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Introduction: The deposition of solid particles carried by production fluids from oil
and gas companies in horizontal surfaces of different assets has shown to cause
severe localised corrosion. Sand, one of the most common deposits in the energy
sector pipelines, is frequently mixed with crude, oil, asphaltenes, corrosion inhibitors,
and other organic compounds. For this reason, they might favour the metabolic
activity of native microbial communities. This study aimed to determine the impact
of sand-deposit chemical composition on the microbial community structure and
functional attributes of a multispecies consortium recovered from an oilfield and the
resulting risk of under-deposit microbial corrosion of carbon steel.

Methods: Sand deposits recovered from an oil pipeline were used in their raw form
and compared against the same deposits exposed to heat treatment to remove
organic compounds. A four-week immersion test in a bioreactor filled with synthetic
produced water and a two-centimeter layer of sand was set up to assess corrosion
and microbial community changes.

Results: The raw untreated deposit from the field containing hydrocarbons and
treatment chemicals resulted in a more diverse microbial community than its treated
counterpart. Moreover, biofilms developed in the raw sand deposit exhibited higher
metabolic rates, with functional profile analysis indicating a predominance of genes
associated with xenobiotics degradation. Uniform and localized corrosion were more
severe in the raw sand deposit compared to the treated sand.

Discussion: The complex chemical composition of the untreated sand might have
represented an additional source of energy and nutrients to the microbial consortium,
favoring the development of different microbial genera and species. The higher
corrosion rate obtained under the untreated sand suggests that MIC occurred due
to syntrophic relationships between sulphate reducers or thiosulphate reducers and
fermenters identified in the consortium.

multispecies consortium, sand-deposit, microbial community structure, functional profile,
under-deposit microbial corrosion, carbon steel

1. Introduction

Production fluids from oil and gas pipelines can carry different solid compounds including
corrosion products, silt, sandstone, and solids from the formation reservoir (Brown and Moloney,
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2017). During periods of low or intermittent flow, solid particles can
sediment and form recalcitrant scales over the horizontal surfaces of
the assets. Field observations have shown that the presence of deposits
in the interior of the pipes or vessels can cause severe localized
corrosion, a phenomenon known as under deposit corrosion (UDC)
(Campbell, 2002; Durnie et al., 2005). Nevertheless, some laboratory
studies have shown that the presence of deposits in a system can also
hinder corrosion (Dugstad, 1998; Been et al., 2010; Echaniz et al., 2019;
Grinon-Echaniz et al., 2021). These different outcomes have been
attributed to the physical characteristics of the deposit (formation,
composition, depth, age, etc.), mechanisms related to corrosion
(diffusion, precipitation, microbial presence, etc.), and the associated
water chemistry (water, oil, pH, salt content, etc.; Crolet, 1993; Zhu
etal., 2018).

Currently, there is a scientific consensus that deposits formed in
oil and gas equipment create suitable environments for bacterial
colonization and biofilm development that can also cause
microbiologically influenced corrosion (MIC) (Samant and Singh,
1998; Esan et al., 2001; Comanescu et al., 2016). This phenomenon
has been called under deposit microbial corrosion (UDMC)
(Machuca Suarez et al., 2019). To the best of the authors” knowledge,
there are only a few publications where UDMC was investigated in
the presence of sand deposits. For instance, Liu et al. (2018) found
that the sulfate reducing bacteria (SRB) Desulfotomaculum
nigrificans enhanced the galvanic coupling between bare and
deposit-covered steel, which resulted in acceleration of localized
corrosion. Similarly, Suarez et al. (2019) demonstrated that a native
thermophilic microbial consortium of methanogens, fermenting
and sulphidogenic microorganisms increased eight times the
average corrosion rates of carbon steel.

Sand is one of the most common deposits found in oil and gas
pipelines. Sandstone reservoirs are among the main hydrocarbon
sources worldwide, and influx can occur during perforation (Oyeneyin
et al,, 2005). Sand can also enter the pipelines during water injection
(Wang and Melchers, 2017). For this reason, the effect of sand deposits
on the severity of UDC has been extensively studied (Huang et al.,
2010). However, it is noted that the common feature in these studies is
the use of acid-clean commercial sand in the experiments, which does
not represent deposits found in industrial environments. Oilfield sand
deposits are commonly mixed with crude oil, resins, asphaltenes, waxes
and corrosion inhibitors (Gieg et al., 2020), which contain heteroatoms
of nitrogen (nitrates, nitrites), sulphur (thiosulphate, sulphate), carbon,
and phosphorus that may serve as electron donors and nutrients for
anaerobic microbial metabolism and influence the microbial activity of
native communities (Harris et al., 2010).

Microbial ecology research in the oil and gas industry has shown
that shifts in microbial community structure and metabolic capabilities
occur in response to changes in the environment, such as nitrate
injection (Vigneron et al., 2017), hydrocarbons presence (D'Ugo et al.,
2021), usage of mixed corrosion inhibitors (Duncan et al., 2014). It is
therefore plausible to assert that UDMC rates and mechanisms will
differ when two chemically different types of sand-deposits are tested,
mainly because of the impact that the sand-deposit chemistry would
have in the microbial ecology dynamics.

