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ABSTRACT: Understanding the pathogenicity of missense mutation MMPatho

(MM) is essential for shed light on genetic diseases, gene functions, and 10-101595975: G/T

individual variations. In this study, we propose a novel computational | FmembIVEP

approach, called MMPatho, for enhancing missense mutation pathogenic Chrom _ {0\
prediction. First, we established a large-scale nonredundant MM benchmark e \
data set based on the entire Ensembl database, complemented by a focused
blind test set specifically for pathogenic GOF/LOF MM. Based on this data
set, for each mutation, we utilized Ensembl VEP v104 and dbNSFP v4.1a to &) ¥ N\
extract variant-level, amino acid-level, individuals’ outputs, and genome-level Rt =P @ ‘
features. Additionally, protein sequences were generated using ENSP Interpr ctabld
identifiers with the Ensembl API, and then encoded. The mutant sites’ " v o Model
ESM-1b and ProtTrans-TS embeddings were subsequently extracted. Then, Al
our model group (MMPatho) was developed by leveraging upon these

efforts, which comprised ConsMM and EvoIndMM. To be specificc ConsMM employs individuals’ outputs and XGBoost with
SHAP explanation analysis, while EvoIndMM investigates the potential enhancement of predictive capability by incorporating
evolutionary information from ESM-1b and ProtT5-XL-US50, large protein language embeddings. Through rigorous comparative
experiments, both ConsMM and EvoIndMM were capable of achieving remarkable AUROC (0.9836 and 0.9854) and AUPR
(0.9852 and 0.9902) values on the blind test set devoid of overlapping variations and proteins from the training data, thus
highlighting the superiority of our computational approach in the prediction of MM pathogenicity. Our Web server, available at
http://csbio.njust.edu.cn/bioinf/mmpatho/, allows researchers to predict the pathogenicity (alongside the reliability index score) of
MMs using the ConsMM and EvoIndMM models and provides extensive annotations for user input. Additionally, the newly
constructed benchmark data set and blind test set can be accessed via the data page of our web server.

)

1. INTRODUCTION technologies (e.g., Transformer) have emerged in variation
pathogenicity prediction, autonomously learning complex

The investigation of genetic variations, including MM, insertion,
patterns and features from extensive genomic and proteomic

deletion, and other genetic alteration, profoundly influences an

individual’s physiology, susceptibility to diseases, and response data sets."" Consensus methods integrate individual predictions
to medications.”” Specially, studying these variations offers to improve accuracy and reliability, addressing biases and
insights into genetic diversity and its associations with disease providing comprehensive pathogenicity assessments. ">
onset, progression, and treatment response.” > This compre- Benchmark data (e.g, ClinVar,"* dbSNP'’) have been
hension of genetic factors facilitates the identification of specific established for performance comparisons of prediction

alterations that contribute to disease development and enables
the advancement of targeted therapies and personalized
medicine approaches.’®

MMs are common genetic variations associated with human
diseases.” Till now, various computational methods have been
developed to predict MM pathogenicity.® Traditional machine

methods.” More specifically, deep learning excels at capturing
complex relationships in data, but requires larger training sets
and computational resources.” Consensus methods enhance

reliability by integrating multiple predictions,”'” while tradi-

learning techniques (e.g, SVM and RF) have laid foundations Received: June 22, 2023
for advanced methodologies’ (like SIFT,'® PolyPhen,” Revised:  October 21, 2023
PROVEAN,® CADD"). These methodologies utilize sophisti- Accepted:  October 23, 2023

cated feature extraction techniques from diverse data sources Published: November 10, 2023

(e.g., sequence, structure, and evolution) to differentiate

between pathogenic and benign variations. Deep learning
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Figure 1. Workflow of benchmark data set and blind test set construction. (A) Variations in the Ensembl Database, (B) Selecting, (C) Filtering, and
(D) Mapping: the procedures for benchmark data forming. (E) GOF/LOF Variations and (F) gnomAD Database (v2.1.1): pathogenic GOF/LOF

and benign variants sources.

tional methods offers interpretable models for biological
insights.’

ESM'® and ProtTrans'” are prominent models in protein
sequence analysis and interpretation, trained on extensive
protein sequence databases. ESM models (e.g, ESM-1b'°)
capture evolutionary information using self-attention mecha-
nisms, accounting for long-range dependencies in protein
sequences. ProtTrans models (e.g, ProtT5-XL-U50"") leverage
NLP transformers to capture relationships between amino acids
(AA) and structural, functional, and evolutionary characteristics
of proteins.

Despite considerable efforts, there are several critical issues
that need to be addressed. First, it is crucial to establish a
comprehensive and nonredundant data set on a large-scale,
which incorporates known effects. In-depth discussions
regarding data quality, integration methods, and potential biases
are necessary. Second, it is essential to develop computational
models and perform analyses on feature importance, inter-
actions, and contributions. Lastly, it holds significant importance
to compare the classification abilities of individual outputs and
embeddings derived from large-scale protein language models.
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In this work, we focused on the following key aspects. (1)
Construction of benchmark data sets: We constructed one
nonredundant MM benchmark data set and one blind test set
(focusing especially on pathogenic GOF/LOF MM). (2)
Feature generation: By utilizing the Ensembl VEP v104 and its
plugins (e.g, dbNSFP v4.1a'®'?), we generated variant-level,
AA-level, individuals’ outputs, and genome-level features. (3)
Protein sequence retrieval: By leveraging ENSP identifiers and
the Ensembl API, we retrieved encoded protein sequences
corresponding to query variations. (4) Embedding generation:
We used bio_embeddings™ to generate ESM-1b'® and ProtT5-
XL-U50'"" embeddings for each mutant site, which captured
essential characteristics and features of mutant AAs. (5) Model
development: We developed an interpretable model group,
MMPatho, which consisted of ConsMM and EvolndMM.
ConsMM utilized individuals’ outputs and employed XGBoost
with SHAP analyses. On the other hand, EvolndMM
incorporated evolutionary information from ESM-1b and
ProtTS5-XL-USO0 to enhance the predictive capability.

https://doi.org/10.1021/acs.jcim.3c00950
J. Chem. Inf. Model. 2023, 63, 7239-7257
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Table 1. Statistical Summary of Missense Mutations and Proteins in the Benchmark Data Set and Blind Test Set

number of variant

number of protein

data type benign/likely benign pathogenic/likely pathogenic benign/likely benign pathogenic/likely pathogenic
Benchmark data set 34,602 38,476 2439 3115
blind test set 2919 3039 675 703

2. MATERIALS AND METHODS

2.1. Construction of the Benchmark Data Set and
Blind Test Set. 2.1.1. Benchmark Data Set Construction. We
downloaded the entire Ensembl database (6.18GB) from
https://web.expasy.org/swissvar.html, which includes variants
from various sources (e.g., ClinVar,14 gnomAD,ZI UniProt,22
ExAC,” COSMIC™) (Figure 1A). To select related MMs, we
applied two filters: variant type (setting as MM or missense) and
clinical significance (setting as benign/likely benign or
pathogenic/likely pathogenic), getting 622,270 variants (Figure
1B). We then applied five additional filters to remove unwanted
mutations: (1) those with conflicting interpretations of
pathogenicity, (2) uncertain significance, (3) repetitive and
inconsistent MMs from different sources, (4) variants classified
as benign and pathogenic/likely pathogenic, and (S) variants
being likely benign and pathogenic/likely pathogenic (obtaining
91,072 variants, Figure 1C). Using the Ensembl variant effect
predictor, we mapped the mutations to GRCh38, excluding
inconsistent chromosome/position and unmatched mutations,
getting 77,700 variants (Figure 1D). Following the processing
illustrated in Figure 1, the benchmark data set consists of 37,317
benign and 40,383 pathogenic in 2,595 and 3,294 proteins,
respectively. However, a subset of variants lacked annotations
when processed with Ensembl VEP. Consequently, we excluded
these variants/proteins. Eventually, we obtained a large-scale
nonredundant MM benchmark data set (Table 1).

