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A B S T R A C T   

Carbon capture, storage, and sequestration are crucial for mitigating climate change’s adverse effects. To limit 
global temperature rise within the 2 ◦C target, it is essential to implement both artificial and natural carbon- 
capturing techniques and utilize renewable resources. Natural carbon sinks serve as vital resources for CO2 
reduction, but quantifying their carbon sequestration is complex due to potential CO2 release from the upper 
ocean. Accurate assessment requires detailed modeling of interacting natural processes. This review critically 
examines various natural carbon pools, methodologies, and modeling techniques for carbon accounting, 
particularly in urban landscapes. The strengths and limitations of each approach are analyzed, leading to specific 
recommendations. Socio-economic benefits associated with natural carbon sinks are also presented. Ground and 
field measurements are found to be the most accurate methods, while accounting methods tend to be study- 
specific. Additionally, satellite earth observation, drone, and airborne measurements have significant potential 
for enhancing ecosystem analysis, assessment, and mapping. By comprehensively assessing these factors, this 
review contributes to the development of effective strategies for carbon accounting and management in diverse 
environments.   

1. Introduction 

Climate change, characterized by global warming and caused by 
human activities, has raised carbon emissions significantly and brought 
about significant sustainable development challenges to human society 
and the natural ecosystems (Deeksha, 2022; Liu and Li, 2012; Salimi and 
Al-Ghamdi, 2020). Moreover, fossil fuels released during combustion 
have contributed substantially to global warming over the last twenty 
years (Tahir et al., 2021). Coal is a particularly harmful fuel because it 
produces two times more carbon dioxide (CO2) per unit of energy than 
natural gas. Therefore, researchers have focused on cleaner coal tech
nologies and carbon capture and sequestration (CCS) techniques 
(Imteyaz et al., 2021). 

Furthermore, researchers are looking at the prospect of using oil and 
gas reservoirs for carbon (C) sequestration because of the industry’s 
expertise in injecting CO2 into these sites for enhanced oil recovery 
(EOR) (Aldrich and Koerner, 2011). The terms carbon storage (CStor) and 

carbon sequestration are interrelated (Nelson et al., 2009). However, 
these terms describe two different qualities of climate regulation. CStor 
measures the capacity of the ecosystem to hold carbon and prevents the 
further release of stored carbon. In contrast, carbon sequestration does 
not denote reducing and relocating environmental carbon emissions into 
long-term pools. It is a time-based process that purges carbon (evenly or 
unevenly) from the atmosphere, with the quantity of carbon removed 
varying over time. Even if a project shows positive sequestration, 
negative sequestration, i.e., carbon discharged into the atmosphere, can 
occur (over some time intervals). Thus, the temporal characteristic must 
be included for sequestration projects to be more accurately evaluated 
(Feng, 2005; Xu et al., 2023b). 

Natural carbon sequestration is receiving increased attention from 
researchers as a viable option for cost-effective mitigation. Researchers 
have developed several indicators showing vegetation’s significance for 
carbon capture (Baude and Meyer, 2023; Kolarik et al., 2023; Wang 
et al., 2022; Xu et al., 2023a). With binding treaties like the Kyoto 
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Protocol, countries may be more driven to integrate it into their schemes 
to manage and reduce greenhouse gases (GHG). Urban greenery is 
gaining prominence as a mitigation measure for climate change because 
soil carbon accounts for a quarter of the natural climate solution po
tential, of which 40% consists of protecting existing soil carbon, while 
60% includes rebuilding depleted stocks (Bossio et al., 2020; Habib and 
Al-Ghamdi, 2021, 2020). For example, governing bodies of many cities 
have adopted policies to enhance tree planting, conserve urban green 
spaces, and promote green roofs and facades in architecture (Mannan 
and Al-Ghamdi, 2021; Tahir and Al-Ghamdi, 2023). Introducing an 
urban green ecosystem includes decreased GHG emissions, improved air 
quality and thermal comfort, better-quality run-off water and flood 
protection, and savings in energy use. 

Additionally, green spaces offer improvements in health and a wide 
range of recreational and psychological advantages and encourage so
cial responsibility by taking positive measures on the environment and 
climate change (Mcpherson et al., 1994; Pataki et al., 2011). Although 
the social benefits are well-documented, the physical benefits still 
require more scientific investigation. For example, there is limited evi
dence to support the efficacy of urban vegetation in diminishing GHG 
emissions or the accumulation of airborne pollutants (Haase et al., 2014; 
Velasco et al., 2016). 

1.1. Carbon emissions 

CO2 emissions contribute an estimated 50% to anthropogenic 
greenhouse gas emissions (Dakwale and Ralegaonkar, 2012). Compared 
to the mid-1800 s, mean CO2 concentrations (399 ppm) were 40% 
higher in 2015, representing a 2 ppm/year average growth over the past 
decade. During this same period, nitrous oxide (N2O) and methane 
(CH4) levels have also substantially increased (International Energy 
Agency, 2016). These excessive carbon emissions have led to society’s 
significant concern over climate change from both human and natural 
sources. Anthropogenic carbon emissions come from cement produc
tion, deforestation, and fossil fuel combustion, while natural sources 
stem from decomposition, ocean release, and respiration. The growing 
utilization of fossil fuels is resulting in accelerated emissions globally. 
Coal is the most carbon-intensive fossil fuel, with every ton of coal that is 
burned producing about 2.5 tons of CO2 (department for Environment 
Food and Rural Affairs, 2013). Moreover, it leads to the loss of biodi
versity in the ecological system and the frequent occurrence of natural 
disasters (Cai et al., 2020). Thus, substantial reduction models must be 
applied to limit CO2 emissions and air pollutants like SO2 and NOx. 

1.2. Carbon capture in nature 

Carbon sinks act as a primary component of the carbon cycle in 
nature, turning carbon into different forms by absorbing CO2 from the 
atmosphere more than it emits. For example, global carbon pools and 
fluxes are integrated to form a global carbon cycle. These natural pools 
perform as carbon sinks, absorbing and moving carbon between sinks 
via different pathways and mechanisms (Fig. 1). The Earth’s crust is the 

first carbon sink, holding the highest concentration of carbon (Oberle, 
2016). The other carbon pools are the stored fossil fuels underneath 
(4,000 PgC (Gton of carbon)) and that which is distributed in the at
mosphere (750 PgC). The transformation of carbon through these pools 
can occur via carbon fixation from the atmosphere to plants (through 
photosynthesis) or via dissolution into carbonates in the oceans. 
Excessive release into the atmosphere causes a carbon cycle imbalance 
that leads to warming because the amount of accumulated CO2 released 
is higher than sequestration. Carbon cycle imbalance also occurs via the 
acidification of oceans as the dissolution process increases. 

1.3. Purpose of this study 

As the accounting methods differ due to the system type or carbon 
pool, it is essential to determine the appropriate method to apply to a 
particular system. This study aims to collect and evaluate the various 
carbon accounting methods that have been used and developed, 
emphasizing urban landscapes so that researchers are provided with a 
guide that allows them to determine which carbon accounting methods 
are suitable concerning the location, geographic scale, and available 
resources by answering the following questions: 

• What are the various methods being used for terrestrial carbon ac
counting, and how do they vary for different carbon pools?  

• What are the limitations of these methods?  
• Can a combination of different methods improve accuracy in biomass 

estimates and in carbon accounting? 
• What approaches can be deployed based on these methods for col

lecting accurate data? 

In addition, the drawbacks of carbon accounting methods and the 
challenges are discussed and presented in this work. This survey com
prises of review methodology (section 2), an overview of carbon pools, 
fluxes, and stocks (section 3), a detailed discussion of carbon accounting 
methods (section 4), the socioeconomic benefits of urban landscapes 
(section 5), discussion (section 6) and conclusion (section 7). 

2. Material and methods 

The papers chosen in this review were based on methodologies that 
have been used and developed over the past four decades worldwide. A 
literature search via the Institute for Scientific Information (ISI), Web of 
Science (Elsevier, Springer, etc.), and the Forest Service of the United 
States Department of Agriculture (USDA) was done to identify relevant 
studies for inclusion. The search also targeted the following key search 
terms and Boolean operators: natural carbon sequestration in carbon 
pools, urban trees carbon, ecosystem carbon, ecosystem services, urban 
landscapes, urban forests, and environment, soil and agroforestry, and 
carbon storage valuation or value. The subject of “carbon sequestration” 
is interdisciplinary and is found in numerous published journals 
covering various disciplines, including planning, land use science, ge
ography, remote sensing, ecology and landscape ecology, computational 

Fig. 1. Carbon sink types and carbon destination.  
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science, biology, planning, forestry, etc. The search returned approxi
mately 320 records and papers concerning carbon measuring and ac
counting with various methods applied (based on the type of natural 
carbon pools). A check for content relevance was conducted, and those 
found to be irrelevant were excluded. Studies examining previous work 
were also investigated thoroughly to avoid any similarities. These 
checks resulted in 200 + articles included for in-depth analyses. Papers 
were analyzed against various carbon accounting methods and tech
niques (Table 1 and Fig. 2). The focus areas were selected based on the 
study type, and thus the method was used in accordance. 

