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IoT devices have become a primary medium for malware (e.g., botnets) to launch Distributed Denial of Service
(DDoS) attacks. Such malware exploit low-security measures in IoT devices to spread in networks and recruit
new victims. Thus, there is a need for malware countermeasures that consider both the security and operability
of the network. Indeed, some IoT devices might run critical processes that do not tolerate interruptions.

This paper proposes MaLCoN, a blockchain-based malware containment framework for IoT. It aims to stop

malware from spreading in a network by a set of containment strategies encoded into smart contracts to be
executed by the infected devices. Moreover, MaLCon provides a monitoring service that ensures trustworthy
behavior in the network and reports to the system administrator any fraudulent activity of the monitored
devices. MaLCoN was tested extensively with real-life malware and use cases. It quickly and drastically reduces
the number of infected devices in a network, even in an extreme case of a fully connected network.

1. Introduction

IoT devices have been emerging drastically in the last few years.
Due to their low computational power, they cannot run sophisticated
security solutions, leading to weaker security guarantees. In addition,
they usually adopt weak passwords (e.g., default vendors’ passwords)
and operate with unencrypted traffic.! As a result, attackers may inject
different type of malware (e.g., ransomware, trojans, botnets, spyware,
viruses) easily to compromise internal networks or attack external
targets [1].

According to the NIST SP 800-83 Malware Incident Response guide-
lines [2], one of the leading guidelines in malware incident response,
there are four main steps to contrast malware: preparation, detection
and analysis, containment and eradication, and recovery. While many
works have addressed the issue of IoT malware detection and analysis,
a few have focused on malware containment. Malware containment
aims at limiting the spread of malware in networks. To this end, the
need for effective and efficient containment strategies arises. Given the
spreading speed and the criticality of the potential damages, contain-
ment strategies need to: (i) be tailored to the attacking malware on the

basis of its characteristics, (ii) ensure the operability of the network
even under a malware attack, and (iii) be autonomously deployed to
reduce the delay that the human interaction can cause.

Additionally, since IoT networks are heterogeneous and can involve
several organizations, the containment process must be collaborative
and based on threat information sharing.? Exchanging malware infor-
mation increases organizations’ resistance to such attacks since they
can implement proactive strategies against the malware before they get
attacked. However, organizations do not necessarily trust each other.
So, an effective containment solution should ensure the traceability and
integrity of the implemented containment strategies.

In this paper, to cope with the abovementioned requirements, we
propose MarCon, a blockchain-based malware containment solution
for IoT devices. MaLCon is based on containment strategies deployed
through smart contracts. These strategies are tailored for each specific
malware based on its characteristics while considering the system’s
operability. In addition, MaLCon keeps an honest behavior in the system
by verifying the execution of suggested strategies after any malware in-
fection. We leverage the blockchain to ensure traceability and integrity.
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Containment actions done by a device are recorded in the blockchain
to ensure accountability. In addition, since information about malware
and adopted containment strategies are shared in the blockchain, the
proposed solution ensures that they are tamper-resistant. Moreover,
blockchain provides the tools to run smart contracts as autonomous
programs. So, the proposed containment actions are guaranteed to fol-
low the procedure encoded in the smart contract without the need for
human interaction. Containment strategies are selected by taking into
account malware characteristics (e.g., malicious actions, propagation
scheme, etc.) and processes’ characteristics, such as their tolerance to
rebooting and their replicas’ availability.

MatCon is designed for a trustless setting, where the trust of in-
volved parties is not needed for the normal operation of the system.
As a result, MaLCon relies on smart contracts to propose containment
actions. The key advantage of using smart contracts in MaLCon is
that they enable trustless collaboration between consortium members
(i.e., organizations). Unlike a centralized solution that requires a central
entity to be trusted, a blockchain-based solution with smart contracts
can operate in a decentralized and transparent manner, with no need
for trusted intermediaries. This is because smart contracts execute
automatically and transparently, with the terms and conditions of
the contract encoded on the blockchain, and enforced by the under-
lying consensus mechanism. Overall, MaLCon provides a secure and
efficient way for consortium members to collaborate on threat intel-
ligence sharing to automate the mitigation actions, without the need
for intermediaries or a central entity to be trusted.

MaLCon is, to the best of our knowledge, the first approach that
addresses malware containment in IoT leveraging blockchain. The issue
of malware containment in IoT was not addressed extensively in the
literature, even if IoT malware are having exponential growth.

Indeed, most previous proposals targeting IoT deal with malware
detection rather than containment. Malware containment is addressed
by [31], but with a straightforward approach of always disconnecting
a device from the network if the proposed malware detection model
predicts that the device is infected. The only approach we are aware
of leveraging on blockchain for malware containment is [4], but it
targets malware containment in the cloud. They used a graph analytics
approach to predict possible infections, and leverage smart contacts
that involve different parties to decide if a possible infected virtual
machine should be disconnected from the network or not. The involved
parties, namely the cloud provider, security officer, compliance officer,
auditor, network admin, and solution admin, give their opinion regard-
ing shutting down a virtual machine, depending on many factors, such
as service-level agreements, the danger of the attack, the pricing that
the action will cost, etc. MaLCon differs from these solutions at many
levels. First, MaLCon targets a heterogeneous IoT setting where different
organizations collaborate to defend against malware threats. The work
in [4] focuses on containing malware affecting virtual machines in the
cloud. Second, MarCon takes into consideration both the operability
and security of infected devices, instead of only shutting down a
device once it is infected like [3,4]. MaLCon smart contracts encode the
containment actions that should be taken without the need for human
intervention. Moreover, MaLCoN is available as open source® and was
tested extensively in different IoT settings, whereas the work in [4]
provided only the theoretical background without real-life experiments.

