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Abstract

Background Autism spectrum disorder (ASD) is a neurodevelopmental condition characterized by impaired
social and communication skills, restricted interests, and repetitive behaviors. The prevalence of ASD among chil-
dren in Qatar was recently estimated to be 1.1%, though the genetic architecture underlying ASD both in Qatar
and the greater Middle East has been largely unexplored. Here, we describe the first genomic data release

from the BARAKA-Qatar Study—a nationwide program building a broadly consented biorepository of individuals
with ASD and their families available for sample and data sharing and multi-omics research.

Methods In this first release, we present a comprehensive analysis of whole-genome sequencing (WGS) data

of the first 100 families (372 individuals), investigating the genetic architecture, including single-nucleotide vari-
ants (SNVs), copy number variants (CNVs), tandem repeat expansions (TREs), as well as mitochondrial DNA variants
(mtDNA) segregating with ASD in local families.

Results Overall, we identify potentially pathogenic variants in known genes or regions in 27 out of 100 families (27%),
of which 11 variants (40.7%) were classified as pathogenic or likely-pathogenic based on American College of Medical
Genetics (ACMG) guidelines. Dominant variants, including de novo and inherited, contributed to 15 (55.6%) of these
families, consisting of SNVs/indels (66.7%), CNVs (13.3%), TREs (13.3%), and mtDNA variants (6.7%). Moreover, homozy-
gous variants were found in 7 families (25.9%), with a sixfold increase in homozygous burden in consanguineous
versus non-consanguineous families (13.6% and 1.8%, respectively). Furthermore, 28 novel ASD candidate genes were
identified in 20 families, 23 of which had recurrent hits in MSSNG and SSC cohorts.

Conclusions This study illustrates the value of ASD studies in under-represented populations and the importance
of WGS as a comprehensive tool for establishing a molecular diagnosis for families with ASD. Moreover, it uncov-
ers a significant role for recessive variation in ASD architecture in consanguineous settings and provides a unique
resource of Middle Eastern genomes for future research to the global ASD community.
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Background

Autism spectrum disorder (ASD) is a neurodevelop-
mental condition characterized by impaired social
interactions, deficits in communication, restricted
interests, and repetitive behaviors [1]. ASD often co-
occurs with other conditions, including intellectual
disability (ID), attention-deficit hyperactivity disor-
der (ADHD), epilepsy, and gastrointestinal (GI) prob-
lems [2]. Various factors, including genetic, epigenetic,
environment, and hormonal changes contribute to the
broad phenotypic spectrum of ASD. The high heritabil-
ity of ASD (70-90% based on twin studies) [3] and the
increased relative risk to siblings (10—20-fold) suggest
that genetic factors play a prominent role in ASD etiol-
ogy [4].

Advances in both genomic technologies and ASD
phenotyping have improved our understanding of the
genetic architecture of ASD. Studies of genomic data at
scale have revealed over hundreds genes and variants
to be associated with ASD, disrupting key biological
processes such as neurotransmission, synapse func-
tion, chromatin remodeling, cortical development, and
metabolism [4, 5].

De novo variation in coding regions, including SN'Vs,
small insertions or deletions (indels), and structural
variants (SVs), together account for 10-30% of simplex
ASD cases [2, 6, 7]. Recently, other variant classes such
as TREs and mitochondrial variants have been shown
to contribute to ASD susceptibility in large popula-
tion cohorts [8—10]. Furthermore, the use of statistical
methods such as the transmission and de novo asso-
ciation analysis (TADA) helped identify risk genes by
combining both de novo and transmitted SNVs/Indels
[11]. A recent study applied TADA analysis and high-
lighted 134 dominant genes to be ASD-associated with
false discovery rate < 0.1 [12].

There has been growing evidence implicating reces-
sive variation in ASD susceptibility, especially in con-
sanguineous settings (approximately 5% of all ASD
cases) [13, 14]. Rare homozygous loss-of-function (LoF)
variants have been described in several genes such as
CA2, DDHD1, FEV, NSUN2, PAH, SLCIA1, and USH2A
[15, 16]. Despite these discoveries, recessive causes of
ASD generally form a minority of the overall genetic
architecture of ASD among large cohorts published to
date, estimated at around 1.1% in MSSNG and 0.3% in

the SSC datasets [10]. Additionally, recent studies that
focused on families with high consanguinity have dem-
onstrated a higher rate of recessive causes, e.g., 39%
[17], suggesting the recessive burden in ASD is yet to
be explored among global consanguineous populations.

Successful molecular diagnosis of individuals with
ASD brings several benefits allowing earlier behavioral
interventions, assessment of familial recurrence risk
(low in case of de novo mutation) as well as informing
more precise interventions. Nevertheless, despite the
improvements in understanding the genetics of ASD,
most discoveries have been only produced in certain
geographical areas, which limits the diversity of ethnic
backgrounds that can benefit from research. In ASD
research, for instance, people of non-European ances-
try are still significantly underrepresented [10], with
those of Middle Eastern origin being among the most
underrepresented globally.

