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Abstract

Background: Transformer-based models are gaining popularity in medical imaging and cancer imaging applications. Many
recent studies have demonstrated the use of transformer-based models for brain cancer imaging applications such as diagnosis
and tumor segmentation.

Objective: Thisstudy aimsto review how different vision transformers (ViTs) contributed to advancing brain cancer diagnosis
and tumor segmentation using brain image data. This study examinesthe different architectures developed for enhancing the task
of brain tumor segmentation. Furthermore, it explores how the ViT-based models augmented the performance of convolutional
neural networks for brain cancer imaging.

Methods: Thisreview performed the study search and study selection following the PRISMA-ScR (Preferred Reporting Items
for Systematic Reviews and Meta-Anal yses extension for Scoping Reviews) guidelines. The search comprised 4 popular scientific
databases. PubMed, Scopus, |EEE Xplore, and Google Scholar. The search terms were formulated to cover the interventions (ie,
ViTs) and thetarget application (ie, brain cancer imaging). Thetitle and abstract for study selection were performed by 2 reviewers
independently and validated by athird reviewer. Data extraction was performed by 2 reviewers and validated by athird reviewer.
Finally, the data were synthesized using a narrative approach.

Results: Of the 736 retrieved studies, 22 (3%) were included in this review. These studies were published in 2021 and 2022.
The most commonly addressed task in these studies was tumor segmentation using ViTs. No study reported early detection of
brain cancer. Among the different ViT architectures, Shifted Window transformer—based architectures have recently become the
most popular choice of the research community. Among the included architectures, UNet transformer and TransUNet had the
highest number of parameters and thus needed a cluster of as many as 8 graphics processing units for model training. The brain
tumor segmentation challenge data set was the most popular data set used in the included studies. ViT was used in different
combinations with convolutional neural networks to capture both the global and local context of the input brain imaging data.

Conclusions: It can be argued that the computational complexity of transformer architectures is a bottleneck in advancing the
field and enabling clinical transformations. This review provides the current state of knowledge on the topic, and the findings of
thisreview will be helpful for researchersin the field of medical artificial intelligence and its applicationsin brain cancer.

(IMIR Med Inform 2023;11:e47445) doi: 10.2196/47445
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Introduction

Background

Brain cancer istypically characterized by abraintumor. A brain
tumor is a mass or development of aberrant brain cells. The
signs and symptoms of a brain tumor vary widely and are
determined by the size, location, and rate of growth of thebrain
tumor. Brain tumors can originate in the brain (primary brain
tumors) or move from other body regionsto the brain (secondary
or metastatic brain tumors). In general, studying brain cancer
is challenging given the highly complex anatomy of the human
brain, where several sectionsare responsiblefor various nervous
system processes [1].

Medical imaging technologiesfor studying the brain arerapidly
advancing. Therefore, it is critical to provide tools to extract
information from brain image data such that they may aid in
automatic or semiautomatic computer-aided diagnosis of brain
cancer. Artificial intelligence (Al) techniques based on modern
machine learning and deep learning models enable computers
to make data-driven predictions using massive amounts of data.
These techniques have a wide range of applications, many of
which can be customized to extract useful information from
medical images [2-6].

Among Al techniques developed for brain cancer applications,
architectures based on convolutional neural networks (CNNSs)
have dominated the research on brain cancer diagnosis and
classification. For example, UNet (an encoder-decoder CNN
architecture) and its variants [7,8] are popular for brain tumor
segmentation tasks. However, CNNs are known to be effective
in extracting only local dependencies in the input image data,
which is mainly attributed to the localized receptive field.
Compared with CNNs, attention-based transformer models
(transformers) [9] are good at capturing long-range
dependencies. Given their ability to learn long-range
dependencies, transformers form the backbone of most
state-of-the-art models in the natural language processing
domain [10].

For image classification tasks, Dosovitskiy et a [11] proposed
the computer vision variants of the transformer architecture,
typically known as vision transformer (ViT). The concept of
attention was applied to images by representing them as a
sequential combination of 16x16-pixel patches. The image
patches were processed in a way similar to tokens (words) in
natural language processing [11]. The sections (with positional
embeddings) are ordered. The embeddings are vectors that can
be learned. Each piece is organized in a straight line and
multiplied by the embedding matrix. The position embedding
result is passed to the transformer encoder.

Given the potential demonstrated by transformer-based
approachesfor computer vision tasks, transformers have quickly
penetrated the field of medical imaging. For example, some
studies[12-15] have used them on computed tomography scans
and x-ray images of the lungs to classify COVID-19 and
pneumonia. Similarly, Zhang and Zhang [16] and Xieet a [17]
used ViT for medical image segmentation, and He et a [18]
used ViT for brain age estimation. With the recent devel opments
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of ViTs in computer vision applications, there has been a
growing interest in developing ViT-based architectures for
cancer imaging applications. ViT can also aid in the diagnosis
and prognosis of other types of cancers. For example, Chen et
al [19] showed the scaling of ViTsto largewhole-slideimaging
for 33 different cancer types. The benchmarking results
demonstrate that the transformer-based architecture with
hierarchical pretraining outperforms the existing cancer
subtyping and survival prediction methods, indicating its
effectivenessin capturing the hierarchical phenotypic structure
in tumor microenvironments.

Accordingly, many recent efforts have been reported on the
developments of ViT architectures to make progress in brain
cancer applications. With the growing interest in developing
ViT-based methods for brain cancer imaging, there is a dire
need to review the recent developments and identify the key
challenges. To the best of our knowledge, no study (review)
has reported the different ViT architectures for brain cancer
imaging and analyzed how ViT complements CNNs in brain
cancer diagnosis, classification, grading, and brain tumor
segmentation.