2.1.2. Blind Test Set Construction. We downloaded
pathogenic GOF/LOF variants” (HGMD_based), which
contains 9,619 variants. From this set, we selected single
nucleotide variants occurring in protein coding regions,
excluded variants overlapped with in the benchmark data set
(getting 3039 variants, Figure 1E). Subsequently, for the gene
set within the GOF/LOF data, we searched each gene in
gnomAD and applied the following filters to get benign variants:
(1) remove variants stored in ClinVar; (2) retained MMs with
an allele frequency >0.1%; (3) kept MMs with clinical
significance being as benign or likely benign; (4) remove
MMs overlapped with the benchmark data set. This process
yielded 2919 variants (Figure 1F). Finally, we merged the
pathogenic and benign variants, removing redundant ones to
construct a blind test set (presented in Table 1).

2.2, Feature Extraction. 2.2.1. Ensembl VEP Outputs and
Individual Predictions/Annotations. On a CentOS v6.10
computer with 32 CPU kernels, we installed Ensembl VEP
v140°° along with the formatted and well-indexed human
GRCh37 assembly data. Additionally, we incorporated various
plugins (e.g., dbNSFP v4.1a,"%"” Blosumé62,”” CADD,*
ExAC™®) (please refer to Texts S1 and S2 detailed information
about database versions and plugins). These tools offer
comprehensive features for each variant, categorizing into four
groups: variant-level, AA-level, individuals’ outputs, and
genome-level features.

(1) Variant-level features. Location: variant’s coordinates for
annotation extraction. Allele: variant allele used for consequence
calculation. Consequence: type of consequence associated with
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the variant. Position: ¢cDNA_position, CDS_position, and
Protein_position indicate relative base pair positions in cDNA
sequence, coding sequence, and protein AAs, respectively.
IMPACT: subjective impact classification of consequence type
(e.g, moderate, modifier, low). CANONICAL: indicates
whether the transcript is canonical for the gene. ENSP: Protein
identifier. GENE_PHENO: indicates whether the gene is
associated with a phenotype, disease, or trait. CLIN_ SIG:
ClinVar clinical significance of the dbSNP variant.

(2) AA-level features. Wildtype and mutant AAs were
obtained from Ensembl VEP v104.”° Additional features
(including molecular weight, hydrophobicity, isoelectric point,
residue volume) were extracted for wild-type and mutant AAs.
Furthermore, the differences between two type AAs were also
calculated, namely, damino_frq diff, V_residue diff, Hydro-
phobicity diff, Isoelectric point_diff, etc.

(3) Individuals’ outputs. Ensembl VEP v104>° and dbNSFP
v4.1a'¥"? offer an extensive range of MM effect predictions and
annotations using multiple methods. This encompasses thirty-
one prediction algorithms, such as (SIFT,10 PolyphenZ—HVAR,2
FATHMM,”® CADD,” DANN,” Eigen,”® REVEL,”" Prima-
teAl,>? BayesDel,33 ClinPred34). Additionally, nine conserva-
tion scores (e.g., bStatistic, phyloP30way mammal, GERP+
+7°) and other functional annotations are also provided.

(4) Genome-level features. We acquired genome-level
features from multiple databases, including gnomAD_exomes,
ESP6500, and ExAC. For example, 1000Gp3_AFR_AF
represents the alternative allele frequency in 1000Gp3 African
descendant samples. ESP6500 EA AF denotes the alternative
allele frequency in European American samples from ESP6500
(Please refer to Table SI for more information about the
extracted features).

2.2.2. Amino acid embeddings. For each MM, we
calculated AA-level embedding features from ESM-1b'® and
ProtTransTS5-XL-US0."” These features originated from protein
sequences acquired by using the ENSP ID and API functions.
During protein sequence retrieval, some variants returned empty
information. To maintain the embedding quality, we filtered out
such variants with empty returns.

(1) ESM-1b embeddings. We utilized the bio_embeddings*’
to obtain ESM-1b'® embeddings for each AA at the mutant site.
These 1280-dimensional vectors effectively encode crucial AA
properties, including physicochemical properties, and evolu-
tionary conservations.

(2) ProtTransTS-XL-USO embeddings. By employinzg the
ProtTransTSXLUS'” embedder from bio_embeddings,” we
leveraged the potential of the 1024-dimensional vector for each
mutant AA. This approach facilitated the extraction of valuable
insights from protein sequences, capturing AA’s properties such

as hydrophobicity, charge, and size.
2.2.3. DISTRIBUTION OF FEATURES

We executed an elaborate investigation into the disparities in
distribution of features utilized for classifying genome variations
as either pathogenic or benign, with a particular emphasis on the
annotated “benchmark data set” missense mutations (listed in

https://doi.org/10.1021/acs.jcim.3c00950
J. Chem. Inf. Model. 2023, 63, 7239-7257
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Figure 2. Analyses of the extracted features with p-values using the KDE function. (A) gnomAD_exomes_AS] AF (p-value = 1.622817e-274), (B)

Isoelectric_point_diff (p-value = 2.627391e-21), (C) Molecular weight diff (p-value = 0.00074061), (D) Molecular weight wt (p-value

1.560005e-11), (E) Hydrophobicity diff (p-value = 1.587287e-48), (F) codeToVal diff (p-value = 0.00102270), (G) V_residue_wt (p-value =
1.286094e-16), (H) V_residue diff (p-value = 4.680308e-12), (I) CADD_raw_rankscore_ghl9 (p-value = 0.0), (J) GERP++_NR (p-value =
1.118603e-46), (K) esm1b_90 (p-value = 2.531859e-235), and (L) prottS_570 (p-value = 4.379378e-220). Note: “Label 0” and “Label 1” represent

the benign and pathogenic variation class, respectively.

Table 1). We applied Kernel Density Estimation (KDE)* to
portray efliciently the intricate dynamism of these distributions
in a continuous, and unbiased manner.

We opted to showcase a subset of 12 distinct features out of
the total 884 features extracted in Sections 2.2.1-2.2.2. The
features selected for presentation exhibited remarkable differ-
ences in their distributions. For instance, as depicted in Figure
2A, the gnomAD_exomes AS]_ AF feature demonstrated a
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highly significant distribution contrast (p-value: 1.622517e-
274). Similarly, Figure 2E highlighted the distribution disparity
of the Hydrophobicity diff feature (p-value: 1.587287e-48),
while Figure 2K revealed the distinct distribution pattern of
esmlb_90 (p-value: 2.531859e-235). Figure 2L illustrated the
pronounced distribution discrepancy of prottS_S570 (p-value:
4.379378e-220). These exemplary features were chosen to

https://doi.org/10.1021/acs.jcim.3c00950
J. Chem. Inf. Model. 2023, 63, 7239-7257
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Figure 3. Workflow of the ConsMM model. (A) Feature Extraction, (B) Pathogenic Mutation Identification using LightGBM, XGBoost, and
CatBoost, (C) Utilizing the Optimal Model for Prediction and Model Explanation, (D) Analysis of Feature Dependence, and (E) Analysis of Feature

Importance.

exemplify the analytical power of feature distributions in
discerning the classification potential of the extracted attributes.

In conclusion, our comprehensive analysis effectively
demonstrates how feature distributions, aided by KDE and
selective visualization, aid in distinguishing different classes of
genome variations, thereby enhancing the understanding of
genome variation impacts.

