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Computer aided progression 
detection model based 
on optimized deep LSTM 
ensemble model and the fusion 
of multivariate time series data
Hager Saleh 1, Eslam Amer 2, Tamer Abuhmed 3*, Amjad Ali 4, Ala Al‑Fuqaha 4 & 
Shaker El‑Sappagh 3,5,6*

Alzheimer’s disease (AD) is the most common form of dementia. Early and accurate detection of 
AD is crucial to plan for disease modifying therapies that could prevent or delay the conversion to 
sever stages of the disease. As a chronic disease, patient’s multivariate time series data including 
neuroimaging, genetics, cognitive scores, and neuropsychological battery provides a complete profile 
about patient’s status. This data has been used to build machine learning and deep learning (DL) 
models for the early detection of the disease. However, these models still have limited performance 
and are not stable enough to be trusted in real medical settings. Literature shows that DL models 
outperform classical machine learning models, but ensemble learning has proven to achieve better 
results than standalone models. This study proposes a novel deep stacking framework which 
combines multiple DL models to accurately predict AD at an early stage. The study uses long short-
term memory (LSTM) models as base models over patient’s multivariate time series data to learn 
the deep longitudinal features. Each base LSTM classifier has been optimized using the Bayesian 
optimizer using different feature sets. As a result, the final optimized ensembled model employed 
heterogeneous base models that are trained on heterogeneous data. The performance of the resulting 
ensemble model has been explored using a cohort of 685 patients from the University of Washington’s 
National Alzheimer’s Coordinating Center dataset. Compared to the classical machine learning models 
and base LSTM classifiers, the proposed ensemble model achieves the highest testing results (i.e., 
82.02, 82.25, 82.02, and 82.12 for accuracy, precision, recall, and F1-score, respectively). The resulting 
model enhances the performance of the state-of-the-art literature, and it could be used to build an 
accurate clinical decision support tool that can assist domain experts for AD progression detection.

Alzheimer’s disease (AD) dementia is a neurovegetative disease with a long prodromal stage that has almost no 
care. AD has become the fifth leading cause of death in the elderly1. In 2018, the dementia patients reached 50 
million and it is expected that in 2050 one case of AD will be diagnosed after every 33 s with about one million 
new cases every year2. AD is a major disease that affects the health of the elderly and the causes of AD are mostly 
unknown yet, and there is almost no cure or a way to stop it. Therefore, early identification of patients at risk of 
developing AD is crucial to plan for disease-modifying therapies that could prevent or delay the conversion to 
sever stages of the disease1. Fortunately, the risk factors and symptoms of AD are reported as aging, genetics, etc. 
However, recent developments in machine learning could help to diagnose and predict AD based on the avail-
able large quantity of datasets like Alzheimer’s Disease Neuroimaging Initiative (ADNI), Open Access Series of 
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Imaging Studies (OASIS), and Australian Imaging Biomarkers and Lifestyle Study of Ageing (AIBL)3. No study 
in the literature built a stacking ensemble model for AD detection based on LSTM base classifiers and time series 
data, especially based on the well-known NACC dataset. In this study, we propose a novel stacking ensemble 
model based on a group of LSTM base classifiers to interpret time series data collected from the National Alzhei-
mer’s Coordinating Center (NACC) NACC dataset. No study in the literature has proposed similar architecture, 
especially based on this dataset. Unlike the problem of disease progression modeling covered by the existing 
literature, this study has the following contributing points. (1) Propose a novel deep learning model to accurately 
predict AD based on a collection of medically relevant and cost-effective multivariate time series data. (2) Use 
the Bayesian optimizer technique to build an optimal deep stacking model using a heterogeneous set of LSTM 
base classifiers and different meta learners including SVM, LR, and RF. (3) Comprehensively analyze the results 
of different models using the NACC real and time series dataset. The study compares the performance of different 
classical ML models, single LSTM models based on different longitudinal modalities, and different architectures 
of the deep stacking ensembles based on heterogeneous LSTM models and heterogeneous time series modalities. 
The remainder of the paper is organized as follows. In “Related work” section reviews the related state-of-the-art 
related work on AD progression detection. In “Materials and methods” section presents the materials and meth-
ods that have been used in the study. In “Proposed AD progression detection framework” section represents the 
proposed model. Section "Experimental results" discusses the experimental results. In “Limitations and future 
directions” section discusses the limitations of the study and the future directions. Finally, the conclusion is 
discussed in “Conclusion” section.

Related work
In this section we review the most related work of Machine learning (ML) in AD progression detection. These 
include the review of the role of single and multiple modalities, timeseries data, and ensemble modeling.

Single modality single ML/DL model
ML algorithms are widely used in medical domain and proven their significant improvements in detecting 
and diagnosing different diseases, such as autism4, Parkinson’s disease5, dementia6, depression7, and stroke8 
etc. Many studies have been done to diagnose AD and predict its progression9. Most AD studies are based on 
neuroimaging data, such as magnetic resonance imaging (MRI) and positron emission tomography (PET)10–13. 
Classical ML techniques like decision tree, random forest, support vector machine (SVM), logistic regression, 
and others have been also heavily used in AD domain3, 9. Rabeh et al.14 integrated the SVM and decision tree and 
built a classifier to determine whether a patient is suffering AD or MCI. The authors extracted the hippocampus, 
corpus callosum, and cortex region of interests (ROIs) from MRI images; they used three SVM classifiers, one 
for each ROI independently to classify subjects, and the final decision was made by combining the results of the 
three SVMs using a decision tree. Ferreira et al.15 used SVM and compared the diagnostic accuracy of MRI, PET, 
and Single-photon emission computed tomography (SPECT) images in detecting AD. Other studies used other 
modalities to predict AD. for example, Moore et al.16 used demographic and genetic data with random forest 
classifier to predict AD. As a subset of machine learning techniques, deep learning (DL) has received significant 
attention in the last few years and has been used widely in AD and other domains especially with neuroimaging 
data17–19, 84, 85. Farooq et al.20 proposed a 2D convolutional neural network classifier based on MRI images to 
determine if the subject is AD, mild cognitive impairment (MCI), NC, or late MCI. The study used transfer learn-
ing on GoogleNet, ResNet-18, and ResNet-152 models. Jain et al.21 utilized VGG-16 pretrained on ImageNet for 
feature extraction to detect AD using MRI images. Previous studies are mostly based on single modality. How-
ever, because AD is a complex disease marked by beta-amyloid and tau-mediated injuries in addition to brain 
atrophy and cognitive decline, physicians always consider heterogeneous multivariate data to take accurate and 
effective decisions22. Acquiring data from single modality did not provide sufficient information for diagnosis, 
but the fusion of multivariate data proved their effectiveness to predict longitudinal disease progression23. Dif-
ferent modalities provide information about the disease from different perspectives. As a result, the accuracy of 
the machine leaning models based multivariate data is better than that of single modality24.

Multivariate baseline data and ML/DL models
The integration of heterogenous multivariate data (i.e., neuroimages, lab tests, memory tests, genetics, etc.) is 
expected to improve the performance of the ML models and supports the ML models to provide tailored and 
customized decisions25. The main reason for this behavior is because the ML models are based on the full profile 
of the patient and each modality offers different details for the AD which makes classifier more effective26. Mul-
tivariate data fusion techniques are (1) early fusion where all modalities are integrated in a single dataset which 
is utilized by a single ML model to predict AD, and (2) late fusion where every modality is utilized by a separate 
ML model and the decisions of all these models are combined to take the final decision1. The last method is 
called ensemble learning27. The combination of multiple ML algorithms is called ensemble learning. Ensemble 
techniques like bagging, boosting, voting, and stacking are expected to improve the algorithm performance28. 
Ensemble models are predefined models like random forest and extreme gradient boosting (XGboost), or they 
could be tailored models like stacking and voting29. Alickovic and Subasi30 explored the role of RF to diagnose 
AD using MRI images. Image features were extracted using the histogram, and these features were used as inputs 
for different classifiers including SVM, multilayer perceptron, k-nearest neighbor, random forest, naïve Bayes, 
logistic regression, and decision tree. The study discovered superior results of RF ensemble compared to other 
classifiers. Ortiz-Garcia et al.31 integrated MRI and PET image modalities to detect AD using the deep belief 
network. The study proposed a tailored ensemble of deep belief networks by integrating the four different vot-
ing algorithms of majority voting, weighted voting, SVM based data fusion, and deep belief network-based data 
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fusion. The accuracy was about 90% for deep belief network and SVM based voting for classification of NC vs. 
AD subjects. Lee et al.23 developed a multivariate recurrent neural network (RNN) using different biomarkers 
including MRI images, demographic data, cognitive scores, and cerebrospinal fluid (CSF) biomarker to predict 
the progression of AD. An et al.32 integrated many clinical data including medical history, neuropsychiatric 
inventory questionnaire, geriatric depression scale, cerebrovascular disease, and Hachinski ischemic score using 
an ensemble of deep belief network to classify AD patients. The study utilized two sparse autoencoders at the 
voting layer to learn features, reduce the correlation of attributes, and diversify the base classifiers. The previ-
ous studies were based on multivariate of baseline data, especially neuroimaging data. Mirzaei and Adeli3 and 
Arafa et al.25 provided recent surveys of ML and DL techniques that have been used in AD diagnosis. However, 
AD is a chronic disease which is developed over time. Multivariate time series data analysis could improve the 
accuracy of ML and DL models24, 33.