ASD research has recently received a lot of attention
in Qatar. The incidence of ASD in Qatar is estimated
to be 1 in 87 (1.1%) [18], which is relatively similar to
the global estimates in different populations [19, 20];
however, the genetic architecture of ASD in Arab world
remains poorly explored. The BARAKA study (Build-
ing a Resource for the Advancement of Knowledge of
Autism in Qatar) aims to establish a national resource
on ASD research, consisting of a biorepository of sam-
ples and data on patients at Sidra Medicine broadly
consented for research. The repository hosts exten-
sive clinical and questionnaire data on each individual
including electronic health records (EHR), aliquots of
whole blood, plasma, cells, RNA, saliva, and microbi-
ome samples. Importantly, most patients were con-
sented to be recontacted in the future. This resource
is expected to be a valuable resource contributing to
regional and global efforts investigating genetic and
environmental determinants of ASD.

Herein, we describe the results of BARAKA-WGS
analysis of 100 families (372 subjects), where we com-
prehensively investigate the genetic architecture
(including dominant/recessive, nuclear/mitochondrial
variants) contributing to ASD. Being the first compre-
hensive genomic study of ASD from the Middle East,
this sets an important baseline for understanding the
architecture of this complex condition in highly con-
sanguineous populations.
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Methods

Cohort description and phenotyping

A total of 100 families (372 total individuals, including
104 individuals with ASD plus their parents and unaf-
fected siblings) were enrolled from Sidra Medicine’s vari-
ous pediatric clinics (Developmental Pediatrics, Child
and Adolescent Psychiatry, Adolescent Medicine) as part
of the BARAKA-Qatar study cohort. Most of the fami-
lies where simplex (98/100) and only two families where
multiplex families both with 3 affected siblings each. The
majority of families were of Arab descent (58%), followed
by South Asian (25%), European (7%), African (5%), and
other ethnicities. Children with known karyotyping
abnormalities, Fragile X syndrome, and Rett syndrome
were excluded. ASD diagnosis was made following stand-
ard autism diagnostic measures (DSM-V). The study was
approved by the institutional review board (IRB) of Sidra
Medicine (IRB No. 1500767), and written informed con-
sent was obtained from all participants (the full descrip-
tion of the cohort phenotypes is presented in Additional
file 1: Table S1 and Additional file 2: Figure S1). De novo
SNVs/SVs and compound heterozygous variants analysis
were performed only on complete trios (79% of families).

WGS and variant detection

Whole blood samples were collected from individuals
with ASD and family members. Total genomic DNA was
extracted using the DNeasy Blood & Tissue Kit (Qia-
gen sciences LLC, Germantown, MD, USA) according
to the manufacturer’s instructions. DNA samples were
processed at Sidra Medicine as previously described
[21]. Briefly, samples were sequenced (150 bp paired-
end reads) using [llumina HiSeq X to a minimum depth
of 30, and reads were aligned to GRCh37/hg19 using
BWA version 0.7.10 [22]. Sequence-level variants were
detected with GATK version 3.3 using the best practices
pipeline [23]. VCF files were annotated using the SnpEft/
SnpSift tool [24] by adding allele frequencies from vari-
ant databases (1000 Genomes Project [25], gnomAD [26],
and ExAC [27], and Qatar-genome project (QGP)). De
novo variants were detected in complete trios (n="79)
using a combination of three tools (VarScan [28], RUFUS
[29], and FreeBayes [30]) as previously described [31].
All variants reported in this study were lifted over to
GRCh38/hg38 using Broad Institute liftover tool (https://
liftover.broadinstitute.org) [32].

SNV and indel analysis

Quality filtration

We retained variants that met all the following crite-
ria: (i) flagged as “PASS” all GATK filters, (ii) genotype
quality (GQ)>10, (iii) read depth>20, (iv) allele frac-
tion between 0.2 and 0.8 (for heterozygous variants),
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and (v) not present in low-complexity regions. Rare
variants were defined as those with minor allele fre-
quencies (MAF)<1% in all general databases such as
1000G, gnomAD, ExAC, QGP, and an internal database
of >35,000 alleles sequenced as part of various projects
at Sidra Medicine. To determine the level of consanguin-
ity from our cohort, we used KING for pair-wise meas-
urement of relationships (—-kinship command, with a
cutoff of>0.044) (Additional file 2: Figure S2) [33] and
calculated inbreeding coefficient (F) for per-sample using
plink1.9 (-het command with cutoff>0.1) (Additional
file 2: Figure S3) [34].