3. Carbon stocks and pools 

Carbon stocks are the amount of carbon contained in a carbon pool. 
Different ecosystems store different amounts of carbon that depend on 
their ecosystem productivity (it refers to biomass generation in the 
ecosystem). For example, swamps and marshes store more carbon than 
temperate forests or cultivated lands (Fridley, 2001). During photo
synthesis, the carbon fixed by plants is transported across the various 
carbon pools. Therefore, the way carbon gets into these ecosystems is 
through plants’ leaves. It is a kind of carbon fixation that removes the 
CO2 from the atmosphere and is stored as biomass, termed carbon stocks 
inside the trees (twigs, branches, trunks, leaves, etc.). The carbon is 
pumped from the ground to roots and eventually recycled between the 
trees and soil over time. There is a gradual buildup of carbon in the soil. 
Estimation is required when preparing an organizational carbon in
ventory as it is the primary source of carbon information and is recog
nized as an essential data source for carbon accounting (He et al., 2022; 
Yin et al., 2022). The United Nations Framework Convention on Climate 
Change (UNFCCC) and the Kyoto Protocol require national governments 
to provide annual inventories of all anthropogenic GHG emissions from 
sources and deductions from sinks. 

3.1. Carbon pools 

As per Intergovernmental Panel on Climate Change (IPCC) (IPCC, 
2003), there are five carbon pools of a terrestrial ecosystem related to 
biomass, namely: aboveground biomass (AGB), belowground biomass 
(BGB), soil organic carbon (SOC), the dead mass of litter and the woody 
debris (Fig. 3). Carbon pools are carbon reservoirs that can absorb and 
release carbon. The global carbon cycle comprises these pools 
exchanging carbon with one another, known as carbon fluxes. Carbon 
stocks are present in various terrestrial ecosystem carbon pools and the 
carbon fluxes between them (Woldemariam, 2015). 

3.1.1. Carbon in aboveground biomass (AGB) 
Carbon inventories and most mitigation efforts emphasize AGB for 

carbon accounting. Under the Kyoto Protocol, it is the main pool for 
afforestation and reforestation. Furthermore, carbon estimating meth
odologies and geographic information system (GIS) models for 
computing and projecting aboveground biomass is the most developed 
compared to other carbon pools. Biomass in non-forest land-use systems 
like farmland and grassland comprises non-woody perennial and annual 
plants that account for a small portion of the total carbon stock in the 
ecosystem than in forestlands. Because non-woody biomass is a part of 
the yearly carbon cycle and is subject to turnover annually or every few 
years, the net biomass carbon stock may stay relatively stable over time, 
even if stocks decline due to land degradation (Ravindranath and Ost
wald, 2008). 

3.1.2. Carbon in belowground biomass (BGB) 
This denotes all living biomass of live roots and soil organic matter. 

However, roots less than 2 mm in diameter are often excluded since they 
tend to be empirically indistinguishable from soil organic matter or 
litter. BGB growth is defined by growth, including root collar and coarse 
roots. It comprised organic content in mineral and organic soils 

Table 1 
Carbon accounting Types and techniques used for each natural carbon pool.  

Carbon Stocks Type Carbon Accounting 
Technique 

References 

Above ground 
carbon: 
Trees species & 
Litterfall 

Ground sampling (Clark et al., 1986a) 
(Nowak, 1993) 
(Dewar and Cannell, 1992) 
(Mcpherson et al., 1994) 
(Suwanmontri et al., 2013) 
(Wotherspoon et al., 2014) 

Allometric equations (Clark et al., 1986b) 
(Rowntree and Nowak, 
1991) 
(Peper et al., 2001) 
(Oren et al., 2001) 
(Strohbach and Haase, 
2012) 
(Nowak and Crane, 2002) 
(Dorendorf et al., 2015) 
(Nowak et al., 2013) 
(Baral and Guha, 2004) 
(Nowak et al., 2013) 

Urban Forest Effect 
(UFORE) modelCTCC ( 
CTCC, 2023) &iTree (i-Tree, 
2019) 

(Soares et al., 2011) 
(McPherson et al., 2011) 
(Flocks et al., 2011) 
(Parmehr et al., 2016) 
(Birge et al., 2019) 
(Birge and Berger, 2019) 
(Riley et al., 2018) 
(Riley and Gardiner, 2020) 

MOTTI stand simulator 
(Metla, 2013) 

(Hynynen et al., 2005) 
(Salminen et al., 2005) 
(Siipilehto et al., 2007) 
((Ahtikoski et al., 2011, 
2012) 
(Mönkkönen et al., 2014) 
(Hynynen et al., 2014) 
(Triviño et al., 2015) 

Tree Density (Tree species 
Distribution) (Forest sizes) 

(Rowntree and Nowak, 
1991) 
(Mcpherson et al., 1994) 
(Brack, 2002) 
(Nowak et al., 2003) 
(Myeong et al., 2006) 
(Churkina, 2008) 
(Jenkins et al., 2003) 
(Churkina et al., 2010) 
(Crowther et al., 2015)( 
Nowak et al., 2008b) 
(Pouyat et al., 2006) 

Belowground: Soil 
Organic Carbon & 
Roots 

Field Sampling (Oren et al., 2001) 
(Resh et al., 2002) 
(Edmondson et al., 2012) 
(Buchholz et al., 2014) 
(Zhu et al., 2017) 
(Dorendorf et al., 2015) 
(Beesley, 2012; Graham 
et al., 2019; Lemma et al., 
2006) 
(Kaye et al., 2005; Miller and 
Fujii, 2011; Pouyat et al., 
2006; Rossi and Rabenhorst, 
2019) 
(Nadelhoffer et al., 1999) 

Automated mapping 
(Remote Sensing & GIS) 

(Crowther et al., 2016) 

Carbon Fluxes and 
Transfers  

Estimations by: 
(Mapping) 
(GIS) 
(Thematic Mapping) 

(Potter and Klooster, 1997) 
(Liu and Li, 2012) 
(Triviño et al., 2015) 

Integrated Valuation of 
Ecosystem Services and 
Tradeoffs (InVEST) ( 
Stanford University, 2019) 

(Nelson et al., 2009) 
(Strohbach and Haase, 
2012) 
(Sharp et al., 2018) 
(Grafius et al., 2016) 
(Chu et al., 2019) 

(continued on next page) 
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(including peat) at a depth determined by the country and applied 
continuously throughout time. When empirically indistinguishable, fine 
live roots (smaller than the specified diameter limit for BGB) are 
incorporated with soil organic matter (Food and Agriculture Organiza
tion of the United Nations, 2005). Soil can be a viable source or sink of 
atmospheric carbon and plays a crucial role in climate policymaking, 
depending on the organizational practices adopted. Soil performs a 
vitally important aspect of carbon sequestration (Adhikari and Harte
mink, 2016; Lal, 2014; Minasny et al., 2017; Oren et al., 2001; Pouyat 
et al., 2006; Villanueva-López et al., 2019). 

3.1.3. Soil organic carbon (SOC) 
SOC holds the potential of natural climate solutions with a per

centage of 25%. Within the soil carbon, carbon is divided into protecting 
organic matter and restoring the stock depleted through the carbon 
fluxes (40% and 60%, respectively) (Bossio et al., 2020). On the other 
hand, many crops have roots that only reach around one meter below 
the earth. It is unclear what factors influence the lifespan of below
ground C in various forms. As a result, a greater knowledge of these 
mechanisms is essential for improving C sequestration. Moreover, the 
quality and ability to support biomass production determine its potential 
for sequestration. 

3.1.4. Carbon in woody and other debris/litter 
Fine litter on the forest floor (fruits, leaves, twigs, bark pieces, 

branches less than 10 cm diameter, etc.), dead trees and snags, and 
laying deadwood bigger than 10 cm diameter make up the amount of 
detritus in a forest. Fine litter biomass density varies between 2 and 16 
Mg ha− 1 (average of 6 Mg ha-1or less than 5% of AGB), with greater 
values in damp situations. However, there is no obvious trend in the 
database (Brown and Lugo, 1982). The fine litter quantity on the forest 
floor reflects the difference in litterfall inputs (dead plant organic mat
ter) and decomposition outputs (which is a process of supplying nutri
ents to the soil), which differ significantly across the tropics and 
environmental conditions (Suseela, 2019). The microbial decomposers 
in soil receive resources from litter inputs, which they use to release 
plant-available nutrients like nitrogen (N) and store organic carbon 
(Kerdraon et al., 2020). 