Multivariate time series data and ML/DL models
ML models have been used to learn time series data by extracting statistical features from the time series data as a 
preprocessing step. Then these learned features are used by classical ML models to detect or predict AD. El-Sap-
pagh et al.34 fused a collection of 2.5 years’ time-series data including comorbidities, cognitive scores, medication 
history, and demographics. The resulting data were preprocessed to extract representative statistical features, and 
these features were learned using many classical ML models as SVM, k-nearest neighbor, logistic regression, and 
decision tree. In addition, random forest ensemble model has been explored. As expected, random forest achieved 
the best results. Random forest has been used by Ramírez et al.35 to detect MCI patients. In the TADPOLE grand 
challenge, (TADPOLE grand challenge: https://​tadpo​le.​grand-​chall​enge.​org/) Moore et al.16 applied the random 
forest technique to predict AD achieving an AUC of 0.82 and a 3-class classification accuracy of 0.73. Classical 
ML and ensemble algorithms have limitations to understand and extract deep features from time series data36. In 
comparison, many deep learning algorithms, such as convolutional neural networks (CNN) and RNN, have been 
designed to extract deep temporal features from time series data which are more representative than the statistical 
features37. For the most recent advances in DL studies in AD, readers are guided to this study38. In36, El-Sappagh 
et al. designed a two-stage long short-term memory (LSTM) based DL model for AD progression detection. The 
study was based on the early fusion of multivariate time-series data such as neuroimaging data, cognitive scores, 
CSF biomarkers, neuropsychological battery, and demographics. Robust hybrid deep learning models have already 
been successfully applied to AD progression detections24. Moreover, in the medical domain, it is not easy to 
introduce novel ML methods while physicians are asking for methods that are multi-modal with comprehensible 
recommendations26. In24, Abuhmed et al. proposed a deep multivariate bidirectional LSTM (BiLSTM) ensemble 
model based on the late fusion of five time series modalities including PET, MRI, neuropsychological battery, 
neuropathology, and cognitive scores. The extracted temporal features from the five BiLSTM models are again 
fused with features extracted from non-time series features (e.g., demographics and genetics) using feed forward 
neural network. El-Sappagh et al. proposed a hybrid CNN-LSTM deep learning model. In this architecture, five 
modalities were learned with five different CNN-LSTM hybrid models. The extracted features from different 
modalities are fused and used to predict AD progression. DL models outperformed all classical models in most 
AD studies. However, even the proposed DL models made late fusion of heterogeneous features, the resulting 
models have limitations because they did not explore the capabilities of the ensemble algorithms such as stacking.

Ensemble modeling and time series data
An ensemble model, also known as multiple classifier model, combines a pool of intelligent classifiers seeking 
to exploit the strengths of each classifier in such a way to reduce the generalization error you may get from any 
single model39. Ensemble models including bagging, boosting, voting, and stacking have attracted much research 
for years in different application domains including AD domain, and they achieved superior results compared to 
other ML and DL models40–42, 85. Sørensen et al.43, proposed a bagging ensemble of SVM base classifiers. Authors 
asserted that the ensemble SVM outperformed single SVM classifications. Loddo et al.,44 proposed a voting deep 
ensemble model based on the three DL models of AlexNet, ResNet101, and InceptionResNetV2 as base classi-
fiers and average voting to combine decisions. This ensemble was based on fMRI data as input and achieved an 
accuracy of 98.51% in the binary case, and 98.67% in the multiclass case. Ji et al.45 proposed ensemble model 
of ResNet50, NASNet, and MobileNet for diagnosing AD. Jabason et al.46 proposed ensemble of DenseNet and 
ResNet architectures based on MRI data, and the majority voting technique was applied to make the final deci-
sion. Kang et al.47 proposed a majority voting-based ensemble classifier for AD diagnosis. The proposed multi 
model multi slice ensemble selected the top 11 coronal slices of grey matter density maps for AD versus cognitive 
normal; then, discriminator of a generative adversarial network, VGG16, and ResNet50 were trained with the 
selected slices, and the majority voting was used to merge the multi-slice decisions of each model. Zhang et al.48 
integrated 3D-VGG classifiers with weighted majority voting approach to create an ensemble classifier. However, 
building decision support system based on single modality (e.g., neuroimaging data as MRI) is not sufficient 
in medical domain because it is not trusted, the resulting ensembles did not optimize the diversity among base 
classifiers, and these studies did not utilize time series data. It is worth noting that current AD ensemble-based 
studies tend to utilize a limited amounts of training data, feature sets, and numbers of modalities while ignoring 
time series data completely16, 49.

Selecting, optimizing, and training base classifiers is the first stage in generating ensemble classifier. We can 
train N different algorithms, with a single training dataset, to generate N heterogeneous classifiers. Another 
method is to create N different portions of data from the input data and use a single classifier with each portion. 
For example, Choi et al.50 enhanced the diversity of the deep convolutional neural network base models of their 
ensemble classifier based on MRI data by using multiple MRI projections with different CNN architectures. 

https://tadpole.grand-challenge.org/
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In addition, the selection of the optimal fusion weights of the CNN members was designed as a generalization 
loss solved using the sequential quadratic programming. The rule is to adopt an approach that maximizes the 
diversity of base classifiers. Stacking ensemble models support the combination of both diversity enhancement 
approaches by selecting different features set to be used to train different base classifiers. Stacking is the training 
of a meta-algorithm to combine the predictions of many other learning algorithms, i.e., base classifiers. First, 
base algorithms are trained using selected feature set from input data, then the meta-learner is trained to make 
the final prediction using all the predictions of the base models as inputs. Stacking always yields performance 
better than any single one of the trained base models51. It has been successfully used in both regression and clas-
sification tasks52, 53. In addition, it is a popular technique in medical54, 55 and non-medical56, 57 domains. Fang 
et al.58 improved the diversity in the proposed deep stacking ensemble model by using different input data (i.e., 
MRI and PET images) with different base CNN classifier architectures (i.e., GoogleNet, ResNet, and DenseNet). 
Next, the Adaboost classifier with single decision tree classifier has been used as the meta-learner. An et al.,32 
proposed DELearning which is a stacking ensemble model for AD diagnosis. The study integrated the baseline 
features of seven groups of measures from the National Alzheimer’s Coordinating Center (NACC) dataset59 
including medical history, Hachinski ischemic score, Functional Activities Questionnaire, etc. The neural net-
work is used as a meta classifier. However, most existing studies on AD are based on the ADNI dataset, and 
majority of ensemble studies are based on the baseline data of MRI modality. As previously asserted, time series 
data analysis with suitable DL algorithms such as LSTM has achieved improved results than studies that were 
based on baseline data22, 60–64.

Materials and methods
In this study, we predict the AD progression based on multivariate time series data analysis. We proposed a deep 
LSTM stacking ensemble that can interpret the time series medical data and predict if the patient will progress 
to AD or not. In this section, we discuss the used dataset, the formulation of the problem, the LSTM unit, and 
the proposed stacked DL model architecture.

Dataset description
The University of Washington’s NACC dataset65 is publicly available as a longitudinal AD data aiming to facilitate 
researchers in the field of AD. The NACC maintains a database of participant information collected from 34 past 
and present National Institute on Aging-funded Alzheimer’s Disease Centers. These datasets include standardized 
cognitive, behavioral, and functional data for each participant based on their annual visits. In this study, we used 
dataset of 685 subjects (i.e., cognitively normal (CN) of 229 and AD of 456). Table 1 shows the description of the 
selected patients. The initial number of patients in NACC dataset was 2,409. By removing patients that had no 
baseline visit and no regular visits, the number of patients dropped to 882. We then selected the patients that had 
three to six visits to build the time series dataset, and the number of patients dropped to 685. The distribution of 
patients with their available visits in both categories is as follows: 2-time steps (139), 3-time steps (189), 4-time 
steps (149), 5-time steps (125), and 6-time steps (83). Our study is based on a time series dataset of six visits 
against each patient. We selected 56 medically relevant and well-known features from the NACC dataset based 
on five modalities including A1 (Subject Demographics, A5 (subject health history), B1 (physical characteristics), 
B6 (geriatric depression scale (GDS) sub scores), and B7 (functional activities questionnaire (FAQ) sub scores). 
Detailed information about these feature categories is provided in the Supplementary Table S1. These features 
are significant because they provide information about the current levels of cognitive performance of a person. 
For example, FAQ is used by domain experts to assess the severity of the disease and to distinguish between the 
different stages of AD. As can be noticed, our study is based on cost-effective time series features which are easy 
to collect in the hospital66. We did not consider any neuroimaging features. Neuroimaging data are always either 
limited or not available, especially in developing countries, due to their cost34. In addition, other features like 
cognitive scores can accurately predict patient status more than neuroimaging features. For example, Donnelly-
Kehoe et al.67 concluded that the maximum accuracy achieved by using MRI features does not reach the standard 
of using the mini-mental state examination (MMSE) by itself.

LSTM
RNN are deep learning models that are naturally good at capturing longitudinal and temporal patterns in time 
series data. The LSTM is a new variant of the RNN that solves the problem of vanishing and exploding gradients68. 
The LSTM unit has the internal structure represented in Fig. 1. There are three gates in an LSTM cell; 1- input 
gate ( itn ), 2- forget gate ( ftn ), and 3- output gate ( otn ). The input, forget, and output gates are used to control the 

Table 1.   Dataset description.

Feature CN (n = 229) AD (n = 456) Combined (n = 685)

Sex (male/female) 119/110 225/231 344/341

Age 73.066 ± 9.074 73.840 ± 09.430 73.581 ± 09.315

# Years education 15.205 ± 3.201 15.500 ± 03.013 15.401 ± 03.078

MMSE 27.652 ± 8.268 28.089 ± 11.584 27.943 ± 10.588

GDS 73.066 ± 2.220 73.840 ± 02.291 73.581 ± 02.267
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update, maintenance, and deletion of information contained in cell state, respectively. Ctn,Ctn−1 and C̃tn are the 
current cell status value at any time tn , last time step cell status value, and the update of the current cell status 
value, respectively. htn−1 is the output value by each memory cell in the hidden layer at the previous time step. 
htn is the value of the hidden layer at time tn based on C̃tn and Ctn−1 . θ s and b s are the set of weight matrices and 
biases vectors, respectively, updated following the backpropagation through time algorithm. In addition, ⊗ rep-
resents the Hadamard product; σ is the standard logistic sigmoid function; ⊕ is the concatenation operator; ϕ is 
the output activation function, e.g., SoftMax. The computation process of Fig. 1 is denoted as in the Eqs. (1)–(7):

LSTM-based DL architecture has been widely used for modeling sequences and time series data22, 60, 61. We 
have previously used the LSTM for diagnosing AD and predicting its progression in24, 33, 36.