This study was conducted to investigate the impact of sand
deposit chemical composition on the taxonomic and functional
attributes of a multispecies consortium. And, to assess its influence
on the corrosion of carbon steel. Studying the risk of UDMC in
presence of oilfield deposits, and the interactions of native
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microorganisms with them, is essential for improving the current
corrosion management strategies used by the oil and gas industry.
Through this type of studies, new risks that could have been
overlooked in the past are identified, and, the importance of including
microorganisms and field samples in corrosion laboratory-based
experiments is highlighted.

2. Materials and methods

2.1. Oilfield sand sample

A total of 1 Kg of sand was collected from a high pressure (HP)
separator at an Australian oil production facility experiencing sand
accumulation inside the flow line. The system was under chemical
treatment with a commercial imidazoline based corrosion inhibitor and
a commercial chemical biocide containing Tetrakis (hydroxymethyl)
phosphonium sulphate Benzyl-(C12-C16 Linear Alkyl) (THPS) and
Dimethyl-Ammonium Chloride Formaldehyde (DACF). The samples
were transported in a sterile anaerobic container under refrigerated
conditions (4°C) to the laboratory for the recovery of native
microorganisms and chemical characterization.

2.2. Microbial recovery and consortium
preparation

Upon arrival, oilfield sand was immediately inoculated in
different culture media to recover the oilfield microbial community
to be used in corrosion studies. For this purpose, ten grams of sand
were grown in 40 mL of four (4) selective culture media to target the
growth of sulphide producing prokaryotes (SPP), acid-producing
bacteria (APB), iron reducing bacteria (IRB), and methanogens
(MET). Culture media were prepared following the standard method
NACE TMO0194 (2004); SPP media was prepared following the
guidelines proposed elsewhere (Suarez et al., 2019). All culture media
were sparged with a gas mixture of 20% CO,/80% N, for 1h to
saturate the solution, and dispensed in serum vials capped with
rubber stoppers crimped sealed and autoclaved. The inoculated tubes
were incubated for 21 days at 40°C. The day of the experimental set
up, an aliquot of each culture media that showed positive microbial
growth was adjusted to a final concentration of 1.9 x 107 cells/mL in a
falcon tube. The falcon tube was centrifuged at 15,000 x g for 5min to
harvest cells from each culture media, finally, the four different pellets
were combined in 5mL of sterile PBS for the inoculation of the
reactors. Molecular identification of the consortium was performed
using 16S rRNA gene sequencing and the results were described
elsewhere (Diaz-Mateus et al., 2021).

2.3. Sand treatment

Part of the oilfield sand was washed with ultrapure water (Milli-Q
system, resistivity 18.2MQcm) and roasted at 600°C for 3h in a muffle
furnace (Thermolyne Industrial Benchtop Muffle Furnaces, Thermo
Fisher Scientific) to remove surface organic matter and used as treated
sand (Tian et al., 2012). After the temperature treatment, the sand was
cooled to room temperature inside the furnace; and, later stored under
vacuum conditions for further characterization.

frontiersin.org


https://doi.org/10.3389/fmicb.2023.1089649
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org

Diaz-Mateus et al.

2.4. Sand characterization

2.4.1. Fourier transform infrared spectroscopy

Both treated and untreated sand were analyzed using Fourier
transform infrared spectroscopy (FTIR) to determine the functional
groups present. For this, a diamond internal reflection element (Perkin-
Elmer, Spectrum Two IR) was used. The wavelength range used for

1

reading the spectra was 1,000 to 4,000cm™.

2.4.2. Chemical characterization

Chemical analysis of treated and untreated sand (performed by a
Eurofins, ARL) was carried out following US EPA, APHA (American
Public Health Association) and in-house test methods. Analyzes
included: Total petroleum hydrocarbons by Gas Chromatography-
Flame Ionization Detector (GC-FID) (USEPA SW 846-8360B), Total
organic carbon, by the high temperature combustion method (APHA
5310B), and total Nitrogen using an automated Colorimetric/
Turbidimetric Aquakem System (APHA 4500).

2.5. Carbon steel coupons preparation

Carbon steel with elemental composition of (weight %): C (0.07-
0.8), Mn (1.38-1.39), Si (0.16-0.68), S (0.01), P (0.01), Ni (0.01-0.03),
Cr (0.09-0.23), Mo (0.03-0.06), Cu (0.06-0.11), V (0.02-0.06), Nb
(<0.01), Ti (<0.01), Al (0.009-0.038), B (<0.0005), and Fe (balance) was
cut into square coupons with a surface area of 5.29 cm? including a weld
in the center of the sample. Coupons were electro-coated with epoxy
(Powercron 6000CX; PPG Industrial coatings) and only one surface of
the samples was wet-ground to a 600-grit finish using SiC paper, to
expose it to the tested sand. Subsequently, the samples were washed,
rinsed with absolute ethanol, and dried under nitrogen gas. Coupons
were finally sterilized by UV irradiation (15min at each side).

2.6. Under deposit microbial corrosion test

Two different corrosion scenarios were assessed using 2-litre
capacity glass cells. (1) UDMC with raw untreated sand, (2) UDMC with
treated sand. Five coupon replicates were used to evaluate each scenario.
Coupons were placed horizontally in custom-made glass containers
(P40 x 20mm) designed to ensure uniform deposition of a 20 mm layer
of sand on the surface of the samples (Machuca et al., 2017). 55+0.2
grams of sand (treated and untreated, accordingly) were deposited on
top of the carbon steel coupons and tapped to achieve the same height
in the five glass containers. The reactors were then connected to a
filtered-sterilized gas line (20% CO,/80% N, mixture) to maintain
anaerobic conditions throughout the exposure period.

