536 5 kW RPV systems
(x-axis).
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and k is a parameter that determines the slope of the adoption curve.

We specify L = 1 to normalize the result of the logistic function as a
probability. For the k parameter, we select a value that yields a PV
market share of 2.5% at the end of the simulation in a scenario where the
cost of PV stays constant through time. This market share is equivalent
to the number of innovators in Rogers’ innovation adoption curve [32],
who by disposition are willing to adopt novel technology at a premium
price.

L

— N 1
o a0

n;j
The output of the logistic function in (10) is a probability that ex-
presses cost-based propensity to PV adoption. At each simulation round,
each household agent that has not adopted yet is presented with the
opportunity of doing so. Adoption is set arbitrarily within regards to the
output of the logistic function: an arbitrary probability pr might be
generated, and in case the probability of adoption as estimated by the
logistic function is over or even identical to pr, adoption comes up.

By running n simulation rounds, in addition to iterating every single
round i times to smooth the impact of probabilistic adoption, we attain
n*i adoption strategies, where every single solution could be repre-
sented, as shown in Table 2. For further details about this approach to
the modeling of residential PV adoption, see Ref. [33].

3.1.2. Decision Model Creation-Bayesian Network (BN)

The dataset described in Table 2 is used as training material to derive
a Bayesian Network (BN) (see Fig. 5) classifier that is capable of pre-
dicting the adoption decision of an agent (“YES” or “NO”) according to a
certain range of factor-value pairs, like those contained in Table 2. A BN
represents a probability distribution.

p(U) =11, € Up(ulparents(u)) an

where U is the set of domain variables, and parents(u) denotes the
parents of u. Within a BN approach to classification, the probability of a
class variable C given a set of attribute variables X U is calculated as
argmaxy p (C), where p (CX) = p(U)/p(X). The network structure of a BN
and its parameters can be learned from a dataset such as the one
described in Table 2 as detailed in Ref. [34].

Initially, a node does not have parents, and then parents are incre-
mentally introduced to the node to take full advantage of the probability
of the ensuing framework, before the probability of the ensuing network
structure cannot be longer elevated with the inclusion of yet another
parent. Once established structure of the BN, its parameters are learned
using the empirical conditional frequencies from the data. The evalua-
tion of the BN classifier trained from the data described in Table 3 using
precision, recall and F-Measure [35] yields a high level of accuracy in the
identification of PV adopters vs. non-adopters, as shown in Table 4.

3.1.3. Decision analysis & solution criteria assessment

As soon as the Bayesian network classifiers is created (Fig. 5) as part
of the Decision Model Creation component from the datasets generated by
means of ABM within the Scenario Generation component, the factors in
the decision model are automatically ranked in the Decision Analysis and
Solution component (Fig. 3).

These rankings assist the user in determining optimal value assign-
ment alternatives to factors that can be used as user-driven input to the
Bayesian net to generate decision-making choices as shown in Fig. 6.

Factor ranking is carried out by validating the probability parame-
ters of the Bayesian network using sensitivity analysis [36], which
evaluates the effect of small numerical changes of the probabilities
related to factor nodes on output nodes. Extremely sensitive factor nodes
impact output node much more drastically. Various methods for per-
forming sensitivity analysis in Bayesian networks exists, as detailed in
Refs. [36,37]. The present work assumes the approach described in
Ref. [37].

Energy Strategy Reviews 39 (2022) 100789

Given a set of target nodes (e.g. ADOPTION CLASS), the sensitivity
analysis algorithm calculates a complete set of derivatives of the pos-
terior probability distributions over the target nodes for each of the
numerical parameters of the Bayesian network (PV¢osy, ELEC-
TRICITY zarmr, ELECTRICITYsypsiy, GASsupsipy, CARBONT ax and
POWERGAIN) (see Fig. 6).

These derivatives provide an indication of significance of accuracy of
network numerical parameters for calculating the posterior probabilities
of the goals. If the derivative is large for a parameter, then a small de-
viation in the parameter may lead to a large difference in the posteriors
of the target node. If the derivative is small, consequently even signifi-
cant deviations in the parameter produce little difference in the poste-
riors of the target node. See Ref. [37] for further details.