Stacking deep ensemble classifier
The main idea behind ensemble modeling is to weigh several base classifiers and combine their individual predic-
tions in a way that improves the overall performance of the resulting ensemble. The key requirement for building 
a successful ensemble is the selection of the most accurate and diverse list of base models. This combination of 
these models’ predictions adds bias which in turn counters the variance of a single base model. This reduction in 
variance of predictions caused the ensemble to perform better than any individual best model. Stacking has the 
most sophisticated approach for combining the predictions of base classifiers (level-0 models). A separate ML 
model called meta-learner (level-1 model) is used to learn the predictions of base classifiers and automatically 
assigns weights to every base model based on its performance level. Meta-learner deduces the biases of base 
models with respect to the training sets, so meta-learner is a weighted averaging method that assigns weights to 
the input predictions. As a result, stacking ensemble is typically heterogeneous where its diversity comes from 
the different learning algorithms employed53. The architecture of the deep stacking ensemble model is shown in 
Fig. 2. To build this deep stacking ensemble model, Algorithm 1 discusses the steps of the building process. Note 

(1)ftn = σ
(

θf ·
[

htn−1 , xtn
]

+ bf
)

(2)itn = σ
(

θi ·
[

htn−1 , xtn
]

+ bi
)

(3)C̃tn = tanh
(

θC ·
[

htn−1 , xtn
]

+ bC
)

(4)Ctn =
(

ftn ⊗ Ctn−1 ⊕ itn ⊗ C̃tn

)

(5)otn = σ
(

θo ·
[

htn−1 , xtn
]

+ bo
)

(6)htn = otn ⊗ tanh
(

Ctn

)

(7)yn = ϕ
(

θyhtn + by
)

Figure 1.   LSTM unit.
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that the base classifiers in Algorithm 1 are deep learning (e.g., LSTM model) models with different architectures. 
Even the deep learning models are with the same architecture, they could be heterogeneous because each model 
is trained based on different number of modalities and so has different learned weights.

In Algorithm 1, the input dataset is divided into training and testing sets DTrain and DTest . The training 
set DTrain is either used to optimize the list of base classifiers C1,C2, . . . ,CP or subset of its feature set is used 
to optimize different set of the base classifiers. The main idea is to select the best base classifier with the best 
list of features from DTrain . The output of the selected list of base classifiers is used to build the second level 
dataset that is used as input to train and optimize another meta classifier. Level 1 training set is (P + 1)-tuples: 
〈

cp1, cp2, . . . cpP , c
〉

, cpi is the class predicted by level 0 classifier Ci , P is the number of level 0 classifiers, and c is 
the class label. The k-fold cross validation is used to train the base classifiers, where the base classifiers are trained 
with k-1 folds and the predictions of the kth fold are included in the training data set for the meta-classifier. This 
process is repeated k times which produces a new training set of the same size as DTrain . The new dataset is used 
to train and optimize the meta classifier. Stacking ensemble solves two issues of (1) creating out-of-sample predic-
tions, and (2) identifying distinct regions for each model where it performs the best69. Based on that, the ensemble 
learns a different weight for each base classifier. For linear combination of base classifiers C = {C1,C2, . . . ,CP} 
with weight of W = {W1,W2, . . . ,WP} , the final decision hypothesis is hstacking (x) =

∑P
i=1 WiCi(x) , where the 

weight vector W is learned by the meta-classifier, 
∑P

i=1 Wi = 1 , ŷi = Ci(x) , and ŷ = hstacking (x).

Proposed AD progression detection framework

The proposed model is based on the NACC multivariate time series dataset. This dataset is medically divided into five 
different modalities. The data is randomly divided into the training/validation (80%) and the testing (20%) sets in a strati-
fied way from the first beginning to prevent the information leakage problem. The training sets or training modalities are 
used to train and optimize the base classifiers independently using the k-fold cross validation technique. After that the 
training datasets are used to build the stacking ensemble model and select the best meta-learner. Stacking ensemble has 
been optimized using three meta classifiers including the SVM, the RF, and the logistic regression (LR). The optimization 
of models’ hyperparameters has been done using grid search, and the best meta learner has been selected. On the other 
hand, architectures of base LSTM classifiers are optimized using the Bayesian optimization technique to select the best 
hyperparameters for every base model. Different LSTM architectures are optimized for different modality combinations.

Figure 2.   Stacking ensemble of deep learning models.
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This process helps to select the best LSTM architecture and its best modality combination with different 
feature sets. In other words, the original dataset is divided into different subsets (i.e., modalities) with the same 
training examples but different feature sets. This idea is inspired by the RF technique to introduce an extra level 
of heterogeneity among the base classifiers. In this case, each base LSTM classifier is optimized with a different 
dataset, which is expected to result in a different LSTM architecture. This optimization is achieved using the 
Bayesian optimizer. Note that the base classifiers’ input data are based on different combinations of modalities. 
These combinations are medically and technically valid because combining different modalities have often been 
used by domain experts to make decisions and combining different modalities results in integrating heterogene-
ous features that complement the information provided to the classifier. In addition, selecting the best modalities 
is considered as a medically intuitive feature selection technique. As a result, the proposed stacking model has 
two sources of heterogeneity including the usage of different datasets and different base classifiers. The selection 
of the best number of base classifiers and the best meta-learner is based on an empirical and manual process. 
The general architecture of the proposed model is shown in Fig. 3. In the following subsections, we discuss each 
step in more details.

Data preparation tie

Data preparation has the four sub-steps as follows:

a.	 Prepare the null values: Based on the NACC documentation, it encodes missing values with different codes 
including 88, 888, 9, 99, 999, − 4.4, and − 4. All these values have been replaced by the NULL value and con-
sidered as missing.
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b.	 Handle irregular time steps: Building a time series data analysis model using deep learning depends mainly 
on the length of the time series. Based on the availability of visits for every patient, we selected the largest 
number of patients who have the highest number of visits. In this study, each patient has at most six visits. 
Some patients have three, four, or five visits. We regularize the number of visits by setting the values of the 
missing visit to zero. By using LSTM models, they will neglect these visits and consider them as if they do 
not exist.

c.	 Convert the problem to binary classification task: The Global CDR score is a well-known clinical metric to 
measure the AD levels70, 71. This score is calculated from six cognitive sub-scores which are defined as the 
standard CDR scale according to clinical scoring rules66. Global CDR score has five different stages including 
0 (no impairment), 0.5 (questionable impairment), 1 (mild impairment), 2 (moderate impairment), and 3 
(severe impairment). This score has been used to determine the class of AD patient. If the value of global 
CDR is 0, 0.5, or 1 for all visits, the patient is considered as a cognitively normal patient. If the global CDR 
value is 2 or 3 in all visits or changed to one of these values during the last visits, the patient is considered 
a dementia case. Other researchers can utilize the proposed architecture to measure the AD progression 
based on other cognitive scores such as MMSE and FAQ in place of the global CDR. The resulting binary 
classification task has the distribution of 229 vs. 456 for Not AD vs. AD. After dividing the original modali-
ties into 80/20 for training and testing respectively using the stratified technique, we used the oversampling 
technique to balance the training dataset modalities only.

d.	 Determine the number of visits for each patient: based on the availability of visits data of the patients, the 
proposed models have been optimized based on six-time steps. The selected number of steps is sufficient to 
train LSTM models and minimize the missing values in the resulting dataset. The dataset is then randomly 
divided into 80% training set and 20% testing set using stratified methods. The training set is used to optimize 
the base classifiers and the stacking ensemble. The unseen test data is used to measure the generalizability 
of the resulting ensemble classifier.

Data preprocessing
We adopted two preprocessing steps including the handling of the missing values and normalizing the data. 
Handling missing values depends on the type of data. For each patient, we replace the missing values with the 
mean, median, and mode values for the numerical, ordinal, or categorical data, respectively. For easier learning 
and fast conversion of deep learning models, each feature should have the same effect on the model performance. 
To achieve this goal. All numerical features have been normalized using the z-score method, i.e., zj = (xj − µj)/σj 
where xj is the participant’s original value for feature j , zj is the normalized value, µj is the feature’s mean, and 
σj is the feature’s standard deviation. The z-score method converts sets of data, so they have a zero mean and 
unit standard deviation. The values of categorical features have been encoded. After finishing the preprocessing 
steps on the training dataset, these fitted operators on the training set are used to directly transform the test set. 
This implementation prevents the information leakage problem and allows us to test the models on untouched 
test data.

Base ML models training process
The performance of the stacking ensemble model is totally based on the performance of its base classifiers and the 
type of feature sets used with these base models. For selecting the best base classifiers, they must be as accurate 
and diverse as possible. To achieve this objective, we explore many different fusion methods of multivariate time 
series and use each resulting dataset to optimize a different LSTM model. We use the Bayesian optimizer to select 
the best list of hyperparameters for each LSTM model. We tune an LSTM model with each of the six feature 
sets. Then, we combine two feature sets to measure the effect of adding more information on the performance 
of the LSTM model. Note that with the new combined feature sets, we tune a separate LSTM model. Then, we 
combine three feature sets and tune different LSTM models. The same process is repeated by combining four and 
five feature sets. The search for the best LSTM architecture is based on the Bayesian optimizer. We notice that by 
adding more feature sets the performance of the models is enhanced. The best LSTM model has been selected 
based on the fusion of B7 feature set with other feature sets. Based on the results of one modality-based LSTM 
models, we fused this modality with other and built other 2-feature sets LSTM models, etc.