The test solution used was synthetic produced water with the following
composition: NaCl 462 mM, CaCl,.2H,0 1.5Mm, K,HPO, 2.8 mM, NH,Cl
4.6mM, KCl 4.6 mM, MgCLH,0 2.4 Mm, D-glucose 5mM, Na,SO,.5H,0
45mM, Na,S,0,4.02mM, Na-formate 14.7mM, Na-lactate 5.8mM,
Na-acetate 49mM, 1.4gL—1 bactocasamino acids (BD), Na-pyruvate
4.4mM and, 11 of ultrapure water (Milli-Q system, resistivity 18.2MQcm).
The solution pH was buffered with sodium bicarbonate and the initial pH
was 7.3+0.2 reflecting pipeline in situ conditions.

Microbial consortium cells (Section “Corrosion measurements and
metal surface analysis”) were added to the reactors at a final
concentration of 107cells mL™". The temperature and stirring of the
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reactors were set to 40°C+ 1°C, and 200 rpm, respectively. To maintain
an active microbial consortium throughout the exposure, reactors were
maintained under batch feeding (30% of test solution replenished every
4 days). The test exposure period was 4 weeks.

2.7. Analytical methods

2.7.1. Corrosion measurements and surface
analysis

Corrosion measurements were performed on triplicate coupons
retrieved from each reactor to determine uniform and localized corrosion
rates. For this, the metal samples were washed with Clarke’s solution,
following the ASTM G1 (2003) standard guidelines. Various sonication
cycles of 1 min were carried out to completely remove the corrosion
products that were strongly adhered to the metal. Afterwards, the weight
of the sample was measured and corrosion rates were estimated from
weight loss (ASTM G1, 2003). To obtain a localized corrosion rate, the
surface of the coupons was analyzed with a 3D optical profilometry
(Alicona InfiniteFocus G4). The deepest point present in each metal
surface was used to calculate the pitting rate as described in the NACE
standard practice SP-0775 (NACE SP0775, 2013). Coupons were also
visualized using a Neon Dual-Beam field emission scanning electron
microscope (FESEM) at an emission voltage at 15kV.

2.7.2. Microbial community composition and
structure

The microbial community that thrived in the sand deposits of the
two reactors was identified by 16S rRNA gene sequencing. Three
replicates were characterized from each reactor. For this, at the end of the
UDC test, the sand layer covering the carbon steel coupons was immersed
in flasks containing 20mL of anaerobic PBS and sonicated for 10s
followed by 15s on ice, repeating for 5cycles to detach sessile
microorganisms from the sand grains. After recovering a total volume of
100mL of PBS containing detached cells, 90 mL of the solution were
centrifuged at 15,000 x g for 15min to concentrate the pellet. Pellet was
used for DNA extraction using a FastDNA™ SPIN Kit for Soil (MP
DNA
concentration was verified using a Nanodrop spectrophotometer

Biomedicals) following the manufacture’s procedures.
(NanoDrop™ Lite Spectrophotometer). The V3-V4 hypervariable region
of 16S rRNA genes in the extracted DNA was amplified by PCR using the
universal primers 341F (5 CCTAYGGGRBGCASCAG?3’) and 806R (5’
GGACTACNNGGGTATCTAAT 3'; Salgar-Chaparro et al., 2020a).

PCR products were sent to the Australian Genome Research Facility
(AGREF) for library preparation and sequencing. PCR amplicons were
generated using the primers 341F (50° CCTAYGGGRBGCASCAG 3')
and 806R (5GGACTACNNGGGTATCTAAT 3% Yu et al., 2005).
Thermocycling was completed with an Applied Biosystem 384 Veriti and
using AmpliTaq Gold 360 master mix (Life Technologies, Australia) for
the primary PCR. A secondary PCR to index the amplicons was
performed with TaKaRa Taqg DNA Polymerase (Clontech). The resulting
amplicons were cleaned again using magnetic beads, quantified by
fluorometry (Promega Quantifluor) and normalized. The equimolar
pool was cleaned a final time using magnetic beads to concentrate the
pool and then measured using a High-Sensitivity D1000 Tape on an
Agilent 2,200 TapeStation. The pool was diluted to 5nM and molarity
was confirmed again using a High-Sensitivity D1000 Tape. This was
followed by sequencing on an Illumina MiSeq instrument with a V3
(600cycles) kit (Illumina).
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The Quantitative insights Into Microbial Ecology Software (Qiime2-
DADA2 v. 2020.8.0 pipeline) was used for the analysis of the raw data
(Pilloni et al., 2022; Rajala et al., 2022). The “dada2 denoise-paired”
plugin was implemented for quality filtering, denoising and chimera
removal of the amplicon sequences (Callahan et al., 2016). Parameters
“—p-trim-left-f 10” and “—p-trim-left-r 10” were used to trim off the
first 10 bases of both forward and reverse reads. Parameter “—p-trunc-
len-f 280” was used to truncate the forward sequences at position 280.