The remainder of this paper is organized as follows. Section 2
presents MarCon building blocks, whereas Section 3 discusses the de-
tails of MaLCon implementation. Section 4 analyzes the security of the
proposed approach. Section 5 presents experimental results, whereas
Section 6 concludes the paper.

3 MaLCon source code is available at https://github.com/lekssays/malcon
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Table 1
Mitigation actions executed by the infected peers.

Symbol Description Impact on operability
FRMT Formatting High

RBT Rebooting Medium

DLF Deleting malware files Low

Cccp Closing and changing ports Low

2. Containment process

MaLCon containment consists of three sequential phases: emergency,
healing, and strategies’ execution verification, which are all performed
on the blockchain (see Section 3 for more details). Before describing the
containment phases, we need to introduce some preliminary concepts.

2.1. Basic concepts

Device. A device (or a peer) is a computer that runs processes and is
part of a network. A device could either just execute a process related to
the IoT environment, or it could also have the privilege to participate in
the blockchain consensus process. We refer to this latter as a privileged
device.

Process. A process is the execution of a program on a device. In
the context of MaLCon, we characterize process p by two main features.
The first is the replication availability, which indicates the existence of
execution of the same program on another device. The second is the
rebooting tolerance, which indicates whether p can be rebooted without
causing any interruption to the service it provides. Therefore, we model
a process p running on a device D as a pair p = (Rep, RBT), where
Rep € {yes,no} and RBT € {yes,no} refer to replication availability
and rebooting tolerance, respectively.

Each process has a priority, that is assigned by the Ma.Con smart
contract based on process features, as follows:

« Priority 1 (Highest priority): This priority is assigned to processes
that do not have a replica and do not tolerate rebooting.

+ Priority 2: This priority is assigned to processes that do not have
a replica but tolerate rebooting.

+ Priority 3 (Lowest priority): This priority is assigned to processes
that have a replica.

For each device, we consider the most critical process, that is, the
process with the highest priority.* The characteristics of this process
will play a crucial role in selecting the proper containment strategies
(see Section 2.2 for more details).

Malicious actions. These are operations that malware could per-
form in an infected device. By reviewing different surveys on various
malware families [5-7], we consider as possible malicious actions the
following ones: encrypt files (EF), delete files (DLF), consume resources
(CR), monitor systems (M), send traffic (ST), and open ports (OP).

Malware. We model a malware m as a tuple (m,, PRP, ports), where
m, is the set of malicious actions that m can perform as defined above,
PRP € {yes,no} refers to the ability of the malware to propagate in
the network, and ports refer to the ports that m uses for propagation.
For example, we can represent Mirai [1], one of the major IoT botnets,
as follows: ({ST,OP,CR},yes, {23, 2323}), because it sends traffic, it
opens ports, and it consumes resources (when attacking a target). In
addition, it propagates through Telnet with ports 23 and 2323.

Strategy. A strategy defines a set of actions to be performed by
IoT devices. In MaLCon, we have two types of strategies: emergency
and healing, corresponding to the first two stages of MarCon. For

4 If multiple processes exist with the highest priority, we randomly select
one of them.
5 MarCon can be easily adapted to consider additional actions.
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Table 2
Malware-based healing decision (PRP denotes a propagating malware while NPRP
denotes a non-propagating malware).

EF DLF CR M ST OoP

PRP FRMT  CCP,DLF
NPRP FRMT DLF

CCP,DLF,RBT  CCP,DLF
DLF,RBT CCP,DLF

CCP,DLF,RBT
CCP,DLF,RBT

CCP,DLF
CCP,DLF

determining the actions to be considered in each phase, we have
done an extensive literature review [8-10], as well as an analysis of
leading industrial threat databases, such as TrendMicro® and Kasper-
sky’. According to our analysis, in this paper, we consider the actions
shown in Table 1. These actions are encoded into a smart contract
(cfr. Section 3.3 for more details). It is worth mentioning that the
set of actions adopted in MaLCon can be easily changed in case new
types of malware arise. Also, a different set of actions can be easily
supported, depending on the different settings (e.g, operating systems)
of the involved IoT devices.

2.2. Emergency and healing strategies

Once a malware is detected on a device, the infected device has to
submit its information to the blockchain. This information is analyzed
by the blockchain (e.g., a smart contract) that, in case the detected
malware has propagation capabilities, triggers the emergency phase. This
aims to send to all devices in the network a command to execute
the closing and changing ports (CCP) action with the aim of closing
the ports that a malware uses. In case a service uses the same port,
it changes it to another random port. For example, if a device D is
infected with malware Mirai, the strategy will suggest closing and
changing ports (e.g., 23, 2323) that Mirai is using for propagation and
stopping all connections with the infected device D.

The second phase is the healing phase, which aims at eradicating
the malware’s malicious actions with the lowest possible impact on the
system’s operability. To this end, we select a healing strategy based on
both malware and process features. In the following, we describe the
decision process.

Malware-based decision. The first dimension that MaLCon consid-
ers to select the proper mitigation actions is the malicious actions the
malware could perform, as well as its propagation capability. Based on
our literature review, we identified a set of mitigation actions for each
malware malicious action. Table 2 summarizes the healing actions that
should be taken by considering only malware characteristics. These are
defined in terms of malicious actions (see Section 2.1) the malware
can perform (in columns) and its propagation capability (in rows).
For instance, in the case of a malware that monitors a device and
has propagation capabilities (i.e., cell (1,4)), the suggested strategy is
{CCP,DLF}, that is, deleting malware files and closing and changing
ports it uses.