Variant prioritization

De novo, homozygous, compound heterozygous, and
X-linked recessive variants that are rare and coding
were considered to be potentially pathogenic if they met
the following criteria: (i) LoF effect on the protein (stop
gain, frameshift deletion, frameshift insertion, or canoni-
cal splice site variation) or (ii) damaging missense vari-
ants (Dmiss), defined as variants deemed deleterious by
at least 5 in silico prediction tools. These tools included
CADD (threshold for deleteriousness>10) [35], SIFT
(deleterious) [36], PolyPhen2-HDIV (probably-damaging
or possibly damaging) [37], PolyPhen2-HVAR (probably-
damaging or possibly damaging) [37], LRT (deleterious)
[38], MutationAssessor (high or medium) [39], Muta-
tionTaster (deleterious) [40], MPC score (>1) [41], and
PROVEAN (deleterious) [42].

Gene constraint was assessed using the gnomAD pLI
score for dominant variants and pRec score for recessive
variants. Variants were also screened for any phenotypic
association in the database of Online Mendelian Inherit-
ance in Man (OMIM) [43]. Variants found in genes caus-
ing phenotypes relevant to ASD (such as developmental
delay (DD), intellectual disability, etc.) were curated
based on American College of Medical Genetics (ACMG)
guidelines [44] using Franklin and InterVar (Available
online: https://franklin.genoox.com, [45]). (Note: For all
de novo variants, PS2 criteria were manually adjusted).

Known ASD/NDD panel genes/regions

To further prioritize likely ASD-associated variants, we
identified variants impacting genes in a list of known
neurodevelopmental disorder (NDD)/ASD genes, which
included the Genomics England NDD/autism panel
genes and Simons Foundation Autism Research Ini-
tiative (SFARI) genes with a score of 1. This panel con-
tained 1714 genes (634 dominant, 942 biallelic, and 138
X-linked; Additional file 1: Table S2). CNVs that overlap
previously published list of genes/regions described as
pathogenic to ASD [12] or known NDD/ASD genes were
defined as “known” CNVs. In addition, we investigated
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TREs that affect known ASD genes from the recently
reported list (57 genes) in ASD [8].

Novel genes/regions associated with ASD/NDD

In addition to identifying damaging variants in known
genes, we flagged damaging de novo and rare homozy-
gous variants (LoF, Dmiss) in novel candidate genes.
For de novo variants, we leveraged other ASD cohorts
(MSSNG, SSC, and SPARK) to look for additional indi-
viduals with evidence in these same genes. For homozy-
gous variants, we used an additional filter of genes with
high pRec scores (>0.9). We also considered de novo or
homozygous CNVs in novel genes/regions. In both cases,
we also looked in other ASD cohorts for additional indi-
viduals with variants of the same category and inherit-
ance patterns in the same gene to strengthen evidence for
causality.

CNV detection and analysis

CNV detection was performed using a pipeline compris-
ing multiple algorithms: CNVnator [46], DELLY [47],
ERDS [48], Manta [49], Speedseq [50], and SvABA [51].
We retained only CNVs detected by at least two tools to
increase specificity. We then merged CNVs detected by
the 6 tools if they were of the same type and their start
and end coordinates were within 500 bp window. First
we merged CNVs within each individual to generate a
unique set of CNVs per-sample and subsequently across
individuals to create a population-level variant file using
Survivor (version 1.0.7) [52], which was then annotated
using AnnotSV (version 2.2) [53]. De novo and homozy-
gous CNVs were identified using custom scripts with
the following additional allele frequency filters (allele
frequency <0.1% for de novo and<1% for homozygous)
from global biobank SVs studies [54—56]. After filtering,
we visualized CNVs using samplot (version 1.0.17) [57].

Variant validation

We selected 12 de novo variants to confirm using Sanger
sequencing as previously described [58]. As a further
quality check, we used digital-droplet PCR (ddPCR) to
validate a subset of CNVs, as described previously [59].
We successfully confirmed all de novo SNVs and CNVs
(Additional file 2: Figure S4)

Calling of tandem repeats and expansions
Genome-wide detection of tandem repeats expansions
(TREs) was performed using ExpansionHunter Denovo
(EHdn) [60], which uses anchored in-repeat reads to esti-
mate the size and location of tandem repeats, using the
same pipeline as previously described [8].
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Mitochondrial variant calling

Variant calling in mitochondrial DNA was performed
using Mutect2 (GATK v4.1.2.0) [23] using the newly
implemented —mitochondria option. We only kept prop-
erly mapped reads for variant calling and filtered these
using the FilterMutectCalls options. Left alignment and
trimming were performed on variants and only variants
with the PASS filter were retained for further analysis.