Fig. 7 shows a sample of sensitivity results for the Bayesian net
described above, with reference to the impact of various factor-value
pairs (e.g.PVcost= High/Medium/Low, POWER GAIN = High/Me-
dium/Low) on the target node (ADOPTION CLASS= Positive/Negative).
In the present approach, sensitivity analysis is performed by changing
the probabilities of all factor nodes by 10% and then observing how
much change occurred in the probability the target node. For example,
the probability of” ADOPTIONCLASS = Positive” left tornado graph in
Fig. 7) goes from 0,443,792 to 0,459,527 when factor parameters are
increased by 10%. Each factor can have a different impact on the output
node in terms of strength (length of each bar in Fig. 4) and polarity (red
bars indicate negative polarity, while green bars indicate positive po-
larity) (see Fig. 8).

For example, “PV¢pst = High” is the strongest inversely correlated
factor with positive PV adoption (left tornado graph in Fig. 7(a)) and
directly correlated with negative PV adoption (left tornado graph in
Fig. 7(a)). Analogous remarks apply to the remaining factor-value pairs
in the two tornado graphs in Fig. 7. The user can now use the ranking
provided through sensitivity analysis to compile diverse collections of
optimal factor-values inputs for the Bayesian classifiers to receive as
output the ensuing decision-making choices for each input, as shown in
Table 5.

4. Comparative analysis and results

In this section, the MCDA approach developed in this study (hence-
forth ABM-BN-SA, short for Agent-Based-Modelling, Bayesian Net clas-
sification and Sensitivity Analysis) is compared with the MCDA
treatments reviewed in section 2 (i.e. AHP, TOPSIS, SAW and ELEC-
TREII) with reference to the contributing criteria and emphasis on
criteria relevance weighting as described in Fig. 9. The degree of ranking
overlap for criteria contributing to PV adoption across the different
MDCA treatments is evaluated using diverse methods. The output data
out of the simulation process described in section 3.1.1 are first used to
rank MCDA criteria for Residential PV adoption (Fig. 9) with all MCDA
treatments. Then, ABM-BN-SA rankings are compared against those
obtained with TOPSIS, SAW, AHP and ELECTREII. The first comparison
is based on Spearman rank-order correlation coefficient® and Kendall’s
coefficient concordance.” The second comparison uses Sensitivity anal-
ysis to measure the ranking overlap with alternative criteria settings.
After comparing MCDA criteria, a comparison of the decision-making
outcomes across the MCDA treatments under analysis is carried out.
Finally, the capacity of each MCDA method to provide a model of correct
decision-making for PV adoption is assessed.

8 Spearman’s rank correlation coefficient: A non-parametric measure of sta-
tistical dependence between two variables that assesses how well the rela-
tionship between two variables can be described using a monotonic function.

9 Kendall's coefficient of concordance is a non-parametric statistic. It is a
normalization of the statistic of the Friedman test, and may be employed for
evaluating agreement among raters. Kendall W ranges out of 0 (no agreement)
to 1 (complete agreement).
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Table 2
Estimated Residential PV costs through 15 years.
Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
PV Cost (¢/kWh) 11.68 10.22 8.76 7.3 5.84 5.61 5.37 5.14 491 4.67 4.44 4.2 3.97 3.74 3.5
‘3‘) Value
Positive = 0.5 I
Negative = 0.5 B
ADOPTION_CLAS!
%Target Node
Evidence Node
Evidence Evidence
Evidence Evidence
POWER_GAIN
ELECTRICITY_TARIFF S X

Fig. 5. Bayesian Network for the PV adoption decision-making scenarios with the GeNlIe tool (Johansson Martenson, 2010).

Table 3
Sample data output from ABM simulation [33].
Year Agent; Agent,
values values
Adopt Decision Adopt Class Yes No
Variable
Factor Variables PVCost 4.44¢/kWh 5.84¢/kWh
Electricityreri ff  3.55¢/kWh 3.55¢/kWh
Electricitys ubsidy 0.38¢/kWh 0.77¢/kWh
Gasg ubsidy 0.21¢/kWh 0.42¢/kWh
Carbonrygy 0.040¢/kWh 0.005¢/kWh
PoWeTGain 0.036¢/kWh  0.011¢/kWh

Table 4
Evaluation results: C is the adoption class which can take two values (T =
True”, F = ” False”) [33].