Figure 3.   The pipeline for optimizing the base classifiers of the proposed ensemble model.
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Stacking model training process
The training process for the proposed stacking ensemble is based on two stages as discussed in Algorithm 1. The 
first stage is to select the optimum ensemble architecture with the best number of LSTM base classifiers and the 
best sets of timeseries feature sets for each classifier. The second stage is to select the best meta classifier based on 
the outputs of the level 1 classifiers, see Fig. 4. In the following subsections, we discuss these steps in more detail.

Figure 4.   Proposed multimodal deep LSTM stacking ensemble models.
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Figure 5.   Multivariate timeseries data fusion format.
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Level 1 classifiers
Our dataset is divided into four multivariate time series feature sets plus one static modality to learn AD progres-
sion detection problem. Each modality has a collection of features which are medically related. Each of these 
feature sets is either used alone to train an LSTM model or combined with other feature sets and used to optimize 
an LSTM model, as shown in Fig. 5. To fuse the demographics static feature set with other time series feature 
sets, we have repeated the same values with every time step. In our experiments, we explore the best combination 
of feature sets that achieve the best results. Each modality has six-time steps. We are based on early fusion 
mechanism of multivariate data, where data are fused and then jointly inputted to the DL model pipeline, see 
Fig. 5. The formulation of the classification problem is illustrated in Fig. 5 where the patient can be considered 
as normal, progressed AD, or AD based on the values of his/her CDR values over time. For M feature sets of data 
represented as X =

{

X(1), . . . , X(M)
}

 ,  and output y  .  Each modality Xm is  represented as 
Xm =

{

x
(m)
1 , . . . x

(m)
i , . . . , x

(m)
N

}

 from N patient examples, and each example x(m)
i  is a multivariate time series 

x
(m)
i =

{

x
(m)
i1t

, x
(m)
i2t

, . . . , x
(m)
ift

}

 , for t = 1, . . . , s time-steps and f  set of univariate time series. For N patients, 
each patient i is represented as xi =

{

x
(1)
i , . . . x

(m)
i , . . . , x

(M)
i , y

}

, i = 1, . . . , N . We optimize an LSTM mode for 
each time series modality. In addition, extensive experiments are performed using two, three, four, and five 
modality fusions to select the best combinations of feature sets that achieve the best results. Binary cross-entropy 
cost function is used with all LSTM models, and Adam optimizer is used to search for the best weights of the 
neural network. The resulting LSTM models with the best modality combinations are used as base classifiers in 
the stacking ensemble. The best stacking architecture is based on seven LSTM base models. The best LSTM model 
is selected for every modality (i.e., A1, A5, B1, B6, and B7), and another LSTM base model has been optimized 
based on the whole feature set, see Fig. 5. The selection of base LSTM models is based on the performance of the 
optimized models on different feature sets combinations.

Stacking ensemble model based on seven base LSTM classifiers and SVM meta model achieved the best 
cross-validation results. A separate LSTM model has been optimized with every modality of A1, A5, B1, B6, 
and B7. In addition, an LSTM model has been optimized with the fused dataset of all features. For the single 
modality-based LSTM models, the Bayesian optimizer selected the best architectures as follows. The learning 
rate is 0.00001, the activation function is ReLu, optimizer is Adam, batch size is 50, number of epochs is 30, 
SoftMax is in the output layer, and categorical cross entropy is the cost function. For A1-based model, the opti-
mized architecture has one LSTM layer (210 units), 0.3 dropout, and L2 regularizer (0.3). For A5-based model, 
the optimized architecture has one LSTM layer (370 units), 0.5 dropout, and L2 regularizer (0.3). For B1-based 
model, the optimized architecture has one LSTM layer (150 units), 0.5 dropout, and L2 regularizer (0.1). For 
B6-based model, the optimized architecture has one LSTM layer (210 units), 0.5 dropout, and L2 regularizer 
(0.01). For B7-based model, the optimized architecture has one LSTM layer (490 units), 0.3 dropout, and L2 
regularizer (0.3). The best LSTM model with the fused feature sets has an optimized architecture with 3 LSTM 
layers (530, 330, 110), dropout of (0.2,0.5,0.2), L2 regularizer (0.05,0. 1, 0.3), epochs of 35, and batch size of 50.

Level 2 classifier
The P base classifiers at level 1 generate P outputs ŷ1, ŷ1, . . . , ŷP based on the input multivariate time series data. 
The resulting ŷi data are not time series. These output data are combined with the actual output y to form a new 
non-time series data, which is used to optimize the meta learner. We optimize the hyperparameters of three meta 
learners including SVM, logistic regression, and random forest using the grid search technique. SVM achieves 
the best results as a meta learner. The hyperparameters of the SVM classifier have been optimized using grid 
search. The final hyperparameters list is C = 6, kernel = “poly”, gamma = “scale”.

Experimental results
Evaluation metrics
The performance of the base classifiers and ensemble models is measured in terms of accuracy, precision, recall, 
and F1-score, which are defined as in Eqs. (8)–(11). The TP is the true positive, the TN is the true negative, 
the FP is the false positive, and the FN is the false negative. These are the most used in the medical informatics 
literature to increase the possibilities of results comparison.

(8)Accuracy =
TP + TN

TP + TN + FP + FN

(9)Precision =
TP

TP + FP

(10)Recall =
TP

TP + FN

(11)F1− score =
2× Precision× Recall

Precision+ Recall
.
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Models Feature set Accuracy Precision Recall F1-score