3. WORKFLOW OF CONSMM AND EVOINDMM

In this work, we developed an integrated model group of models
termed MMPatho, consisting of two distinct models: ConsMM
(Figure 3) and EvoIndMM (Figure 4). Importantly, ConsMM
solely employs individual outputs as inputs, whereas EvolIndMM
integrates Ensembl VEP outputs along with embeddings
generated from ESM-1b"¢ and ProtTS-XL-U50."”

Within ConsMM, we e exclusively implemented 34
individuals’ predictions or conservation scores procured from
Ensembl VEP and dbNSFP,'®' which include SIFT,'
BayesDel,33 CADD,® ClinPred,** DANN,*’ Eigen,30
FATHMM?*® (fathmm-MKL,*” fathmm-XF**), FitCons®’
(GM12878, H1_hESC, HUVEC), GenoCanyon,”” LRT,"
MPC,42 MutPredZ,43 MutationTaster,44 MutationAssessor,45

Polyphen2 HDIV and Polyphen2 HVAR,” REVEL,”’
SIFT4G,* BayesDeI,33 PrimateAL*” Also include nine con-
servation scores, e.g., bStatistic, phyloP100way_vertebrate,
phastCons17way_primate,”” GERP++,”* SiPhy,** and others.

Conversely, for EvoIndMM, we broadened the feature set
beyond mere predictions/annotations, integrating additional
variant-level, amino acid-level, and genome-level features
sourced from dbSNP,'* ClinVar,'* UniProt,>> ExAC,*’
gnomAD,”" 1000Gp3,*”” ESP*® and others. Additionally, we
also generated variant characteristic from ESM-1b,'® and
ProtT5-XL-US0."” Please refer to the Readme page of our
Web server for viewing feature contributions in the ConsMM or
EvoIndMM model.

3.1. ConsMM. The ConsMM workflow (Figure 3)
comprises three key components: feature extraction (Figure
3A), prediction (Figure 3B), feature importance analysis, and
model explanation (Figure 3C—3E). In Figure 3A, Ensembl VEP
v104 and dbNSFP v4.1a'*"” were used to obtain predictions and
annotations for multiple individuals(e.g., SIFT'?). In Figure 3B,
the extracted features were input into LightGBM, XGBoost, and
CatBoost to derive the optimal model. Finally, in Figure 3C—E,
the feature importance and interaction dependencies were
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Figure 4. Architecture of the EvolndMM model. (A) Protein Sequence Generation and Inputs Creation for ProtTS-XL-US0 and ESM-1b embedders,
embedding Generation from ProtT5-XL-USO and ESM-1b, (B) Feature Extraction via Ensembl VEP and its Plugins, (C) Feature Selection through

PCA, and (D) XGBoost Model Training.

analyzed using SHAP®® (Text S3 introduced SHAP and
XGBoost), aiming to provide a comprehensive explanation for
the prediction model (Text S4 listed the evaluation indices).
3.2. EvolndMM. Figure 4 depicts the stepwise construction
process of EvoIndMM, involving the following key steps: (1)
Retrieval of Encoded Protein Sequences: Protein sequences in
FASTA format are retrieved for ProtT5-XL-U50'" and ESM-
1b'¢ embedders using the Ensembl API and ENSP identifiers.
Filter options are applied to exclude specific mutations (Figure
4A). (2) Feature Extraction through the Ensembl VEP: Ensembl
VEP v104 is employed to extract feature vectors, including
variant-level, AA-level, individual outputs, and genome-level
features. Additionally, for each mutant site AA, ESM-1b and
ProtTS5-XL-US0 embedders generate 1120 and 1280-dimen-
sional feature vectors, respectively (Figure 4A, 4B). (3)

7244

Benchmark Data Splitting and Model Training: The benchmark
data is partitioned into training data and test set. PCA is then
utilized to select features from VEP, ESM-1b, and ProtT5-XL-
US0, using a threshold of >0.1 or 0.0S. Subsequently, the
XGBoost model is trained using the training data (Figure 4C-
4D). By following this systematic approach, EvolndMM ensures
the accurate prediction of MM pathogenicity by integrating
diverse features and embedding techniques.

3.3. Avoiding Protein Overlap for Model Fairness. The
study by Grimm et al. highlights a potential flaw in the modeling
process: the inclusion of different variations of a single protein in
both the training and testing sets may lead to artificially inflated
model performance during testing.”' Such inflation can occur if
the model merely mimics specific variation patterns from the
training data without genuinely learning to apply these patterns

https://doi.org/10.1021/acs.jcim.3c00950
J. Chem. Inf. Model. 2023, 63, 7239-7257
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Table 2. Confusion Matrix and Three Types of Errors of CatBoost, XGBoost, and LightGBM on the Test Set of Benchmark Data

Set
model name TP TN FP FN ER FPR FNR
CatBoost 7339 (51.35%) 5516 (38.60%) 839 (5.87%) 598 (4.18%) 0.0587 0.1320 0.0753
XGBoost 7242 (50.67%) 5675 (39.71%) 680 (4.76%) 695 (4.86%) 0.0476 0.1070 0.0876
LightGBM 7302 (51.09%) 5513 (38.57%) 842 (5.89%) 635 (4.44%) 0.0589 0.1325 0.0800
A. Receiver Operating Characteristic Curve B. Precision-Recall Curve
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Figure 5. Comparison of CatBoost, XGBoost, and LightGBM on the test set of the benchmark data set. (A) ROC curves of CatBoost, XGBoost, and
LightGBM. (B) PR curves of CatBoost, XGBoost, and LightGBM. (C) Pre, NPV, Recall, Spe, ACC, MCC, and F, values of CatBoost, XGBoost, and

LightGBM.

to novel variations. To ensure validity and prevent data leakage,
it is critical to maintain separate training and testing sets that do
not concurrently include different variations of the same protein.

To this end, we employed protein IDs as sorting criteria when
distributing distinct protein variations between the training
(80%) and testing (20%) sets of the benchmark data set
(training: 58786 and testing: 14292 for ConsMM), utilizing
“train_test_split” from sklearn.”” This allocation strategy
ensures that proteins and their variations are exclusively assigned
to either the training or the testing set, thereby boosting the
reliability of the model’s performance assessment.

4. RESULTS AND DISCUSSIONS

4.1. Performance Comparison of ConsMM and
EvolndMM. 4.1.1. Performance of ConsMM on the Test Set
of Benchmark Data Set. To optimize parameter settings and
experimental design, the following steps were taken. (1) Grid
Search Cross-Validation and Model Selection: in Grid-
SearchCV, we conducted S5-fold cross-validation with 3
repetitions to thoroughly explore a predefined grid of hyper-
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parameters and determine the best-performing model. (2)
Parameter Settings: For XGBoost, the chosen settings were a
“learning rate” of 0.01, a binary logistic regression objective, a
subsample ratio of 0.5, the “base score” as the mean of
“y_train”, the “eval_metric” as “log_loss”, “max_depth” of 4,
and “n_estimators” of 300. In contrast, CatBoost and Light GBM
underwent extensive grid searches for iterations, learning rates,
and tree depths. The best parameter configurations were
identified as follows: CatBoost (“iterations”=400, “learnin-
g_rate”=0.1, “depth”=4) and LightGBM (“iterations”=400,
“learning_rate’=0.01, “depth”=4). The CatBoost, XGBoost,
and LightGBM models were meticulously fine-tuned and
evaluated, and the comparison results are documented in
Table 2 and Figure S (further details for Light GBM, XGBoost,
and CatBoost can be found in Texts S5—S7).