A few review and survey articles that are relevant to our work
are by Parvaiz et a [20], Magadza and Viriri [21], Akinyelu et
a [22], He et a [23], and Biratu et al [24]. Among these,
Magadzaand Viriri [21] and Biratu et al [24] have surveyed the
articles that used deep learning and machine learning methods
for brain tumor segmentation. In addition, they covered papers
until mid-2021 only and did not cover studieson ViT. Similarly,
the survey by Akinyelu et a [22] hasabroad scope, asit covered
different methods including CNNSs, capsule networks, and ViT
used for brain tumor segmentation. In addition, it included only
5 studies on ViT, of which 4 were from 2022. Reviews by
Parvaiz et al [20], He et a [23], and Shamshad et a [25] covered
the applications of ViT in medical imaging; however, the scope
of al thesereviewsis broad, asthey included different medical
imaging applications. In addition, they conducted a descriptive
study of ViT for various medical imaging modalities. Similarly,
many relevant recent studies on ViT-based architectures have
been left out, as both the reviews [20,25] werereleased in early
2022. Nevertheless, the aforementioned reviews could be of
interest to the readers. Table 1 compares our review with the
previously published review articles.

Compared with other existing reviews on ViTs and medical
imaging, our study is specific to brain cancer applications and
covers the most recent developments. This review provides
guantitative insightsinto the computational complexity and the
required computational resourcestoimplement ViT architectures
for brain cancer imaging. Such insights will be helpful for the
researchers to choose hardware resources and graphics
processing units (GPUs). This review identifies the research
challenges that are specific to ViT-based approaches in brain
cancer imaging applications. These discussions will raise
awareness for the related research directions. This review
identifies the available public data sets and highlights the need
for additional datato motivate the community to develop more
publicly available data sets for brain cancer research.
Furthermore, thisreview followsanarrative synthesis approach
that would help the readers follow the text quickly.
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Table 1. Comparison with similar review articles.
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Review title Month and year

Scope and coverage

Comparison with our review

Vision transformersin Medical  March 2022
Computer Vision—A Contempla-

tive Retrospection [20]

Transformersin medica imag-
ing: A survey [25]

January 2022

Transformersin Medical Image
Andysis: A Review [23]

August 2022

Brain Tumor Diagnosis Using
Machine Learning, Convolution-
al Neural Networks, Capsule
Neural Networks and Vision

Transformers, Applied to MRI®:
A Survey [22]

July 2022

A survey of brain tumor segmen-
tation and classification algo-
rithms [24]

September 2021

Deep learning for brain tumor
segmentation: a survey of state-
of-the-art [21]

January 2021

Thetitle is specific to ViT% however,
the full text has avery broad scope with

discussions on deep learning, CN Nsb,
and ViT.

It covers different gpplicationsin medi-
cal computer vision, including the clas-
sification of disease, segmentation of
tissues, registration tasks in medical
images, and image-to-text applications.
It does not provide much text on brain
cancer applications of ViT.

Many recent studies of 2022 areleft out
as the preprint was released in March
2022.

It does not provide a comparative study
on the computational complexity of
ViT-based models.

Itisspecificto VIT.

It hasabroad scope asdifferent medical
imaging applications are included.

It does not include many recent studies
on ViT for brain cancer imaging (as the
preprint was released in January 2022).

Itisspecificto VIT.

It has broad scope as different medical
imaging applications are included.

It provides a descriptive review of ViT
techniquesfor different medical imaging
modalities.

It does not provide a quantitative analy-
sis of the computational complexity of
ViT-based methods.

It covers applications specific to brain
tumor segmentation.

It has abroad scope, asit includes stud-
ies on CNNs, capsule networks, and
VIiT.

Itincludesonly 5 studieson ViT.
Many recent studies are left out as it
covers only 4 studies from 2022.

It provides no quantitative analysis of
computational complexity.

It has avery broad scope as it covers
traditional machine learning and deep
learning methods.

It covers studies until early 2021 only.

It hasabroad scope asit coversdifferent
deep learning methods.
Many recent studies are left out.

e Ourreview isalso specificto ViT.

o Our review is specific to brain cancer
applications.

e Ourreview includes more recent studies
on ViT.

«  Our review provides a comparative
study of the computational complexity
of the ViT-based models.

o Ourreview isalso specificto ViT.

«  Our review is specific to brain cancer
applications.

o Our review includes morerecent studies
onViT.

o Ourreview isalso specificto ViT.

o Our review is specific to brain cancer
applications.

o Our review provides acomparative
study of the computational complexity
of the ViT-based models.

o  Ourreview isalso specific to brain can-
cer and brain tumor.

o Our review covers more recent studies.

e Our review includes 22 studieson ViT
for brain cancer application.

o Our review provides a comparative
study of the computational complexity
of the ViT-based models.

o Ourreview is specificto ViT.
«  Our review covers more recent studies.

o Ourreview is specificto ViT.
«  Our review covers more recent studies.

/i T: vision transformer.
BCNIN: convolutional neural network.
°MRI: magnetic resonance imaging.

Research Problem

The popularity of transformer-based approaches for medical
imaging has been increasing. Many recent studies have
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developed new transformer-based methods for brain cancer
application. Hence, there is a need to review the recent studies

on how transformer-based approaches have contributed to brain
cancer diagnosis, grading, and tumor segmentation. In thisstudy,
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we present a review of the advancements in ViTs for brain
cancer imaging applications. We present the recent ViT
architectures for brain cancer diagnosis and classification,
identify the key pipelines for combining ViT with CNNs, and
highlight the key challenges and issuesin devel oping ViT-based
Al techniques for brain cancer imaging. More specifically, this
review aims to identify the common techniques that were
developed to use ViT for brain tumor segmentation and whether
ViTswereeffectivein enhancing the segmentation performance.
This review aso identifies the common modality of brain
imaging dataused for training Vi T for brain tumor segmentation.
Moreover, this review identifies the commonly used data sets
for the brain tumor that contributed to developing ViT-based
models. Finally, this review presents the key challenges that
the researchers faced in developing ViT-based approaches for
brain tumor segmentation. We believe that thisreview will help
researchers in deep learning and medicad imaging
interdisciplinary fields to understand the recent developments
on thetopic. Furthermore, it will appeal studentsand researchers
interested to know about the advancements in brain cancer

imaging.
Methods

Overview

We performed aliterature search in famous scientific databases
and conducted a scoping review following the PRISMA-ScR
(Preferred Reporting Items for Systematic Reviews and
Meta-Analyses extension for Scoping Reviews) guidelines[26].
Multimedia Appendix 1 provides the PRISMA-ScR checklist.
The literature search and the study selection were performed
using the steps described in the following subsections.