3.2. Fluxes, Transfer, and Balances 

Carbon transport from one pool to another is known as carbon flux. 
Fluxes are typically stated as a rate, with units representing the amount 
of a substance transported during a given time period. All of the major 
pools and fluxes of carbon within the ecosystem are evaluated for carbon 
assessment and accounting; a single carbon pool might sometimes 
contain many flows, both adding and withdrawing carbon collectively. 

Carbon flux accounting directly measures carbon flow into and out of 
the terrestrial environment. Eddy covariance is a technique used by 
cutting-edge sensors to continually monitor carbon exchange between 
all carbon pools in an ecosystem and the atmosphere. Flux-based esti
mates are appropriate for supplying net carbon exchange information 
(Forest Resarch, 2022). Carbon flow studies are also crucial for vali
dating estimation methodologies across various pools. Fig. 4 portrays 
the major pools and fluxes in the earth’s carbon cycle. Arrows designate 
fluxes, while boxes indicate carbon pools. The net ecosystem exchange 
(NEE) is the difference between CO2 captured via gross primary pro
duction (GPP) and loss through respiration, ultimately determining 
whether the ecosystem is a net carbon source or sink. The NEE shows the 
net CO2 traded vertically between the land surface and the atmosphere. 

4. Carbon accounting methods 

Estimating the biomass and the carbon contents of forestry and 
woodland and all other terrestrial ecosystems and their rate of change is 
vital in the carbon accounting system. These estimates are usually 
calculated using a combination of suitable techniques (Fig. 5). The 
optimal approach to adopt is determined by the assessment’s objectives, 
location, geographic scale, and resources available to conduct the 
evaluation. The most robust and cost-effective carbon stock accounts 
will combine all four methodologies. There are four ways for carbon 
stock estimations:  

i. Ground Sampling techniques of carbon in biomass 

Table 1 (continued ) 

Carbon Stocks Type Carbon Accounting 
Technique 

References 

Eddy covariance method 
(Eddy Pro) 

(Baldocchi, 2003) 
(Papale et al., 2006) 
(Qun and Huizhi, 2013) 
(Campioli et al., 2016) 
(Swain et al., 2018) 
(Zhao et al., 2019) 

Carbon fixation model 
(CO2FIX) 

(Dewar and Cannell, 1992) 
(Schelhaas et al., 2004) 
(Masera et al., 2003) 
(Groen et al., 2006) 
(Lemma et al., 2007) 
(Negash and Kanninen, 
2015) 

CASA model (Potter and Klooster, 1997) 
(Tang et al., 2014) 
(Xu et al., 2018) 
(Cao et al., 2016) 

Balances Statistical analysis 
(ANOVA model) 

(Feng et al., 2008) 
(Miller and Fujii, 2011) 
(Cardinael et al., 2015) 
(Cardinael et al., 2012) 
(Lemma et al., 2006) 
(Raciti et al., 2012)  

Land use/ Land cover 
change 

(Churkina et al., 2010) 
(Buisson et al., 2019) 
(Pataki et al., 2006) 
(Viglizzo et al., 2016) 
(Viglizzo et al., 2019)  

Fig. 2. The carbon accounting methods for natural carbon sequestration pathways.  
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ii. Field measurements (using allometric equations or regression 
models)  

iii. Explicit spatial analyses (Mapping the ecosystem)  
iv. Carbon accounting models 

4.1. Ground sampling and experimental analyses 

Ground sampling is applied to AGB and BGB as it gives the highest 
accuracy measurements and valuation of carbon content. However, plot 
sampling for large shrubs and trees may not be practical (Catchpole and 
Wheeler, 1992). To get precise measurements, ground sampling for AGB 

requires demolishing several samples, leading to an inefficient method 
concerning the environment. Therefore, it is more common to take BGB 
sampling, where samples can be easily collected and analyzed experi
mentally (Kaye et al., 2005; Miller and Fujii, 2011; Pouyat et al., 2006; 
Rossi and Rabenhorst, 2019). Another alternative and valuable tech
nique is biomass estimation (Catchpole and Wheeler, 1992). It should be 
noted that sampling is an initial necessity for determining accuracy in 
assessment for both AGB and BGB while using remote sensing or 
modeling techniques using flux measurements gives the highest accu
racy measurements and valuation of carbon content. 

Fig. 3. Pictorial representation of carbon pools of a terrestrial ecosystem (Snowdon et al., 2002).  

Fig. 4. Major pools and fluxes in the earth’s carbon cycle (Battle et al., 2000).  
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4.1.1. Aboveground carbon 
AGB measurement methods include non-destructive, harvesting 

(destructive), or combining these two accounting methods (double 
sampling). The destructive method directly measures standing biomass 
from a known area’s plots. Vegetation biomass is clipped and removed 
for weighing within the plots. Similarly, for harvesting herbaceous 
plants (forbs, grasses, and grass-like plants), AGB is clipped and removed 
from the aboveground plant parts within the plot (Natural Resources 
Conservation Service and Institute, 2000) . For shrubs, entire plants may 
be collected, but separation into wood and leaf components may be 
required. 

4.1.1.1. Destructive Measurements. The destructive method requires the 
total removal of a living tree with all the content (roots, stems, branches, 
and leaves) to acquire the exact measurement of the tree biomass car
bon. To determine the contents of tree species’ aboveground carbon, 
three trees are destructively harvested (of each species). Roots are 
separated from aboveground tree components, such as the trunk, twigs 
(residual branches stemming from secondary branches), primary 
(branching directly off the trunk), and secondary (first branching off 
primary branches) (Miller and Fujii, 2011; Thevathasan and Gordon, 
2004; Thomas et al., 2020; Wotherspoon et al., 2014). Arbitrarily, five to 
ten disk samples of the size of 2 – 3 cm are cut along the tree component 
axis and are subsampled to determine the moisture content at the har
vesting time. To remove the water content so that the biomass can be 
expressed on a dry-matter basis, the subsamples are oven-dried at 65 ◦C 
until they attain a steady dry weight (Catchpole and Wheeler, 1992). 
Moisture content and dry biomass are calculated from each tree com
ponent’s dry and wet weight subsamples. Then, five to ten sawdust 
samples from the disks are analyzed to determine the percentage of C in 
the respective tree components. Carbon concentration can then be 
multiplied by dry biomass to find the C content (Wotherspoon et al., 
2014). Determining the total C pool at the system level requires adding 
all C pools (AG-C and BG-C for trees and SOC). 

In contrast, calculations of total fluxes are based on inputs and out
puts of litterfall C, root turnover, assimilation by trees, inputs/outputs of 

crop C, and C leachate from data collected in the estimations (Peichl 
et al., 2006). Such studies can be applied to Agroforestry to quantify C 
and N content above and below-ground in a tree-based intercropping 
(TBI) system and compare it to a conventional agricultural system, as 
well as to study C dynamic changes at the ‘‘system-level’’ between tree 
ages (Wotherspoon et al., 2014). Wood dust and C content are measured 
with LECO CR-12 dry combustion Carbon Analyzer (LECO Corporation, 
MI, USA). 

4.1.1.2. Non-destructive Measurements. In a non-destructive study, trees 
are collected on randomly located plots for all land uses. Tree data 
collection includes trunk diameter at breast height (DBH), species, and 
tree height. The total shrub area can be measured on each plot, while for 
individual shrubs, diameters are measured 6 in. (15 cm) above the 
ground line on every tenth plot (Mcpherson et al., 1994). Biomass 
equations can vary depending on what portion of the tree biomass is 
calculated, whether oven-dry or fresh weight is estimated, and what 
diameter ranges are used to develop the equations. Tree biomass is 
dispersed with about 20% of the biomass in the crown, 60% in 
merchantable stem (to 10 cm top), and 20% in the stump /root system. 
To compute the C contents in a tree, the equation is multiplied by spe
cific factors depending on each tree type (fresh-weight, dry-weight, 
merchantable, conifers, and hard wood trees) (Clark et al., 1986b; 
Nowak, 1993). Factors considered in C accounting include thinning, 
mortality, dead wood, and litterfall as C stocks (Dewar and Cannell, 
1992). Statistical methods ensure adequate sample collections to detect 
changes that should be considered in measuring biomass and consider 
stratification of the land area for collecting a representative variability 
of samples of the plant communities being monitored (Angerer et al., 
2016). In estimating tree diameter (year x + 1), the average diameter 
growth is added to the existing tree diameter (year x). The amount of C 
sequestered annually is the difference in estimated Cstor between years x 
and x + 1. To evaluate the quantity of C sequestered due to tree growth, 
tree mortality is excluded from the final calculation (Mcpherson et al., 
1994). Another way of measuring C experimentally, is by using an in
strument to measure the C income through the living leaves of a tree 

Fig. 5. Approaches for carbon accounting across different carbon pools.  
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(Suwanmontri et al., 2013). This instrument, known as Portable 
Photosynthesis System Li-6400 (LI-COR Inc., USA), measures the CO2 
assimilation and analyzes CO2 absorption rate measurements of each 
common species from 10 leaves of different trees for 7 h a day (2 days for 
one species). Apart from CO2 absorption, the instrument simultaneously 
measured photosynthetically active radiation (PAR), the actual envi
ronmental conditions, leaf and ambient temperature, and CO2 concen
tration in the air. 