Results

Cohort description

All individuals with ASD in the BARAKA Study met
diagnostic criteria according to the Diagnostic and Sta-
tistical Manual of Mental Disorders (DSM-5) (American
Psychiatric Association, 2013). A total of 104 affected
individuals from 100 families (79% complete trios) were
analyzed, including 98 simplex and 2 multiplex families
(both with 3 affected siblings each), with a male to female
ratio of 5.5 (88 males and 16 females). The most com-
mon comorbidities among the BARAKA cohort were
ADHD (35.6%), ID (29.8%), DD (28.8%), GI problems
(19.2%), learning disabilities (10.6%), and seizures (6.7%)
(Table 1, Additional file 2: Figure S1). Consistent with the
demographic breakdown of Qatar, the majority of fami-
lies were of Arab descent (58%), followed by South Asian
(25%), European (7%), African (5%), and other ethnicities.
In total, 44 out of 100 families (44%) were consanguine-
ous (Additional file 2: Figure S2 and Figure S3).

WGS and variant discovery

All children and their families (#=372 individuals)
underwent WGS to an average read depth of 36 x,while
almost 96% of bases were covered at a mean depth of

Table 1 Summary of cohort and associated comorbidities

Number of
individuals
(%)
Sex
Female 16 (15.4%)
Male 88 (84.6%)
Additional clinical comorbidities
ADHD 37 (35.6%)
Intellectual disability 31 (29.8%)
Developmental delay—speech
Verbal 96 (92.3%)
Non-verbal 8(7.7%)
Developmental delay—motor 22 (21.1%)
Learning disabilities 11 (10.6%)
Seizures 7 (6.7%)
Gl problem 20 (19.2%)
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20. Individuals had, on average, 4,206,499 SNVs and
110,600 indels per genome. After filtering variants based
on MAF<1% in general population databases such as
1000G, gnomAD, ExAC, and an extensive internal data-
base of>15,000 Qatari alleles, an average of 26,743
rare SNVs (95.3% heterozygous and 4.7% homozygous)
and 67,292 rare indels (87.8% heterozygous and 12.2%
homozygous) per genome remained for downstream
analysis (Fig. 1). We then proceeded with a two-tier
approach—first investigating variants of different classes
in known ASD genes, and then transitioning genome-
wide for putatively novel candidate genes causing ASD in
this cohort.

Pathogenic variants in known ASD-risk genes and regions
Small variants (SNVs + indels)

We first sought to identify (DN) or rare inherited LoF
or Damaging missense (Dmiss) variants in 1714 known
NDD and ASD genes (curated from multiple sources as
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described in “Methods”) and found 26 such variants in 24
genes in 24 individuals (Table 2). Nine families had nine
DN variants in known ASD/NDD genes (STAGI, SCN24,
MTOR, WDR37, EIF5A, KCNMA1, KDMS5B GRIN2B,
and MYOSA). All of these variants were Dmiss except
for one LoF in KCNMAI. Two variants (p.Arg373GIn
in STAGI and p.Alal773Val in SCN2A) were already
reported as pathogenic in ClinVar for complex neurode-
velopmental disorders. Using ACMG classification, the
seven remaining DN variants were scored as likely path-
ogenic. One paternally inherited heterozygous variant
(p-Arg266Cys) in DNM1 was shared between three sib-
lings with ASD and scored as VUS (Table 2).

In addition to DN variants, we found recessive variants
(homozygous) in 8 ASD/NDD genes (TRAPPCY, NBN,
TSEN2, UBRI1, MED17, TIAMI, CTSA, and ZNF335)
in 7 families. All of which were Dmiss variants except
for one stop-gain (p.Arg570* in TRAPPCY). Out of the
7 families with recessive events, 6 were consanguineous

BARAKA ;
100 families !
372 samples H

WGS

i ) r '
' Single nucleotide i i Copy Number ! i Tandem Repeat | i\ Mitochonderial E
| variants + indels ! E Variations ! i Expansions | i Variants !
. . . . 1 1

i LoF & Dmiss ! ! Deletion & Duplication { ~ STTToosososososoo : e )
L 1

De novo Rare De novo Rare Rare
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Fig. 1 Overview of WGS approach and variant prioritization
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families (85.7%). Manual curation, according to ACMG
guidelines, classified all recessive variants as VUS except
for the TRAPPC9 variant (p.Arg570*), which was already
reported in ClinVar as pathogenic/likely-pathogenic.
In addition, we identified five X-linked Dmiss variants
in four genes (PTCHDI1, DMD, WNK3, and SLC9A6)
in 5 males with ASD, all of which were scored as VUS
(Table 2).

Structural variants (CNVs + TREs)

Given the known association of ASD with genomic disor-
der regions, we investigated the overlap of CN'Vs detected
within our patients with a list of regions where deletions
and duplications were previously identified in individu-
als with ASD [12] (see “Methods”). We found two can-
didate variants: a de novo 1.4 Mb deletion in 22q11.21
and a 1.7 Mb maternally inherited duplication in 16p13.3
(Table 2). No other CNVs overlapped the known ASD/
NDD gene list from our cohort. We further investigated
TREs in known ASD genes [8] and found two matching
TREs in SHANK?2 and NCOR?2 in two families (Table 2).