In the case of malware performing multiple malicious actions, as
healing actions, we select the union of mitigation actions corresponding
to each malware malicious action. For example, let us consider a
malware m; = {{DLF, CR}, no}, that deletes files, consumes resources,
and does not have propagation capabilities. The strategy derived from
Table 2 for m, is the union of cells (2,2) and (2,3), which results in
{DLF, RBT}. This implies that the returned actions are: deleting the
malicious file and rebooting the device.

Process-based decision. The key idea of the proposed healing strat-
egy is to select the actions able to eradicate the malware (i.e., malware-
based decision) while, at the same time, preserving as much as possible
the system’s operability. This mainly depends on the process features
(aka, availability of a replica and rebooting tolerance). Therefore,

6 https://www. trendmicro.com/vinfo/us/threat-encyclopedia/
7 https://threats.kaspersky.com
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Table 3
Process-based healing decision.
Replication Rebooting
Available CCP,DLF,RBT CCP,DLF,RBT
Unavailable CCP,DLF,RBT CCP,DLF

among all processes in execution on the infected device, we consider
the features of the process with the highest priority. The possible
actions that can be taken based on process features are depicted in
Table 3, where columns represent the process features (i.e., replication,
rebooting), rows model whether the process has or not that feature,
whereas cells denote possible actions to be implemented, respectively.
The final set of actions is obtained as the intersection among the set of
actions suggested for each process feature. We adopt the intersection to
ensure that the process will not be interrupted if this impacts the oper-
ability. For example, suppose the process has a replica (i.e., cell(1,1))
and does not tolerate rebooting (i.e., cell(2,2)). In that case, the possible
actions are {CCP,DLF}: closing and changing ports and deleting files,
respectively, since rebooting the device will cause the interruption of a
high-priority process.

Example 1. Let us consider a process without a replica that does
not tolerate rebooting. According to Table 3, the returned actions are
deleting files and closing ports (i.e., {CC P, DLF}), which are the result
of the intersection of {CCP, DLF, RBT} (for replication unavailability)
and {CCP, DLF} (for rebooting intolerance). In case the process toler-
ates rebooting, but it does not have a replica, the available actions are
rebooting, deleting files, and closing ports (i.e., {CCP, DLF, RBT}).
Indeed, in this case, the device can tolerate interruption for a short time
(i.e, time of rebooting) without compromising the system’s operability.
Finally, if a process has a replica, the available actions are: rebooting,
deleting files, and closing ports {CCP, DLF, RBT}, since the system’s
operability will not be compromised regardless of the chosen actions
because there is always a backup replica.

Healing strategy selection. The final healing strategy, hereafter
S), is obtained by considering the actions identified by both the
malware-based decision process, denoted in what follows as S,,, and the
process-based decision process, denoted in what follows as S),. S, is the
intersection between actions in S|, and in S,. The intersection ensures
that if an action in .S, affects the system operability (i.e., rebooting),
and the process does not tolerate it, this action is removed from the
final healing strategy S,. As such, we combine S, and S, to have the
lowest impact on the operability of the system, by mitigating, at the
same time, the different malware malicious actions.

Example 2. Let us consider a malware m = {{DLF, ST}, yes}, that
propagates, deletes files, and sends traffic to an external entity. Then,
let us consider a process p = {no, yes} running on a device infected by m,
which means that there are no replicas for this process, and it tolerates
rebooting.

To determine the healing strategy .S}, we first derive the actions S,,.
These are defined as the union of all mitigation actions corresponding
to m malicious actions (i.e., the union of cells (1,2) and (1,5) in Table 2).
Thus, S,, = {CCP,DLF} U {CCP,DLF,RBT} = {CCP,DLF, RBT}.
Actions in S, are the intersection of all the actions corresponding to p’s
features (i.e., the intersection of cells (2,1) and (1,2) in Table 3). Thus,
S, = {CCP,DLF,RBT} n{CCP,DLF,RBT} = {CCP,DLF,RBT}.
Therefore, S, = {CCP,DLF,RBT} n {CCP,DLF,RBT} = {CCP,
DLF, RBT}, meaning that to stop the propagation of m we close ports,
delete the malware file, and reboot the device.

2.3. Strategies’ execution verification

In order to secure the network, we need to make sure that the sug-
gested actions in the emergency and healing phases are indeed executed
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Table 4
Strategies and their corresponding checks.
Checks
FRMT Ping the device w, seconds after submitting the strategy.
RBT Ping the device w, seconds after submitting the strategy.
DLF -
CCP Ping the device in the corresponding port.
Table 5

MaLCoN’s transactions.

Transaction name Definition

Peer identity pi, = (p;4- e, pk, addr, env)
Peer profile PPix = (Pia> Pers 1)

Action a,, ={a;;,cmd, env,t)
Strategy S = (8,4 acts, 1)

Malware My = {m,dt, p;,¢)

Election request e = {Cigs 51, Djng)
Voting U = (Vig» Cia» €ig» €15 1)
Execution confirmation ec, = (Pig>€iq> Vs 5, 1)

by the IoT devices. For this purpose, in the strategies’ execution verifi-
cation phase, we perform a couple of checks for each suggested action.
Table 4 shows the steps followed by the privileged peers to check if an
unprivileged peer executed the suggested strategy (see Section 3.4 for
more details). The only action that cannot be directly checked is DLF,
since privileged peers do not have access to unprivileged devices, they
cannot deterministically check that a device deleted a file. However,
for the purpose of malware containment, not deleting a malicious file
is dangerous for the network only if the malware can propagate. To
this end, the propagation ability of the malware is mitigated in the
emergency strategy execution phase by closing and changing ports.
Thus, the effect of not being able to check if an infected device actually
deleted a file is only affecting the device itself and not its neighbors or
the whole network. It is worth noting that the waiting periods (i.e., w,
and w,) specified in the table are configurable by the deployer of the
system.