Non-linear regressions were formed to find a singular relationship 
between each species’ net C assimilation and environmental variables. 
Various regression functions can be applied: logistic, rise-to-max expo
nential, and sigmoidal, with the hill and Gaussian functions showing a 
peak, i.e., increasing external factors after a peak, negatively affect ab
sorption, while the latter showed a level-off maximum, i.e., the CO2 
absorption saturation point to the external factors. CO2. PAR clearly 
affects tree CO2 absorption, and the rate of CO2 absorption in the same 
environmental condition depends on the tree species. These non-linear 
models can help compare CO2 absorption with other plants (Suwan
montri et al., 2013). 

4.1.2. Belowground carbon 
Belowground biomass sampling technologies are less established and 

utilized in the field less frequently. Furthermore, the methodologies for 
measuring belowground biomass for various land-use systems are not 
uniform (IPCC, 2006). Root biomass is given as a total of live and dead 
roots since alive and dead roots are rarely distinguishable. The method 
employed varies on the site conditions, vegetation type, and precision 
required, although root-to-shoot ratio and allometric equations are the 
most widely utilized in carbon inventory studies. The root-to-shoot ratio 
considered is 1:5 (20% of the AGB). 

As in tillage systems, management practices can highly influence the 
SOC distribution within the soil profile, especially where the soil envi
ronment is altered. Such changes to the soil environment will affect 
accumulation in different layers of the soil profile or soil carbon 

retention (Olson and Al-Kaisi, 2015). To quantify the C content found in 
the BGB, the soil should be excavated, in replicates, from the area to be 
studied with certain patterns taken into consideration (site selection, 
sampling method plan, sampling timing, type of soil to be studied, and 
type of sampling) as shown in Fig. 6. 

A soil profile describes the horizons and their thickness and provides 
context for data interpretation and collection (Schoeneberger et al., 
2012). Challenges can occur in sampling soil spatially; soils vary verti
cally (depth) and horizontally (across the land), and to understand what 
the plant’s soil properties are actually exposed to during the different 
periods of the plant life cycle, heterogeneity must also be considered, 
when soils are sampled (Perkins et al., 2013). For soil organic matter 
(and C content) extraction and measurements, sampling methods 
depend majorly on the depth of the soil to be excavated. It is remarked as 
1 m for average digging with the first two topsoil horizons (Nayak et al., 
2019). Inaccurate results can occur by measuring SOC only within the 
top layer of the soil profile because low and high temporal changes due 
to soil erosion occur primarily on this horizon (Olson and Al-Kaisi, 
2015). However, the characteristic of organic matter differs from layer 
to layer and reaches a maximum depth of one meter. In a European study 
that tested at various depths, no carbon reduction under sealed surfaces 
was observed. The sampling depth was 15 – 100 cm for non-vehicle load 
bearing and 40–100 cm for vehicle load-bearing areas with soil sealing 
(Edmondson et al., 2012). As most soil C comes from the roots rather 
than leaf litter and shoots, a distance of two-meter roots could sequester 
far more C than is presently captured (Kell, 2012). Urban areas can store 
substantial amounts of carbon (Churkina et al., 2010). The soil bulk 
density analyses showed that up to 10 – 20 kg m− 2 (100–200 Mg ha− 1) 
can be stored in soil depending on the soil depth, climate zone, and 
habitat type (Dorendorf et al., 2015). The upper fifteen centimeters of 
lawn soil are limited to organic Cstor. In comparison, below thirty cen
timeters, the material consists of substantial amounts of the alkaline 
building remains and augmented sandstone parent material. Dissolved 
organic carbon (DOC) leached directly from the surface of applied 

Fig. 6. Soil sampling methods for soil organic matters SOC. Types of sampling from (Schoeneberger et al., 2012).  
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compost mulch amendment is very mobile to a soil depth of fifteen 
centimeters but not at a depth of thirty centimeters; this verifies that the 
soluble organic C fraction is limited in vertical redistribution to the 
deeper technic horizons (Beesley, 2012). Soil sampling plans can be 
designed either by systematic sampling (Line transect and belt transect 
methods), simple random, stratified random sampling, approximation, 
or transection methods (Al-qahtani, 2018; Resh et al., 2002). The 
biotope-type cadaster of a district, field, or city can be utilized to create a 
stratified random survey of organic C stored in soil and trees. The 
cadaster is constructed from initial existing air photography, maps, and 
ground surveys and updated continuously to yield a wide-ranging data 
set of varying resolutions (Dorendorf et al., 2015). A transect method 
(Graham et al., 2019; Rossi and Rabenhorst, 2019) or a geological sur
vey (Lemma et al., 2006; Miller and Fujii, 2011) can be applied using 
several sampling locations to equate SOC in herbaceous biomass systems 
comparative to alternative land-uses, if they are placed at uniformly 
spaced intervals, along the transect or to study the effect of time on 
accumulating SOC between old and new soils (Miller and Fujii, 2011). 
Accurate measurements of baseline data and bulk density (dry soil mass 
by its core volume) must be assigned to get correct SOC sequestration 
valuations (Al-qahtani, 2018; Dorendorf et al., 2015; Graham et al., 
2019; Nadelhoffer et al., 1999). To account for stored C in urban areas, 
some studies examine proxies’ areas (Dorendorf et al., 2015) or used 
values derived from other land uses showed that there was less organic C 
stored in urban vegetation than in urban soils (Churkina et al., 2010; 
Edmondson et al., 2012; Pouyat et al., 2006). There is potential to 
sequester substantial amounts of SOC in urban soils, especially in resi
dential areas, because fewer annual soil disturbances and management 
inputs help increase net SOC (Pouyat et al., 2006). Moreover, the dis
tribution variation throughout the regional LUCC is important in 
approximating urban SOC pools (especially wetlands) (Miller and Fujii, 
2011; Pouyat et al., 2006). The collected samples are dried for carbon 
accounting, and their bulk density and mass are measured. Since the 
same horizon thickness value is used to determine the soil bulk density 
and C stocks within the horizon on an aerial basis, this method helps 
correct potential errors introduced by compaction (Rossi and Raben
horst, 2019). Total C and N are usually measured via dry combustion (at 
950 ◦C) using a CN-Analyzers (LECO CHN-2000 analyzer (LECO Cor
poration, St. Joseph, MI) (Rossi and Rabenhorst, 2019)), (LECO-1000, 
LECO Corporation, St Joseph, MI, USA (Kaye et al., 2005)) or (Vario 
MAX cube, Elementar Analysensysteme GmbH, Hanau, Germany (Al- 
qahtani, 2018)). For inorganic C, the soil is combusted at 1300 ◦C in a 
LECO CR-412 carbon analyzer (LECO Corporation, MI, USA). 

4.1.3. Estimation for litter and debris 
The dead wood amount in tropical forests is difficult to quantify and 

varies greatly. It could be a significant source of organic matter, ac
counting for anything from less than 10% to more than 40% of a forest’s 
aboveground biomass, depending on the age and climate of the forest. 
Table 2 shows an overview of estimates of other forest component 
biomass density represented as a percentage of aboveground biomass in 
trees. Due to a lack of data on this important forest component, the total 
quantity of biomass in a forest can be underestimated. 