Search Strategy

Search Sources

We searched for relevant literature in 4 databases: PubMed,
Scopus, IEEE Xplore, and Google Scholar. The search was
performed between July 31 and August 1, 2022. For Google
Scholar, we retained the first 300 results, as the results beyond
300 lacked relevance to the topic of this review. We also
screened the reference lists of the included studies to retrieve
any additional studies that fulfilled the inclusion criteria.

Search Terms

We defined the key terms for the search by referring to the
available literature and by a discussion with domain experts.
The search terms comprised the terms corresponding to the
intervention (ie, transformers) and the target application (ie,
cancer and tumor). The search strings are provided in
Multimedia Appendix 2.

Sear ch Eligibility Criteria

Our search focused on studies that reported developing
ViT-based architectures for brain tumor segmentation, brain
cancer diagnosis, or prognosis. We considered studies conducted
between January 2017 and July 2022. We included studies that
used VIiT with or without combining other deep learning
architectures, such as CNN, and excluded studiesthat used only
CNN. We excluded studies that reported the diagnosis of other

https://medinform.jmir.org/2023/1/e47445
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cancer types, such as lung cancer or colorectal cancer, and did
not report the use of the model for any form of brain cancer.
We included studies that used any type of brain cancer data,
including brain magnetic resonance imaging (MRI) and
histopathology image data. We included studies published as
peer-reviewed articles or conference proceedings and excluded
nonpeer-reviewed articles (preprints), short notes, editorial
reviews, abstracts, and | ettersto the editor. We excluded survey
and review articles. We did not impose any additional
restrictions on the country of publication and the performance
or accuracy of the ViT used in the studies. Finally, for practical
reasons, we included studies published only in English.

Study Selection

Two reviewers, HA and RQ, independently screened the titles
and abstracts of the studies retrieved in the search process. In
abstract screening, the reviewers excluded the studies that did
not fulfill the inclusion criteria. The studies retained after the
title and abstract were included for full-text reading. At this
stage, disagreements between the 2 reviewers (HA and RQ)
were analyzed and resolved through mutual discussion. Finally,
the study selection was verified by athird reviewer.

Data Extraction

We designed a custom-built data extraction sheet. Multimedia
Appendix 3 presents the different fields of information in the
data extraction sheet. Initially, we pilot-tested the fields in the
extraction sheet by extracting datafrom 7 relevant studies. Two
reviewers (HA and RQ) extracted the data from the included
studies. The critical information extracted was the application
of VIiT, the architectures of ViT, the complexity of the
architectures used, the pipeline for combining ViT and CNNs,
the data sets and their relevant features, and the open research
questions identified in the studies. The 2 reviewers resolved
disagreements through mutual discussions and revisiting the
full text of the relevant study where needed.

Data Synthesis

We followed a narrative approach to synthesize the data after
data extraction. We categorized the included studies based on
applications, such astumor segmentation, grading, or prognosis.
We al so organized the studies based on datatype, such aspublic
versus private data and 2D versus 3D data. We also identified
the modality of the data used in the included studies, such as
MRI or pathology images. Next, we identified the most
frequently used architectures of ViT and the key pipelines for
incorporating ViT in cascade or parallel connectionswith CNN
models. We aso classified the included studies based on the
metrics used to evaluate the performances. Finally, if available,
we identified the public code repositories for the model
implementation as reported in the included studies.

Results

Search Results

A total of 736 studieswereretrieved. Of these, we removed 224
duplicates. After thetitle, abstract, and metadata screening, we
removed 488 studies that did not fulfill the inclusion criteria
and retained 24 studies. In the full-text screening, we removed
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2 studies. Overall, 22 studies were included in this review. We  selection process. Multimedia Appendix 4 shows a list of all
did not find any additional studies by forward and backward theincluded studies.
reference checking. Figure 1 shows the flowchart for the study

Figure 1. The PRISMA-SCR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) flowchart for
the selection of the included studies. ViT: vision transformer.

PubMed Scopus IEEE Google
48 studies 311 studies 77 studies 300 studies

v

c 736 studies retrieved through
-% searching of 5 databases
2
?,
2 S 224 duplicates removed
\4
512 unique titles and abstracts
.g 488 studies excluded after screening of titles
o and abstract
é‘% - Not ViT: n=159
- Nonimage: n=61
> | Wrong population (not cancer related): n=65
- Wrong population (not brain related): n=126
- Year of publication before 2017: n=14
- Publication type (preprint, poster, and survey):
n=63
A 4
24 unique full text studies
ol
E
=
L .
> 2 excludgd after reading full text.
- Not brain related=1
- Inconsistent information or no model: n=1
A 4
22 studies
3 No studies included
° through reference list
E checking
22 studies included in the
narrative synthesis

. . (86%) were published in 2022, whereas only 3 (14%) were
Demographics of the Included Studies published in 2021. No studies published before 2021 were found.
Among the 22 included studies, 9 (41%) were published in Among the studies published in 2022, one-third (6/22, 27%)
peer-reviewed journals, whereas 13 (59%) were published as  were published in July. Theincluded studies were published by
conference or workshop proceedings. Of the 22 studies, 19  authors from 6 different countries (based on first-author
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affiliation). Among the 22 studies, almost half (n=10, 45%)
were published by authors from China and 5 (23%) were
published by authors from the United States. Authors from the
United Kingdom and India published 3 and 2 studies,
respectively, whereas both South Koreaand Vietnam published
1 study each. Multimedia Appendix 5 shows a summary of the

Table 2. Demographics of the included studies (N=22).

Alietd

year-wise and month-wise studies. Multimedia Appendix 6
shows a summary of the country-wise demographics of the
included studies. Table 2 summarizes the demographics of the
included studies. Figure 2 shows avisualization for the mapping
of the included studies with year, month, and country of
publication.

Studies, n (%)

Year and month
2022
January
February
March
April
May
June
July
2021
August
September
November
Countries
China
United States
United Kingdom
India
South Korea
Vietnam
Type of publication
Conference

Journal

2(9
2(9
1(45)
5(23)
1(45)
2(9
6(27)

1(45)
1(4.5)
1(45)

10 (45)
5(23)
3(14)
2(9)
1(4.5)
1(4.5)

13 (59)
9 (41)
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Figure 2. Mapping of the included studies with year, month, and country. S1 through S22 are the included studies.