«

Parameter “—p-trunc-len-r 220” was used to truncate the reverse
sequences at position 220, based on the demux-summary.qzv file
(Salgar-Chaparro et al., 2020c¢). Filtered sequences were classified using
BLAST (“feature-classifier classify-blast”) against the SILVA database
version 138 and clustering at 90%. The taxonomic composition of each

sample was illustrated using OriginPro.

2.7.3. Microbial community alpha diversity analysis
and functional capability

Estimates of bacterial community richness, diversity, and evenness
were performed in Qiime2 v. 2020.8.0, using the “core-metrics-
phylogenetic” method for obtaining the Chaol, Shannon and Simpsons
diversity indices (Prodan et al., 2020). To account for differences in
sequencing effort, all samples were rarefied to the lowest number of
reads obtained from an individual sample (12388) prior to analysis.

The functional profile of the two different microbial communities in
the two sand deposits was predicted from the obtained 16S rRNA gene
data, using the R-based tool Tax4fun2 R, and based on KEGG level 2
category (Coclet et al,, 2021). The results in percentages represent the
fraction of the microbial community that possesses each specific functional
capability. Linear discriminant analysis (LDA) effect size (LEfSe) (Segata
et al, 2011) was performed to reveal the specific metabolic pathways
significantly associated with treated and untreated sand. A size effect
threshold of 4.0 on the logarithmic LDA score was set for discriminative
metabolic pathways as significant biomarkers. A value of p of <0.05 was
considered significant for statistical methods. LefSe analysis was performed
online in the Galaxy workflow framework (Goecks et al., 2010).

2.7.4. Microbial activity

The remaining 10mL of cell suspension (Section “Microbial
community composition and structure”) were used to evaluate metabolic
activity levels of the sessile bacteria community in the two conditions. The
concentration of the adenosine triphosphate (ATP) molecule was measured
by luminescence after reaction with luciferase using the Quench-
GoneOrganic Modified (QGO-M) test kit (Luminultra Technologies Ltd.),
following the manufacturer’s instructions. Three different samples from
each reactor were used for this analysis. ATP measurements were collected
using the PhotonMaster™ Luminometer (Luminultra Technologies Ltd.),
and ATP concentration (ng/g) was calculated from the measured
luminescence by comparing it against a standard.

2.8. Statistical analysis

Statistical analysis of corrosion and adenosine triphosphate (ATP) data
were conducted using SPSS 27 and PAST (V4.10). The statistical analyzes
applied were selected based on the normality of the data in each variable.
Shapiro-Wilk method was used to test the normality of the data in each
variable. Then, one-way analysis of variance (ANOVA) with Tukey’s
post-hoc means separation test was implemented to test the homogeneity
of variances in each variable and identify statistically significant differences
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between variables normally distributed. Statistical comparison of microbial
alpha diversity levels between the two sand deposits was calculated on
rarefied data with a parametric ¢-test. Results of statistical tests were
considered significantly different with value of p <0.05.

3. Results
3.1. Sand characterization

3.1.1. Fourier transform infrared spectroscopy

FTIR results of treated and untreated sand are shown in Figure 1.
Results showed common bands assigned to silicon dioxide and some
silicates in both samples. The broad peaks seen at 1037 and 1,053 cm™
in untreated and treated sand, respectively, consists of the Si-O-Si bond
(Oh 2010). The Si-O symmetrical stretching vibrations observed at 795
and 777cm™ in the treated sand, the Si-O asymmetrical bending
vibration at 445~453cm™, and the symmetrical bending of the Si-O

! indicates that the silica was in the form

group at 690~694cm™
crystalline quartz in both samples (Anbalagan et al., 2010).

Although the main chemical matrix of both sand samples was
similar, the FTIR spectra analysis showed key differences in some
functional groups present in the untreated sand and absent in the treated
sand. The peaks seen in the untreated sand sample (Figure 1B) at 2,924
and 2,852cm™ are indicative of the antisymmetric and symmetric
stretching C-H bond, respectively, characteristic of the functional group
of alkanes (Durnie et al., 2001). The FTIR spectral bands in the region
1,636cm ™" suggest the presence of the C=C stretching vibration in
alkenes in untreated sand (Gao et al., 2011; Patty et al., 2017). Moreover,
the wide band in the range of 3,700 to 3,000cm™ (includes the
characteristics bands at 3,678, 3,410, 2,928, and 2,853 cm™") is attributed
to the -OH stretching vibration that corresponds to the sinalol
functional groups (Si-OH) and also to the physical absorbed water by
the sand deposit (Sun et al., 2018).

The FTIR spectra indicated that the roasting of oilfield sand,
removed the organic compounds present in the sample and caused a
dihydroxylation of the sand.

0.4+
0.34
0.2+

0.14

0.04

Absorbance
w

0.8

3358

0.6
0.4
024
00 ; T 7 T .
4000 3000 2000 1000 0
Wavenumbers [cm™]
FIGURE 1

FTIR spectral analysis of treated and untreated sand samples.