3. Blockchain-based containment

In this section, we discuss the implementation of the proposed
containment procedures over the blockchain. We recall that our con-
tainment phases are emergency, healing, and strategies’ execution
verification. First, the emergency phase aims to proactively stop the
propagation of malware in the network. Second, the healing phase
aims to eradicate the malware from the infected device. Finally, the
strategies’ execution verification aims at keeping the system safe and
operating by making sure that the execution of strategies is done
properly.

MaLCon leverages two “block-chains” that complement each other.
Hyperledger Fabric® hosts the smart contracts needed for strategy selec-
tion. Here, only privileged devices can execute these smart contracts.
The unprivileged peers can read from Hyperledger Fabric’s ledger and
submit transactions, but they cannot participate in the consensus. Once
selected, the strategy shall be executed only by one privileged peer. For
this purpose, we implement a voting process to choose the privileged
peer that will execute the strategy. The voting process is run on IOTA
Tangle,” which is used to initiate elections and share votes. We exploit
the real-time capabilities of IOTA Tangle with WebSockets to ensure a
fast voting process.

We recall that MaLCon is a containment solution, so it is designed
to be integrated with a detection system able to provide the malware
information (e.g., ability to propagate, malicious actions, ports used

8 https://www.hyperledger.org/use/fabric
9 https://www.iota.org
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Table 6
MaLCoN’s notations.
Notation Definition
w, Waiting time for checking rebooting actions
wy Waiting time for checking formatting actions
Did Peer’s identifier
e Peer’s endpoint
pk Peer’s public key
addr Peer’s IOTA address
Der Most critical process
t Timestamp
Sig Strategy’s identifier
acts Strategy’s actions
m Malware
dt Malware’s detection time
Pins Infected peer’s identifier
ey Election’s identifier
s Election’s suggested strategy
Uiy Voter’s identifier
Cig Candidate’s identifier
er Election’s round
v Total votes that a candidate got in an election
cmd Command to be executed in the peer)
eny Peer’s environment (i.e., OS and architecture)

for propagation). We assume that unprivileged peers have a detection
system in place to report malware. We assume that the detection system
is installed either in the IoT device (e.g., a Raspberry PI) or in an
edge device that monitors a set of computationally-limited IoT devices.
MarCon can be run at the edge since it is not a heavy process, as
shown in Section 5.3.2. Unprivileged peers interact with the blockchain
through HTTP requests that are lightweight and do not require special
software/hardware. They do not run the blockchain client, and they
do not perform any blockchain-related activity (e.g., participating in
consensus, ordering transactions, storing a copy of the ledger, etc.).
Moreover, we assume that privileged peers are secured with strong
passwords, and intrusion detection systems are in place. The privileged
peers in MaLCon can be workstations or servers. Table 5 summarizes
MaLCoN’s transactions that will be explained in the remainder of this
section, whereas Table 6 explains the used notations.

3.1. System initialization and update

In this section, we introduce the basic transactions used to initialize
and update the system. These transactions are peer identity, peer
profile, and strategy transactions (see Table 5 for their format).

The peer identity transaction is submitted to Hyperledger Fabric by
all peers in the network when joining. It encodes information about a
peer, i.e., its identifier, the endpoint where it will receive all system
communications, its public key, its IOTA address, and information
about its environment (i.e., operating system and architecture). In
contrast, the peer profile transaction is submitted to Hyperledger Fabric
by all peers of the network to communicate information about their
most critical process (that is, its tolerance to rebooting and replica
availability), and the timestamp of the last update. A new transaction
of this type is sent by a peer whenever there is a change in the most
critical process it runs.

Action transactions are submitted to Hyperledger Fabric by one
privileged peer upon agreement among all privileged ones. They con-
tain information about each supported mitigation action, namely the
action’s identifier (i.e., symbols such as the ones defined in Table 1),
the command to be executed, the environment (e.g., operating system),
and the timestamp when it was published. This allows MaLCon to be
flexible and customizable since the deployer of the system can add
actions depending on the devices that she has in her network, making
MarCon suitable to be run in heterogeneous settings.

Finally, a strategy transaction is submitted to Hyperledger Fabric by
one privileged peer upon agreement among all privileged ones. It holds
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information about a specific strategy, namely its identifier, its actions
(among those defined in action transactions), and the timestamp when
it was published. This allows the system to cope with new malware
when they appear.

3.2. Voting process

We recall that a privileged peer is elected to execute the suggested
healing and emergency strategies. We assume that the number of
privileged peers is known to all of them. In addition, we assume that
an election’s round is valid if and only if all the privileged peers voted.

In order to initiate an election to elect the privileged peer who
will execute the suggested strategies, an election request transaction is
submitted to IOTA Tangle by the Containment Smart Contract, explained
in detail in the next section. Each election request transaction (cfr.
Table 5) has an identifier, a set of actions that were chosen by the
Containment Smart Contract, a timestamp denoting when it is submitted,
and the infected unprivileged peer’s identifier.