TP Rate FP Rate Precision Recall F-Measure C

Weighted Avg. 0.985 0 1 0.985 0.993 T
1 0.015 0.953 1 0.976 F
0.989 0.003 0.989 0.989 0.989

4.1. TOPSIS, SAW, AHP and ELECTREII rankings

The computation procedure in ELECTRE II consist of three steps: (1)
partition a set of variants; (2) build a complete pre- order, and (3)

O ADOPTION_CLASS

(O  GAS_SUBSIDY

(O ELECTRICITY_TARIFF|

determine a full pre-order along with defining the partial pre-order.

For TOPSIS, the weighting vectors are computed by considering the
distances to both the Positive and Negative Ideal Alternatives (PIA,
NIA), in addition to a preference order that is ranked according to the
relative closeness and a mix of these two distances measures. The best
option in TOPSIS is the one that has the shortest distance from the PIA
and the farthest distance to the NIA. The procedure used for SAW re-
quires the normalization of the decision matrix to a scale similar to all
current alternative ratings. AHP strategy incorporates a pair-wise com-
parison judgement of options on each criterion and a measurement of
the logical rationality of pairwise comparisons (more details about each
technique can be found in section 2).

4.2. Degree of criteria ranking overlap

The Spearman rank-order correlation coefficient rs described in (12)
was first used to quantify the correspondence between the ABM-BN-SA
rankings with those obtained with SAW, TOPSIS, ELECTRE II and AHP
MCDA. In (13), the value of rg ranges from —1 to 1, d? is the sum of the
squared differences between the pairs of ranks, and n is the number of
comparison pairs.

Fig. 10 displays the degree of overlap of rankings between ABM-BN-
SA and SAW, TOPSIS, ELECTRE II and AHP in terms of the rg coefficient.
TOPSIS shows the closest fit with ABM-BN-SA (rs = 0.83), as expected
since it used a ranking approach considerably closer to ABM-BN-SA as
compared to the other MCDA treatments. ELECTREII yields the lowest

Nodes & states Columne & valuse ~

O CabonTax [ CARBON_TAX
@High @ \linf-4. 16N
#Medum @ \(12644nf)\"
#low  \(416522"
@ unassigned) @ V(849461

© BecirickySubsidy (] ELECTRICITY_SUB
@High © \(nf-2.179\

LI CHOOR TK @Medum @ V281V

@low @ (nassigned)

O BlectriciyTariff [T ELECTRICITY_TAR
@High @ \linf-2.1555]\"
@ Medum @ \(3.3995)\"
@ Low @ (unassigned)
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@High @ \{inf-1.79\"
#Medum @ \(2933.12v
@Low @ V.3t \"
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Fig. 6. Sensitivity Analysis conducted using the created BN: Bayesian Network with the order of preference of criteria influencing the PV adoption decision-making

problem, Target nodes influencing the PV adoption decision-making.
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Sensitiity for ADOPTION_CLASS=Positive
Current value: 0.443792 Reachable range: [0.426057 .. 0.459527]

043 043 0.4 0448 04 0435
v
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Sensitiity for ADOPTION_CLASS=Negative
Current value: 0.556208 Reachable range: [0.540473 .. 0.571943]
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Fig. 7. Sensitivity Analysis conducted using the created BN-Tornado diagram of diverse criteria influencing Residential PV adoption decision-making.
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Fig. 8. Sensitivity Analysis conducted using the created BN-Correlation between diverse criteria influencing the PV adoption decision-making.

Table 5
Input/output sample for classifier model.
Factor Inputy Inputa ADOPTION_CLASS
PV_COST 4.44¢/kWh 5.84¢/kWh Output 1 Output 2
ELECTRICITY_TARIFF 3.55¢/kWh 3.55¢/kWh

ELECTRICTY_SUBSIDY 0.38¢/kWh

0.77¢/kWh | >

GAS_ SUBSIDY 0.21¢/kWh 0.42¢/kWh yes no
CARBON_TAX 0.040¢/kWh 0.005¢/kWh
POWER_GAIN 0.036¢/kWh 0.011¢/kWh

degree of ranking overlap with ABM-BN-SA (rs = 0.33).