(A) Spectrum of treated sand indicating that SiO, formed the sample
predominantly. (B) Spectrum of the untreated oilfield sand indicating
the presence of O-H and C-H functional groups.
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3.1.2. Chemical characterization

The chemical characterization of the treated and untreated sand
samples is shown in Table 1. A clear difference in the chemistry of the
two different sand samples was evidenced. Untreated sand contained
higher levels of total petroleum hydrocarbons (TPH), organic carbon
(TOQC), total nitrogen and total Kjeldahl nitrogen. Findings of
hydrocarbons by chemical characterization in the untreated sand
corroborated the results of FTIR.

3.2. Corrosion measurements and metal
surface analysis

3.2.1. General corrosion

Metal surface imaging showed that the carbon steel exposed to
untreated sand (Figure 2A) suffered severe localized corrosion in the
form of a large cavity in the center of the sample, covering almost all the
welded area, whereas the carbon steel samples exposed to treated sand
showed mainly uniform corrosion. Corrosion rates by weight loss
presented in Figure 2B showed that microorganisms developed within

TABLE 1 Chemical composition of treated and untreated sand used as
deposits in the UDMC test.

Sand
Compound LOR®
Untreated  Treated

TPH C6-9 (mg/kg) 0.2 1.7 <0.2
TPH C10-14 (mg/kg) 0.2 490 <0.2
TPH C15-28 (mg/kg) 0.4 2,300 <0.4
TPH C29-36 (mg/kg) 0.4 630 <0.4
TPH C>36 (mg/kg) 0.4 190 <0.4
Sum of TPH (mg/kg) 1.6 3,600 <1.6
TOC (%) 0.1 0.59 0.14
Total Kjeldahl Nitrogen (mg/kg) 10 56 43
Total Nitrogen (mg/kg) 10 56 46

*LOR, Limit of detection.

10.3389/fmicb.2023.1089649

the treated sand deposits led to lower general corrosion rates of carbon
steel in comparison with the corrosion rates obtained when
microorganisms were interacting with the untreated sand deposit.
Differences between corrosion rates of 0.068 mmpy in untreated sand
versus corrosion rates of 0.018 mmpy in treated sand were statistically
significant (p <0.05, Supplementary Table S1).

3.2.2. Localized corrosion

After removing the sand, corrosion products and biofilm, the
morphology of carbon steel samples surface was analyzed by SEM,
results are shown in Figure 3A. They key difference observed was that
coupons exposed to treated sand showed signs of general corrosion,
whereas the coupons exposed to untreated sand suffered mainly
localized corrosion in the form of deep pits.

3D optical profilometry was performed on three cleaned coupons
for each test condition to assess the metal penetration in each treatment
(Supplementary Figure S1). Maximum pitting depth and pitting rates
are shown in Figure 3B. Pitting rates of 0.43 mmpy were found in
carbon steel samples exposed to the untreated sand deposit whereas
pitting rates of 0.10 mmpy were found in carbon steel exposed to the
treated sand. Differences in the pitting rates between the two scenarios
were statistically significant (p<0.05, Supplementary Table S2).
According to the qualitative categorization of carbon steel corrosion
rates established in the NACE standard practice NACE SP0775 (2013),
the pitting rates in untreated sand are classified as severe, whereas
pitting rates in treated sand are classified as low.

3.3. Microbiological analysis of sessile
community in both treated and untreated
sand

3.3.1. Microbial composition, richness, diversity,
and evenness

The microbial community composition at genus level of the
treated and untreated sand deposits is shown in Figure 4A. The
microbial composition analysis revealed that the microbial populations
established at each deposit were markedly different. In the treated

Untreated sand

10.00mm

Treated sand

10.00mm

10.00mm

FIGURE 2

samples at 5X resolution. (B) Average general corrosion rates by weight loss.
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Uniform corrosion of carbon steel in a 4 weeks UDMC test with two chemically different sand deposits. (A) Visible-light microscopy images of metal
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FIGURE 3

Localized corrosion analysis of carbon steel in a 4 weeks UDMC test with two chemically different sand deposits. (A) Scanning electron micrographs of
steel surfaces after cleaning. (B) Localized corrosion rates calculated from the maximum pit depths.
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sand, where organic compounds were removed, fermenting species
from the genera Acetomicrobium were found as the predominant
microorganisms in the population with a percentage of abundance of
95.7%, accompanied by sulphate reducers (Desulfovibrio), thiosulphate
reducers (Shewanella), iron-oxidizers (Pseudomonas), and other
fermenters (Thermovirga and Caminicella), with relative abundances
less than 1% in the three samples analyzed. Contrarily, in the untreated
field sand, fermenting microorganisms from the genera Thermovirga
(37%), Vibrio (13%), Aminirod (12%), and Alkalibacter (10.6%), and
Acetomicrobium (6.6%) accounted for the 79% of the community. In
addition, thiosulfate reducers (Shewanella, Dethiosulfatibacter,
Petrotoga), sulfate reducers (Desulfovibrio), and, nitrate reducers
(Sulfurospirillum), were found with abundances higher than 5%. The
other 17 microbial genera found in lower abundances (less than 1%),
accounted for the 2.9% of the total microbial community. Differences
found based on the sand deposit chemical composition reflect the
dynamic interaction among the microorganisms that make up a
community in response to the close surface (environment) they are
interacting with. It is important to clarify that in order to handle
uncertainties in the experiment, coming from the untreated sand, the
samples were characterized using 16S rRNA gene sequencing. Results
indicated that there were two predominant genera (Thermovirga and
Caminicella) in the community. These predominant genera were also
identified in the pooled microbial consortium inoculated to
the bioreactors.