. . . tumor. In addition, 1 study [43] performed the diagnosis of
Main Tasks Addressed in the Studies multiple sclerosis, and 1 study [45] performed reconstruction
Among the included studies, 19 (86%) of the 22 studies of fast MRI. One study [44] also performed isocitrate
addressed the task of segmentation [27-45], and 1 study [46]  dehydrogenase (IDH) genotyping in addition to segmentation.

reported survival prediction. One study [47] reported the Table 3 shows a summary of the key characteristics and tasks
detection of lesions. One study [48] performed grading of the  addressed in the included studies.
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Table 3. Summary of key characteristics of the included studies.
Reference Year 3Dmodel 2D model Image modality Purpose Transformer name Data source
[27] 2022 Yes Yes MRI& Segmentation SWINP transformer Public
[28] 2022 Yes No MRI Segmentation SWIN transformer Public
[29] 2022 Yes No MRI Segmentation SWIN transformer Public
[30] 2022 Yes No MRI Segmentation Not available Public
[31] 2022 Yes No MRI Segmentation Segtransvae Public
[32] 2021 Yes No MRI Segmentation TransBTS Public
[33] 2021 Yes Yes MRI Segmentation SegTran Public
[34] 2022 Yes No MRI Segmentation SWIN transformer Public
[35] 2022 Yes No MRI Segmentation TransUNet Public
[36] 2022 Yes No MRI Segmentation Not available Public
[37] 2022 Yes No MRI Segmentation TransBTS Public
[38] 2022 Yes No MRI Segmentation UNETRS Public
[39] 2022 Yes No MRI Segmentation SWIN transformer Public
[40Q] 2021 Yes No MRI Segmentation Not available Public
[41] 2022 No Yes MRI Segmentation Not available Public
[42] 2022 No Yes MRI Segmentation Not available Public+private
[43] 2022 Yes Yes MRI Segmentationand diagno-  Autoregressive trans- Public
sis former
[44] 2022 Yes No MRI _Segmentation andgrad- Not available Public
ing
[45] 2022 No Yes MRI Segm_entati onandrecon- SWIN transformer Public
struction
[46] 2022 No Yes MRI g Not available Public
[47] 2022 No Yes MRI Detection Not available Private
[48] 2022 No Yes Pathol ogy Grading Not available Private

3MIRI: magnetic resonance imaging.
PSWIN: Shifted Window.

CUNETR: UNet Transformer.

dsp: survival prediction.

Key Architecturesof the ViT for Brain Tumor
Segmentation

In the included studies, ViTs were combined with different
variants of a CNN to improve the overall performance of brain
tumor segmentation. Shifted Window (SWIN) transformer [49]
has recently become a popular choice for image-based
classification tasks. Therefore, the most recent studies
[27-29,34,39,45] reported using SWIN transformers in their
models. Some of the studies [28,29,36,38,40,41] incorporated
the transformers modul e within the encoder or decoder or both
modules of the UNet-like architectures. Some studies
[30-33,35,37,44] used the transformer module as a bottleneck
between the encoder and decoder modules of UNet-like
architectures. One study [41] explored both cascade and parallel
combinations of thetransformer module with CNNs. One study
[48] used the transformer module in parallel combination with
aresidual network (a CNN). One study [42] implemented the

https://medinform.jmir.org/2023/1/e47445

training of transformers using federated learning over distributed
datafor 22 institutions.

Complexity of the Models Used in the Studies

Theincluded studies presented transformer-based models with
different computational complexity. Of these, Fidon et a [35]
used the TransUNet model, which has 116.7 million parameters,
whereasthe UNETR model proposed by Hatamizadeh et al [38]
has 92.58 million parameters. The SegTran model proposed by
Li et a [33] has 93.1 million parameters. Compared with the
UNETR [38], the recent variant, that is, SWIN UNETR [34],
has 61.98 million parameters. The Segtransvae [31] has 44.7
million parameters. The BTSWIN-UNet model [28] has 35.6
million parameters that are higher than other SWIN
transformer—based models but much smaller than the UNETR.
For example, the SWIN transformer—based models Trans-BTS
and SWIN-UNet have 30.6 million and 27.1 million parameters,
respectively, on the same data, but UNETR has 102.8 million
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parameters on the same data. The TransConver proposed by
Liang et a [27] has 9 million parameters. The SWINMR [45]
has 11.40 million parameters for reconstruction. Other studies
[28,30,32,36,37,39-44,46-48] did not provide details regarding
the computational complexity of the models. Some studies have
reported adifferent number of parametersfor other modelsused
on their data. We believe that these minor differences occur
because of the resolution of the input images, which may not
be the same in different studies.

Hardware Use

Wang et al [32] used 8 NVIDIA Titan RTX GPUs for training
their model. Similarly, Hatamizadeh et al [34] and Hatamizadeh
et a [38] trained their models on a DGX-1 cluster with 8
NVIDIA V100 GPUs. Jiaand Shu [37] used 4 NVIDIA RTX
8000 GPUsfor training the model, whereas Zhou et al [48] used
4 GeForce RTX 2080 Ti GPUs. Liang et a [27] and Liang et
al [29] trained their models on 2 parallel NVIDIA GeForce

Ali eta

2080Ti GPUs. Similarly, Huang et al [45] trained the model on
2 NVIDIA RTX 3090 GPUs with 24 GB GPU memory, and
Cheng et a [44] used 2 NVIDIA V100 GPUs. Zhang et a [30]
and Li et al [47] trained their modelson asingle NVIDIA Tesla
V100 GPU, Li et al [33] trained the model on a single 24 GB
Titan RTX GPU, Luu and Park [36] used asingleNVIDIA RTX
3090 GPU for training the model, Liu et a [39] trained the
model using NVIDIA GTX 3080, and Dhamijaet a [41] used
TeslaP-100 GPU.

Types of Data Used in the Studies

All theincluded studies (except 1[48]) used MRI datafor brain
tumor segmentation. Zhou et al [48] used histopathol ogy images.
In 16 studies, volumetric MRI data were used, whereas in 9
studies, the models were developed for 2D image data. Three
studies[27,33,43] reported experiments on both volumetric data
and image data. Figure 3 shows the Venn diagram for the
number of studies using 3D versus 2D data.