6> &>
=) 2

Fg—=1—

In the second comparison, the degree of criteria ranking overlap
across all MCDA treatments was evaluated using Kendall’s coefficient of
concordance. As shown in Table 5, TOPSIS, SAW and ABM-BN-SA
display the highest concordance (0.762-0.583). TOPSIS yields the
highest concordance with ABM-BN-SA (0.762), closely followed by SAW
(0.673). AHP has a lower degree of concordance with all other methods
than TOPSIS, SAW and ABM-BN-SA (0.290-0.201). This may be due to

AHP’s “Decision Maker” strategy according to which criteria ranking is
performed through pairwise criteria comparisons. One of the primary
concerns of this strategy regards the degree of consistency required to
generate efficient results. When the strategy is not consistent enough,
resulting scores and weights values become questionable. ELECTREEII is
the least correlated method to all others in terms of concordance.

The criteria ranking overlap results discussed in this section (Fig. 10
and Table 5) indicate that ranking order may differ considerably across
MCDA strategies.
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in Experiments and Experiment, respectively. The rest of rest of criteria

were considered as equally important. Table 7 summarizes all the

experimental scenarios used in the sensitivity analysis evaluation.
Notes:

® Ci (0<i<7)— PVcost, EleCtriCitYTariff; CarbonTax: GaSSubsidy: Elec-
tricitysubsidys POWerGain

e F;— Same weight: all criteria are equally important for all MCDA
methods.

e E;— Average weight: the weights of the criteria were obtained from
the dataset.

o E3— “Electricityrariff” reduced by 50%.

e E;— “PV_Cost” reduced by 50%.

e The asterisk character (*) indicates that scores are equal in the same
experiment across all 200 iterations.

Fig. 11 provides a sampling of the criteria rankings for the MDCA
treatments under analysis in the four experiments scenarios described in
Table 6. This sampling was obtained by performing the sensitivity
analysis within a numerical ranking system from 1 (top rank) to 7 (lowest
possible rank) over 200 iterations and taking the average of all iterations
as the final result.

The sensitivity analysis indicates that there is a fair amount of sim-
ilarity across the five MCDA methods in all experimental scenarios. For
example, the first three criteria (Electricityrang, Carbonge, and PVcost)
consistently show higher ranking across MCDA methods and scenarios,
while the last three criteria (Gassypsidy, Electricitysupsidy, POwergqin) are
associated with lower rankings. This distribution corroborates ABM-BN-
SA results.

Electricity_Tariff
PV_Cost
Eleclr icily_Subsidy
Gas_Subsidy

4.4. Overlap in decision making outcomes

Carbon_Tax Overlap in the decision to adopt or not across the five MCDA methods
P— - was computed by averaging alternatives adoption rates for each MCDA
technique across the 200 iterations (see Fig. 12). Not all iterations
yielded an adoption decision results. The results in Fig. 13 show that
there is agreement in that all MCDA methods have higher adoption than
non-adoption.

As observed in the analysis of the degree of criteria ranking overlap
(4.2), ABM-BN-SA and TOPSIS show the highest overlap with reference
to adoption. As compared to the other MCDA methods, ABM-BN-SA
displays the lowest “no adoption” rate, and is in the mid-range with

Innovation_Diffusion

Fig. 9. MCDA criteria in Residential PV adoption.