Mitochondrial variants
We investigated pathogenic mtDNA variants and het-
eroplasmy (where mutated mtDNA co-exist with
unmutated mtDNA) that overlap previously reported
variants (n=15) associated with ASD [12]. We identi-
fied only one de novo variant (heteroplasmy of 2.1%) of
the m.3243A > @G variant associated with mitochondrial
encephalopathy, lactic acidosis, and stroke-like episodes
(MELAS) in an individual with ASD (maternal hetero-
plasmy was undetectable) (Table 2). We also considered
overlap with mtDNA variants causing homoplasmic dis-
orders generally affecting vision and hearing (n=6) and
found two matches: one individual with ASD had a 2.3%
load of 14484 T > C variant (maternal genotype was unde-
tectable), and a father had a 59.2% load of 11778G>A
variant. Both variants are associated with Leber Heredi-
tary Optic Neuropathy (LHON) syndrome (Additional
file 1: Table S3).

Altogether, 27 families (27%) had at least one damaging
variant in a known ASD/NDD gene panel in this cohort.

Pathogenic variants in novel ASD-risk genes and regions
Small variants (SNVs + indels)

Beyond known genes, we searched genome-wide for
damaging DN and homozygous variants (LoF, Dmiss)
in novel candidate genes that could explain ASD in the
remaining families.

For DN variants, we found 17 in as many genes (CHD9,
STAB2, MOV10, HDAC?7, DNAJC10, SYNE3, COPSS,
B4GALTI1, DCAF17, FCHO2, INCENP INGS, PTOV],
PRRC2C, TLN1, RRN3, and STRIP2) in 14 families. Four
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were predicted LoF, all in genes, with pLI>0.99 (MOVI0,
HDAC?7, TLN1, and CHD9) and 13 were Dmiss vari-
ants. Three families had two damaging DN variants in
two different genes each. All damaging DN variants in
novel genes had additional carriers from ASD cohorts
(MSSNG, SSC, and SPARK) (Additional file 1: Table S4).

We also looked for damaging homozygous variants
(LoF and Dmiss) in genes with high pRec scores (>0.9).
Six novel genes (TRIM29, EIF2A, CDH23, NOC3L,
KDMS8, and IFT140) were identified in four families; five
of which were affected by Dmiss variants and one by a
LoF (splice acceptor variant, ¢.3236-1G>A) in CDH23
(Table 3). Three of the four families with homozygous
variants (75%), were consanguineous. We found addi-
tional biallelic variant carriers in ASD cohorts (MSSNG
and SSC) for CDH23 and IFT140.

Structural variants (CNVs)

A total of 5 ASD-associated CNVs were identified in 5
families. One was a de novo 7.7 kb deletion of exons 7 to
10 of CSNK1A1 (Fig. 2, Additional file 1: Table S4). The
other four were homozygous deletions in four families
(Table 3) as follows: a 2.33 kb deletion in ELOVL2 par-
tially deleting exon 8 (Fig. 2), a 12.9 kb deletion overlap-
ping exon 9 of FAM204A, a partial deletion of exon 11
(65 bp) in AFG3L1P, and a 47.6 kb deletion of full length
long non-coding RNA gene (LINC00648) and com-
plete deletion of a microRNA (MIR548Y). Most of these
genes were novel in their association with ASD except
for ELOVL2, which is reported in the SFARI Gene data-
base (score 2). We checked if CNVs in these genes were
found in additional individuals in global ASD cohorts
and found a 6 kb deletion in ELOVL2 in one family, a
large de novo deletion (>4 Mb) including CSNK1A1 gene
in one family, multiple large CNVs in six individuals that
include AFG3LIP gene, and three individuals with dele-
tions (> 12 kb) in FAM204A.

Altogether, we identify 28 candidate novel genes in 22
families (22%), of which 23 genes (82.1%) are supported
by additional carriers in MSSNG and SSC, affected by
variants in similar classes and zygosity.