RF

A1 60.58 ± 0.93 55.90 ± 1.65 60.58 ± 0.93 57.06 ± 0.93

A5 62.04 ± 3.06 57.79 ± 3.65 62.04 ± 3.06 58.65 ± 2.79

B1 67.88 ± 1.75 65.21 ± 2.75 67.88 ± 1.75 64.57 ± 1.96

B6 67.15 ± 1.78 63.72 ± 1.6 67.15 ± 1.78 61.85 ± 1.4

B7 77.56 ± 2.52 77.09 ± 2.72 77.56 ± 2.52 77.02 ± 2.2

B7A1 64.07 ± 1.58 60.24 ± 2.27 64.07 ± 1.58 60.53 ± 1.95

B7A5 65.00 ± 1.70 59.94 ± 3.86 65.00 ± 1.70 59.56 ± 3.54

B7B1 62.91 ± 2.25 57.03 ± 3.76 62.91 ± 2.25 57.49 ± 2.72

B7B6 64.3 ± 1.67 59.07 ± 3.08 64.3 ± 1.67 58.73 ± 2.32

B7A1A5 63.72 ± 1.79 57.67 ± 3.15 63.72 ± 1.79 57.45 ± 1.84

B7A1B1 66.51 ± 3.58 63.23 ± 5.69 66.51 ± 3.58 61.77 ± 3.7

B7A1B6 63.02 ± 1.86 58.19 ± 2.64 63.02 ± 1.86 58.61 ± 1.98

B7A5B1 64.19 ± 2.03 59.39 ± 3.48 64.19 ± 2.03 59.15 ± 2.54

B7A5B6 64.53 ± 1.87 58.26 ± 3.71 64.53 ± 1.87 57.62 ± 2.61

B7B1B6 65.7 ± 1.84 61.98 ± 2.9 65.7 ± 1.84 61.25 ± 2.5

LR

A1 66.42 ± 0.28 53.12 ± 0.06 66.42 ± 0.28 53.02 ± 0.14

A5 64.23 ± 3.42 57.37 ± 5.08 64.23 ± 3.42 56.98 ± 4.2

B1 64.96 ± 1.40 58.63 ± 8.81 64.96 ± 1.4 57.45 ± 4.18

B6 67.15 ± 1.47 63.64 ± 2.49 67.15 ± 1.47 61.20 ± 0.94

B7 77.29 ± 0.73 77.03 ± 5.68 77.29 ± 0.73 77.12 ± 2.62

B7A1 63.60 ± 1.50 58.72 ± 2.11 63.60 ± 1.50 58.57 ± 1.23

B7A5 61.98 ± 2.07 56.76 ± 2.49 61.98 ± 2.07 57.27 ± 1.45

B7B1 60.98 ± 2.07 56.76 ± 2.49 61.98 ± 2.07 57.27 ± 1.45

B7B6 61.98 ± 2.07 56.76 ± 2.49 61.98 ± 2.07 57.27 ± 1.45

B7A1A5 64.54 ± 1.16 60.06 ± 1.56 64.54 ± 1.16 59.83 ± 1.51

B7A1B1 65.58 ± 0.93 61.5 ± 1.62 65.58 ± 0.93 60.74 ± 1.24

B7A1B6 63.6 ± 0.46 59.09 ± 2.27 63.6 ± 0.46 59.58 ± 2.33

B7A5B1 61.98 ± 2.07 56.76 ± 2.49 61.98 ± 2.07 57.27 ± 1.45

B7A5B6 63.72 ± 0.79 59.37 ± 0.65 63.72 ± 0.79 59.55 ± 1.03

B7B1B6 62.67 ± 0.68 58.56 ± 0.55 62.67 ± 0.68 59.14 ± 0.66

DT

A1 64.96 ± 2.36 61.90 ± 1.03 64.96 ± 2.36 62.28 ± 1.5

A5 55.47 ± 1.74 56.65 ± 2.26 55.47 ± 1.74 55.99 ± 1.82

B1 56.93 ± 1.64 56.23 ± 1.03 56.93 ± 1.64 56.56 ± 1.25

B6 62.77 ± 2.25 61.79 ± 2.45 62.77 ± 2.25 62.20 ± 2.3

B7 73.72 ± 1.64 76.52 ± 1.64 73.72 ± 1.64 74.36 ± 1.63

B7A1 58.49 ± 3.22 58.96 ± 2.78 58.49 ± 3.22 58.69 ± 3.03

B7A5 59.19 ± 2.36 58.71 ± 2.04 59.19 ± 2.36 58.85 ± 2.11

B7B1 58.02 ± 1.44 57.69 ± 1.85 58.02 ± 1.44 57.8 ± 1.55

B7B6 57.91 ± 2.07 57.18 ± 2.25 57.91 ± 2.07 57.49 ± 2.14

B7A1A5 57.09 ± 1.58 55.94 ± 1.5 57.09 ± 1.58 56.43 ± 1.49

B7A1B1 57.21 ± 1.5 57.07 ± 1.26 57.21 ± 1.5 57.09 ± 1.3

B7A1B6 57.56 ± 1.73 58.95 ± 1.95 57.56 ± 1.73 58.1 ± 1.75

B7A5B1 58.02 ± 2.51 57.53 ± 3.06 58.02 ± 2.51 57.71 ± 2.72

B7A5B6 57.91 ± 2.95 58.72 ± 2.34 57.91 ± 2.95 58.23 ± 2.69

B7B1B6 59.42 ± 1.44 59.04 ± 1.75 59.42 ± 1.44 59.16 ± 1.49

Continued
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Experimental setup
To evaluate the performance of the proposed LSTM stacking model, we implement, test, and compare many 
DL architectures with different modality combinations. For all experiments, we employed a machine with Intel 
core i7-6700 CPU and 32 GB of RAM. The proposed methods are implemented by using Python 3.8 distributed 
in Anaconda 4.7.7 (64-bit). The proposed models are implemented using Keras library based on TensorFlow as 
backend. A SoftMax activation function with cross-entropy loss is used for the classification task. Adam opti-
mizer is used with a fixed learning rate of 0.001. The training batch size and number of epochs are 30 and 50, 
respectively. To prevent overfitting, we use dropout, L2 regularization, and early stopping mechanisms. Regular 
machine learning models have been implemented using Scikit-Learn. To show the robustness of the proposed 
model, we compared it with other LSTM-based DL and regular ML classifiers. The dataset is divided into 80% 

Table 2.   Performance of regular ML techniques with the last visit data. Significance values are in bold.

Models Feature set Accuracy Precision Recall F1-score

SVM

A1 66.42 ± 0.46 53.12 ± 4.13 66.42 ± 0.46 53.02 ± 0.39

A5 64.96 ± 2.43 59.21 ± 4.96 64.96 ± 2.43 58.24 ± 2.66

B1 65.69 ± 0.46 61.50 ± 3.75 65.69 ± 0.46 60.78 ± 1.91

B6 63.50 ± 3.04 57.06 ± 5.96 63.50 ± 3.04 57.26 ± 3.07

B7 77.83 ± 1.63 77.33 ± 1.63 77.83 ± 1.63 77.35 ± 1.63

B7A1 63.02 ± 0.46 51.86 ± 2.25 63.02 ± 0.46 53.77 ± 0.93

B7A5 64.07 ± 2.03 52.38 ± 3.20 64.07 ± 2.03 52.72 ± 0.32

B7B1 63.07 ± 2.03 58.39 ± 4.21 63.07 ± 2.03 58.99 ± 2.43

B7B6 64.07 ± 2.03 57.39 ± 4.21 64.07 ± 2.03 56.99 ± 2.43

B7A1A5 63.84 ± 3.98 56.57 ± 7.05 63.84 ± 3.98 56.63 ± 3.96

B7A1B1 63.84 ± 1.29 58.99 ± 4.28 63.84 ± 1.29 59.6 ± 3.35

B7A1B6 64.07 ± 1.24 56.92 ± 3.02 64.07 ± 1.24 56.81 ± 2.34

B7A5B1 64.07 ± 2.03 57.39 ± 4.21 64.07 ± 2.03 56.99 ± 2.43

B7A5B6 65.70 ± 2.70 61.15 ± 5.54 65.70 ± 2.70 58.08 ± 2.54

B7B1B6 61.98 ± 1.01 55.26 ± 1.10 61.98 ± 1.01 56.11 ± 0.80

KNN

A1 69.34 ± 1.58 73.61 ± 4.73 69.34 ± 1.58 60.31 ± 0.49

A5 59.12 ± 1.43 51.54 ± 2.82 59.12 ± 1.43 53.63 ± 0.21

B1 66.42 ± 1.36 63.23 ± 2.14 66.42 ± 1.36 62.96 ± 2.59

B6 67.15 ± 1.86 63.64 ± 2.90 67.15 ± 1.86 61.20 ± 2.41

B7 71.53 ± 1.80 73.65 ± 2.93 71.53 ± 1.80 72.14 ± 2.43

B7A1 62.68 ± 2.39 58.07 ± 3.27 62.68 ± 2.39 58.65 ± 2.53

B7A5 60.58 ± 2.03 55.56 ± 5.39 60.58 ± 2.03 56.62 ± 4.21

B7B1 60.58 ± 2.03 55.56 ± 5.39 60.58 ± 2.03 56.62 ± 4.21

B7A1 60.46 ± 2.94 54.5 ± 4.02 60.46 ± 2.94 55.69 ± 2.9

B7A1A5 62.67 ± 0.93 58.46 ± 0.73 62.67 ± 0.93 59.02 ± 0.49

B7A1B1 62.56 ± 2.25 59.58 ± 2.18 62.56 ± 2.25 60.12 ± 1.75

B7A1B6 62.21 ± 2.32 58.88 ± 2.78 62.21 ± 2.32 59.59 ± 2.57

B7A5B1 60.46 ± 2.94 54.50 ± 4.02 60.46 ± 2.94 55.69 ± 2.90

B7A5B6 62.09 ± 3.00 55.70 ± 5.04 62.09 ± 3.0 56.04 ± 2.69

B7B1B6 63.37 ± 2.94 60.13 ± 3.38 63.37 ± 2.94 60.44 ± 2.52

NB

A1 51.09 ± 1.14 47.74 ± 4.3 51.09 ± 1.14 49.17 ± 1.99

A5 54.74 ± 2.71 54.25 ± 2.37 54.74 ± 2.71 54.49 ± 2.52

B1 63.50 ± 1.14 60.87 ± 2.7 63.50 ± 1.14 61.53 ± 3.70

B6 65.69 ± 0.47 62.95 ± 3.22 65.69 ± 0.47 63.27 ± 0.96

B7 77.37 ± 3.41 79.82 ± 3.48 77.37 ± 3.41 77.90 ± 3.33

B7A1 57.09 ± 3.44 65.37 ± 3.98 57.09 ± 3.44 58.02 ± 3.33

B7A5 58.96 ± 3.40 64.57 ± 3.1 58.96 ± 3.40 60.05 ± 3.32

B7B1 58.96 ± 3.40 64.57 ± 3.1 58.96 ± 3.40 60.05 ± 3.32

B7B6 57.44 ± 2.28 64.74 ± 2.71 57.44 ± 2.28 58.47 ± 2.21

B7A1A5 58.49 ± 1.71 66.37 ± 2.93 58.49 ± 1.71 59.44 ± 1.55

B7A1B1 57.91 ± 3.90 65.97 ± 4.45 57.91 ± 3.90 58.86 ± 3.79

B7A1B6 55.82 ± 5.53 63.34 ± 5.10 55.82 ± 5.53 56.83 ± 5.45

B7A5B1 57.44 ± 2.28 64.74 ± 2.71 57.44 ± 2.28 58.47 ± 2.21

B7A5B6 57.56 ± 2.57 62.73 ± 1.72 57.56 ± 2.57 58.67 ± 2.56

B7B1B6 57.91 ± 4.79 64.56 ± 4.38 57.91 ± 4.79 58.98 ± 4.69
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training and validation and 20% testing. The nested cross validation has been used to validate machine learning 
and deep learning models. The models have been tested using untouched datasets which prevent the possibility 
of data leakage, and the testing results have been reported. The performance of the models is compared using the 
non-parametric Kruskal–Wallis statistical test. The α = 0.05 is considered statistically significant.

Results of regular machine learning models
We evaluated our proposed framework against the regular ML classifiers, such as the decision tree (DT), the 
K-nearest neighbor (KNN), the LR, the SVM, and the RF. The performance of these regular ML models is con-
sidered as the base line performance. To formulate the classification task, the last visit of the patient’s time series 
data is used as the input to the ML models, and the output is the same as in deep learning models. We assessed 
and analyzed our framework performance concerning the given features in our evaluation. The results are shown 
in Table 2. We evaluated models’ performance using single modalities and different combinations of modalities. 
Because classical ML models are simple, they have not benefitted from different fusions. B7 modality achieved 
the best testing results with RF (i.e., 77.56, 77.09, 77.56, and 77.02 for accuracy, precision, recall, and F1-score, 
respectively), and A1 achieved the worst performance with RF (i.e., 60.58, 55.90, 60.58, and 57.06 for accuracy, 
precision, recall, and F1-score, respectively). B7 modality achieved the best testing results with LR classifier (i.e., 
77.29, 77.03, 77.29, and 77.12 for accuracy, precision, recall, and F1-score, respectively), and A5 achieved the 
worst performance (i.e., 64.23, 57.37, 64.23, 56.98 for accuracy, precision, recall, and F1-score, respectively). B7 

Figure 6.   Comparison of the best performing ML model with the B7 feature set.

Table 3.   Performance of LSTM model with six visits timeseries data. Significance values are in bold.