4.2. Allometric equations and regression models 

The size and age of urban trees influence ecosystem services (ES) and 
management costs. In the literature, researchers have developed allo
metric equations to calculate biomass for each measured tree in the 
urban domain (Nowak, 1993; Nowak et al., 2013; Nowak and Crane, 
2002). AGB prediction equations convert entire tree biomass (based on 
the root-to-shoot ratio) and equations that yield dry-weight biomass by 
multiplying fresh-weight biomass by species- or genus-specific- 
conversion factors. These conversion factors stem from the average 
moistness contents of species. Open-grown trees tend to have less AGB 
for equal breast height and diameter maintained than forest-derived 
biomass equations predict. At the same time, adjustments were not 
developed for trees in more natural environments. A single analytical 
equation for an extensive range of diameters for species was obtained by 
combining multiple equations used for separate species and produced 
results within 2% of the original estimates, using multiple equations for 
total Cstor (Fig. 7). Average values were used from equations of the same 
genus if no allometric equation was available for an individual species. 
The average from all conifers or broadleaf equations was applied if no 
genus equations existed. The standard error is given for C report sam
pling error because the estimation error is either: unknown, greater than 
the reported sampling error, includes the ambiguity of using biomass 
equations and conversion factors (that may be significant), or has a 
measuring error (Nowak and Crane, 2002). Applying equations for the 
same species for the same family, genus, or species is a common 
approach used in estimating C and N accumulation and biomass pro
duction by trees (Jenkins et al., 2003; Mcpherson et al., 2016; Strohbach 
and Haase, 2012) as summarized in Table 3. Allometric equations also 
allow for further predictions of estimated C stored by the trees (Nowak, 
1993); for example, planting ten million urban trees per year over one 
decade (1991–2000) that survive over fifty years will enable 77 million 
Mg of C to be stored by a tree population of 100 million by 2040. In 
addition, this will evade the production of 286 million Mg of C. Over the 
next fifty years, this brings stored and avoided C to a total of 363 million 
Mg, as shown in Fig. 8. 

US forest ecosystems store roughly 52.5 billion Mg of C, 31% in live 
trees, 59% in soils, 9% in litter, humus, and woody debris, and 1 % in 
live understory vegetation (Nowak, 1993). However, their predictive 
capability and span of application are limited due to narrow geographic 
regions, small sample sizes, young trees or excellent condition trees 
only, and few species. Moreover, the allometry of trees managed in 
agroforestry systems and within different environments is still not 
comprehended because allometric equations are derived from forest- 
grown trees. These trees have a different canopy architecture and 
growth rate from those in alley-cropping growth conditions. This leads 
to substantial over-and under-estimations of biomass. Trees also have a 
high morphological and physiological plasticity to adapt to resource 
limitations like solar radiation, nutrients, and water. These changes are 
dependent on soil and site-specific climatic conditions and impact 
allometric equations (Thomas et al., 2020). Mcpherson et al. (Mcpher
son et al., 1994) and D. J. Nowak et al. (D. Nowak et al., 2008a) found 
that the biomass in Chicago’s street trees was 20% lower than predicted 
from allometric equations. However, it was discovered that current 
allometric equations might overestimate some urban tree species’ 
biomass while underestimating others (McPherson et al., 2011, 1999). 

To estimate the errors, one can apply the Bootstrap method that 
repeats the Cstor calculation by means of the corresponding equations 
and their stated residual standard error. The Cstor for each plot is sum
med. The procedure is repeated one thousand times, creating a thousand 
repetitions of 10 plots per land cover, each varying slightly because of 
the residual standard error of the allometric equations (Strohbach and 
Haase, 2012). This makes it possible to compare computed mean Cstor in 
trees from one city to another. Thus, in comparing research findings, it is 
important to consider the differences in geology, historical backgrounds, 
and climate of cities and the methodologies. Davies et al. (Davies et al., 

Table 2 
Estimates summary for forest components shown as the percent of AGB in trees 
(Sandra Brown, 1997).  

Elements % of matured forest’s AGB 

Understorey < 3% 
Belowground (roots) 4% – 30% 
Fine litter (dead plant material) < 5% 
Dead wood 5% – 40%  
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2011) and Mcpherson et al. (Mcpherson et al., 2016) attempted to 
overcome many of these limitations by constructing an urban tree 
database (UTD) that holds measurements for almost fifteen thousand 
urban park and street trees. They created nearly four hundred allometric 
equations for the tree species across the U.S. Eight equations for each of 
the twenty most abundant species constitute a “set.” Tree age can be 
used to predict species DBH. Where remote sensing is applied, DBH is 
predicted, in some cases, by average crown diameter, and consequently, 
additional data can be acquired. 

4.3. Explicit spatial analysis 

To fully capture the C cycle and fluxes through the entire ecosystem, 
it is essential to get the whole frame of ecosystem boundaries through 
explicit spatial analysis. It automatically demonstrates the carbon fluxes 
distribution by studying the biogeochemical cycles and land use land 
cover change (LUCC) in large-scale areas, regions, cities, continents, and 
even globally (Pataki et al., 2006; Tang et al., 2018). It provides a sci
entific foundation for industrial distribution change, land planning, and 
C management activity spatial adjustment. A macro-scale scale is a 
large-scale unit used to measure and describe the dynamics of weather 
and climate factors (Viglizzo et al., 2016). Creating stronger linkages 
between C management and prediction and earth system processes 
research disciplines will improve the co-representation of managed and 
natural systems needed in decision-making (Pataki et al., 2006; West 
et al., 2018). Scale sensitivities govern the type of service being 
modeled. For example, dynamic flow models like sediment erosion are 
the most sensitive to spatial resolution, whereas stock estimates like Cstor 
are the most susceptible to aggregation across scales (Grafius et al., 
2016). Satellite earth observation and drone and airborne measurements 
have huge potential to refine analysis, assessment of ecosystems and 
their services, and mapping. Optical, radar, high-resolution QuickBird 
satellite images (Galidaki et al., 2017; McPherson et al., 2011; Viher
vaara et al., 2017), and light detection and ranging (LiDAR) technology 
can provide high-resolution quantification for land-cover and biomass 
assessments (Angerer et al., 2016; Lesiv et al., 2019; McPherson et al., 
2011). This data can be employed for direct measurements or to collect 
the input information for the models (Davies et al., 2011; Zhang et al., 
2017). Image-based methods offer larger area mapping using vast 

numbers of temporal databases of satellite imagery, and spectral indices 
offer a method to monitor biomass (Asrar et al., 1985; Franklin, 1986; 
Franklin and Hiernaux, 1991; Roy and Ravan, 1996). In studying esti
mates of forest C density, LiDAR data achieves higher accuracy and 
lower uncertainty than QuickBird. This is because LiDAR allows for 
higher biomass-to-height correlation and undercounting of trees by the 
crown detection algorithm (with an overall accuracy of 70– 97%) 
(Gonzalez et al., 2010). As evidenced by the integration and comparison 
of multisource data, LiDAR proves to be the best single sensor for esti
mating biomass, as height metrics usually outperform cover metrics. 

Moreover, integrating optical data into methodologies increases 
biomass estimation accuracy (Galidaki et al., 2017). A data-based clas
sification of the ecosystem mapping methods was done by Vihervaara 
et al. (Vihervaara et al., 2018). It consists of three types of measure
ments: direct, indirect, and modeling systems. Depending on the type of 
analysis required and the amount of data available, the mapping anal
ysis can be chosen and used, as shown in Fig. 9. 

4.3.1. Direct measurements 
Field observation is the primary approach allowing for substantially 

accurate measurements regarding quantification, mapping, and assess
ment of ES. In the natural sciences, data collection has traditionally 
centered on field observations and direct measurements (based on 
physical units). National or regional sample systems, such as biodiver
sity surveys, national forest inventories, or land cover measurements, 
can include them (Vihervaara et al., 2018). Moreover, field analysis uses 
two models, combined with GIS, empirical coefficient, and ecological 
network (Negash and Kanninen, 2015), to clarify the C metabolism 
process network consisting of natural and socio-economic C metabolism 
of several classes of vegetation (Nowak and Crane, 2002; Pouyat et al., 
2006) from similar climatic zones across the globe and with a time-lapse 
measurement (Raciti et al., 2012). Another method includes surveys that 
provide a quick overview of the study and select what other models can 
be utilized in mapping and assessment (Liu and Li, 2012). They can also 
be used for C density comparison by reflecting top-down landscape 
policies from the local authority level (Davies et al., 2011) and location- 
based analysis for GHG inventory approaches (Li et al., 2017). The role 
of surveys in ecosystem assessment and decision support is crucial as 
they can be used to evaluate uncertainties of other methodologies. 