The comparison of the alpha diversity of the sessile communities
established in the two chemically different sand deposits is showed in
Figure 4B, and statistically significant differences in the gross community
structure were found (p <0.05, t-test, Supplementary Table S3). The
richness index (Chaol), and diversity index (Shannon) which consider
the number of species in the community, were higher for the microbial
community developed in the untreated sand and lower for the microbial
community developed in the treated sand deposit. Likewise, the
Simpson evenness, which represents the probability that two randomly
selected individuals will be of the same species, showed that the
community hosted in the untreated sand were more evenly distributed
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(between 0.83 and 0.89) than the one found in the treated sand (between
0.61 and 0.62; Figure 4B).

3.3.2. Predicted functional profile

A total of 307 KEGGs (functional orthologs) were predicted across
both samples, and used for the functional analysis at level 2 (Figure 5).
A higher abundance of genes involved in amino acid metabolism,
carbohydrate metabolism and membrane transport were predicted in
the microbial community grown in the treated sand deposit. Contrarily,
the relative abundance of genes involved in cell growth and death,
signal transduction (transmission of molecular signals from the
microorganism exterior to its interior to ensure an appropriate
response), xenobiotics degradation and metabolism were predicted in
lower abundance compared with the microbial community grown in
the untreated sand. LefSe analysis indicated that 134 of the 307
pathways found, were significantly different between communities
developed in the two chemically different sand deposits
(Supplementary Table S4). LefSe analysis at level 3 showed that
metabolic pathways related to the two-component regulatory system
(proteins of adaptation to the environment for survival), biofilm
formation, sulphur and nitrogen metabolism, and xenobiotics
degradation were biomarkers of the community developed in the
untreated sand. Whereas carbohydrate and amino acids metabolism,
and, quorum sensing were biomarkers of the microbial community

developed in the treated sand.

3.3.3. Microbial activity

The concentration of cellular ATP of the sessile microorganisms
developed within the sand deposits after UDMC tests is shown in
Figure 6, results are presented as the meanz+standard deviation.
One-way ANOVA analysis of the concentration of adenosine
triphosphate in sessile microorganisms (by triplicate) confirmed that the
microbial community developed within the 20 mm layer of untreated
sand (9.29ng/g) was significantly more active than the microbial
community developed in the treated sand (1.24ng/g; p<0.05;
Supplementary Table S5).
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FIGURE 4

Microbial community changes driven by the sand-deposit chemical composition. (A) Community structure. Results show the mean relative abundances of
microbial community classified at the genus level (n=3). Phylogenetic order is indicated in parentheses. Bacterial genera with relative abundances >1% are
shown; genus contributing <1% were presented as “others.” (B) Alpha diversity analysis. Boxes represent the interquartile range (IQR) between the first and
third quartiles (25th and 75th percentiles, respectively), and the horizontal line inside the box defines the median. Whiskers represent the lowest and highest

values.

4. Discussion

4.1. Effect of sand deposits chemistry on
microbial community structure, activity
levels, and functional profile

The sessile microbial community developed in both treated and
untreated sand was dominated by fermenting microorganisms,
despite the initial inoculum was heavily dominated by sulfate
reducing, thiosulfate reducing and iron oxidizing bacteria, with lower
abundance of fermenters. These results suggest that the fermenters
present in the consortium had a stronger competitive preference for
the carbon sources available in the test solution. Other authors have
described similar results where the influence of carbon sources in the
microbial community structure of a native sediment consortium
containing iron-reducing bacteria, sulfate reducing bacteria and
fermenting organisms was studied. Authors found that the microbial
community shifted to a community dominated by fermenting
organisms in cultures enriched with glucose and lactate as carbon
sources (Lentini et al., 2012).

Significant differences were seen in the relative abundances of the
predominant genera in the sessile communities developed at each
condition. One of the main differences found is the increased abundance
of Acetomicrobium in the treated sand, which resulted in almost the total
make-up of the community. Although little is known about the genus
Acetomicrobium, the few reported species belonging to this have shown
higher growth rates when glucose is present in the culture medium
(Soutschek et al., 1984). Though, this obligate anaerobe has wide
metabolic plasticity and can ferment other substrates such as amino
acids, dicarboxylic acids, and, other sugars (maltose, fructose), besides,
it can use several sulphur compounds as terminal electron acceptors
(Cook et al, 2018). These broad metabolic capabilities may have
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FIGURE 5

Analysis of predicted KEGG metabolic pathways at level 2, based on
Tax4fun2: (A) Relative abundance of predicted pathways in sessile
community from untreated sand. (B) Relative abundance of predicted
pathways in sessile community from treated sand.

influenced in the establishment of this genera as the main group in the
final microbial community in the treated sand deposit.

Aside from Acetomicrobium wide metabolic plasticity, the presence
of residual biocide in the untreated sand might have also played a role
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Adenosine triphosphate (ATP) concentration of biofilms growth within
two different sand deposits in the UDC reactors after 4 weeks of
immersion.

in the significant differences evidenced in the microbial community
developed in the sand samples. Although the organic compounds
detected in the FITR spectra (Figure 2) cannot be identified with this
technique, we know that biocide injection was an ongoing MIC
mitigation strategy in the oilfield from where the sand sample was taken.
Thus, it is possible that the dominant presence of Acetomicrobium in the
reactor where sand depleted from organic compounds is due to the
growth inhibition effect that the biocide was having on that population
in the oilfield from where sand samples were obtained; and ceased when
the biocide was removed from the system. Nonetheless, further analysis
will be required to confirm susceptibility of Acetomicrobium to the
field biocides.