Feature sets Accuracy Precision Recall F1-score

A1 63.65 ± 3.618 54.86 ± 2.149 63.65 ± 3.62 54.33 ± 1.62

A5 59.1 ± 6.184 59.29 ± 7.736 59.1 ± 6.18 59.4 ± 7.47

B1 64.96 ± 5.211 64.83 ± 3.845 64.96 ± 5.21 64.12 ± 2.96

B6 60.29 ± 5.792 60.70 ± 6.031 60.29 ± 5.79 60.60 ± 6.25

B7 80.25 ± 3.131 80.68 ± 2.909 80.25 ± 3.13 80.42 ± 3.05

B7A1 66.42 ± 2.636 64.23 ± 1.836 66.42 ± 2.64 63.32 ± 2.47

B7A5 79.56 ± 5.647 80.54 ± 3.888 79.56 ± 5.65 79.85 ± 5.27

B7B1 77.40 ± 2.29 77.16 ± 1.954 77.47 ± 2.29 77.91 ± 2.19

B7B6 76.79 ± 3.988 77.17 ± 3.386 76.79 ± 3.99 76.93 ± 3.66

B7A1A5 74.89 ± 4.829 74.32 ± 5.379 74.89 ± 4.83 74.24 ± 5.38

B7A1B1 66.13 ± 3.498 66.96 ± 0.541 66.13 ± 3.5 66.2 ± 2.87

B7A1B6 69.92 ± 4.722 68.97 ± 3.736 69.92 ± 4.72 69.01 ± 4.49

B7A5B1 73.14 ± 6.205 74.96 ± 3.953 73.14 ± 6.2 73.64 ± 5.86

B7A5B6 71.82 ± 8.905 71.78 ± 6.994 71.82 ± 8.9 71.77 ± 8.55

B7B1B6 73.57 ± 6.02 73.71 ± 5.148 73.57 ± 6.02 73.55 ± 5.78

B7A1A5B1 73.72 ± 4.58 74.27 ± 5.25 73.72 ± 4.58 73.67 ± 4.7

B7A1A5B6 69.34 ± 6.066 68.11 ± 6.481 69.34 ± 6.07 68.38 ± 6.19

B7A1B1B6 70.07 ± 3.907 68.6 ± 3.201 70.07 ± 3.91 68.69 ± 3.59

B7A5B1B6 71.16 ± 6.585 71.96 ± 5.649 71.16 ± 6.58 71.44 ± 6.46

B7A1A5B1B6 72.26 ± 9.424 71.0 ± 7.584 72.26 ± 9.42 70.76 ± 9.38
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achieved the best results with DT classifier (i.e., 73.72, 76.52, 73.72, and 74.36 for accuracy, precision, recall, and 
F1-score, respectively); however, A5 achieved the worst results (i.e., 55.47, 56.65, 55.47, and 55.99 for accuracy, 
precision, recall, and F1-score, respectively). With SVM, B7 achieved the best results (i.e., 77.83, 77.33, 77.83, 
and 77.35 for accuracy, precision, recall, and F1-score, respectively), and B6 achieved the worst results (i.e., 63.50, 
57.06, 63.50, and 57.26 for accuracy, precision, recall, and F1-score, respectively). B7 had the best results with 
KNN (i.e., 71.53, 73.65, 71.53, and 72.14 for accuracy, precision, recall, and F1-score, respectively), and A5 had 
the worst results (i.e., 59.12, 51.54, 59.12, and 53.63 for accuracy, precision, recall, and F1-score, respectively). 
With NB classifier, again B7 achieved the best results (i.e., 77.37, 79.82, 77.37, and 77.90 for accuracy, preci-
sion, recall, and F1-score, respectively), but A1 achieved the worst results (i.e., 51.09, 47.74, 51.09, and 49.17 for 
accuracy, precision, recall, and F1-score, respectively). The best performing modality was B7. SVM is the best 
classifier, and KNN was the worst one. As a result, B7 is used for optimizing the data fusion process, where we 
gradually fuse it with other feature sets, as discussed in the next experiment. Figure 6 shows a comparison among 
different regular ML models using the B7 dataset. We observed no significant difference between RF and LR, 
but RF is significantly different from other ML models (P-value = 0.03). The regular ML models are not good in 
learning time series data. Deep learning models like LSTM can learn the temporal patterns in longitudinal data 
collected over time for chronic diseases like AD. In the next experiment, we experimented with different feature 
sets using the LSTM model. In these experiments, we evaluated the performance of individual feature sets and 
different combinations of feature sets. We aimed at determining the best fusion of feature sets which enhances 
the accuracy of the resulting model.

Results of single LSTM models
Building a DL model based on the best combination of feature sets is expected to achieve better results. Our 
data are divided into medically related feature sets including A1, A5, B1, B6, and B7. Different feature sets can 
contribute differently to the classifier performance, and different combinations of feature sets can affect the role 
of every individual feature in the resulting fused set. In this experiment, we explore the role of time series data 
and deep LSTM models to improve the performance of the resulting classifier. In addition, we explore the role of 
fusing different feature sets. We aim to explore the best combination of features that achieve the best results with 
the LSTM. Therefore, investigating the performance of the LSTM when dealing with these different combinations 
of feature sets. As shown in Table 3, we find that our model’s testing accuracy was enhanced to 80.25 based on 
the B7 modality alone. These results are statistically significantly better than the RF classifier (P-value < 0.001). 
Different fusion of feature sets did not achieve good performance using singe LSTM model. This means that 
single LSTM model alone is not able to benefit from large number of time series features.

For example, the combination of the five feature sets (i.e., B7/A1/A5/B1/B6) resulted in low performance of 
72.26, 71.0, 72.26, and 70.76 for accuracy, precision, recall, and F1-score, respectively. However, the combina-
tion of three feature sets (i.e., B7/A1/A5) only resulted in better performance compared to the five feature sets 
combination (i.e., 74.89, 74.32, 74.89, 74.24 for accuracy, precision, recall, and F1-score, respectively). Another 
example, the combination of two feature sets only (i.e., B7/A5) resulted in better performance compared to the 
three feature sets combination (i.e., 79.56, 80.54, 79.56, and 79.85 for accuracy, precision, recall, and F1-score, 
respectively). In summary, the LSTM model based on B7 along has statistically significantly achieved better 
results compared to other fusions (P-value < 0.001). This means that the LSTM model is simple enough to be 

Figure 7.   Performance of the best performing feature sets with single LSTM models.
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Table 4.   Performance of the stacked deep LSTM ensemble model. Significance values are in bold.