When comparing the performance of CatBoost, XGBoost,
and LightGBM, we evaluated multiple metrics (Table 2 and
Figure S) to assess their effectiveness; analyses are given below:
(1) XGBoost outperformed CatBoost and LightGBM with
MCC of 0.8052, compared to 0.7961 and 0.7904, respectively.

https://doi.org/10.1021/acs.jcim.3c00950
J. Chem. Inf. Model. 2023, 63, 7239-7257
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Figure 6. SHAP summary plot and feature interactions for ConsMM. (A) SHAP summary plot, (B) ClinPred rankscore with
phyloP100way_vertebrate rankscore, (C) BayesDel addAF rankscore with ClinPred score, (D) MutPred rankscore with ClinPred rankscore,
(E) Eigen phred coding with BayesDel addAF_score, (F) GERP++_RS with ClinPred score, (G) Polyphen2 HVAR rankscore with
BayesDel addAF rankscore, (H) bStatistic_converted_rankscore with GERP++_NR, and (I) phastCons100way_vertebrate with CADD_phred.

MCC can capture the overall model performance, by
considering TP, TN, FP, and FN. (2) XGBoost achieved an
ACC score of 0.9038, surpassing CatBoost (0.8995) and
LightGBM (0.8967), indicating better pathogenic variant
classification ability. (3) XGBoost demonstrated a Spe value
of 0.8930, outperforming CatBoost (0.8680) and LightGBM
(0.8675), indicating better identification of negative cases. (4)
XGBoost achieved a Pre score of 0.9142, higher than CatBoost
(0.8974) and LightGBM (0.8966), indicating a higher
proportion of correctly predicted positive cases. (5) XGBoost
obtained the highest F; score of 0.9133, which combines
precision and recall to represent the balance between them.
Considering the comparisons, XGBoost consistently demon-
strated a competitive performance across multiple metrics.
Therefore, we selected XGBoost as the preferred model for
subsequent comparisons and referred to the entire model as
ConsMM for further analyses.

4.1.2. Assessing ConsMM Efficacy: Protein ID-Based
Splitting Vs Nonprotein ID-Based splitting. To ensure a robust
evaluation of ConsMM, we conducted supplementary testing
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using data that did not split based on protein ID. Detailed results
from these tests are provided in Text S8, Figure S1, and Table
S2.

Comparative analysis between findings detailed in Section
4.1.1 and those outlined in Text S8, Figure S1, and Table S2
reveals subtly lower metrics in the former. For instance, with
reference to the XGBoost classifier, its AUROC value in Figure §
stands at 0.9650 (Protein ID-Based Separation), which is
marginally below that depicted in Figure S1 (0.9764, Non-
Protein ID-Based Separation), marking a decrease of approx-
imately 0.0114. A similar trend is observed in XGBoost’s AUPR,
where Figure 5 displays a score of 0.971S, slightly under the
corresponding value in Figure S1 (0.9802), indicating a decline
of roughly 0.0093. This suggests that employing a protein ID for
data segregation provides a more conservative appraisal of
model performance. The ACC and MCC values of XGBoost in
Table 2 (0.9038 and 0.8052 respectively) are fractionally under
those given in Table S2 (0.9208 and 0.8416 respectively),
demonstrating marginal decreases of 0.017 and 0.0364, implying
areduced capacity of the models to handle imbalanced data and

https://doi.org/10.1021/acs.jcim.3c00950
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Table 3. Performance Comparison of EvoIndMM with Different Features on the Test Set of Benchmark Data Set”

features MCC ACC recall/sen Spe
VEP* 0.8348 0.9175 0.9105 0.9241
ESM-1b* 0.5801 0.7901 0.7633 0.8157
ProtT5-XL-Us0* 0.6137 0.8068 0.7772 0.8351
combined” 0.8390 0.9195 0.9087 0.9299

Pre NPV F, ER FPR ENR
0.9200 0.9150 0.9152 0.0387 0.0759 0.0895
0.7989 0.7823 0.7807 0.0941 0.1843 0.2367
0.8188 0.7963 0.7975 0.0842 0.1649 0.2228
0.9255 0.9140 0.9170 0.0358 0.0701 0.0913

“Note: VEP¥, ESM-1b*, ProtT5-XL-U50* mean EvoIndMM only with VEP outputs, or ESM-1b embeddings, or ProtTS-XL-USO embeddings.
Combined” represents the concatenation of VEP outputs, ESM-1b and ProtT3-XL-US0 embeddings.
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Figure 7. ROC and PR curves of EvoIndMM on the test set of the benchmark data set. (A) Confusion matrix of EvoIndMM with VEP outputs, ESM-
1b, ProtTS5-XL-US0, or combined feature set, (B) ROC curves, and (C) PR curves.

produce balanced predictions when protein ID separation is
used.

In summary, the results from the Supporting Information
show superior AUROC, AUPR, ACC, and MCC scores,
suggesting improved overall model performance. Nonetheless,
the experiments delineated in Section 4.1.1 utilizing protein ID
for data splitting provide a more conservative and reliable
evaluation, taking into account potential data leakage and model
overfitting. The selection between these two methodologies
should be guided by the specific demands of the task at hand
with a preference for Section 4.1.1 when a dependable
estimation of model generalizability is required.

4.1.3. Feature Importance in ConsMM. To gain compre-
hensive insight into the key features of ConsMM, we plotted the
top 35 features with the highest SHAP values (Figure 6A). The
findings can be summarized as follows: (1) The ClinPred rank-
score demonstrates that a higher value significantly contributes
ConsMM to predicting pathogenic variants, whereas a lower
value has a greater impact on predicting benign variants. Similar
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contribution patterns can be observed on BayesDel addAF_-
score. (2) Furthermore, the prevalence of red color in features
(e.g., BayesDel addAF rcore, BayesDel addAF_rankscore,
MutPred_rankscore, MPC_rankscore, REVEL rankscore,
ClinPred_score, and CADD_raw_rankscore) indicates feature
higher values strong correlation with classes and their crucial
predictive capabilities in accurately identifying pathogenic
variants. (3) Additionally, the lower values of features (e.g.,
FATHMM converted rankscore, Reliability index, SIFT -
converted rankscore, PrimateAl rankscore, GERP++_ NR)
highlight their significant impact on predicting pathogenic
variants. (SHAP values of all features for ConsMM and feature
analyses were documented in Table S3 and Text S9).

The feature interactions depicted in Figure 6B—6I offer
valuable insights into the joint effects of various features on the
output of ConsMM'’s output. Detailed analyses are as follows:

(1) Figure 6B, 6C display analogous patterns. Feature
interaction plots exhibit regions of red and blue overlap,

https://doi.org/10.1021/acs.jcim.3c00950
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Figure 8. SHAP summary plot and feature interactions for EvoIndMM. (A) SHAP summary plot, (B) ClinPred_score interacting with
phyloP100way_vertebrate rankscore, (C) Eigen PC_phred coding with esm1b_909, (D) esm1b_781 with ClinPred_Score, (E) MPC_rankscore
with esm1b_909, (F) MAX_AF with BayesDel addAF rankscore, (G) MutPred_rankscore with ClinPred rankscore, (H) phyloP100way_verte-

brate with ClinPred_Score, and (I) prott5S 32 with prottS_410.

signifying that when both features possess higher values,
they synergistically amplify each other’s impact on
ConsMM’s output. In essence, evaluating these two
features collectively augments ConsMM’s predictive
capacity and exerts a positive influence on its predictions.

(2) Figure 6E,6G, and I reveal similar patterns. The aggregate
effect of these feature interactions on predictions deviates
from their individual impacts, alluding to the presence of
intricate interactions between features. When one feature
exhibits high while another displays low values, they
mutually reinforce each other, culminating in enhanced
predictive prowess for pathogenic variants.