Fig. 7. Allometric equations variables (Trunk diameter DBH, tree height, can canopy cover).  
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The digital remote sensing method offers an objective, observable, 
fast, and effective way to analyze urban forest dynamics. Accuracy 
assessment allows researchers to determine the quality of the remotely 
sensed data. It is highly accurate when used in tandem with data derived 
from aerial photos, close to the time of satellite overpass, or with ground 
reference data (Powell et al., 2018; Qun and Huizhi, 2013). Remote 
sensing is not expected to provide better accuracy of biomass estimates 
at the stand or plot level. However, field-based biomass estimations are 
essential in calibrating and verifying remote-sensing methodologies 
(Galidaki et al., 2017). Remote sensing technology boosts technical 
support, allowing a more accurate study of the LUCC impact on the 
terrestrial ecosystem C cycle and improved monitoring of change and 
land use over time (Raciti et al., 2012). The emergence of software like 
ArcGIS provides additional possibilities (Zhang et al., 2018). Combining 

remote sensing, GIS, and empirical data allows for a better spatial 
expression between the C emissions and LUCC relationship (Vihervaara 
et al., 2012). Remote sensing is usually used in tandem with GIS to 
measure the LUCC, representing high-value C sinks, like forests with 
young trees and wetlands converted into urban built-up areas (Pan et al., 
2019). With a 10 – 100 m range, it is defined as the medium spatial 
resolution in the remote sensing literature (Tang et al., 2018; Vihervaara 
et al., 2012). Predictive regression models can be generated for forested 
areas in various biomes. These models link tree density to GIS layers and 
spatially explicit remote sensing layers of typography, vegetation char
acteristics, climate, and anthropogenic land use (Crowther et al., 2015). 
A single forest tree density map (on a per-hectare scale) is produced via 
regressions run in an algebra framework map. Equation coefficients and 
intercepts are applied independently to each pixel (Tuanmu and Jetz, 
2014). To quantify aboveground C density annual changes of tropical 
woody live vegetation, Moderate Resolution Imaging Spectroradiometer 
(MODIS) satellite data can be used for a given period and provide direct, 
measurement-based evidence (Baccini et al., 2019). 

4.3.2. Indirect measurements 
Derivatives of remote sensing and Earth observation are used to get 

the quantitative capacity ES indirectly. These measurements include 
normalized difference vegetation index (NDVI), land cover change, 
surface temperatures, and primary production. Their importance de
pends on the sources they are derived from. For instance, NVDI is a 
spectral index derived from red and infrared spectral band differences. 
At the same time, land cover change results from the automated clas
sification of remote sensing images or visual interpretation (Vihervaara 
et al., 2018). NDVI can be obtained from MODIS on the EOS-1Terra 
satellite, providing an annual assessment of global land coverage with 
high resolution (Angerer et al., 2016; Baccini et al., 2019; Qun and 
Huizhi, 2013) or from the red or near-infrared bands of Landsat thematic 
mapper (TM) imagery (Franklin, 1986). Cstor can be quite easily ob
tained via image analysis, as the image normalization methods in 
detecting changes over time appear promising (Myeong et al., 2006; 
Vihervaara et al., 2018; Xu et al., 2018; Zhang et al., 2017). Some 
synthetic data can be acquired through the National Aeronautics and 
Space Administration’s (NASA) Airborne Visible/InfraRed Imaging 
Spectrometer (AVIRIS) (Dungan, 1998); such results usually provide 
illustrative information only. Spatial prediction methods differ in ac
curacy depending on sample size and specific case (Dungan, 1998). They 
also integrate both high-performance parallel computing (through 
shuttle radar topography mission (SRTM) tiles for canopy height 
extraction and biomass and C estimations) and GIS-based geospatial 
analysis (Kumar et al., 2015; Lesiv et al., 2019; Tang et al., 2018). 

4.3.3. Land use/Land cover change (LUCC) 
LUCC and changes in urban systems C sequestration dynamics can be 

more complex than those in natural ecosystems due to intrinsic natural 
factors, as well as extrinsic human activities (Xu et al., 2018). LUCC data 
can be divided into forest, residential, or other developed classes 
(developed open space, industrial, commercial, and institutional) (Raciti 
et al., 2012). The LUCC information can be combined into an ecosystem 
process model to improve the accuracy of the C cycle dynamics and can 
be studied based on activity or land accounting (Fig. 10). Additionally, a 
C sink map of a study region can be created, based on the most current 
land use map, with classes of vegetation types included (cultivated 
crops, grass, shrubs, forest, pasture, and both herbaceous and woody 
wetlands) (Davies et al., 2011; Pan et al., 2019), or by forest type and 
plantation (pine or eucalyptus plantations, pastures, grassland, and ri
parian forests) (Vihervaara et al., 2012). 

4.3.4. Urban tree distribution 
The urban trees’ Cstor estimation study by Nowak (Nowak, 1993) 

used canopy cover analysis to estimate the C budget. There have been 
several explicit efforts to compute the ES provision at a city-wide scale. 

Table 3 
Urban Cstor in vegetation in some cities with climate and methods used for 
assessment. Modified from (Strohbach and Haase, 2012).  

City Climate Method Tree 
Carbon 
Storage 
(Mg C 
ha− 1) 

Reference 

Overall 
mean US 
cities 

Varied Aboveground C in 
trees, stratified 
random sampling 
across the land cover 
(canopy cover) 

14.1 
(average) 
7.2–35.8  
(range) 

(Rowntree 
and Nowak, 
1991) 

Oakland, 
CA, USA 

Warm, 
with dry 
summer 

Aboveground and 
belowground C in 
trees, stratified 
random sampling 
across land cover 

11.0 
(average) 
0.5–27.9  
(range) 

(Nowak, 
1993) 

Chicago II 
USA 

Snow 
climate 
and 
humid 

Aboveground and 
belowground C in 
trees, stratified 
random sampling 
across the city area 

14.1 
(average) 
7.2–35.8  
(range) 

(Mcpherson 
et al., 1994) 

Mean USA 
cities 

Varied Aboveground C in 
trees, UFORE model, 
and field data 

0.5–4.7 
(2.51) 

(Nowak and 
Crane, 2002) 

Hamburg Warm 
and 
humid 

Aboveground C in 
trees allometric 
equations and 
below-ground 
sampling 

2.74 (Dorendorf 
et al., 2015) 

Barcelona, 
Spain 

Warm 
and dry 
summer 

Aboveground and 
belowground C in 
trees, UFORE model, 
and field data 

11.2 
(average) 
0.3–33.3  
(range) 

(Chaparro 
and 
Terrasdas, 
2009) 

Leicester, 
United 
Kingdom 

Warm 
and 
humid 

Aboveground C in 
vegetation, stratified 
random sampling 
across the land 
cover, and land 
ownership 

3.1631.6  
(average) 
1.4–288.6  
(range) 

(Davies et al., 
2011) 

Karlsruhe, 
Germany 

Warm 
and 
humid 

Aboveground C in 
trees, inventory data 
of forests, and 
linking field data to 
the remote sensing 
material 

3.23 (Kändler 
et al., 2011) 

Leipzig, 
Germany 

Warm 
and 
humid 

Aboveground C in 
trees, stratified 
random sampling 
across land cover 

1.18 (Strohbach 
and Haase, 
2012) 

Cities in 
Middle 
Korea 

Snow 
climate, 
dry 
winter 

Aboveground and 
belowground C in 
trees, stratified 
random sampling 
across two land 
cover classes 

4.7–7.2 
(urban) 
26–60.1  
(natural) 

(Jo, 2002)  

Hangzhou, 
China 

Warm 
and 
humid 

Forest inventory, 
trees in built areas 
are missing 

30.3 
(average) 

(Zhao et al., 
2010)  
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Fig. 8. The amount of accumulated C is stored and avoided with the assumption of 10 million urban trees planted (with no tree mortality assumption), data taken 
from (Nowak, 1993). 