Models Fused feature sets Accuracy Precision Recall F1-score

Stacking SVM

A1/A5/B1/B6/B7 69.34 ± 2.83 68.63 ± 3.05 69.34 ± 2.83 68.84 ± 3.01

A5/B1/B6/B7 78.10 ± 1.82 78.18 ± 1.85 78.10 ± 1.82 76.42 ± 1.84

B7/B1/B6 77.37 ± 2.31 77.44 ± 3.03 77.37 ± 2.31 75.5 ± 2.7

B7/B1 80.37 ± 1.94 80.44 ± 2.56 80.37 ± 1.94 80.5 ± 2.34

Best two feature sets 72.81 ± 2.17 71.33 ± 2.01 72.81 ± 2.17 70.92 ± 2.12

B7A5/B7B1/B7B6 76.46 ± 2.14 76.92 ± 2.22 76.46 ± 2.14 76.54 ± 2.07

B7A5/B7B6 82.02 ± 1.39 82.25 ± 1.7 82.02 ± 1.39 82.12 ± 1.34

B7A5/B7B1 80.44 ± 2.15 80.93 ± 2.33 80.44 ± 2.15 80.61 ± 2.18

Best three feature sets 75.91 ± 2.12 76.34 ± 2.03 75.91 ± 2.12 76.09 ± 2.06

B7A1A5/B7A1B6/B7A5B1/B7A5B6/B7B1B6 73.72 ± 1.43 73.72 ± 1.65 73.72 ± 1.43 73.72 ± 1.41

B7A1A5/B7A5B1/B7A5B6/ B7B1B6 73.72 ± 0.97 75.12 ± 1.56 73.72 ± 0.97 74.17 ± 1.1

B7A5B1/B7A5B6/B7B1B6 73.72 ± 2.19 74.35 ± 2.04 73.72 ± 2.19 73.97 ± 2.09

B7A5B1/B7A5B6 72.99 ± 1.53 74.2 ± 1.54 72.99 ± 1.53 73.41 ± 1.54

B7A1A5/B7B1B6 74.45 ± 1.53 77.5 ± 1.54 74.45 ± 1.53 75.1 ± 1.54

B7A5B1/B7B1B6 76.64 ± 2.79 77.22 ± 2.58 76.64 ± 2.79 76.87 ± 2.68

Best four feature sets 75.91 ± 2.67 75.39 ± 2.84 75.91 ± 2.67 75.54 ± 2.7

B7A1A5B1/B7A1A5B7/B7A1B1B6 73.72 ± 2.43 74.02 ± 2.82 73.72 ± 2.43 73.86 ± 2.65

Stacking LR

A1/A5/B1/B6/B7 70.98 ± 1.43 70.77 ± 1.45 70.98 ± 1.43 70.81 ± 0.94

A1/B1/B6/B7 78.10 ± 1.35 78.18 ± 1.82 78.10 ± 1.35 76.42 ± 1.68

B7/B1B6 75.91 ± 1.81 76.05 ± 2.95 75.91 ± 1.81 75.98 ± 2.29

B7/B1 79.74 ± 2.79 79.86 ± 3.83 79.74 ± 2.79 79.02 ± 3.62

Best two feature sets 75.91 ± 2.38 75.26 ± 2.42 75.91 ± 2.38 75.24 ± 2.37

B7A5/B7B1/B7B6 78.46 ± 2.31 78.46 ± 2.60 78.46 ± 2.31 78.4 ± 2.50

B7A5/B7B6 79.56 ± 1.63 79.37 ± 2.35 79.56 ± 1.63 79.45 ± 1.85

B7A5/B7B1 77.37 ± 2.49 78.11 ± 2.59 77.37 ± 2.49 77.64 ± 2.4

Three feature sets 75.18 ± 2.14 76.15 ± 1.94 75.18 ± 2.14 75.52 ± 2.06

B7A1A5/B7A1B6/B7A5B1/B7A5B6/B7B1B6 74.45 ± 0.74 74.59 ± 0.9 74.45 ± 0.74 74.52 ± 0.78

B7A1A5/B7A5B1/B7A5B6/B7B1B6 72.26 ± 0.55 74.13 ± 1.12 72.26 ± 0.55 72.82 ± 0.63

B7A5B1/B7A5B6/B7B1B6 72.99 ± 1.5 73.82 ± 1.8 72.99 ± 1.5 73.31 ± 1.57

B7A5B1/B7A5B6 72.26 ± 2.38 74.6 ± 2.68 72.26 ± 2.38 72.88 ± 2.58

B7A1A5/B7B1B6 74.45 ± 2.38 75.25 ± 2.68 74.45 ± 2.38 74.75 ± 2.58

B7A5B1/B7B1B6 77.37 ± 2.88 78.88 ± 3.3 77.37 ± 2.88 77.79 ± 3.01

Best four feature sets 75.91 ± 3.72 75.16 ± 3.73 75.91 ± 3.72 75.17 ± 3.72

B7A1A5B1/B7A1A5B7/B7A1B1B6 75.91 ± 2.83 75.39 ± 3.24 75.91 ± 2.83 75.54 ± 3.12

Stacking RF

A1/A5/B1/B6/B7 72.08 ± 1.94 71.72 ± 1.94 72.08 ± 1.94 71.85 ± 1.84

A1/B1/B6/B7 75.18 ± 2.15 74.38 ± 2.16 75.18 ± 2.15 74.16 ± 1.99

B7/B1B6 72.81 ± 3.68 72.05 ± 2.71 72.81 ± 3.68 72.27 ± 3.23

B7/B1 78.83 ± 2.14 78.91 ± 1.97 78.83 ± 2.14 77.34 ± 2.16

Best two feature sets 74.82 ± 2.03 73.98 ± 2.18 74.82 ± 2.03 73.92 ± 2.13

B7A5/B7B1/B7B6 77.19 ± 3.03 77.76 ± 3.46 77.19 ± 3.03 77.33 ± 3.07

B7A5/B7B6 78.10 ± 1.22 78.79 ± 1.57 78.10 ± 1.22 78.35 ± 1.47

B7A5/B7B1 76.28 ± 3.11 76.12 ± 3.07 76.28 ± 3.11 76.18 ± 3.06

Best three feature sets 77.37 ± 2.64 79.58 ± 3.14 77.37 ± 2.64 77.88 ± 3.02

B7A1A5/B7A1B6/B7A5B1/B7A5B6/B7B1B6 78.46 ± 0.74 78.66 ± 0.9 78.46 ± 0.74 78.55 ± 0.78

B7A1A5/B7A5B1/ B7A5B6/B7B1B6 76.09 ± 1.93 78.27 ± 2.23 76.09 ± 1.93 76.62 ± 2.18

B7A5B1/B7A5B6/B7B1B6 71.9 ± 1.70 72.85 ± 1.82 71.9 ± 1.70 72.24 ± 1.73

B7A5B1/B7A5B6 71.53 ± 2.58 73.31 ± 2.58 71.53 ± 2.58 72.08 ± 2.58

B7A1A5/B7B1B6 72.44 ± 3.47 73.55 ± 4.3 72.44 ± 3.47 72.82 ± 3.83

B7A5B1/B7B1B6 79.74 ± 2.14 80.48 ± 2.46 79.74 ± 2.14 79.99 ± 2.41

Best four feature sets 75.18 ± 2.83 74.34 ± 2.99 75.18 ± 2.83 74.32 ± 2.95

B7A1A5B1/B7A1A5B7/B7A1B1B6 73.9 ± 3.38 73.05 ± 3.71 73.9 ± 3.38 73.05 ± 3.57
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able to learn the complex temporal patterns in dataset with larger number of time series features. Figure 7 shows 
a comparison among different LSTM models. In the next experiment, we build stacking ensembles of simple 
baseline LSTM models, where each model is based on a single modality. We explore the role of ensembles to 
improve the performance of the resulting models and to build robust and stable classifiers. Different meta learn-
ers are explored.

Results of stacking deep ensemble models
Ensemble models are expected to improve the performance of base models. In this experiment, we explore the 
results of ensembles of deep LSTM models. In addition, we explored so many experiments to check the role of 
fusing different feature sets to enhance the performance of the DL models. Note that fusing of different feature 
sets creates heterogeneous ensemble models, which theoretically enhances the performance of the resulting mod-
els. This hypothesis is proved in this experiment because the results of ensemble models outperform the results 
of other base LSTM models. Table 4 shows results of different deep LSTM ensemble models based on different 
combinations of feature sets and using different meta classifiers including SVM, LR, and RF.

In our performance evaluation of the stacking deep ensemble model, we experiment with feature sets based 
on their individual performance on the single LSTM models. Moreover, we examine the best combination of 
feature sets that achieved the best results from Tables 2 and  3. According to the result shown in Table 4, we 
observed that the stacked LSTM models based on SVM meta classifier generally achieve better results than the 
LR and RF based ensemble models, but these results are not statistically significant. The stacking model with two 
LSTM baseline classifiers achieves the best testing results, where a separate LSTM model is used with B7A5 and 
B7B6 fused feature sets. In this experiment, we integrate the early fusion of B7 modality with other feature sets 
like B6 and A5 with the decision fusion of the two LSTM models. This model achieves testing results of 82.02, 
82.25, 82.02, and 82.12 for accuracy, precision, recall, and F1-score, respectively. These results are statistically 
significantly better than classical ML models and single LSTM models (P-value < 0.001). We noticed that using 
a single feature set with the base LSTM models achieved a lower result.

For example, building a stacking ensemble of two base line classifiers, where each classifier is based on a sin-
gle modality (i.e., B7 and B1), resulted in lower results compared to the previous experiment (i.e., 80.37, 80.44, 
80.37, and 80.5 for accuracy, precision, recall, and F1-score, respectively). On the other hand, the combination 
of several baseline LSTM models which are based on the early fusion of multiple feature sets resulted in worse 
results. For example, in an experiment, we combined five LSTM models where each model is based on an early 
fusion of three feature sets (i.e., B7A1A5, B7A1B6, B7A5B1, B7A5B6, B7B1B6), and this ensemble achieved bad 
results of 73.72, 73.72, 73.72, and 73.72 for accuracy, precision, recall, and F1-score, respectively. As a result, 
even ensemble of multiple DL models could boost the performance, but wise selection of the number of base 
classifiers, the early fusion of feature sets, and the selection of meta learners is crucial. This is an art, where there 
is no theory or heuristics that could govern this behavior and predetermine the best settings for better ensemble 
architecture. The same pattern in results has been noticed for stacking ensemble with LR and stacking ensemble 
with RF. For the Stacking with LR, the best performing model (i.e., 79.74, 79.86, 79.74, and 79.02 for accuracy, 
precision, recall, and F1-score, respectively) was based on two LSTM base models each was based on a single 
modality (i.e., B7 and B1). Increasing the number of feature sets in the early fusion and increasing the number of 
base LSTM classifiers did not achieve better results. Stacking with RF achieved the best results with two baseline 
LSTM classifiers each one was based on an early fusion of three feature sets (i.e., B7A5B1 and B7B1B6), and the 
performance was 79.74, 80.48, 79.74, and 79.99 for accuracy, precision, recall, and F1-score, respectively. Figure 8 
shows a comparison of the three ensemble models.

Figure 8.   The best stacking ensemble models with different meta-learners.
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Table 5.   Comparison with literature studies.

References Data set Subjects Feature set
Base 
classifiers

Diversity 
source

Fusion 
method

Ensemble 
technique CV Target Performance

Ours NACC​
CN (229) 
and AD 
(456)

B7A5/B7B6 LSTM
Diverse 
LSTM on 
4 different 
feature sets

Late feature 
fusion Stacking (SVM) Split 80:20 for 

train: test AD,CN 82.02/82.25/82.02/82.12

79

2023 ADNI
EMCI 
(2150) LMCI 
(1870)

PET and 
MRI

ResNet18 
(3-in-Chan-
nel)

– Early feature 
fusion – Split 70:30 for 

train:test
EMCI and 
LMCI 73.90/66.74

80

2023 ADNI
CN (44), 
MCI (84) 
and AD (22)

MRI
transfer 
learning-based 
structural

Diverse 
transfer 
learning 
based struc-
tural

Late feature 
fusion

Ensemble of 
majority voting

Split 70:30 for 
train:test

CN vs AD 96

CN vs MCI 72

AD vs MCI 70

81 2023 ADNI
CN (321) 
and AD 
(136)

PET,MRI MobileNet – Early feature 
fusion – Split 80:20 for 

train:test AD vs CN 81.94/78.95

82 2022 ADNI

MildDe-
mented 
(896)
Moderat-
eDemented 
(64)
NonDe-
mented 
(200)
VeryMild-
Demented 
(2240)

MRI XG Boost 
classifier

Different 
tree archi-
tectures

Early feature 
fusion Boosting Split 80:20 for 

train:test

Binary 73

Multiclass 76

83

2022 ADNI

MildDe-
mented 
(896)
Moderat-
eDemented 
(64)
NonDe-
mented 
(200)
VeryMild-
Demented 
(2240)

MRI VGG-16 – Early feature 
fusion – Split 80:20 for 

train:test Multiclass 75

72 (2021) ADNI
CN (523), 
MCI (872), 
AD (342)

MRI, PET, 
CSF, CS, 
(age, sex, 
education)

2 classifiers 
[RF + BDT]

Diverse ML 
models

5 diverse 
data types 
(Early 
fusion)

META-DES 
(DES)