(3) Figure 6D,6F, and 6H exhibit similar influence. The
observed concave shape indicates a complex interplay
between feature pairs. Within a specific range, the feature
interaction significantly influences prediction outcomes
and combined effect becomes more potent, resulting in a
striking aggregation of red areas. Figure S2 displays the
interactions of other 12 features for ConsMM.
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4.2. Performance of EvolndMM with VEP Outputs,
ESM-1b and ProtT5-XL-U50 Embeddings. 4.2.1. Assessing
the Contribution of Different Feature Sets. To assess the
impact of different feature sets on EvoIndMM predictions,
ablation experiments were conducted. Experiments results
(Table 3 and Figure 7) provide insights into feature
contributions. Figure 7A highlights that EvoIndMM with the
“Combined” feature set achieves the highest TN (55185, 47.47%)
and lowest FP (416, 3.58%), indicating superior classification
performance compared to EvoIndMM with other feature sets.
Additionally, the “Combined” feature set exhibits the lowest ER
(0.0358) among all feature sets. EvoIndMM with “VEP”
demonstrates the lowest FPR (0.0701), revealing its proficiency
in accurately identifying benign variants. Conversely,
EvoIndMM with the “VEP” feature set exhibits the highest
FNR (0.0895), indicating challenges in correctly identifying
pathogenic variants.

Analyzing the results presented in Table 3 and Figure 7, it is
evident that EvoIndMM with the “Combined” feature set
achieves outstanding performance, as reflected by its highest
AUROC (0.9736) and AUPR (0.9738) values. Additionally,
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EvoIndMM demonstrates robust agreement between predicted
and true classes with the highest MCC (0.8390) and ACC
(0.9195) values, indicating accurate classification. Besides,
EvoIndMM with “VEP” exhibits superior Recall/Sen (0.9105),
showcasing its ability to identify positive variants effectively. In
contrast, EvoIndMM with “ESM-1b” shows a lower Spe
(0.8157), suggesting a higher rate of false positives. Notably,
EvoIndMM with “Combined” achieves the highest Pre score
(0.9255) and F, score (0.9170), indicating a favorable balance
between precision and recall.

In summary, the “Combined” feature set consistently
outperforms other feature sets across various metrics. The
limited effectiveness of ESM-1b and ProtTS-XL-U50 embed-
dings in predicting MM pathogenicity can be attributed to their
insufficient individual pathogenic predictions and annotations,
limited coverage of mutation features, and inadequate
representation of functional impacts. In contrast, the “Com-
bined” feature set outperforms each single set, indicating the
combination provides complementary information that can
enhance predictive performance. The inclusion of the “VEP”
feature set in “Combined”, with its extensive individual-level
predictions and annotations, likely compensates for any
limitations in ESM-1b and ProtTS-XL-USO embeddings,
resulting in improved accuracy in predicting MM pathogenicity.

4.2.2. Assessing EvolndMM Efficacy: Protein ID-Based
Splitting vs Nonprotein ID-Based Splitting. To robustly
evaluate the differential attributes of EvoIndMM, we performed
additional analyses on data that did not split based on protein
ID. Detailed results from these tests are encapsulated in Text
S10, Table S4, and Figure S3. The “Combined®” feature set of
EvoIndMM is employed for a detailed comparative assessment
of performance metrics.

With respect to the MCC Value, a subtle decrease of
approximately 0.0828 is observed from Table S4 (0.8390) to
Table 3 (0.9218), indicating a modest reduction in proficiency
of sample classification. In terms of ACC, a minor decrement of
about 0.0416 is noted upon comparison of Table S4 with Table
3, signaling a slight decline in the model’s ability to classify
samples correctly. Considering the AUROC Value, a marginal
fall of roughly 0.0173 is seen transitioning from Figures 7 to S3,
suggesting a minimal decrease in the model’s competence in
distinguishing positive from negative samples. Regarding the
AUPR value, Figure S3 demonstrates a decrease of nearly 0.0185
relative to Figure 7, denotes a slight deterioration in the
equilibrium between precision and recall. In summation,
notwithstanding the apparent reductions in performance
metrics in Table 3 for EvoIndMM with the “Combined®”
feature set, these decreases remain relatively trivial. This
indicates that the model preserves its robust performance even
when adopting protein ID for data partitioning, thereby
emphasizing its dependability in real-world scenarios.

In light of the experimental data associated with the data
splitting strategy in Section 3.3, along with the comparative
evaluations of sections 4.2.2 and 4.1.2, it can be deduced that the
slight performance decline noted in the predictive model,
attributable to the strategy detailed in Section 3.3, is an
acceptable trade-off. This approach ensures more reliable
performance appraisals and fosters superior generalizability,
thereby endorsing the corresponding marginal decreases in
performance.

4.2.3. Feature Importance in EvolndMM. Figure 8A presents
the top 35 features for EvoIndMM, ranked by their SHAP
values. These features demonstrate unique impact patterns,
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summarized as follows: (1) Features (e.g., ClinPred_rankscore,
BayesDel addAF rankscore, REVEL rankscore, bStatistic -
converted rankscore, VEST4 rankscore, MutPred rankscore,
MVP_rankscore, CADD_raw_rankscore) enhance significant
the EvoIndMM’s ability to predict pathogenic variants. (2)
Conversely, features like MAX_AF, Reliability_index, gnomA-
D_exomes AF, FATHMM _ converted rankscore, and Molec-
ular_welght_dlff have a notable impact on predicting patho-
genic variants when their values are lower. These observed
impact patterns validate the relevance and crucial predictive
capabilities of these features in EvolndMM (SHAP values of the
top 160 features and feature analyses were documented in Table
S5 and Text S11).

Figure 8B—8I depicts eight feature interactions that effect
EvoIndMM, with detailed analyses provided below: (1) In
Figure 8B, within the ClinPred_rankscore range of [0, 0.80], the
ClinPred_rankscore and phyloP100way vertebrate interaction
exerts minimal influence on EvoIndMM’s output. However,
when ClinPred_rankscore values fall within [0.90, 1.0], feature
interaction significantly impacts the model output. Analogous
interaction patterns are discernible in Figure 8E,G.

Figure 8C illustrates the interaction between Eigen PC_-
phred_coding and esmlb_909. Within the (0, 35) of
Eigen PC_phred coding, MAX_AF feature values mostly
concentrate between 2 and 4, signifying that Eigen PC_-
phred_coding and esmlb_909 interaction wield greater
influence on EvoIndMM’s output in such range. Similar
interaction patterns can be observed in Figure 8D—H.

Figure 8F illustrates the interaction of MAX AF and
BayesDel addAF_rankscore. When MAX_AF is in the range
[0, 1], BayesDel_addAF_rankscore values predominantly
concentrate in the range (—1.0, —0.4). Within such a range,
the negative SHAP values of MAX AF indicate a significant
influence of this interaction on EnoIndMM’s prediction of
benign variants.

Figure 81 elucidates the interaction between prottS_32 and
prottS_410. When prottS_32 values lie within [—0.4, 0.15] and
prottS 410 within [-0.2, 0.4], the positive SHAP values for
prottS_32 signify their substantial contribution to EvoIndMM’s
prediction of pathogenic variants. Conversely, as prottS 32
shifts from 0.15 to 0.6 and prottS_410 moves from —0.2 to —0.6,
the majority of data points exhibit a blue hue, emphasizing their
influence on EvoIndMM to predict benign variants. Figure S4
showcases the interactions of 12 additional features for the
EvoIndMM model.