Figure 3. Venn diagrams showing the number of studies that used 3D versus 2D data.

3D

Data Sets Used in the Studies

Three studies [42,47,48] reported using privately developed
data setsor did not provide public accessto the data. One study
[42] used both publicly available and privately developed data.
The Brain Tumor Segmentation (BraTS) challenge data set of
brain MRI has been the most popular dataused in 17 (77%) of
the 22 studies. More specificaly, 6 studies used BraT S 2021
data [28,31,34-37], 5 used BraTS 2020 data [28,32,42,44,46],
7 used BralS 2019 data [27-29,32,33,39,40], 3 used BralS
2018 data [27,29,43], and 1 used BraT S 2017 data [45]. Some
of these studies also used >1 data set, either independently or
by combining them. Other data used in the included studies
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were MRI data from the Medical Decathlon used by
Hatamizadeh et al [38], the Cancer Imaging Archive data used
by Dhamija at [41], the UK Biobank data used by Pinaya et al
[43], data from the University Hospital of Ljubljana used by
Pinaya et al [43], the Calgary-Campinas Magnetic Resonance
reconstruction data used by Huang et al [45], data from the
University Hospital of Patras Greece used by Zhou et a [48],
and data from the Cancer Hospital and Shenzhen Hospital used
by Li et al [47]. One study [30] did not specify the data. Table
4 summarizes the data sets used in the included studies and
providesthe public accesslinksfor each data set. Figure 4 shows
the Venn diagram for the number of studies using public versus
private data.
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Table 4. Datasets used in theincluded studies.

Ali eta

Data set name Modeality Available URL Used by the following stud-
ies

BraTS2 2021 MRIP Public [50] [28,31,34-37]

BraTS 2020 MRI Public [51] [28,32,42,44,46]

BraTS 2019 MRI Public [52] [27-29,32,33,39,40]

BraTS 2018 MRI Public [53] [27,29,43]

BraTS 2017 MRI Public [50] [45]

Decathlon MRI Public [54] [38]

TCIAC MRI Public [55] [41]

UK Biobank MRI Public [56] [43]

University Hospital of Ljubljana MRI Public [57] [43]

Calgary-CampinasMR reconstruc- MR Public (58] [49]

tion data set

University Hospital of PatrasGreece  Pathology images Private _e [48]

Cancer Hospital and Shenzhen — Private — [47]

Hospital data

Not specified N/Af N/A N/A [30,47]

3BraTS: brain tumor segmentation.
bMRI: magnetic resonance imaging.
®TCIA: The Cancer Imaging Archive.
IMR: magnetic resonance.

®Not available.

N/A: not applicable.

Figure 4. Venn diagrams showing the number of studies that used public versus private data sets.

Public

Evaluation Metrics

The Dice score and the Hausdorff distance measurements are
popular metrics commonly used to evaluate segmentation
performance onthe BraTSMRI data sets. Hence, in theincluded
studies, the Dice score and Hausdorff distance were the most
common metrics used to assess the results of brain tumor
segmentation. In summary, 19 studies [27-45] reported the use
of the Dice score, whereas 15 studies [27-32,34-40,42,44] used
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both the Dice score and Hausdorff distance. Two studies[41,45]
reported intersection-over-union. One study [42] reported the
focal score and Tversky score for the federated learning
framework evaluation in addition to the Dice score and
Hausdorff distance for the segmentation evaluation. One study
[45] reported peak signal:noiseratio, structural similarity index,
and Fréchet Inception Distance in the assessment of the
reconstructed MRI in addition to Intersection over Union and
Dice scores for segmentation evaluation. One study [46] used
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the concordance index and hazard ratio to evaluate the
performance of survival analysis. One study [47] reported
sensitivity and precision, and 1 study [48] reported precision
and recall.

Discussion

Principal Findings

In this study, we reviewed the studies that used ViT to aid in
brain cancer imaging applications. We found that most studies
(19/22, 86%) were published in 2022, and almost one-third of
these studies (6/19, 32%) were published in the second quarter
of 2022. AsViT wasfirst proposed in 2020 for natural images,
it has only recently been explored in brain MRI and cancer
imaging. Almost half of the studies (10/22, 45%) were published
by authors from China. Furthermore, the authors from China
published twice the number of studies published by authors
from the United States. Other countries published approximately
one-third of the studies (7/22, 32%).

Motivation of Using Transformersfor Segmentation

The transformer module works on the self-attention concept,
that is, cal culating pairwise interactions between all input units.
Thus, transformers are good at |earning contextualized features.
Although thislearning of the contextualization by atransformer
can berelated to the upsampling path in a UNet encoder-decoder
architecture, the transformer overcomes the limitation of the
receptivefield, and hence, it works better to capture long-range
correlations [34]. In a UNet architecture, one may enlarge the
receptive fields by adding more downsampling layers or by
introducing larger stride sizes in the convolution operations of
the downsampling path. However, the former increases the
number of parameters and may lead to overfitting, whereas the
latter sacrifices the spatial precision of the feature maps [34].
Nevertheless, the initial attempts to introduce transformers for
brain tumor segmentation used the transformer block in the
encoder or decoder or the bottleneck stage of the UNet-like
architectures. These approaches were mainly driven by the
success of UNet-based architectures for segmentation, such as
nnUNet’s success on the BraT S2020 challenge[59]. In addition,
until 2020, CNN-based models were the best performers for
brain tumor segmentation. Therefore, nnUNet [59] was the
winning entry for the BraT S2020 challenge. With improved
strategies and architectures, attention-based models performed
competitively in recent years. Wang et al [32] presented the
TransBTS model, which was the first attempt to incorporate
transformers into a 3D CNN for brain tumor segmentation.
Although Hatamizadeh et al [34] reported SWIN UNETR for
brain tumor segmentation, and it wasthefirst transformer-based
model that performed competitively for the BralS 2021
segmentation task. The TransBTS model wastrained and tested
onthe BraTl S2018 and BraT S2019 data sets, whereasthe SWIN
UNETR has been evaluated on the BralS 2021 data set.
However, for the BraT S 2021 data set, the winning entry was
an extension of the nnUNet model [59] presented by Luu and
Park [36] who proposed introducing attention in the decoder of
the nnUNet to perform the tumor segmentation. As identified
by Jiaand Shu [37], the UNETR removed convolutional blocks
in the encoder, which may result in insufficient extraction of
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local context information when applied to volumetric MRI data.
Overall, these approaches of combining transformersand CNNs
are driven by the motivation to use the best of both worlds.
These studies suggested that the best-of-both-worlds approach
can be effective in improving brain tumor segmentation by
combining CNNs with transformers. In theory, there are many
possibilities for how we approach combining the advantages
offered by the 2 different architectures.