Discussion

The past decade has seen rapid advances in the discovery
of genetic and genomic variants underlying complex neu-
rodevelopmental conditions, including ASD [10, 11, 15,
61, 62]. Recently, WGS has emerged as a comprehensive
approach for genomic discovery, enabling the detection
of pathogenic variants spanning all types and size classes,
including SNVs, indels, CNVs,TREs, and mtDNA [12,
63]. In this study, we present a comprehensive evalua-
tion of genetic risk factors detected by WGS in a cohort
of 100 families with ASD from vastly under-represented
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A. Homozygous deletion of ELOVL2 B. ddPCR validation of ELOVL2 deletion
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Fig. 2 Examples of ASD-relevant CNVs. A Pedigree, IGV visualization, and UCSC genomic context of a 2.33 kb homozygous deletion
comprising ~ 330 bp of exon 8 of ELOVL2 (see colored region of the UCSC panel, http://genome.ucsc.edu). B ddPCR results showing a copy
number of zero in the proband (indicated by red star), equivalent to no reads detected from the inside primer. C Pedigree, IGV visualization,
and UCSC genomic context of 7.7 kb de novo deletion from a simplex family comprising exon 7 to 10 of CSNKTAT gene (see colored region
of the UCSC panel, http://genome.ucsc.edu). D ddPCR results showing copy number calculation equals to one in proband, heterozygous status,
(indicated by red star) equivalent to less reads detected from inside primer in the proband sample. OP1 outside primer 1, OP2 outside primer 2, IP
inside primer

Middle Eastern populations as part of the first release of
the BARAKA-Qatar Study.

We discover at least one candidate pathogenic variant
in known ASD/NDD genes/regions in 27 families (27%)
(Fig. 3A). Despite the high heritability of ASD, the major-
ity of previously identified genetic risk appears to be from
de novo variation [11]. Our cohort identified dominant
risk variants, including de novo and inherited variants,
in 15 of 27 (55.6%) families (37.1% de novo and 18.5%

. ASD-associated rare variants (27%)

inherited). In terms of variant classes, the majority of
dominant risk factor was from SNVs/indels (66.7%), fol-
lowed by CNVs (13.3%), TREs (13.3%), and mtDNA vari-
ants (6.7%).

Notably, only two de novo SNVs (22.2%) were identi-
fied previously (p.Arg373Gln in STAGI and p.Alal773Val
in SCN2A) underscoring the high allelic heterogeneity
underlying ASD across global populations. We sought
to manually curate novel alleles according to ACMG

A

Large or gene rich CNV (7.4%)
mMtDNA (3.7%)
. SNV+Indel (Dominant) (37.1%)
. SNV+Indel (Recessive) (25.9%)
B shv+indel (x-linked) (18.5%)

. TRE (7.4%)

(‘ . No ASD-associated rare variants (73%) '
A. B.

Fig. 3 Genetic risk variants in known ASD/NDD genes. A Percentage ASD probands having candidate causative rare variants, stratified by B type
of variant


http://genome.ucsc.edu
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criteria and found that all de novo novel alleles were clas-
sified as likely pathogenic. These mainly included dam-
aging missense variants and only one frameshift variant
(p-Met1176fs) in KCNMA1. KCNMA I encodes for potas-
sium calcium-activated channel subfamily M Alpha 1
which are large conductance, voltage, and calcium-sen-
sitive potassium channels fundamental to several physi-
ological processes including smooth muscle contraction,
neurotransmitter release, and neuronal excitability [64].
Mutations in this gene have been associated with a broad
spectrum of neurological phenotypes and developmental
disorders including cerebellar atrophy, DD, and seizures.
A recent study reported KCNMA 1 mutations in individu-
als with ASD [64].

One of the most distinguishing features of middle east-
ern populations is the high degrees of consanguinity.
While public databases comprise mostly outbred indi-
viduals, the local population of Qatar, for example has
consanguinity levels of >54% [65], suggesting that reces-
sive architecture may contribute to a sizeable fraction of
ASD etiology in this population. There have only been
a few studies today examining ASD in consanguineous
settings. One looked only at homozygous deletions and
reported seven exonic deletions from 123 consanguine-
ous families (5.7%) [66]. A more recent study investi-
gating biallelic SN'Vs in highly consanguineous families

NUMBER OF UNIQUE FAMILIES
w IN ”

N

=

Dominant

Recessive
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found recessive gene risk in known ASD/NDD genes in
9 out of 23 (39%) families [17]. Data from our study sug-
gest a recessive burden somewhere in between (6 of 44
consanguineous families (13.6%)). This burden is almost
sixfold higher than in non-consanguineous families in
our cohort, where only 1 of 56 families (1.8%) had a can-
didate homozygous causative variant in a known ASD/
NDD gene (p=0.02) (Fig. 4).

Moreover, in comparison to the largest WGS study
investigating > 7,000 families with ASD from MSSNG and
SSC cohorts which represent largely outbred populations
[12], recessive genetic risk, accounting for different crite-
ria used to define recessive events (i.e., recessive events
with only LoF on both alleles were included in MSSNG/
SSC), contributed to higher risk in our cohort (1.1%,
0.3%, and 3.7% for MSSNG, SSC, and BARAKA, respec-
tively). Although the sample size of the BARAKA cohort
is relatively modest at this time, these results highlight
the potential impact of recessive variants on the etiology
of ASD in highly consanguineous populations.