4.3. Assessing the Performance of ConsMM,
EvoiIndMM with Four Individual and Seven Meta-
Predictors On Blind Test Set. In this section, we conducted
a comprehensive comparison of ConsMM and EvoIndMM VVlth
four 1nd1v1dual and seven meta- Eredlctors, including VEST4,°
PROVEAN,’ LIST-S2,>* gMVP,”* MetaSVM,>> MetaLR,”> M-
CAP,” DEOGEN2, InMeRF,” VARITY,* MetaRNN,”
MVP.” Detailed information about these predictors can be
found in Table 4 (detailed descriptions), Table S6 (features
predictor used), and Text S12 (predictor description, score
range, and threshold setting).

Before embarking upon a formal comparison, we conducted
meticulous checks at two levels as follows. (1) Variation level:
We rigorously examined the variants in the blind test data set
and those in the model training data set, identifying no instances
of overlap; (2) Protein level: our analysis identified that 448
proteins, identified by ENSP_id, from the blind test data set
were also present in the training data set. Taking into
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Table 4. Detailed Descriptions of the Compared Predictors”

pub- prediction webserver or web site of
name integrated year technology predictors
VEST4 no 2013  random forest  http://karchinlab.org/
apps/appVest.html
PROVEAN no 2015 random forest http://provean.jcvi.org/
index.php
LIST-S2 no 2020  Bayes rule https://precomputed.list-
s2.msl.ubc.ca/
gMVP no 2022 graph atten- https://github.com/
tion neural ShenLab/gMVP/
network
MetaSVM yes 2014  support vector  https://doi.org/10.1093/
machine hmg/ddu733
MetaLR yes 2014  logistic regres-  https://doi.org/10.1093/
sion hmg/ddu733
M-CAP yes 2016  gradient http://bejerano.stanford.
boosting edu/MCAP/
tree
DEOGEN2 yes 2017  random forest  https://deogen2.
mutaframe.com/
InMeRF yes 2020  random forest  https://www.med.nagoya-
u.ac.jp/neurogenetics/
InMeRF/
VARITY yes 2021  gradient http://varity.varianteffect.
boosted org/
trees
MetaRNN yes 2022 recurrent neu-  http://www.liulab.
ral network science/metarnn.html
MVP yes 2022 deep residual https://github.com/
network ShenLab/missense
ConsMM yes 2023  consensus and  http://csbio.njust.edu.cn/
XGBoost bioinf/mmpatho/
EvolndMM yes 2023  consensus and  http://csbio.njust.edu.cn/
XGBoost bioinf/mmpatho/

“Note: EvoIndMM evaluated 4969 mutations (please refer to the
Text S13 for reasons), while others evaluated 5958 mutations.
MetaSVM uses MetaSVM_rankscore, MetaRNN uses Meta-
RNN_rankscore, gMVP uses gMVP_rankscore, VARITY uses
VARITY R rankscore, VEST4 uses VEST4 rankscore, DEOGEN2
uses DEOGEN2_rankscore, LIST S2 uses LIST S2 rankscore,
M_CAP uses M_CAP_rankscore, MVP uses MVP_rankscore,
MetaLR uses MetaLR_rankscore, PROVEAN uses PROVEAN_ con-
verted_rankscore.

consideration the presence of overlapping ENSP ids, we
partitioned our findings into two distinct categories to facilitate
a more meticulous comparison. These categories included
comparison results that only encompassed recurring protein
ENSP_ids (depicted in Figure 9 and discussed in Section 4.3.1),
and those devoid of recurring protein ENSP_ids (illustrated in
Figure 10 and delineated in Section 4.3.2). These findings are
also cataloged comprehensively in Tables 5 and S7.

4.3.1. Comparison Results of Repeated Proteins. We
pursued an in-depth analysis based on the comparative results
shown in Figure 9, partial information from Tables S and S7, as
follows:

(1) Integrated versus individual predictors: Among
individual predictors, VEST4 demonstrated superior
performance with an MCC of 0.7156, AUROC of
0.9414, and an AUPR of 0.9484. Meanwhile, among
integrated-predictors, MetaRNN stood out with an MCC
0f0.8885, an AUROC 0f 0.9936, and an AUPR of 0.9955.
Evidently, integrated-predictors (e.g, MetaRNN) that
utilize a combination of multiple predictive factors
outperform individual predictors. The MCC of
MetaRNN IS 0.1729 higher than that of VEST4,
indicating that integrated-predictors greatly exceed
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individual predictors in terms of correlation between
predictions and actual values.

(2) Top predictors based on existing methods: Based on
the evaluation metrics of MCC, AUROC, and AUPR, the
most distinguished predictor is MetaRNN (with MCC:
0.8885, AUROC: 0.9936, and AUPR: 0.9955). Following
closely, M-CAP demonstrates significant predictive
power with an MCC of 0.7983, an AUROC of 0.9529,
and an AUPR of 0.9407. InMeRF also delivers
commendable results, achieving an MCC of 0.7195, an
AUROC 0f 0.9349, and an AUPR of 0.9289. MetaRNN*’
utilizes 16 different scoring tools such as SIFT,"
Polyphen2 HDIV and Polyphen2 HVAR,” along with
eight conservation scores and allele frequency informa-
tion from 1000 Gp3,49 ExAC,>” and gnom.AD.21 It
employs complex recurrent neural networks for pre-
diction, demonstrating high integration and learning
capabilities. M-CAP'” incorporates nine deleteriousness
prediction scores and seven conservation scores, employ-
ing gradient boosting trees for prediction. This approach
can handle diverse data types and exhibits robustness
against noise, leading to improved predictive accuracy.
InMeRF"” employs Rankscores of 34 tools available in
dbNSFP v4.0a,'""” including SIFT,,'* SIFT4G,* Poly-
phen2 HDIV,” etc. By integration of the strengths of
these tools, enhanced prediction accuracy. Although these
predictors employ different methodologies, they all
demonstrate strong integration and learning capabilities,
robustness against noise, and improved prediction
accuracy through the combination of various tools.

(3) Comparison of ConsMM and EvolndMM with top
three existing predictors: ConsMM has an MCC of
0.8196, AUROC of 0.9777, and AUPR of 0.9837, while
EvoIndMM has an MCC of 0.8675, AUROC of 0.9844,
and AUPR of 0.9905. Both demonstrate superior
performance on all three metrics (MCC, AUROC, and
AUPR) compared to InMeRF and M-CAP in the top
three predictors but slightly fall short of MetaRNN. This
suggests that ConsMM and EvoIndMM exhibit high
performance in terms of prediction accuracy and
correlation with actual results. Collectively, the three
most optimal predictors are ConsMM, EvoIndMM, and
MetaRNN, among all predictors.

(4) Reasons for superior performance of top three
predictors: Analyzing the terms of “Integrated” and
“Prediction technology” (listed in Table 4), “Features
Predictor used” (listed in Table S6), it is easily seen that
MetaRNN, ConsMM, and EvoIndMM all belong to the
category of meta-predictors. Unlike traditional individual
prediction predictors, they integrate outputs from multi-
ple prediction methods/models to enhance the compre-
hensiveness and accuracy of prediction results.

The superior performances of ConsMM and EvoIndMM can
be attributed to several key factors. First, they were trained on a
newly constructed, large-scale nonredundant data set that
encompasses all known MMs gathered from the entire Ensembl
database. Second, consensus technology bolsters the accuracy
and reliability by integrating multiple prediction methods and
annotations. Third, employing the powerful XGBoost algorithm
enables the effective handling of intricate feature relationships,
increasing predictive power and robustness. Lastly, additional
data sources such as EvolIndMM’s use of VEP outputs, ESM-1b,
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Figure 9. Several evaluation values of the compared predictors on the blind test set (with repeated protein with training data) (A) ROC curves, (B) PR

curves, (C) ACC values, (D) MCC values.

and ProtT5-XU embeddings further optimize the predictions. In
conclusion, the outstanding performance of ConsMM and
EvoIndMM derives from the synergy of these elements, fully
exploiting the outputs from various tools and advanced machine
learning technologies. Their approaches capture complex
relationships within data, enriching information, and thus
enabling accurate and comprehensive predictions of MM
pathogenicity.