Split 80:20 for 
train:test + strati-
fied 10-CV on 
train

CN versus 
MCI versus 
AD (bal-
anced 
accuracy)

82/–/80/–/–

73 (2020) Figshare CN (242), 
MCI (91)

CSF protein 
biomarkers

2 classifiers
[LR + linear 
SVM]

Diverse ML 
models – Weighted aver-

age (SES)

Stratified split 
80:20 for train: 
test + 5-CV on 
train

CN vs. MCI 95.5/–/95.7/–/97.9

74 (2019) ADNI
CN (90), 
sMCI (44), 
pMCI (44), 
AD (94)

ADNI’s Post 
processed 
FDG-PET

Level 1: 7 
classifiers 
[SVM] + Level 
2: 3 classifiers 
[SVM]

7 LASSO FS 
on 7 differ-
ent feature 
sets

Region 
based and 
connectiv-
ity between 
regions-
based 
features
(late fusion)

Maximum 
mean 
square error 
(mMsE) of 7 
SVMs + major-
ity voting of 3 
SVMs

10 times 
repeated
10-CV

CN vs. AD –/–/–/–/–

CN vs. MCI –/–/–/–/–

sMCI vs. 
pMCI –/–/–/–/–

75 (2019) ADNI, 
GARD

ADNI: CN 
(129), AD 
(77), GARD: 
AD (81), CN 
(171)

sMRI
3 classifiers 
[CNNs] with 
different 
architectures

Three 
feature 
sets from 
TVPLH, 
TVPRH, 
TVPLHRH

Subsets of 
features 
(early 
fusion)

Stacking with 
SoftMax meta 
classifier

80:20 for 
train:test

CN vs. AD 
on ADNI 85.6/85.5/85.5/85.5/–

CN vs. AD 
on GARD 90.1/89.9/90.0/90.0/–

76 (2018) ADNI

Training: CN 
(60), sMCI 
(60), pMCI 
(60), AD 
(60), Testing: 
CN (40), 
sMCI (40), 
pMCI (40), 
AD (40)

MRI, 
MMSE, age, 
CSF

5 classifiers 
[RF]

Diverse 
input data 
(DID1)

Subsets of 
features 
(early and 
late fusion)

Majority voting 
(SES)

Repeated
10-CV

CN vs. 
sMCI vs. 
pMCI vs. 
AD

61.9/60.2/61.9/–/60.5

77 (2018) ADNI
CN (60), 
sMCI (60), 
pMCI (60), 
AD (60)

MRI, age, 
gender, 
MMSE

4 classifiers 
[SVM]

Diverse 
input data 
(DID2)

Subsets of 
features 
(early and 
late fusion)

Static classifier 
selection (SES)

Split 80:20 for 
train:test + strati-
fied 4-CV on 
train

CN vs. 
sMCI vs. 
pMCI vs. 
AD

52.9/–/–/–/79.6

78 (2018) ADNI
CN (60), 
sMCI (60), 
pMCI (60), 
AD (60)

Preproc-
essed MRI, 
age, gender, 
MMSE

150 classifiers 
[decision tree]

Different 
tree archi-
tectures

–
Boosting 
decision tree 
ensemble

10-CV
CN vs. 
sMCI vs. 
pMCI vs. 
AD

56.3/–/–/–/–
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Thus, according to all our experimentations, we noticed an increasing performance in terms of accuracy 
metrics when relying on stacked LSTM ensemble models over regular ML and LSTM models. According to the 
testing performance results, the accuracy of the best models has increased from 77.83 in regular SVM to 80.25 
in the LSTM, and finally 82.02 in the stacking ensemble models. These results proved that the stacking ensemble 
models outperformed all other ML and simple LSTM classification models. Figure 8 clarifies the comparison 
between the best model of stacking ensemble models with different meta learners.

Comparison with the literature
In this section, we compare the proposed model with the state-of-the-art literature of ensemble models for AD 
early detection as shown on Table 5. In Ref.79, authors proposed a transfer learning model based on ResNet18 
architecture to detect the LMCT patient. They used PET and MRI images. In Ref.80, the study explored the role 
of ensemble model with majority voting to build a set of binary classifiers to solve the problems of CN vs. AD, 
CN vs. MCI, and AD vs. MCI based on MRI modality. In Ref.81, an ADNI dataset from MRI and PET modali-
ties has been used to train the MobileNet to detect AD patients based on the early fusion of features from the 
two modalities. In Ref.82, the study a large ADNI dataset of MRI images to optimize the XGB classifier to detect 
AD, and in Ref.83, another ADNI dataset has been used to train the VGG-16 deep learning model to detect AD. 
Muhammed Niyas and Thiyagarajan72 proposed a dynamic ensemble classifier for AD detection. The was based 
on two different classifiers of RF and bagging of decision trees. The study early fused the MRI, PET, CSF, CS, 
and demographics (i.e., age, sex, education), and achieved CV balanced accuracy of 87% and testing balanced 
accuracy of 82% based on an ADNI dataset of CN (523), MCI (872), AD (342). Syed et al.73 proposed an MCI 
detection ensemble classifier based on the weighted voting of the two base classifiers of LR and SVM. The task 
was implemented as CN vs. MCI binary classification based on a Fig share dataset of CN (242), MCI (91). The 
study investigated the role of CSF protein biomarkers to detect AD and achieved testing accuracy of 95.5%. Pan 
et al.74 proposed a two-levels ensemble model for detecting AD. The first live had seven SVM classifiers and the 
second level has three SVM classifiers. The study has utilized an FDG-PET dataset from ADNI database of CN 
(90), sMCI (44), pMCI (44), and AD (94). To achieve diversity among the base classifiers, seven LASSO feature 
selection models have been used, one with each base classifier to select a different feature set. for a CN vs. AD 
task, the model achieved an accuracy of 91.9%, for the CN vs. MCI task, the model achieved an accuracy of 
83.2%, and for the sMCI vs. pMCI the model achieved 72.3%. Ahmed et al.75 proposed a deep stacking ensemble 
model of three CNN models with different architectures and SoftMax meta learner to detect AD. The study was 
based on the sMRI data collected from ADNI and Gwangju Alzheimer’s and Related Dementia, Gwangju, South 
Korea (GARD). Using ADNI data, the model achieved testing accuracy, precision, recall, and F1-score of 85.6, 
85.5, and 85.5, respectively. With the GARD data, the model achieved a testing performance of 90.1, 89.9, and 
90 for accuracy, precision, and recall, respectively.

In Ref.76, the study proposed an AD progression detection model. The model has been implemented as a 
majority voting ensemble of five RF classifiers. The study tested the early and late fusion of MRI, MMSE, age, 
CSF features. Different ADNI datasets have been used for training and testing, i.e., training: CN (60), sMCI (60), 
pMCI (60), AD (60), and testing: CN (40), sMCI (40), pMCI (40), AD (40). For the multiclass classification task 
of CN vs. sMCI vs. pMCI vs. AD, the model achieved a performance of 61.9% for accuracy, 60.2 for precision, 
and 61.9 for recall. In comparison with the literature, our study proposed many unique features both in machine 
learning and in medical domains. In the medical domain, the proposed study is based on multivariate time series 
data to predict AD progression. The study built a stacking ensemble model of multiple LSTM deep learning mod-
els. Each modality and combination of feature sets have been tested to select the best fusion of feature sets that 
achieved the best results. Our study is based on cheap features to predict the AD disease which make our model 
applicable in real environments where MRI scans are not available. Our proposed model achieved promising 
results compared to the literature, even though it has used the least number of cost-effective feature sets66. We 
utilized Bayesian optimizer and grid search to optimize the LSTM base classifiers and the SVM meta learner, 
respectively. Our results have been done on the NACC dataset, where no such studies have been done before.

Limitations and future directions
Our study implemented and tested an advanced deep LSTM based stacking ensemble model for AD detection. 
The study advanced the literature of ensemble modeling and used the NACC multivariate time series data. 
However, the study has some limitations that should be covered in future works. First, we will extend the current 
study by adding explainability features which improves the model understandability and increases the trust of 
domain experts86. The explainability can be improved by reducing the number of input features, we will explore 
different feature selection techniques on each feature set87. Second, the study has been totally trained and tested 
based on the NACC dataset. We did not test the proposed model on data collected from other sources like ADNI. 
This is called external validation which measures the model’s reproducibility feature. In future studies, we will 
explore the performance of the proposed model on an external dataset. Finally, we will explore the effect of add-
ing neuroimaging modalities (MRI, PET, CT etc. images) as input to the base classifiers.

Conclusion
In this paper, we proposed a novel stacking deep ensemble classifier based on the deep LSTM base classifier 
and LR meta model. The study was based on multivariate time series data to predict AD. To better learn these 
time series data LSTM deep learning models have been used. A separate LSTM model has been optimized using 
Bayesian optimizer to select the best hyperparameters for a specific modality. Heterogeneous feature sets have 
been used with different LSTM base models to build the stacking ensemble model. We discovered that LSTM 
base models outperformed other classical machine learning models. In addition, the combined heterogeneous 
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LSTM models based on different feature sets to build the stacking ensemble have improved the performance of 
each base LSTM classifier. The NACC dataset has been used to explore the performance of these models. The 
data has been divided into training and testing from the first beginning before data preprocessing steps; this 
decision prevented the data leakage problem which causes ML models to achieve over optimistic testing results. 
The training data has been used to train, validate, and optimize the models using cross-validation technique. 
Although the resulting ensemble achieved the best and most stable results, these models are black boxes where 
physicians do not understand why the model has taken specific decisions. In future studies, we will extend the 
proposed model to provide explainability for its local and global decisions.

Data availability
The datasets generated and/or analyzed during the current study are available in the University of Washing-
ton’s National Alzheimer’s Coordinating Center (NACC) repository, https://​naccd​ata.​org/​nacc-​colla​borat​ions/​
about-​nacc.
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