Applications Covered in the Studies

Most of the studies included are those that either designed an
attention-based architecture or used existing ViT architectures
to achieve the task of tumor segmentation. In the brain
segmentation tasks, the key focusisthe segmentation of gliomas,
which isthe most common brain tumor. Asmost of these studies
used 1 of thevariants of the BraT S data set wherethe MRI data
areannotated for 4 regions, these studi es reported segmentation
of the whole tumor, tumor core, enhancing tumor, and
background. Some studies also reported using attention-based
models for other applications related to brain cancer, such as
survival prediction, MRI reconstruction, grading of brain cancer,
and IDH genotyping.

Discussion Related to the Architectures

Among the studies that used the ViT module after a 3D CNN
features extraction, the TransBTS[32] wasthefirst architecture
(released in September 2021) and served asinspiration for many
other architectures. The TransBTS architecture was motivated
by the idea of incorporating global context into the volumetric
gpatial features of brain tumors. Furthermore, the work
highlighted the need to use an attention module on image
patches instead of flattened images, unlike previous efforts.
Essentially, the flattening of high-resolution images makes the
implementation impractical, as transformers have a quadratic
computational complexity with respect to the number of tokens
(ie, the dimension of the flattened image). The TranBTS
architecture has downsampling and upsampling layers linked
through skip connections; however, in the bottom part of the
architecture, there are transformer layers that help with the
global context capturing. These transformer layers are in
addition to alinear projection layer and a patch embedding layer
to transfer the image to sequence representation. So, in away,
the VIT serves as the bottleneck layer to capture long-range
dependencies. Later, Jiaand Shu [37] presented a modification
in the TransBTS architecture [32] using 2 ViT blocks after the
encoder part instead of 1 transformer block in the TransBTS.
Specifically, the outputs of the fourth and fifth downsampling
layers pass through a feature embedding of a feature
representation layer, transformer layers, and afeature mapping
layer and then pass through the corresponding upsampling 3D
CNN layers. Compared with the TransBTS architecture, where
the transformer was used at the end of the encoder and features
representation was obtained after the fourth layer, Jia and Shu
[37], increased the depth to 5 layers and used the transformer
in both the fourth and fifth layers. Therefore, after the fourth
layer, the transformer effectively builds a skip connection with
the corresponding layer of the decoder block.

Similarly, Zhang et al [30] used amultihead self-attenti on—based
transcoder module embedded after the encoder of a 3D UNEet.
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However, they replaced theresidual blocks of the 3D UNet with
aself-attention layer that operated on a3D feature map, followed
by progressive upsampling via a 3D CNN decoder module.
Pham et al [31] also used transformer layers after a 3D CNN
module and used a variational encoder to reconstruct the
volumetric images. Li et a [33] presented the SegTran
architecture, which is again based on using the transformer
modul es after the features extraction with CNN, thus capturing
the global context. Here, the authors suggested combining the
CNN featureswith positional encodings of the pixel coordinates
and flattening them into a sequence of local feature vectors.

Fidon et a [35] used the TransUNet architecture [60] as the
backbone of their model and used the test time augmentation
strategy to improveinference. Finaly, Cheng et al [44] presented
the MTTUNet architecture, which is a UNet-like
encoder-decoder architecture for multitasking. They used the
CNN layers to extract spatia features, which were then
processed by the bottleneck transformer block. Subsequently,
the decoder network performed the segmentation task. In
addition, the authors al so used the transformer output to perform
IDH genotyping, thus making it a multitask architecture.

Hatamizadeh et al [38] presented the UNETR architecture that
redefined the task of 3D segmentation as a 1D
sequence-to-segquence classification that can be used with a
transformer to learn contextual information. Therefore, the
transformer block in the UNETR operates on the embedded
representation of the 3D MRI input data. In effect, the
transformer is incorporated within the encoder part of a UNet
architecture. Compared with other architectures such as
BTSWIN-UNet [30], TransBTS [32], SegTran [33,35], and
BiTr-UNet [37], which usethe transformer as abottleneck layer
of the encoder-decoder architectures, the UNETR directly
connects the encoded representation from the encoder with the
decoder part. Compared with other methods where the encoder
part uses 3D CNN blocks, such as TransBTS [32] and
BiTr-UNet [37], the UNETR does not use aconvolutional block
inthe encoder. Instead, the UNETR obtainsa2D representation
for the 3D volumes and then usesthe 2D ViT architecture that
works on the 2D patches of the images. Each patch is treated
as 1 token for the attention operation. UNETR does not rely on
abackbone CNN for generating the input sequencesand directly
uses the tokenized patches.

Luu and Park [36] introduced an attention mechanism in the
decoder of the nnUNet [59] to perform the tumor segmentation.
They extended the nnUNet and modified it by using axia
attention in the decoder of the 3D UNet. Furthermore, they
doubled the number of filtersin the encoder while retaining the
same number in the decoder. Sagar [40] presented the Vision
Transformer for Biomedical Image Segmentation architecture,
which used transformer blocksin the encoder and decoder of a
UNet architecture. The architecture introduced multiscale
convolutions for feature extraction that were used as input to
the transformer block.

Dhamija et a [41] explored the sequential and parallel stacks
of transformer-based blocks using a UNet block. In principle,
they used a transformer-based encoder and a CNN-based
decoder connected in parallel with a UNet-based encoder and
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then in cascade with a UNet-based encoder. Apparently, the
parallel combination (USegTransformer-P) outperformed the
cascade combination by some margin. Zhou et a [48] designed
a pardlel dual-branch network of a CNN (the ResNet
architecture) and ViT and used it to grade brain cancer from
pathology images. The dual-branch network established aduplex
communication between the ResNet and ViT blocks that sends
global information fromthe ViT to ResNet and local information
from ResNet to the ViT.