4.3.2. Comparison Results with Nonrepeated Proteins.
Utilizing the results portrayed in Figure 10, partial data from
Tables S and S7, we executed a thorough analysis as follows:
(1) Comparative analysis of evaluation metrics: Similar to the
results depicted in Section 4.3.1, VEST4 notably outperformed
all other individual predictors, achieving an MCC of 0.7461, an
AUROC 0f 0.9544, and an AUPR of 0.9488. Among the existing
integrated predictors, MetaRNN, M-CAP, and InMeRF
emerged as the top three performers exhibiting respective
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MCC, AUROC, and AUPR scores of 0.9063, 0.9905, 0.9920;
0.8027, 0.9578, 0.9464; and 0.7411, 0.9416, 0.9303. Notwith-
standing, even though ConsMM and EvoIndMM, positing
MCC, AUROC, and AUPR measures of 0.8648, 0.9836, 0.9854
and 0.9082, 0.9852, 0.9902 correspondingly, trailed behind
MetaRNN marginally, they nevertheless surpassed both M-CAP
and InMeRF in terms of performance efficacy.

(2) Comparative analysis of performance metric—repeated
protein vs nonrepeated protein group: The performance metrics
of VEST4, M-CAP, InMeRF, ConsMM, and EvolndMM
revealed marginally superior outcomes for the “nonrepeated
protein” group, as demonstrated by the average ACC, MCC,
AUROC, and AUPR scores of 0.9121, 0.8257, 0.9701, and
0.9647 respectively. In contrast, the corresponding metrics for
the “Repeated protein” group yielded averaged ACC, MCC,
AUROC, and AUPR values of 0.8957, 0.8077, 0.9660, and
0.9697. Furthermore, MetaRNN demonstrated unwavering,
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Figure 10. Several evaluation values of the compared predictors on the blind test set (with nonrepeated protein with training data) (A) ROC curves,

(B) PR curves, (C) ACC values, (D) MCC values.

top-tier performance across both categories, thereby attesting to
its inherent robustness and capacity for generalization. Within
the confines of the “nonrepeated protein” group, ConsMM and
EvoIndMM surpassed almost all competing predictors (except
for MetaRNN) on evaluated metrics.

(3) Underlying factors for observed phenomena: The
disparities in predictive efficacy observed between “Repeated
protein” and “Nonrepeated protein” groups could be attributed
to the following factors. (A) Data distribution variations: A
significant discrepancy in data distribution between these data
sets could be a key factor. It is plausible to presume that different
data distributions exist, with nonrepeated proteins possibly
favoring specific predictive models. Such distinct distributions
likely influence a model’s ability to generalize and forecast
accurately. (B) Influence of the Protein Characteristics: The
novel ConsMM and EvoIndMM models leverage feature
embeddings from amino acid mutation sites, acquired via
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ESM1b and ProtT5 pretraining, rather than relying on features
extracted from the entire protein sequence. Consequently, these
methodologies demonstrate minimal variation in their pre-
dictive performances when applied to either the “Repeated
protein” or “Nonrepeated protein” group.

(4) Additional experiment on unsegmented blind test data:
Beyond the experiments detailed in Sections 4.3.1 and 4.3.2, we
conducted an additional set of tests. In this experiment, the blind
test data set was evaluated entirely independently, devoid of any
segmentation or group-based analysis (please refer to Figure S5
and Tables $8,59 for further details). An inclusive comparison of
these results (Figure SS and Tables $8,S9) with those from
Sections 4.3.1 and 4.3.2 indicates that this new performance
metrics set typically lies between Sections 4.3.1 and 4.3.2 results.
Across all experiment sets, most performance metrics of the
predictors display insignificant differences. Herein, for metic-
ulous result comparisons, we persist in employing the grouped
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Table S. Performance Comparison of ConsMM, EvoIndMM, and Existing Predictors on the Blind Test Set

predictor

repeated name recall/sen Spe Pre NPV F, ACC MCC
repeated protein (consisting of 488 proteins with 2593 variants) VEST4 0.9407 0.7541 0.8256 09114  0.8794  0.8573 0.7156
PROVEAN 0.8159 0.7368 0.7932 0.7639 0.8044 0.7806 0.5549

LIST-S2 0.8173 0.7170 0.7813 0.7603 0.7989 0.7728 0.5379

gMVP 0.9135 0.6471 0.7621 0.8581 0.8310 0.7944 0.5897

MetaSVM 0.9407 0.6264 0.7570 0.8952 0.8389 0.8002 0.6082

MetaLR 0.9268 0.6264 0.7543 0.8736 0.8317 0.7925 0.5894

M-CAP 0.9596 0.8136 0.8643 0.9421 0.9095 0.8943 0.7896

DEOGEN2 0.9191 0.5876 0.7339 0.8545 0.8161 0.7709 0.5460

InMeRF 0.8954 0.7843 0.8370 0.8584 0.8652 0.8457 0.6875

VARITY 0.8375 0.7921 0.8329 0.7976 0.8352 0.8172 0.6300

MetaRNN 0.8961 0.9974 0.9977 0.8858 0.9442 0.9414 0.8885

MVP 0.9693 0.5789 0.7401 0.9385 0.8394 0.7948 0.6100

ConsMM 0.9296 0.8878 09111 0.9106 0.9203 0.9109 0.8196

EvoIndMM 0.9150 0.9617 0.9719 0.8866 0.9426 0.9341 0.8675

nonrepeated protein (consisting of 420 proteins with 3365 variants) ~ VEST4 0.9539 0.7864  0.8028  0.9492  0.8719  0.8663  0.7461
PROVEAN 0.8249 0.7625 0.7600 0.8269 0.7912 0.7923 0.5872

LIST-S2 0.8399 0.6909 0.7125 0.8255 0.7709 0.7620 0.5344

gMVP 0.9221 0.6625 0.7136 0.9032 0.8046 0.7863 0.6005

MetaSVM 0.9402 0.5807 0.6716 0.9141 0.7835 0.7522 0.5523

MetaLR 0.9327 0.6091 0.6851 0.9085 0.7900 0.7634 0.5671

M-CAP 0.9483 0.8540 0.855$ 0.9477 0.8995 0.8990 0.8027

DEOGEN2 0.9333 0.5608 0.6596 0.9022 0.7730 0.7385 0.5269

InMeRF 09115 0.8295 0.8298 09114 0.8688 0.8686 0.7411

VARITY 0.8704 0.8261 0.8203 0.8748 0.8446 0.8473 0.6959

MetaRNN 0.9016 0.9972 0.9966 09174 0.9467 0.9516 0.9063

MVP 0.9483 0.5830 0.6746 0.9252 0.7884 0.7572 0.5645

ConsMM 0.9283 0.9364 0.9301 0.9348 0.9292 0.9325 0.8648

EvoIndMM 0.9261 0.9840 0.9851 0.9213 0.9547 0.9532 0.9082

Table 6. Detailed Information on 12 Pathogenic GOF/LOF Variations”