In some cases, the high levels of consanguinity may
lead to certain challenges not anticipated when study-
ing largely outbred cohorts. Among these are examples
where it may be difficult to differentiate between driver
and passenger mutations on a given haplotype. For exam-
ple, two homozygous putatively damaging missenses

m Consanguineous

m Non-consanguineous

*p-value < 0.05

X-inked

TYPE OF VARIANTS
Fig. 4 Genetic variants in known ASD/NDD genes stratified by consanguinity status of families. Recessive burden was significantly higher

(p-value=0.02) in consanguineous families
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variants (p.Gly289Arg, p.Val1243Leu) were identified in,
two known NDD genes, CTSA and ZNF335 a (neigh-
boring genes on Chr 20) in a consanguineous male indi-
vidual with ASD and ID. ZNF335 plays an essential role
in neurogenesis and biallelic variants in ZNF335 have
been associated with ASD-like phenotypes [67]. CTSA
has been associated with an autosomal recessive form of
Galactosialidosis (OMIM: 613111), for which intellectual
disability is a common symptom.

We only had two multiplex families in the setting of
parental consanguinity in our cohort (each with three
affected siblings). While we expected to find recessive
variants in these families, no candidate gene emerged
with shared recessive variants across the three sib-
lings. Instead, in one family (Family BRK-13), we found
a paternally inherited heterozygous damaging missense
variant (p.Arg266Cys) in DNMI that segregated with
all affected siblings. A re-evaluation of the father’s phe-
notype showed a diagnosis of ADHD and features of
ASD. DNM1I encodes dynamin 1, a GTP-binding pro-
tein mainly expressed in the central nervous system [68].
Pathogenic DNM 1 variants affect brain development and
function and cause epileptic encephalopathy associated
with global DD [69, 70]. Pathogenic variants in DNM1
have also been reported in association with other clinical
phenotypes such as hypotonia, movement disorder, ASD,
cortical visual impairment, and microcephaly [69, 70].
The three affected siblings lacked epilepsy and showed
symptoms of ADHD, although DNAM1 has not yet been
associated with ADHD. Such an example of a multiplex
family highlights the importance of taking a comprehen-
sive approach with variant identification in each family,
regardless of consanguinity status.

In addition, X-linked recessive variants (Dmiss) were
found in 5 of 27 families (18.5%), supporting the role of
the X-chromosome in ASD susceptibility in males. Vari-
ants in the X chromosome greatly contributed to ID and
ASD in males with more than 140 genes being involved
[62]. Two damaging missense variants (p.Glu805GIn and
p-Asn205Ser) in WNK3 were identified in two unrelated
male probands. WNK3 encodes a cell volume-sensitive
kinase that is highly expressed during early brain devel-
opment [71]. Previously, multiple hemizygous, LoF, and
pathogenic missense variants were identified in WNK3
in male individuals with sporadic and familial forms
of ID [72]. Re-examination of comorbidities in the two
probands in our cohorts reveals that neither had ID, and
only one had ADHD, potentially representing an expan-
sion of the WNK3-related phenotype.

In total, SN'Vs and Indels alone were present in 81.5%
of our cohort, suggesting other variant classes could
explain the missing heritability in the remaining fami-
lies. Indeed, we employed WGS to enable the detection
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of CNVs and TREs associated with ASD. Our sample size
was underpowered to detect significant enrichment of
TREs in individuals with ASD compared to siblings with-
out ASD. Only two families (7.4%) had TREs impacting
known ASD genes. One of these was a (high functioning)
female proband (Family BRK-51) with a TREs affecting
intron 7 of SHANK2, a member of a family of scaffold
proteins (comprising SHANKI, 2 and 3) that localize to
the postsynaptic site of excitatory synapses in the central
nervous system [73]. SHANK2 has been implicated in
various brain disorders, including ASD, ID, DD, ADHD,
schizophrenia, epilepsy, and obsessive—compulsive disor-
der [74]. Another female proband (Family BRK-89) was
diagnosed with Down syndrome disintegrative disorder
(DSDD) (a developmental regression that leads to loss of
previously acquired cognitive and social functioning, and
the development of features of ASD) [75]. The genetic
implications of DSDD have not yet been associated
with any gene. We identified a TREs affecting intron 18
of NCOR2, a nuclear receptor corepressor 2 as part of a
multi-protein corepressor complex known as the NCOR
complex [76]. The NCOR complex plays a vital role in
neurocognition with implications for autism [77].

Altogether, SNVs/Indels were the major risks affect-
ing 22 of 27 families (81.5%: dominant (45.5%), recessive
(31.8%), and X-linked (22.7%)) compared to CNVs (7.4%),
TREs (7.4%), and mtDNA variant (3.7%) (Fig. 3B).