When an election request transaction is submitted, all privileged peers
vote randomly on a candidate excluding themselves, by submitting to
IOTA Tangle a voting transaction v,, (cfr. Table 5). The voting transaction
consists of the voter’s identifier, the candidate’s identifier, the election’s
identifier, the election’s round, and the timestamp when the voting
transaction is submitted. Each privileged peer then counts the votes
shared in the blockchain for a specific round and compares it with
the number of privileged peers. If all privileged peers have voted, they
download a copy of all voting transactions for that specific election’s
round. Then, the votes are counted locally by all peers for each election
round. They locally sort the candidates based on their votes to choose
the privileged peer who win the election (i.e., the executor). If a peer
discovered that he/she is the winner through counting votes, it submits
an execution confirmation transaction ec,,. In case of a tie between two
or more candidates, other rounds are automatically initiated where
privileged peers vote on the candidates who got advanced to the next
rounds (i.e., candidates who had a tie in the previous round). This
process is repeated until there is no tie, and only one candidate wins
the election. When the privileged peer who won the election submits
an execution confirmation transaction, the other privileged peers check
the result of the election to see if it matches the claim. If it does,
they generate and sign one-time usage tokens with their private keys
and send them to the executor via its endpoint. The latter gathers
strictly more than % of the privileged peers’ tokens (including its own
token). Then, it sends a request containing the strategies to be executed
with the gathered tokens to the infected unprivileged peer via its
communication endpoint. The latter verifies the signatures of the tokens
with the privileged peers’ public keys. If they are valid, it executes the
strategies.

The above-described election procedure is adopted in all MaLCon
phases, so the selection of the privileged peer who will coordinate
the execution of strategies is the same for emergency, healing, and
strategies’ execution verification.

3.3. Emergency and healing

Regarding the emergency phase, when an unprivileged peer is
attacked by malware, its detection system provides the malware infor-
mation which is then sent as a malware transaction m,, (see Table 5) to
Hyperledger Fabric. The transaction holds the malware characteristics,
its detection time, and the identifier of the peer that detected it (i.e., in-
fected peer). When a malware transaction is submitted, the Containment
Smart Contract, described in Algorithm 1, is executed. The Containment
Smart Contract is used for handling both the emergency and healing
phase. Fig. 1 shows the sequence diagram for selecting strategies in
MatCon.

We recall that, in the emergency phase, there is only one action to
be executed: closing and changing the ports specified in the malware
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Hyperledger

Unpriv. Peer Fabric IOTA Tangle Priv. Peer
——Submit Malware Tx s":::::':"f;::m —> (——Submit Voting Tx—>
Submit Execution___ |
Confirmation Tx
Send Emergency. T
Strategy
|: '78“:':4:::15?;:?“ —>{ |——Submit Voting Tx—>|
Submit Execution___|
Confirmation Tx
Send Healing e
Strategies T

Fig. 1. Strategies execution sequence diagram.

transaction, in case the malware has propagation capabilities. There-
fore, this step only requires selecting a privileged peer to execute the
action. This selection is made by a voting process (cfr. Section 3.2)
triggered by the Containment Smart Contract (lines 2-4 of Algorithm
1). The smart contract checks if the malware can propagate (line 2);
if so, it submits to IOTA Tangle an election request (i.e, transaction
e,., defined in Table 5), with closing and changing ports as action
and the corresponding ports to be closed (line 3). It is worth noting
that submitElectionReqTx () function takes as input the strategy
and the ports needed to be closed if CCP is suggested, otherwise the
ports are an empty list. This function takes these inputs and forms the
election request transaction e,, defined in Table 5. Then, it submits e,,
to IOTA.

Algorithm 1 Containment smart contract run by privileged peers

Input: Malware Transaction m,,

1: malware « getM alware(m,,)

2: if malware.PRP == yes then

3 submitElectionReqT x([CC P], malware.ports)
4: end if

5: p,, < getCritical Process(p,)

6: M, < Malwarebased Healing Decision(malware)
7: M, < Processbased Healing Decision(p,,)

8: HealingStrategy <« M,, N M,

9: submitElectionReqT x(H ealing Strategy,|[ 1)

Once the execution of the emergency phase (lines 2-4) is done,
the smart contract continues with the execution of the healing phase
(lines 5-9). First, it gets the most critical process of the infected peer
(line 5). Then, it determines the mitigation actions to be executed on
the basis of the malware features, following the approach described in
Section 2.2 (cfr. Table 2) (line 6). Similarly, it determines additional
mitigation actions on the basis of the characteristics of the most critical
process, (see Section 2.2 and Table 3) (line 7). Finally, it intersects
the malware-based and process-based suggested actions to get the final
healing strategy (line 8), as explained in Section 2.2. Then, it submits
an election request transaction containing the strategy (line 9).

3.4. Strategies’ execution verification

When the winner of an election submits an execution confirmation
transaction, the strategies’ execution verification procedure in Algo-
rithm 2 is triggered. This procedure is deployed at the level of each
privileged peer. It starts by retrieving information about the infected
peer’s detection endpoint (line 1) and initializes the checks (line 2).
Then, it checks if the infected unprivileged peer has executed the
strategies, following the procedure described in Algorithm 2 (lines
3-20). For closing and changing ports action, it checks if the specified
ports are closed or not (lines 4-8). For formatting and rebooting, it
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waits for different periods (i.e., w ’ and w,) depending on the action
(in our implementation, w, = 120 s and w, = 30 s), then it pings the
unprivileged peer to see if it is alive (lines 9-20). If the device does
not respond within the given time period, the ping check is considered
a failed check. If some checks fail (including a failed ping request),
it disables the infected peer from any interaction with the blockchain
and sends a notification to the system admin to take the necessary
mitigation actions (e.g., physically formatting it or removing it from
the network) (lines 21-24). One elected privileged peer per period ¢
(specified by the deployer) is responsible for sending a notification
to the admin and disabling the infected peer from submitting any
transaction to the blockchain. All privileged peers send the results of
their checks to the elected privileged peer at the end of each period ¢.