variations verdict symbol Pfam dom inheritance cDNA_pos CDS_pos Protein_pos AA
14_95598904_G/C LOF DICER1 PF00270 AD 547/10331 255/5769 85/1922 /M
10_89653846_C/A LOF PTEN Outside_domain AD 1501/9027 144/1212 48/403 N/K
9 21971 152_T/C LOF CDKN2A PF12796 AD 245/880 206/504 69/167 E/G
3 38662376 _C/T GOF SCNSA PF00520 ADAR 763/8504 569/6051 190/2016 R/Q
5 161309659 G/A LOF GABRA1 PF02931 AD 1010/4273 655/1371 219/456 D/N
338598763 _C/G LOF SCNSA PF00520 ADAR 4452/8504 4258/6051 1420/2016 G/R
7_150649683 A/G LOF KCNH2 PF00520 AD 1789/4286 1387/3480 463/1159 F/L
11_2592576_C/T GOF KCNQ1 PF00520 ADAR 734/3245 626/2031 209/676 S/E
11_2608811_G/T LOF KCNQI Outside_domain ADAR 1248/3245 1140/2031 380/676 R/S
10_43609061_A/G GOF RET Outside_domain AD 2049/5659 1817/3345 606/1114 Y/C
10_43619231_A/G LOF RET PF07714 AD 2922/5659 2690/3345 897/1114 R/Q
10_43615611_G/A LOF RET PF07714 AD 3146/5659 2914/3345 972/1114 R/G

“Note: Verdict, Pfam_dom, and Inheritance information were collected from https://itanlab.shinyapps.io/goflof/. Pfam_dom: protein domains
built on sequence similarity and functional characteristics. Inheritance information includes AD (Autosomal Dominant) and ADAR (Adenosine
Deaminases Acting on RNA). ¢cDNA_pos: ¢cDNA_position, CDS_pos: CDS_position, Protein_pos: Protein_position, AA: amino acid.
cDNA_ position, CDS_ position, Protein_position, Amino_acids, and ENSP information were collected from Ensembl VEP. The variant positions
indicate the amino acid’s position in the protein and the base pair’s position in the cDNA or coding sequence. Utilizing ENSP and the Ensembl API
enables retrieval of the encoded protein sequence. Besides, 14 95598904_G/C is in protein ENSP00000437256; 10_89653846_C/A in
ENSP00000361021; 9_21971152_T/C in ENSP00000418915; 3_38662376_C/T and 3_38598763_C/G in ENSP00000410257;
5_161309659_G/A in ENSP00000393097; 7_150649683_A/G in ENSP00000262186; 11 _2592576_C/T and 11_2608811_G/T in
ENSP00000155840; 10_43609061_A/G, 10_43619231 A/G, and 10_43615611_G/A in ENSP00000347942.

performance metrics as the principal evaluation indicators for 4.4. CASE STUDY

In this section, we analyzed 12 pathogenic GOF or LOF
variations in nine genes (DICER1, PTEN, CDKN2A, TREM2,
highest level of validity and reliability of our experimental SCNSA, GABRAL KCNH2, KCNQ, RET) that are associated
with diseases. For instance, PTEN is associated with hereditary

our predictors. This conservative methodology ensures the

outcomes. cancer syndromes, like Cowden syndrome and Bannayan-Riley-
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Ruvalcaba syndrome,”’ while TREM2 is linked to neuro-
degenerative diseases, such as Alzheimer’s disease.®” Detailed
information about these variations can be found in Tables 6 and
S10, and the heatmap of predictors for the 12 variations is
presented in Figure 11.

Among the variations shown in Figure 11, our developed
models (ConsMM and EvoIndMM) generally exhibited
superior performance compared to other predictors, except for
the 14_95598904_G/C variation in the DICER1 gene, which is
linked to tumors like childhood multicystic nephroma and
pulmonary cystic lung lesions.”® As indicated in Tables 6 and
S10, this MM (I to M at the 85th site in ENSP00000437256)
could potentially lead to a loss of function in DICERI. The
Essentiality score®® for DICERI is 0.924045225, signifyin§ its
significant role in biological processes and its RVIS score® is
—1.52, indicating heightened vulnerability to variations.

ConsMM and EvoIndMM are developed through extensive
predictions and annotations derived from multiple individual
predictors. Table S10 provides several indicators suggesting the
benign nature of 14_95598904_G/C. According to these tools,
this variant is predicted as tolerated (0.14, SIFT'?), benign
(0.053, PolyPhen”), and neutral (0.253, Condel®®), indicating a
lack of significant pathogenic effects. Furthermore, CADD
(18.84)," REVEL*' (0.656), LoFtool®” (0.233), and ExACpLI®®
(1.0) scores suggest a minor impact on pathogenicity and a
lower probability of causing loss of gene function.

EvoIndMM, incorporates embeddings from ESM-1b'° and
ProtT5-XL-U50,"” capturing physicochemical properties and
evolutionary conservation. Analyzing the scores in Table S10,
multiple indicators point toward minimal alterations in the
protein sequence. The [UPRED2% score (0.1731) indicates a
low tendency for disorder, while the ANCHOR2"® score
(0.277) suggests limited binding regions. Besides, the RSA
score (0.247) implies no significant impact on solvent
accessibility, and the Zfit score (—1.063) signifies a minor effect
on protein structure and function. The RSA_ class is categorized
as “B”, indicating a minor effect on protein solvent accessibility.
Additionally, the “helix_prob” (0.694), “beta_prob” (0.003),
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and “coil_prob” (0.303) values suggest no significant disruption
to the protein’s secondary structure.

5. CONCLUSIONS

Our study contributes to the understanding of MM
pathogenicity. In this work, we first constructed a nonredundant
MM benchmark data set and a blind test set that specifically
focused on pathogenic GOF/LOF MM. Then, by utilizing
Ensembl VEP v104 and plugins (e.g, dbNSFP v4.1a), we
extracted variant-level, AA-level, individuals’ outputs, and
genome-level features for each variation. Additionally, we
collected encoded protein sequences using ENSP identifiers
and Ensembl AP, and generated embeddings from ESM-1b and
ProtT5-XL-USO0 for each mutant site AA. Based on the newly
constructed data and extracted features, we developed the
interpretable model group MMPatho, consisting of ConsMM
and EvoIndMM. ConsMM utilized individuals’ outputs and
employed XGBoost with SHAP analyses, achieving outstanding
prediction performance, while EvoIndMM enhanced the
model’s predictive capacity by incorporating evolutionary
characteristics derived from ESM-1b and ProtTS5-XL-USO.
Extensive comparative experiments demonstrated the remark-
able efficacy of ConsMM and EvoIndMM. Our findings can give
certain contribution to the advancement of MM research and
provide valuable tools and data resources for understanding the
functional implications of variations in genetic disease.

B ASSOCIATED CONTENT

Data Availability Statement

For easy access, we implemented a Web server (http://csbio.
njust.edu.cn/bioinf/mmpatho/) for MM pathogenicity predic-
tion with reliability index score. Additionally, we uploaded our
newly constructed benchmark data set and blind test set are
available at the data page of our Web server. Also, the source
python code used in this paper is available at MMPatho server
and on GitHub.
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for MM pathogenic prediction;

GOF/LOF:gain of function, loss of function;
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gnomAD:genome aggregation database;
HGMD:human gene mutation database;
LightGBM:light gradient boosting machine;
PolyPhen-2:polymorphism phenotyping v2;
PROVEAN:protein variation effect analyzer;
ProtTrans:protein transformer;

REVEL:rare exome variant ensemble learner;
SHAP:Shapley additive explanations;
SIFT:sorting intolerant from tolerant;
SwissVar:variants in UniProtKB/Swiss-Prot;
VEST4:variant effect scoring tool v4;
XGBoost:eXtreme gradient boosting.
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