Conversely, in the untreated sand, fermenters were mainly
represented by five different genus (Thermovirga, Vibrio, Aminirod,
Alkalibacter, and Acetomicrobium), coexisting with sulfate and
thiosulfate reducers. Syntrophic interactions between fermenters and
SRB have been reported in different anaerobic environments, as
fermenters’ metabolic by-product H, can act as an electron donor for
the sulfate and thiosulfate reduction by SRB and thiosulfate reducing
bacteria (TRB) (Dar et al., 2008). Considering that the only difference
between the untreated and treated sand was its chemical composition
(as the same carbon sources and electron acceptors were supplied in the
test solution), it is inferred that the heteroatoms of nitrogen, sulphur,
carbon, oxygen and phosphorous present on the hydrocarbons, residual
biocide and corrosion inhibitors, represented an additional source of
energy and nutrients to the microbial consortium inoculated in the
reactor. This enriched environments, then led to a more diverse
community, which was supported by the higher metabolic rates (ATP
concentration) found in the untreated sand.

Alpha diversity analysis of the microbial communities established
in the treated and untreated sand at the end of the 4weeks of
immersion confirmed that differences in the two communities
biodiversity were significant, and that the untreated oilfield sand
allowed the development of diverse microbial communities that
resembled more the microbial communities usually found in oil and
gas facilities and reservoirs (Machuca Suarez and Salgar-Chaparro,
2018; Suarez et al., 2019; Nicoletti et al., 2022). It has been reported
that the predominant genera in the untreated sand, Thermovirga,
possess homologs of the benzyl succinate synthase gene (bssA), which
codes for a benzyl succinate synthase, the key enzyme of anaerobic
toluene degradation, indicating that members of this genera may play
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a key role as primary fermenter in the anaerobic degradation of
hydrocarbons (Vigneron et al., 2017). Similarly, Aminirod (also
present in higher abundance in the community) has shown the ability
to act as a secondary fermenter in the degradation of hydrocarbons.
This strain can ferment propionate and butyrate (metabolic
by-products generated by primarily fermenters) into acetate and H,
(Liu et al., 2021). Hence, our results support that the hydrocarbons
present in the untreated sand (Table 1) were potentially being
degraded by Thermovirga and Aminirod in a syntrophic metabolism.
In contrast, genes related with carbohydrate, aminoacids and pyruvate
metabolism were found as biomarkers in the microbial community
developed in the treated sand.

4.2. Effect of sand deposits chemistry on
under deposit microbial corrosion

Results from this study demonstrated that the chemical
differences of the sand deposits tested lead to different under deposit
microbial corrosion rates. Despite the differences in the relative
abundances of the genera found in both treated and untreated sand,
fermenting organisms, previously related to MIC were the
predominant bacteria of the consortium (de Paula et al., 2014; Salgar-
Chaparro et al., 2020b; Cai et al., 2021). Acetomicrobium, the
dominant genus found in the treated sand microbial community
(94.3%) uses the fermentation of simple sugars and amino acids as
primary metabolic strategy, releasing corrosive metabolites such as
acetic acid, CO, and H, to the environment; moreover, it possess the
ability to reduce thiosulfate, elemental sulphur and cysteine to
hydrogen sulphide (Maune and Tanner, 2012; Cook et al., 2018),
which acidifies the water, causing pitting corrosion to carbon steel
pipelines. Similarly, Thermovirga, the most abundant genus in the
untreated sand microbial community (94.3%) is a thermophilic
bacterium capable of fermenting proteins, organic acids, and single
amino acids, producing ethanol, H, and CO, as metabolic
by-products. Thermovirga, just as Acetomicrobium can also couple
fermentation with the reduction of elemental sulphur (S,) to hydrogen
sulphide (H,S) (Dahle and Birkeland, 2006; Duncan et al., 2009). It
has to be noted that despite sulphide concentration was not measured
during the test, a characteristic smell of H,S and the presence of a
black cover in the sand deposits at the end of both test (suggesting FeS
formation) suggests the formation of H,S in the tests.

The statistically significant differences in the corrosion damage
generated by the two different microbial communities were likely
influenced by the different metabolic rate (based on ATP) measured
in the two microbial communities. A higher metabolic activity can
result in higher production of corrosive metabolites. In our study, as
fermenters were the most abundant microbial groups it likely that
higher metabolic activity resulted in higher concentration of acids in
the test solution. An increased bacterial metabolic rate based has been
previously associated as the main contributing factor in the
acceleration of steel corrosion (Xu et al., 2022; Zhang et al., 2022). For
example, Dzierzewicz et al. (1997), reported a statistically significant
relationship between H,S release, bacterial growth rates, and,
enzymatic activities rates (hydrogenases and ATPS-reductases) of
D. desulfuricans with steel corrosion rates. It is worth mentioning that
the synergy between higher concentrations of corrosive secondary
metabolites being released by the biofilm developed in the untreated
sand deposit, together with the physical barrier that the sand bed
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represents for the diffusion of these corrosive chemical species away
from the metal surface, is very likely the main factor contributing to
the high localized corrosion damaged observed in the metal surface
under the untreated sand deposit.