Algorithm 2 Strategies’ execution verification procedure run by
privileged peers

Input: Execution Confirmation Transaction ec,,

1: detectionEndpoint Port < get Detection End point Port(ec,,.in f ected Peer)
2: checks < 0

3: for MitigationAction in ec,,.strategy do

4 if MitigationAction == CCP then

5 port « ec,,.strategy.CC P .port

6 if ping(infected Peer, ec,,.strategy.CC P.ports) == True then

7: checks < checks + 1

8 end if

9 else if MitigationAction == RBT then

10: wait(w,)

11: if ping(ec,.infected Peer,detection End point Port) == True then
12: checks < checks + 1

13: end if

14:  else if MitigationAction == FRMT then

15: wait(w )

16: if ping(ec,.infected Peer,detectionEnd point Port) == True then
17: checks < checks + 1

18: end if

19:  end if

20: end for

21: if checks < ec,,.strategy.size() then
22:  Send AdminN oti fication()

23:  DisablePeer(infected Peer)

24: end if

4. Security analysis

In this section, we discuss our assumptions and possible attacks
that unprivileged peers could perform. In addition, we show how we
mitigate them to keep the system secure.

We recall that in MaLCon we focus on containing malware in IoT
environments where organizations exchange threat information for
effective containment. We assume each organization has an equal
number of privileged peers (e.g., admins) that represent them in all
MaLCon operations, and different numbers of unprivileged peers, that
is, IoT devices. The privileged peers participate in consensus under the
Byzantine Fault Tolerant model [11], so we assume that % of them
are honest. We assume that they are secured with malware detection
and intrusion detection mechanisms. Thus, we focus on attacks on
unprivileged peers. We note that the decisions taken by privileged peers
are a result of running smart contracts. So, a privileged peer cannot
make a wrong decision because a consensus will not be reached on it.
However, we can consider the case where a privileged peer decides to
manipulate the output of the smart contracts (it is from the % that is
not honest). In other words, it does not follow the protocol and acts
as a malicious peer. Although this is against the assumptions of our
protocol, we show in what follows that the effect of such malicious
activities is limited. First, a privileged peer cannot target a specific
device since it is randomly selected, and it knows ahead of time neither
the peer that is infected nor the strategies it will execute. Second, the
best it can do is a denial of service to an already infected device.
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For example, the infected device reported that malware is using port
5555, and the privileged peer asked to close port 5555 and port 7878
which is used for a legitimate service. This action can trigger the system
administrator since the device will not be operational. Thus, the attack
itself cannot be done in a stealthy way.

We assume that the majority of unprivileged peers is honest, but
strictly less than the majority of unprivileged peers could be com-
promised. Such assumptions were adopted in other work involving
blockchain and IoT, such as [12,13]. In MaLCon, possible attacks that
unprivileged peers could perform are: (1) failing to execute strategies,
(2) repetitively submitting malware transactions, (3) submitting fake
malware transactions, and (4) not submitting malware transactions.

Failing to execute strategies. Unprivileged peers receiving a strat-
egy to be executed could choose not to execute it. We detect this
attack for all supported actions, except DLF (delete a file) through
the strategies’ execution verification phase, described in Section 3.4.
After each execution, a set of checks are performed to determine if
the infected device has executed the suggested strategies (this phase is
implemented by Algorithm 2 — lines 3-20). If the checks fail, we disable
the device to stop any interaction with the blockchain and notify the
system admin to take the necessary actions (Algorithm 2 - lines 21—
24). It is worth noting that for DLF, we cannot check if the malware
executable is deleted or not. However, the malicious file is dangerous
for the network only if the malware can propagate. If the malware
propagates, closing and changing ports CC P actions will be suggested
(Algorithm 1 - lines 2-5). The execution of the latter can be verified,
so the malware will not propagate to other devices.

Repetitively submitting malware transactions. Unprivileged
peers could repetitively submit transactions in order to flood the
system and cause a denial of service. In order to detect this attack,
we introduce a threshold ¢, that represents the maximum number of
allowed submissions in a period ¢. So, after each submission, we check
if the count of submissions in a period ¢ exceeds #,. If so, we disable
the device and notify the system admin to take the necessary actions.

Submitting fake malware transactions. Unprivileged peers could
submit fake malware transactions to cause a denial of service for spe-
cific services that the honest unprivileged peers are running. However,
for this attack, the honest unprivileged peers will only execute one
action (i.e., closing and changing ports) because this action will allow
the device to provide the service without interruption (as discussed
in Section 2.2 and done by Algorithm 1 - lines 2-4). So, if there is
a service running in that specific port, they will just forward it to
another random port, so they will not be affected. On the other hand,
the infected unprivileged peer will have to execute the emergency and
healing strategy that can be checked as discussed earlier. In addition,
in case it submits several fake malware transactions, it will be detected
as discussed in the repetitive submissions attack.

Not submitting malware transactions (i.e., free riding). Unpriv-
ileged peers could refrain from submitting malware transactions. This
attack could result in malware spreading in the network. However,
since the majority of the unprivileged peers are honest, any malware
circulating in the network will be detected by an honest unprivileged
peer. We show the simulation and analysis of free-riding attacks in
Section 5.3.3.

5. Experiments

We test our solution’s effectiveness in stopping malware from prop-
agation and its performance in terms of containment time. We adopt
two metrics: (i) the difference between the number of infected and
uninfected devices with and without our solution, and (ii) the average
time from the malware detection to the moment of strategies execution
by the infected peers. In addition, we compared our solution with the
proposal described in [14], since, to our knowledge, it is the only paper
that does a similar experiment in a real-life setting.
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Fig. 2. The smart city network topology for Scenario #1 (The node IDs are in the format peerID/organizationID).