4.3. Ranking disagreement through sensitivity analysis

The stability of the rankings produced by the five MCDA treatments
under analysis was assessed through sensitivity analysis. The six criteria
in Table 6 and the two target decision alternatives (adoption vs. no
adoption) served as the parameters of this analysis. The six criteria were
associated with weighting vectors from the simulation data described in

Table 6
Degree of criteria ranking overlap with Kendallas coefficient of concordance.

section 3.1.1 (Table 7). SAW TOPSIS AHP ELECTREEII ABM-BN-SA
In the first sensitivity analysis test Experiment;, the six criteria were SAW 1.000
assigned the same weight. In the second test, Experimenty the criteria TOPSIS 0.583 1.000
weights were changed by using the mean of weights from the simulated AHP 0.290 0.275 1.000
dataset. In the next two tests, all weights were first set to the same value ELECTREEIL ~0.086 0.112 0-210 1.000
. - i 8 ABM-BN-SA 0.673 0.762 0.201 —0.095 1.000
(0.1) and the weight for Electricity g and PV¢,s were reduced by 50%
1 0.83
0.66
0.8 _
0.5
0.6
0.33
0.4
0.2
0
AHP TOPSIS SAW ELECTERE I

Fig. 10. Average r;, correlation between the ABM-BN-SA rankings with the rankings calculated by the SAW TOPSIS, ELECTRE II and AHP MCDA methods.
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Table 7
Obtained criteria weights.

Energy Strategy Reviews 39 (2022) 100789

Criteria Experiment

Experiment;

Weight 0 <i<7

Experiment,

Weight 0 <i<7

Experiments

Weight 0 <i<7

Experimenty
Weight 0 <i< 7

PV_Cost 0.142857142857 0.331 0.1 0.5
Electricity Tariff 0.142857142857 0.25 0.5 0.1
Carbon_Tax 0.142857142857 0.31 0.1 0.1
Gas_Subsidy 0.142857142857 0.038 0.1 0.1
Electricity Subsidy 0.142857142857 0.016 0.1 0.1
Power_Gain 0.142857142857 0.055 0.1 0.1
Sum (3°) 1.0 1.0 1.0 1.0

. SAW ELECTRE 2 AHP TOPSIS ABM-BN-5A

S rAAPAAA R ATA A A ATAArArA A
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Fig. 11. Criteria ranking for the four experiments (E;,...,E4) calculated as the average weight for each of the six criteria in Table 6 (c;,
200 iterations.

...,C¢) by MCDA technique over
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Fig. 12. Sample of training data for Bayesian net classifier. Feature values have been discretized.
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Fig. 13. Adoption decision rates across MDCA methods.
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Table 8

Accuracy in the identification of adoption decisions across MDCA methods.
Alternative TOPSIS SAW AHP ELECTRE ABM-BN-SA
Adoption 81.67% 79.43% 47.02% 32.89% 89.14%
No Adoption 18.33% 20.57% 52.98% 67.11% 10.86%

reference to missing decisions, where TOPSIS shows the lowest rates,
and ELECTREII the highest.

4.5. Accuracy

The final test aimed at evaluating the capacity of each MCDA method
to provide a model of correct decision-making for PV adoption. To do so,
a training dataset was created for each MCDA method where each row
contains a sequence of values for the six relevant adoption criteria
(Table 8) and the associated adoption decision, as shown in Fig. 13.

A Bayesian net classifier was then used to predict adoption class as a
function of the associated criterion values. The classifier was trained on
65% of the training data and tested on the remaining 35% using the
accuracy metric shown in (13). As shown in Table 8, ABM-BN-SA, SAW
and TOPSIS are the top-performing methods, with ABM-BN-SA showing

PV Adoption

Input

Carben Price:

Electricity Price: (0.98 USD cents/kWH

including subsidy price reduction)

Energy Strategy Reviews 39 (2022) 100789
a clear lead (89.14% vs 81.67 and 79.43%). AHP and ELECTRE display
significantly lower accuracy.

True Positives(TP) + TrueNegatives(TN
8
|TP + TN + FP + FN)|

Accuracy = 13)

5. Discussion

As discussed in Section 4, the ABM-BN-SA approach developed in
this study was evaluated alongside four popular MCDA methods (AHP,
TOPSIS, SAW and ELECTREII) with reference to overlap in criteria
ranking and decision making, and the capacity to provide a model of
correct decision-making for PV adoption.