Moreover, the higher corrosion rates found in the carbon steel
exposed to untreated oilfield sand, together with the higher microbial
diversity and activity found on it, suggests that MIC took place because
of synergistic interactions among the different microbial species in the
of H,
microorganisms, such as sulfate reducers (Desulfovibrio) and thiosulfate

community. Higher relative abundances consuming
reducers (Oceanotoga, Shewanella) were found in the untreated sand
deposit, in comparison with the treated sand deposit. A syntrophic
interaction among these microbial groups and fermenters have been
previously studied (Laanbroek and Pfennig, 1981; Finke and Jorgensen,
2008). Fermenters secondary metabolites such as H,, can be used by
sulfate and thiosulfate reducing bacteria as electron donors (Dar et al.,
2008). Multispecies biofilms have been found more corrosive in
comparison with single species biofilms due to the cascade of biochemical
reactions that occur between taxonomically and metabolically different
microorganisms (Zuo, 2007; Videla and Herrera, 2009).

Scanning electron microscope analysis demonstrated that despite the
severity of the corrosion rates derived from the environment developed
at the metal-deposit interface along the two sand deposits was different,
the corrosion mechanisms revealed the grain boundaries in a low grade
(micro-etching) in both tests, resembles the micro etching of carbon steel
resulting from the standard practice of applying acid treatment previous
to the microscopic examination of carbon steel (ASTM E407-07, 2007).
Hence, results suggest that the UDMC mechanism is likely related with
the organic acids released by bacteria as metabolic by-products, trapped
in the metal-deposit interphase because of the tortuous pathways that the
sand grains represent for their diffusion to the bulk solution. Most of
bacterial acid metabolic byproducts are in the free acid form and are
highly corrosive because their reduction coupled with the oxidation or
iron is a thermodynamically favorable reaction and kinetically not
retarded (Gu and Galicia, 2012).

The interaction of microorganisms with oilfield deposits is a topic
that remains unexplored. In this paper, it is demonstrated that the
chemical composition of one of the most commonly found deposits in
oil and gas pipelines (sand), impacts the diversity, metabolic activity, and
functional attributes of multispecies microbial communities, and
consequently, affects the extent of under deposit microbial corrosion
(UDMC). Results of this investigation provide valuable information
about how microbial communities respond to different environmental
conditions and how these microbiological changes impact the risk of
corrosion. In addition, these results highlight the importance of
including field samples in laboratory-based corrosion experiments to
create systems that better simulate real field scenarios and therefore,
generate more accurate corrosion risk assessments.

5. Conclusion

This investigation evaluated the effect of chemical differences of
sand-deposits on the microbial community structure, functional
attributes and metabolic activity of a multispecies oilfield microbial
consortium, and its subsequent impact in under deposit-microbial
corrosion. The main findings of this investigation are as follows:

1. Chemical characterization results of the raw untreated oilfield
sand deposits and treated oilfield sand deposits showed that
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untreated sand contained organic compounds such as biocides,
corrosion inhibitors, and petroleum hydrocarbons. In contrast,
the roasted (treated) oilfield sand showed the absence of those
chemical compounds. These chemical differences significantly
affected diversity, richness, and evenness indexes. Untreated sand
led to a more diverse, rich, and even microbial population,
whereas a more homogenous, less rich, and uneven community
resulted in the treated sand.

2. The taxonomic and functional attributes of the sessile microbial
populations developed within the sand-deposit were also
affected by the chemical differences between treated and
untreated sand; (1) the microbial community in treated sand
was dominated by fermenting species from only one genera,
accompanied by low abundances of iron-oxidizers, thiosulfate
reducers and sulfate reducers, moreover, the functional
capability of the community evidenced a higher abundance of
genes involved in carbohydrate and amino acid metabolism; (2)
the microbial community in untreated sand was dominated by
fermenting microorganisms of five (5) different genera,
accompanied by moderate abundances of thiosulfate reducers,
sulfate reducers and nitrate reducers, and, higher abundances of
genes related to signal transduction and xenobiotics degradation
were found on its functional capability prediction.

3. The presence of organic compounds such as biocides, petroleum
hydrocarbons and corrosion inhibitors in the untreated sand
significantly increased the average and localized corrosion
induced by the multispecies oilfield consortium. Higher
corrosion rates were correlated with higher ATP levels (microbial
activity) in presence of these compounds, when compared with
the treated sand. Higher corrosivity was attributed to the
synergistic interactions that occurred between the diverse genera
found in the untreated sand, which lead to a higher active
microbial community, potentially producing higher
concentrations and different corrosive metabolites, in comparison
with the microbial community developed in the treated sand.

4. A correlation was found between the predicted microbial
functional capability of the multispecies microbial consortium in
the untreated sand (xenobiotics degradation), the chemical
characterization of the untreated (xenobiotics presence), and
higher corrosion rates in the UDMC test with untreated sand.
The potential use of the organic compounds present in the sand
as nutrients, by the multispecies microbial consortium and the
associate risk of MIC requires further investigation.
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