5.1. Environment

We have implemented our solution using Hyperledger Fabric 2.2
locally on an octa-core Intel Core i7 3.6 GHz CPU with 16 GB of RAM
and with a Python client that connects to IOTA 1.0 DevNet through
PyOTA library. In Fabric, we adopted the OR Endorsement Policy which
implies the random selection of one privileged peer to run the smart
contracts. All peers are simulated with Docker containers with 512 MB
of RAM.

To test our approach, we used two malware: Mirai [1] and an in-
house Mirai-like malware. Since we did not find a live Mirai executable
to simulate the actual spreading, we built the source code extracted
from a public repository'® with our C&C server. On the other hand, the
in-house Mirai-like malware infects devices by brute-forcing credentials
from Mirai’s words list, using Telnet protocol with multi-threading,
similar to Mirai. The in-house Mirai-like malware was designed for
quick infection, similar to the in-house malware built by [14]. We used
Mirai for all the experiments, except for the comparison with [14]. To
challenge our solution, all unprivileged devices are configured with
a password randomly selected from the Mirai words list. This allows
fast malware to spread in the network, which is considered a worst-
case scenario. In contrast, the privileged devices were configured with
strong passwords.

5.2. Experimental settings

To test our solution under different scenarios, we have considered
the following factors:

Network’s connectivity. The number of links among nodes impacts
the spreading speed. For example, in the case of a fully connected
network, an infected node quickly spreads the malware to the network.
Thus, we consider a fully connected network as an extreme case for
testing MaLCoN.

10 https://github.com/jgamblin/Mirai-Source-Code

Security level of passwords. Using default passwords or common
weak passwords makes the malware spread faster since they brute
force devices’ credentials using a hardcoded word list. Thus, adopting
weak passwords from botnets’ words list is an extreme case for testing
MatCon.

Number of privileged peers. MaLCon relies on a voting process
among privileged peers, where a tie among candidates would imply
additional voting rounds. Thus, the number of privileged peers impacts
the containment time. Thus, a large number of privileged peers is an
extreme case for MaLCon performance.

5.2.1. Scenarios

We tested MaLCon in three different scenarios, adapted from real-life
settings.

Scenario #1: Smart City. This scenario is based on a realistic IoT
setting involving multiple organizations (e.g., vendors, Internet Service
Providers, etc.). Here, the organizations create a consortium that agrees
to exchange information about malware threats in a decentralized
fashion. This scenario’s topology consists of 5 organizations and 60
devices, as shown in Fig. 2, where the infected device, privileged peers,
and unprivileged peers are colored in red, yellow, and green, respec-
tively. This network topology is adopted in various works about smart
cities [15] and health care systems [16]. This scenario presents several
challenges for MaLCon performance. The network topology is connected
(each device is connected to one or more devices). In addition, the
initial device that we infected has the highest number of neighbors
(i.e., 7 direct neighbors). Moreover, all the unprivileged peers have
weak passwords.

Scenario #2: Fully Connected Network. This scenario is an ex-
treme case where the network is fully connected. So, all devices have
59 adjacent peers.

Scenario #3: Small Network. In this scenario, we adopt the ex-
periment settings in [14]. We contacted the authors of [14] to get
the missing experiment’s details (e.g., the in-house malware imple-
mentation, network topologies, etc.). Their network consists of 20
devices configured with random weak passwords hardcoded in their
in-house malware. Regarding network topologies, they adopt random
ones, where a device is at least connected to another device.
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Fig. 3. Number of infected devices, by enabling and disabling MaLCon for Scenario
#1.

5.3. Results

5.3.1. Effectiveness

Scenario #1: Smart City. The baseline for this scenario is the
network without MaLCon. The goal is to see the difference of infected
devices between the baseline and MarCon after injecting Mirai botnet
in a device. We infect the unprivileged device with the highest number
of direct connections (i.e., 7 in the network topology shown in Fig. 2).
The average time of brute-forcing credentials by Mirai is 7 s. After 50 s,
51 over 60 devices were infected. The 9 non-infected devices consist
of 5 privileged peers that, by design, have strong passwords; and 4
unprivileged peers, that were connected only to a privileged peer, so
the infection did not reach them because of the strong passwords. On
the other hand, with MaLCon enabled, only 3 devices were infected,
including the device where we injected Mirai intentionally. The two
infected devices had passwords that happened to be the first ones in the
hardcoded passwords list used by Mirai. Fig. 3 shows the comparison
between enabling and disabling MaLCon (i.e., baseline).

Scenario #2: Fully Connected Network. The Mirai botnet was
injected on a random unprivileged device since the network is fully
connected, so each device has 59 direct neighbors. As in the previous
experiment, the baseline is the network without MarLCon. The infected
devices after 10 s are 23. After 20 s, 55 devices were infected. After
enabling MaLCon, only 13 devices were infected, and the infection
happened in the first 10 s and then stopped. Fig. 4 shows the com-
parison between the baseline and MaLCon enabled, in a fully connected
network.

Scenario #3: Small Network. We compare our solution with the
solution discussed in [14]. The authors in [14] infected at each try
two random devices in the network with an in-house developed mal-
ware. They repeated the experiment 1000 times with random network
topologies at each try with the condition that any device is connected
at least to another device where each try lasts 40 s. Then, they calculate
the average rate of infection by dividing the total number of infections
counted in the 1000 tries by the total number of tries. We tested our
solution with the same setting using our in-house Mirai-like malware
and random weak passwords from the Mirai words list. While the
average infection rate of [14] is 1.27, our average rate of infection
under the same conditions was 1.05, which makes MaLCon a suitable
solution for malware containment.
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Fig. 4. Number of infected devices by enabling and disabling MaLCon for Scenario
#2.