Fig. 9. Decision-tree guidelines for selecting ES mapping tiers, (). 
adapted from Vihervaara et al., 2018 
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The perception remains that urban ecosystems have a lower value 
because they are relatively small and heavily modified by humans 
(Nowak and Crane, 2002; Pouyat et al., 2006). However, urban areas as 
an entire ecosystem of both a driver of CO2 emissions and C cycling in 
urban soils and plants must be thoroughly comprehended (Pataki et al., 
2006). In terms of city scale, some cities acted as C sources (Li et al., 
2017), while other regions were in the process of transitioning from C 
sources to C sinks (Lesiv et al., 2019; Nowak and Crane, 2002; Pouyat 
et al., 2006). Later, the characteristic of C stock distribution within a city 
analyzed the C emissions discrepancy of land components like slums, 
urban green areas, and built-up areas (Li et al., 2017; Pan et al., 2019), 
and the spatial distribution of C sinks spatial distribution of many urban 
forests (McPherson et al., 2005). These studies concentrated not on the 
gradient change of C uptake and emissions but on the discrete form 
(Zhang et al., 2018). High spatial resolution LUCC data sets typically 
include natural and semi-natural classes like human-related and bio
physical, including their interactions (Churkina, 2008; Strohbach and 
Haase, 2012). To gauge the role urban forests play in climate change, the 
amount of sequestration and Cstor by urban trees is quantified (Lar
ondelle and Haase, 2013). Remotely sensed data on biomass was used, 
with exceptional accuracy and spatial resolution, for the investigation of 
the entire pantropic (including tropical Africa, America, and Asia using 
remotely sensed data on biomass) and associated land cover with the aid 
of multi-sensor satellite data (Chaplin-Kramer et al., 2015) and LiDAR 
(Baccini et al., 2012) to estimate AGB. Additional LUCC studies were 
done in the rural lands in Brazil, Paraguay, Argentina, and Uruguay) 
(Viglizzo et al., 2019) and parts of the Mediterranean ecosystem (Gali
daki et al., 2017). Because it is imperative to map values to create 
conservation strategies that combine sustainable forest use and regional 
forest protection, explicit spatial approaches have been employed in 
mapping rent distribution across the biome of non-timber forest prod
ucts (NTFPs) (Strand et al., 2018). Satellite imagery is employed to 
generate annual estimates of the amount of C stored in tree forests. 
However, in interpreting the relationships between AGB increase and 
other C stock attributes, one must consider that this imagery also cap
tures shrub and herb productivity (Powell et al., 2018). As C accounts for 
half the dry-weight biomass of trees, spectral indices can also be applied 
to detecting Cstor changes in trees (Davies et al., 2011; Powell et al., 
2018). As location-based inventory delivers explicit spatial information, 

it can be used for environmental education, improved mitigation policy- 
making, and in-depth examination of the relationship between city 
landscapes and GHG emissions distribution, which is beneficial to low C 
practice, city research (Li et al., 2017), and the emission discounting 
influences economic decisions (Fearnside et al., 2000; Watson et al., 
2000). 

4.3.5. Statistical analysis 
Statistical analyses are usually applied to these systems to measure 

the accuracy of study outcomes. Analysis of variance (ANOVA) model, 
least square method, Tukey–Kramer test, or a combination of two of 
these analyses can be opted. ANOVA utilizes a one or two-way approach 
to analyze statistical data such as gaseous C fluxes (Feng et al., 2008; 
Miller and Fujii, 2011); a tree’s DBH with height class as a factor 
(Martinez-Falero et al., 2016); effects on the soil N and SOC pools within 
a tree species and given site (Raciti et al., 2012; Resh et al., 2002; 
Thomas et al., 2020); soil core ID and total SOC concentration and other 
soil properties (Cardinael et al., 2015; Lemma et al., 2006). ANOVA can 
also be enhanced with a functions package (to fit linear and non-linear 
mixed-effects models) like the LMER Convenience Functions package 
for R to calculate the upper bound P- values for the effect of the mi
crobial community in the SOC richness. ANOVA can also be combined 
with the least square method to assess litter decomposition and plant 
biomass production (Miller and Fujii, 2011). Additionally, ANOVA can 
be combined with the Tuke-Kramer test to determine and compare the 
significance of variation and difference between the data analyzed 
(Cardinael et al., 2015; Raciti et al., 2012). 

4.4. Modeling systems and approaches 

Many models were developed to estimate and analyze the forest 
functions/structures, attributes (such as tree health, species composi
tion, species diversity, diameter distribution, and native vs. exotic spe
cies distribution), C sequestration, and economic aspects. The urban 
forest effects (UFORE/i-tree) model (USDA Forest Service et al., 2006) 
assists users in quantifying urban forest functions and structure using 
meteorological data, local hourly air pollution, and standardized field 
data from randomly located plots. It also calculates values and forest 
functions related to tree effects on building energy use, air pollution, 

Fig. 10. Carbon accounting approaches based on land-use changes adopted from (Land-use, 2000) .  
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global warming potentials, and GHGs (Nowak et al., 2007). Backed by 
peer-reviewed research and varied data collection techniques, UFORE 
forecasts the financial values of regulating urban ecosystems (UESs) by 
urban forests using a revealed preference approach (D. Nowak et al., 
2008a). Because of the data inputs of this approach, the model is usually 
applied to a single or numerous closely related UESs (Haase et al., 2014). 
Richness, abundance, size class of native and exotic tree species, and 
diversity can also be quantified. For example, a survey of inner-city 
residential and vacant lots and suburban residential lots was 
completed using the i-Tree eco model and demonstrated that inner-city 
and suburban residential lots supported three times fewer trees, less tree 
diversity, and fewer native and exotic trees than inner-city vacant lots 
(McPherson et al., 2011). Since the program outputs are ultimately 
based on various assumptions of mathematical relationships and avail
able data, estimates can be expected to change as computational 
methods evolve and data sources change over time. In addition, while 
geographically inclusive, the relatively low data resolution creates a 
higher margin of error within spatially diverse urban areas (Riley and 
Gardiner, 2020). 

Another example of an ecosystem model is InVEST (Integrated 
Valuation of Environmental Services and Tradeoffs) which permits users 
to value and map multitudinous ES (Tao et al., 2015). It has accessible 
options and is widely used to create large-scale scenario models to assess 
a broad range of freshwater and marine ecosystems and terrestrial and 
over twenty sub-models (Bottalico et al., 2016). InVEST can estimate 
biodiversity conservation, economic values and levels of ES, and market 
value of commodities provided by the landscape through LUCC patterns 
(Pathak et al., 2019; Shukla et al., 2018). Additionally, the model can 
also evaluate the economic and social importance of the C sequestration, 
highlighting tradeoffs and synergies between multiple ES, market 
returns to landowners, and biodiversity conservation (Nelson et al., 
2009; Sharp et al., 2018). The impacts of future land-use change on 
sequestration or Cstor can be modeled using Cstor estimates found in the 
literature (Nelson et al., 2009). The InVEST model does have a few 
drawbacks. It assumes a linear change in C sequestration over time, uses 
an oversimplified C cycle, and potentially inaccurate discounting rates 
(Sharp et al., 2018). Moreover, C sequestration studies built on sub-type 
LUCC are insufficiently understood (Polasky et al., 2011; Zhang et al., 
2017). 

CASA (Carnegie–Ames–Stanford approach) is a simulation model 
that pools together climate, multi-year satellite, and other land surface 
databases to predict regional or global biosphere–atmosphere inter
change of water, energy, and trace gases from soils and plants. The 
model is driven by global monthly solar radiation, climate and satellite 
input data, soil, and vegetation types and can directly evaluate the net 
primary production (NPP), i.e., the incoming quantity of energy and C 
into ecosystems (Xu et al. CASA has been used in multiple simulations 
for ecosystem C flux predictions and used to validate terrestrial NPP 
fluxes in specific sites against CO2 sampling stations (Neigh, 2008). The 
model is employed for aboveground net primary productivity (ANPP), 
which is particularly important for predicting global C cycle changes 
and directional climate changes (Cao et al., 2016). However, the CASA 
biosphere model shows that the annual production of CO2 from fossil 
fuel emissions is a tenth of that of annual CO2 production from soils 
(Potter and Klooster, 1997). At the same time, the model also illustrates 
that this is offset because plants absorb CO2 in amounts equal to that 
produced by the soils. The model also shows that 60% of CO2 produced 
is absorbed in tropical latitudes, permitting researchers to gain better 
insight into land changes and tropical deforestation’s impact on atmo
spheric trace emissions and their roles in global biogeochemical cycles. 
CASA is an integral part of NASA’s Earth Science Enterprise (ESE), as 
independent observations continually refine and validate its approach. 
Their data inform policymakers on how human actions impact the global 
environment. 