As only 27% of families had genetic risk from known
ASD/NDD genes/regions, we expanded our search
genome-wide for putatively novel genes or regions
that could contribute to the genetic risk of ASD in the
remaining families. Using similarly strict criteria as with
known genes but limiting only to damaging de novo or
homozygous variants, we identified candidate genes in 22
of 100 families (22%), 15 (68.2%) with de novo variants
(SNVs 63.6%; CNVs 4.6%), and 7 families (31.8%) with
homozygous variants (SN'Vs 13.6%, CNVs 13.6%, and one
family (Family BRK-83) with both SNV and CNV (4.6%)).
Of these novel genes, 23 out of 28 (82.1%) genes are sup-
ported by additional carriers affected by variants in simi-
lar classes and zygosity in ASD cohorts MSSNG, SSC,
and SPARK. A further functional investigation is needed
to determine the potential role of these Novel identified
genes in ASD risk.

Notably, two families had multiple variants of the
same type in known and novel genes, showing that find-
ing a damaging variant in a known gene should not rule
out searching for novel genes in the same family. First,
the proband in (Family BRK-05) had a de novo Dmiss
(p-Arg609His) in MYOS5A (known gene, Table 2) and a
de novo Dmiss (p.Asp428Gly) in DCAF17 (Novel gene,
Table S4). Second, proband in (Family BRK-48) had a
de novo Dmiss (p.Tyr126Phe) in WDR37 (known gene,
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Table 2) and a de novo Dmiss (p.Cys218Arg) in COPSS
(Novel gene, Table S4). The high level of genotype/pheno-
type heterogeneity in individuals with ASD may explain
the multiple variants/genes that could collectively contrib-
ute to the genetic risk of ASD. Comprehensive searches of
known and novel genes contributing to ASD in each fam-
ily help to determine the total burden of the disorder.

The use of WGS at point of care for families with ASD
is relatively new in Qatar, where the public understand-
ing of research as opposed to clinical testing still in its
early stages. Genetic consultation is offered to individuals
with significant genetic findings (i.e., variants classified as
pathogenic or likely-pathogenic) to explain basic aspects
such as recurrent risk based on mode of inheritance
(de novo versus inherited) and interpretation of results.
While study begins to set the scene for the integration of
research findings into clinical practice, it nevertheless has
important limitations which must be considered. First,
our study sample size of 100 families limits generaliza-
tions at present about the relationship between consan-
guinity and ASD. While we observe an enrichment in
recessive inheritance in such families, larger numbers
will be needed to confirm if this trend will hold. Indeed,
the BARAKA study has recently surpassed 250 families
enrolled, with an eventual aim of 1000 families by end
of 2024. As the cohort size increases, in particular from
the local population where consanguinity exceeds 50%,
we shall have valuable additional data to investigate
this. Moreover, larger cohort sizes will allow us to move
away from a per-family pathogenic variant approach to
a cohort-level approach, using tools such as rare variant
burden analysis [78] and/or gene-set enrichment analy-
sis, which may aid novel gene discovery and uncover
new ASD-implicated biological pathways. Similarly,
larger datasets could be valuable in case—control stud-
ies that produce GWAS-like summary statistics, which
can then support explorations of polygenic risk in ASD;
such an effort is currently undermined in the absence of
summary statistics from individuals with similar ances-
try. Finally, combining our growing data with MSSNG in
coming releases will make data from this unique ances-
try available to global research endeavors which can then
investigate more fully the genetic architecture in this part
of the world compared to largely outbred populations.

Conclusions

Taken as a whole, our study provides several important
takeaways related to ASD research, especially in under-
studied global populations. First, comprehensive charac-
terization by WGS is a viable approach to identify genetic
etiology in a substantial fraction of affected individuals.
Second, we demonstrate the critical role played by de
novo variants even in settings of high consanguinity, and
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thus the importance of enrolling parents where available
to identify DNs with high specificity. Third, we observe
a fourfold enrichment of homozygous causes in con-
sanguineous families compared to non-consanguineous
families; however, even in consanguineous and multiplex
settings, the causative variant may be dominant/de novo,
highlighting the necessity of comprehensively examin-
ing all variant classes before concluding a case study.
Fourth, despite our cohort’s relatively high diagnostic
yield, over 73% of families remain unresolved. The miss-
ing genetic risk could be due to common variants, rare
variants in novel genes, variants in non-coding and regu-
latory regions, variants that could have been overlooked
by subsequent prioritization and definition of damag-
ing variants, or compound heterozygotes resulting from
a combination of different variant classes (e.g., CNV on
one allele and SNVs/indels on another). Accounting of
these types of variants in the next release of the study
may lead to genetic diagnosis in unresolved families. In
all, we believe the BARAKA-Qatar study’s plans to con-
tinue growing cohorts with higher representation from
the Middle East, North Africa and South Asia will help
advance global understanding of ASD etiology in this
region of the world.
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