5.3.2. Performance

We conducted an experiment to check the average time to contain
malware with a different number of organizations. For this experiment,
our average containment time results show that it takes 0.98 s and
5.19 s to contain malware in a network of 3 and 20 organizations,
respectively. It is worth mentioning that the number of unprivileged
nodes does not affect the average containment time.

In order to test the feasibility in a real-world setting, we further
tested MaLCon in a network of 7 simulated devices and 3 Raspberry
PIs, to measure MaLCon’s resource consumption. We used Raspberry PI
2 Model B with a Quad Core Cortex-A53 CPU with ARMv7 Architec-
ture (32-bit) and 1 GB of RAM for all the devices. We selected this
specific model since it has limited computational power compared to
its successors (e.g., Raspberry Pi 4 Model B). An instance of MaLCon was
deployed on the Raspberry PIs, while other IoT devices in the network
were simulated using Docker containers on a server. To detect malware,
we used ClamAV,'! an open-source antivirus engine, on all devices. Our
results show that MaLCon’s CPU consumption ranges between 2.47%
and 25.0% with an average of 7.3%. In addition, RAM usage varies
from 2.53% to 88.18% with an average of 13.9%. The peaks in resource
usage were observed while performing a full scan of the disk. We
selected a full scan since it is a heavy process that overloads the
memory. It is worth noting that a full scan is not needed to keep
MatCon operational. MaLCon expects a detection system in place as a
hidden process that monitors the files and scans new files. This task
is performed by the devices with a reasonable resource consumption as
shown earlier. For MaLCon, the devices do not run the blockchain client
(e.g., they do not participate in consensus and they do not have a copy
of the ledger). They only interact with blockchain endpoints through
HTTP requests (e.g., to report malware). Thus, MaLCon as a standalone
application is lightweight and can be used alongside an antivirus in
computationally limited IoT devices.

We iterate that MalCon supports different computing paradigms.
In case there is an edge or a fog node that controls low-power IoT
devices, these nodes will do the detection on their behalf. Otherwise,
the IoT device itself can do it. We supported this claim with a limited
Raspberry Pi from the old generation with only 1 GB of RAM. In
addition, the protocol itself is lightweight since it is only an HTTP
server, so even the very limited IoT devices can support it. Regarding
the commands, they can be tailored depending on the IoT devices

11 http://www.clamav.net/


http://www.clamav.net/

A. Lekssays et al.

environment (i.e., operating system and architecture) as discussed in
Section 3.

5.3.3. Free riding simulation and analysis

In order to evaluate the effect of devices that refrain from submit-
ting malware transactions to MaLCon, we have simulated a network
with different percentages of malicious nodes, namely 10%, 30%, and
49%. We have simulated a network of 60 devices with 10 randomly
generated topologies where a device is a least connected to another
device. It is worth mentioning that this attack is only a danger for the
network if the devices are infected and they refrain from submitting
the detection to MaLCoN. So, in our simulation, we assume that they are
infected, and are trying to infect other devices. For 10% of malicious
nodes (6 malicious devices out of 60), the 6 devices were identified for
not submitting malware transactions almost immediately in about an
average of 0.06 s. For 30% of malicious nodes (18 malicious devices
out of 60), the average identification time is 1.12 s. Finally, for 49%
of malicious nodes (29 malicious devices out of 60), the average
identification time is 1.89 s.

In order to better interpret and quantify these results, we have
done a probability analysis for this simulation. Based on the randomly
generated topologies, the average number of neighbors per node is 2.
In our network, we have two types of nodes: honest and malicious.
In order to avoid immediate identification, a malicious node needs
to have two malicious nodes as neighbors (even if this information is
not available for the nodes initially). Let M and N be the number of
malicious devices and the total number of devices, respectively. The
probability of having two malicious neighbors P(m) is shown in Eq. (1).

M-1
(")
N-1
;)

For 10% malicious nodes, P(m;;) = 0.58%. For 30% malicious nodes,
P(m3y) = 7.94%. Finally, for 49% malicious nodes, P(my9) = 22.09%. So,
the probability analysis confirms the simulation results. Thus, MaLCon

is able to operate where strictly less than % of devices refrain from
submitting malware transactions.

(€8]

P(m) =

5.3.4. Discussion

The conducted experiments show that MaLCon is suitable for mal-
ware containment in IoT networks since it significantly reduces the
number of infected devices in the network. For instance, even in a
fully connected network with weak passwords, only 13 devices out
of 55 were infected. In addition, in a typical IoT setting, only three
devices were infected. The average infection rate in our solution is
1.05 compared to [14] which has 1.27. On the other hand, the average
containment time from the moment of the detection to the moment
of executing strategies varies from 0.98 s to 5.19 s for 3 and 20
organizations, respectively. So, MaLCon is suitable for large deploy-
ments because unprivileged peers do not affect its performance. It is
worth noting that the containment time is highly affected by IOTA’s
latency and the geolocation of the nearest node. MaLCon uses IOTA’s
1.0 DevNet which has lower throughput compared to the mainnet.

6. Conclusion

In this paper, we have presented MaLCon, a blockchain-based mal-
ware containment framework for IoT. It aims to limit the damages that
malware can do in IoT networks by proactively stopping them from
propagation while keeping the network operational. It exploits collab-
oration among different organizations to share malware information.
It suggests tailored strategies for all devices to prevent propagation
based on the malware’s propagation scheme and the processes that
they run. As a part of our future work, we aim to migrate MaLCon to
a permissionless blockchain and analyze the attack vectors that come
with such migration. In addition, we plan to remove the human-in-
the-loop when contacting the system administrator in some emergency
cases.
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