Many similar architectureswere probably released concurrently
by different research groups or released very close in time to
each other. For example, Li et al [33] found that segmentation
transformer [61] and TransUNet [60] were released concurrently
with their own model. Therefore, it is not surprising that there
are afew similarities between the approaches adopted by these
studies.

Discussion Related to SWIN Transformers
In general, transformers are notoriously popular for the

computational complexity of the order O (n?). For example, as
identified by Jiaand Shu[37], UNETR stackstransformer layers
and keeps the sequence data dimension unchanged during the
entire process, which results in expensive computation for
high-resolution 3D images. SWIN transformers hel ped overcome
the computational complexity. Hence, it became a popular
backbone architecture for many recent studies[27-29,32,39,45]
to overcomethe computational complexity of transformer-based
models. For example, Liang et al [27] reported the use of a2D
SWIN transformer [49] and a 3D SWIN transformer [62] to
replace the traditional architecture of VIiT to overcome the
computational complexity. Jiang et a [28] used a SWIN
transformer as the encoder and decoder rather than as the
attention layer. Furthermore, they extended the 2D SWIN
transformer to a 3D variant that provided a base module.
Similarly, Liang et a [29] used a 3D SWIN transformer block
in the encoder and decoder of a3D UNet-like architecture. The
architecture was inspired by the SWIN transformer and the
SWIN-UNet model; however, they replaced the patchify stem
with a convolutional stem to stabilize the model training.
Furthermore, they used overlapping patch embedding and
downsampling, which helped to enhance the locality of the
segmentation network.

Hatamizadeh et al [34] extended the UNETR architectureto the
SWIN-UNet transformer (SWIN UNETR), whichincorporated
a SWIN transformer in the encoder part of the 3D UNet. The
decoder part still used a CNN architecture to upsample the
featuresto the segmentation masks. Asreported previously, the
SWIN UNETR was the first transformer architecture that
performed competitively on the BralTS 2021 segmentation
challenge. Liu et a [39] presented atransition net architecture
that combined a 2D SWIN transformer with a 3D transition
decoder. Thetransition block transformsthe 3D volumetric data
into a 2D representation, which is then provided as an input to
the SWIN transformer. Subsequently, in the decoder part, the
transition block transforms the multiscale feature maps into a
3D representation to obtain the segmentation results. Huang et
al [45] used a cascade of residual SWIN transformers to build
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a feature extraction module, followed by a 2D CNN network.
This architecture was designed for MRI reconstruction.

Discussion Related to Model Complexity

In general, transformer architectures have ahigh computational
complexity. The number of parametersfor the architecturesfor
the models, such as UNETR and TransUNet, are as large as 92
million and 116 million, respectively. The SWIN
transformer-based architecture has arelatively smaller number
of parameters (of the order of 30-45 million). For models with
a higher number of parameters, the researchers had to rely on
high-end GPU resources. Therefore, the computational setup
reported in some of the included studieswas built with as many
as 8 GPUs. However, few studies aso reported training the
models on a single GPU with memory sizes ranging from 12
GB to 24 GB.

Discussion Related to 3D Data

Our categorization of amodel designed for 3D or 2D datawas
either based on direct extraction of the information from the
studies or the description of the model architecture in the
included studies. Therefore, if a study did not specify whether
it used the volumetric data directly or transformed the datainto
2D imagesbut provided a2D model architecture, we placed the
study in the 2D data category. Many modern deep learning
methods for medical imaging, including transformers, rely on
pretrained models as their backbones. These backbones can
generalize well, making them good candidates for use in other
related tasks, asthey provide generalization, better convergence,
and improved segmentation performance [39]. However, Liu
et a [39] argued that such backbone architectures are, in general,
difficult to be migrated to 3D brain tumor segmentation. First,
thereis ageneral lack of 3D data, and most publicly available
datasetsprovide 2D data. Second, medical imagessuch asMRI
vary in their distribution and style compared with natural
images. These variations hinder the direct transformation of the
2D pretrained models for 3D volumetric data. Hence, they
recommended transforming the 3D datainto a2D representation
to enable its use with 2D transformers. However, numerous
other studies have developed and used 3D models directly on
volumetric data.

The most commonly used datain the included studies were the
brain MRI of the BraTS data set. The BraT S data set has been
phenomenal in facilitating the research on brain glioma
segmentation. The BraT S challenge has served as a dedicated
venue for the last 11 years and has established itself as a
foundation data set in helping the community push the
state-of-the-art in brain tumor segmentation. The BraT S data
set has 4 MRI modalities, namely, T1-weighted, postcontrast
T1-weighted, T2-weighted, and T2 fluid-attenuated inversion
recovery. Furthermore, the data set provides baseline
segmentation annotation from physicians.

Discussion Related to Evaluation Metrics

The Dice score and Hausdorff distance measurements have been
more commonly reported, as these metrics are widely used to
evaluate segmentation performance on the BralTS MRI data
sets. In the included studies, the Dice score and Hausdorff
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distance were the most common metrics used to assess the
results of brain tumor segmentation.

Strengthsand Limitations

Strengths

Although there has been a surge in studies on the use of ViTs
in medical imaging, only afew reviews have been reported on
ViTsin medical imaging [20,23,25]; however, their scopes are
too broad. In comparison, to the best of our knowledge, thisis
the first review of the applications and potential of ViTs to
enhance the performance of brain tumor segmentation. This
review covers all the studies that used ViTs for brain cancer
imaging; thus, this is the most comprehensive review. This
review is helpful for the community interested in knowing the
different architectures of ViTs that can help in brain tumor
segmentation. Unlike other reviews[20,23,25] that cover many
different medical imaging applications, this review focuses on
studies that have only developed ViTs for brain tumor
segmentation. In this review, we followed the PRISMA-ScR
guidelines [26]. We retrieved articles from the popular
web-based libraries of medical science and computing to include
as many relevant studies as possible. We avoided bias in study
selection through an independent selection of studies by 2
reviewers and through validation of the selected studies and
data extraction by the third reviewer. This review provides a
comprehensive discussion on the different pipelinesto combine
ViTswith CNNs. Hence, thisreview will be very useful for the
community to learn about the different pipelines and their
working for brain tumor segmentation. In addition, weidentify
the computational complexity of the various pipelines to help
the readers understand the associated computational cost of
ViTsfor brain tumor segmentation. We provide acomprehensive
list of available data sets for brain MRI and hope that it will
provide a good reference point for researchers to identify
suitable data setsfor devel oping modelsfor BraT S. Wemaintain
an active web-based repository that will be populated with
relevant studiesin the future.