First, Spearman’s correlation and Kendall’s concordance were used
to assess the overlap in criteria weighting and ranking. The Spearman
and Kendall coefficients show that ABM-BN-SA is strongly correlated
with TOPSIS and SAW, has a mild correlation with AHP, and exhibits the
least overlap with ELECTRE II. Then, the covariation of criteria rankings
in alternative scenarios is assessed across the five MCDA methods
through sensitivity analysis. The sensitivity analysis indicates that the
five MCDA methods exhibit similar criterion-ranking responses to
changing criteria weightings in diverse experimental scenarios.
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Fig. 14. Snapshots of the developed residential solar PV decision-support platform. The Online Platform for PV adoption connecting all implemented components:
Database, Agent-based Model, Bayesian network and the sensitivity analysis component.
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Next, the overlap in decision-making is computed across the five
MCDA methods by comparing rates of adoption decisions across the five
MCDA techniques. ABM-BN-SA shows the highest overlap with TOPSIS
on the decision to adopt, displays the lowest “no adoption” rate, and is in
the mid-range with reference to missing decisions, where TOPSIS shows
the lowest rates, and ELECTREII the highest.

The final test evaluates the capacity of each MCDA method to pro-
vide a model of correct decision-making for PV adoption.

Results show that ABM-BN-SA, SAW and TOPSIS are the top-
performing methods, with ABM-BN-SA showing a clear lead. Overall,
the results of this comparative evaluation show that ABM-BN-SA is well
correlated with the other MCDA methods and provides the best per-
forming model of decision-making, with reference to the PV adoption
use case under analysis.

6. Conclusion

The study presented in this paper focuses on the development of a
novel MCDA method, using decision-making in residential solar PV
adoption as use case. The novel MCDA method, ABM-BN-SA, combines
multi-agent simulation to enable automated scenario generation,
Bayesian modeling to assign weights to criteria, and sensitivity analysis
to validate the relative impact of criteria.

The application of ABM-BN-SA to the use case exemplifies how a
dataset of residential PV adoption scenarios generated through multi-
agent simulation can be harnessed to derive a probabilistic belief
network where PV adoption criteria are automatically weighted and
ranked. The ensuing rankings are then evaluated through sensitivity
analysis to verify their covariation in alternative scenarios. This appli-
cation of sensitivity analysis enables the user to interact dynamically
with criteria ranking by altering criteria weights to explore alternative
scenarios in” what-if” games.

The comparative evaluation with AHP, TOPSIS, SAW and ELECTREII
shows that overall ABM-BN-SA is well correlated with most of other
MCDA methods and provides the best performing model of decision-
making, with reference to the PV adoption use case under analysis.

The proposed method and its associated data and analytics compo-
nents are made available as web application based on a Software as a
Service (SAAS integration platform that provides data integration, pre-
dictive modeling, data analytics and visualization as services, and en-
ables cloud and high performance computing.

The high-level graphical user interface (GUI) has been implemented
as a web browser (see Fig. 14) provides a flexible way of interacting with
the front-end part of the app and the back-end app. The user will be able
to pose a range of queries from very simple (such as a simple value of the
electricity subsidy for example) to complex (such as the results of one or
more models) that take input from the analysis of data collection over a
long period of time.

The developed application provides a decision support system to
study and analyze which is the best combination of incentives and
regulations to promote the adoption of solar energy systems by resi-
dents, businesses and utility companies in Qatar and identify the in-
vestments necessary to maintain the reliability and stability of the
electricity system.

The ensuing decision-making methodology can be applied not only
by Solar PV panel purchasers but also by stakeholders in other industries
to logically and straightforwardly model and analyze the acceptance
decision-process of the consumers based on their individual preferences,
behavioral rules, and interaction within a social network, with specific
reference to a consumer utility function.

The system is based on a modular approach that can be used to
characterize residential solar Photovoltaic (PV) adoption in other GCC
countries and worldwide through the reconfiguration of model param-
eters and model input data. The ensuing platform provides a computer
implementation of the techno-economic analysis framework that
together with the insights developed by the green energy roadmap and
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regulatory framework provides an evaluation of alternative green en-
ergy strategies. Future work will be devoted to the improvement of
MCDA through the development of a hybrid method that combines the
best aspects of each of the MCDA methods reviewed in this study.
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