Limitations

In this review, we included studies from 4 major databases.
Despite our best efforts to retrieve as many studies as possible,
the possibility that some relevant studies may be missed cannot
be ruled out. Moreover, the number of publications on the
applications of ViTs in medical imaging is increasing at an
unprecedented rate; hence, recent studies may be published
whilewedraft thiswork. For practical reasons, we only included
studies in English. Therefore, non-English text might be
excluded even if it were relevant. Not all studies reported on
the computational complexity and the required training time.
Hence, we provide the computational complexity only for the
studies in which this information was available; thus, the
comparison might not be exhaustive. Thisreview did not analyze
the claims on the performance of the different architectures, as
such an assessment is beyond the scope of this work. We did
not attempt to reproduce the results reported in the studies, as
such an execution of the computer code is beyond the scope of
the review. Weincluded studiesthat reported working with any
imaging modality for brain cancer and did not evaluate the use
of physiological signals, although understanding physiological
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signals can also play a significant role in brain cancer studies.
We did not evaluate the bias in the training data used in the
included studies; therefore, the performance reported for ViTs
in brain cancer imaging could be occasionally overestimated.

Open Questions and Challenges

Research efforts on devel oping transformer-based methods for
brain cancer applications are progressing rapidly. Some of the
challenges are highlighted in the following text.

Intheincluded studies, wedid not find any study that addresses
the challenge of early detection of brain cancer. Similarly, the
number of studiesrelated to prognosis and tumor growth in the
brain is also minimal. Early detection and prognosis are
applications of great interest where the potentia of ViTs can
be explored. One approach isto combine ViT with the sequential
representation of time-based datafor tumor growth in the brain.

ViTs lack scale invariance, rotation invariance, and inductive
bias capabilities. Consequently, they do not perform well at
capturing local information and cannot be trained well with a
small amount of data[48]. Oneway to overcomethislimitation
is to provide a larger training data set. Therefore, the
development of large public data sets is encouraged. Another
widely used method in the included studiesis combining ViTs
with CNNs.

In general, models pretrained on a large-scale data set
(ImageNet) are known to perform well on many other data sets.
However, using the pretrained transformer-based models and
fine-tuning them for brain cancer imaging did not improve the
performance, as reported by Hatamizadeh et al [38]. Similarly,
Pinaya et a [43] reported that the model trained on 3D data
from the UK Biobank could perform well on the test set.
However, the performance degraded when the model was
evauated on subsets of other data sets. Therefore, the
generalization of the modelsis still a challenge.

Combining CNN with ViTs can be achieved through serial
(cascade), parallel connections, or a combination of both. In
serial combination of CNNs and ViTs, the arrangement may
cause training ambiguities in terms of fusing local and global
features. If the learning eventualy loses local and global
dependenciesin theimage data[48,63,64], optimal performance
may not be achieved. In contrast, for parallel combinations,
there will be undesired redundant information captured by the
2 models[33].

The BraTS challenge completed its 10 years in 2021 and has
been a dedicated venue for facilitating the state-of-the-art
developments of methodsfor glioma segmentation [37]. Asthe
data set is publicly available, aimost al the included studies
have used it. However, there seems to be a very limited effort
in devel oping other data setsthat are publicly available. It would
be interesting to have additional data sets for brain cancer
imaging that can facilitate advancing the research on Al models
for brain cancer diagnosis and prognosis.
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The included studies reported advancements in
transformer-based architectures for brain cancer imaging.
However, these studies commonly lack the explanability and
interpretability of the model behavior. Future research should
focus on new methods to address thisissue.

ViT-based architectures, as of now, may not always be the best
for brain tumor segmentation. For example, the TransBTS model
(a ViT-based model) had suboptimal performance owing to its
inherently inefficient architecture, where the ViT is only used
in the bottleneck as a stand-alone attention module and does
not have a connection to the decoder at different scales (as
identified by Hatamizadeh et al [34]). In contrast, architectures
based on UNet (eg, nnUNet and SegResNet) have achieved
competitive benchmarks on the BraTS challenge.

Asidentified by Huang et a [45], one can argue that the heavy
computations in transformers are the main bottleneck in
development, and the performance improvements of
transformers for brain cancer imaging come at the cost of
computational complexity. Therefore, lightweight
implementations of transformer architectures for brain cancer
imaging are a topic of great interest for future research.
Furthermore, the transformer architecturesthat transform image
data into sequential representation (such as in UNETR) may
not be the best choice. First, theremoval of convolutional blocks
in the encoder does not guarantee the capture of context
information in volumetric MRI data. Second, keeping a fixed
sequence during the entire processing of dataleadsto expensive
computation when the input data are a batch of high-resolution
3D images [37]. Models such as UNETR and TransBTS for
brain tumor segmentation lack cross-plane contextual
information; hence, the 3D spatial context isnot fully captured
by these models [29].

Conclusions

In this work, we performed a scoping review of 22 studies that
reported ViT-based Al models for brain cancer imaging. We
identified the key applicationsof ViTsindeveloping Al models
for tumor segmentation and grading. ViTs have enabled
researchers to push the sate-of-the-art in brain tumor
segmentation, although such an improvement hasresulted in a
trade-off between model complexity and performance. We also
summarized the different vision architectures and the pipelines
with ViTs as the backbone architecture. We a so identified the
commonly used data sets brain tumor segmentation tasks.
Finaly, we provided insights into the key challenges in
advancing brain cancer diagnosisor prognosis using ViT-based
architectures. Although ViT-based architectures have great
potential in advancing Al methods for brain cancer, clinical
transformations can be challenging, as these models are
computationally complex and havelimited or no explainability.
We believe that the findings of this review will be beneficial to
the researchers studying Al and cancer.
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