The most widely used technique for flux measurements is Eddy 
covariance Technique (EddyPro); developed by LI-COR, the EddyPro 

model processes eddy covariance (EC) data. It measures fluxes of CO2 by 
using a micro-meteorological technique and Biometric Methods (BM) to 
quantify CO2 exchange between terrestrial ecosystems and atmosphere 
net ecosystem production (NEP) (Campioli et al., 2016). It can also 
compute fully processed methane and other trace gas fluxes, water vapor 
(evapotranspiration), and energy. The EC technique is founded on the 
mass balance principle, as seen in Fig. 11. The schematic explains that, 
during stationary and horizontally homogenous conditions of a studied 
volume, the turbulent vertical flux (Zref) should equal S(z), the integral 
over all sinks and sources. Eddies create related variations in vertical 
wind speed (w’) and scalar concentration (s’). This results in the efficient 
transport of energy and mass vertically. Thus, the greatest accuracies are 
achieved during steady atmospheric conditions and when vegetation is 
homogeneous and situated upwind on flat terrain for an extended dis
tance. The EC method is considered an advanced method of estimating 
turbulent fluxes of CO2. It can still be used for more complex landscapes 
and turbulent atmospheric conditions. However, when applying Eddy
Pro in these conditions, flux divergence, advection, and atmospheric 
storage measurements must be included to quantify CO2 exchange be
tween the atmosphere and the biosphere. It is a scale-appropriate 
method that allows scientists to assess the net CO2 exchange of a 
whole ecosystem and measure ecosystem CO2 exchange across a wide 
time range–from hours to years (Baldocchi, 2003; Qun and Huizhi, 
2013). Carbon exchange processes and the responses to ecological fac
tors in a meadow grassland at a wide-scale ecosystem using long-term 
continuous EC measurements are compared (Zhao et al., 2019). Dur
ing the dry and wet seasons, periodic and seasonal changes in carbon 
dioxide, methane, and energy interchange from irrigated lowland rice- 
rice ecosystems were examined using an open-path EC system (Swain 
et al., 2018). Long-term continuous EC measurements were taken to test 
inter-annual fluctuations of potential C sink potential and source for 
grasslands (Zhao et al., 2019). It used long-term continuous EC mea
surements to study the C exchange processes and the responses to 
environmental factors in a meadow steppe in a wide-scale ecosystem. 

Zhao et al. (2019) took long-term continuous EC measurements to 
test inter-annual fluctuations of potential C sink potential and source for 
grassland. Combining EC instruments with a digital camera to capture 
time-lapse images at a fixed location setup can better understand the 
relationship between C flux dynamics and canopy development. A 
methodology presented by Papale et al. (2006) has been integrated into 
the European EC measurements database with a new standardized set of 
corrections. Terrestrial Ecosystem Respiration (TER) and Gross Primary 
Production (GPP) uncertainties associated with these corrections were 
assessed in Europe for eight different forest sites. The outcome proved 
that standardized data processing is required to underpin inter-annual 
variability and provide effective comparison across biomass. Such 
analysis was also performed in the Arctic to examine the average relative 
flux uncertainties under stable and unstable stratification (Aalstad, 
2015). 

Carbon fixation approach (CO2FIX): The CO2FIX is an open-source 
simulation software based on the concept of the C flow model and 
works to enumerate C fluxes and stocks in wood products, soil organic 
matter, and forest biomass chain. CO2 fixation takes place through 
photosynthesis, converting solar into chemical energy that aids plants 
and other living organisms in developing and growing (Baldocchi, 
2003). Growth of stem volume and pattern of allocation to foliage, roots, 
and branches are input into the CO2FIX biomass module and tabulated 
to determine the balance of C (between growth and turnover, harvest, 
and mortality) for a one-year time interval; it can be applied to decid
uous forests, monocultures, coniferous forests, or mixed tree stands 
(Schelhaas et al., 2004). Continuous C build-up occurs on the forest floor 
in non-woody and woody biomass litter. Part of this biomass transforms 
into soil organic matter during each cycle and decomposes into CO2. The 
model assumes: that the yearly tree growth pattern remains constant, 
there is no ground vegetation, and quantiles of C lost to recalcitrant soil 
organic matter or in groundwater are minimal (Dewar and Cannell, 
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1992). The model was enhanced into the programmed software, CO2FIX 
Version 3.1, and is categorized into six modules: bioenergy, financial, C 
accounting, biomass, and soil. The bioenergy module calculates biomass 
use over fossil fuels for energy production. The financial module allows 
cost and revenue inputs for different scenarios to compare project 
profitability for different scenarios. The C accounting model enables 
users to simulate C fluxes and stocks and determine how many C credits 
a project can generate for different crediting systems. The soil module 
defines soil C dynamics and decomposition in well-drained soils. 
(Schelhaas et al., 2004). CO2FIX Version 3.1 has worldwide applica
tions: afforestation projects, multiple cohort forest ecosystems, and se
lective logging systems (Groen et al., 2006). It is an extremely useful tool 
that has been utilized for the IPCC’s climate assessments in the context 
of the Kyoto Protocol. 

5. Socioeconomic benefits of urban landscapes 

5.1. Air pollution removal 

Urban shrubs and trees act to rid large volumes of air pollutants, 
improving the health of humans and the environment. Once inside the 
leaf, gases diffuse into the leaf’s intercellular spaces and are absorbed by 
water films, reacting with inner-leaf surfaces or creating acids (Smith, 
1990). Trees also remove pollution by intercepting airborne particles 
and absorbing them into the tree. They are only temporal retention sites 
as particles are usually washed off by rain or dropped to the ground with 
twigs and leaf fall (Nowak et al., 2006). A modeling study using pollu
tion concentration and hourly meteorology exhibited an estimated total 
pollution removal of 711,000 metric Mg valued at almost $4B in U.S. 

Fig. 11. A schematic explanation of the Eddy covariance technique principle. Edited from (Finnigan et al., 2003; Launiainen, 2011).  

Fig. 12. Potential removal of some air pollutants by trees with economic values estimations using the typical range published in leaf dry deposition velocities, data 
taken from (Lovett, 1994; Nowak et al., 2006). 
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cities by urban trees (Fig. 12). A benefit-cost analysis study of Modesto, 
California’s urban forest, indicated that avoided emissions, due to 
energy-saving devices, of nitrogen dioxide (NO2), volatile organic 
compounds (VOC), and particulate matter, with a diameter of 10 µm 
(PM10) were minor, totaling approximately 7.2 Mg with a value just 
under $70 K. However, there was a considerable benefit in pollution 
uptake (particulate interception and pollution deposition), totaling 157 
Mg valued at nearly $1.4 M. This translated to an average savings of 
almost $16/tree. Thus, the total benefit was significant, with net air- 
quality savings coming primarily from pollutant uptake (McPherson 
et al., 1999). In addition to improving air quality through pollution 
removal, integrated studies reveal that urban tree canopy cover man
agement can improve air and health quality and reduce air temperature. 
Because percentage gains in air quality due to pollution removal are 
small, combining this effort with increased urban tree canopy cover, i.e., 
urban management, allows for a significant total effect (Nowak et al., 
2006). During daylight hours, when water transpires from tree leaves, 
urban trees have the greatest impact on ozone, NO2 and SO2, whereas 
removal of particulate matter, intercepted by both bark and leaf surface, 
happens around the clock and throughout the year. Furthermore, 
removal of carbon monoxide (CO) also occurs around the clock, during 
in-leaf season and at a much lower rate than for the other pollutants. 

5.2. Economic benefits of carbon sequestration 

There is an increasing research effort to study the action and inaction 
of CO2 reduction and quantify a global perspective on the economics of 
CO2 reduction. Studying C sinks and using real economic estimations 
can quantify the economic benefits associated with enhancing the nat
ural C sinks. Moreover, the evaluations do not solely count the C 
reduction but include all benefits, i.e., energy savings, air quality, 
stormwater prevention, etc. 

5.2.1. Natural carbon sinks 
Researchers in Chicago analyzed links between forest functions and 

values with vegetation structure, discovering that trees in the region 
removed almost 5,575 metric Mg of air pollution, equating to just over 
$9M in clean air and approximately 316,000 metric Mg of C annually 
was sequestered. Furthermore, up to $90 per dwelling unit could be 
saved in annual cooling and heating expense with just a ten percent 
increase in planting three trees per building lot or increasing tree cover 
by 10 % due to lower summertime air temperature, reduction in 
neighborhood wind speeds, and increased shade once trees matured. 
Researchers estimated the services of the trees contributed to a net 
present value (NPV) of about $400, while the long-term benefits 
exceeded twice the NPV costs (McPherson et al., 1997). The researchers 
also analyzed the economic benefits of urban forests in Modesto, Cali
fornia, using the UFORE/iTree Eco model (McPherson et al., 1999) with 
evidence that residents benefitted more than twice from an estimated 
92,000 public trees to residents than the cost of maintaining these trees. 
In fact, researchers monetized the benefits at $4.95 million (about $27 
per resident or $54 per tree). 

To determine the economic benefits of cultural UESs, like green area 
aesthetics, hedonic pricing methods can be applied, i.e., the price of a 
good is related to the services it provides or its characteristics. For 
example, in two Finnish towns, an investigation showed clear evidence 
that positive benefits were attained by the nature and social functions of 
the towns’ urban forests. In contrast, negative results were achieved 
concerning the towns’ timber production. The takeaway from this 
investigation emphasizes the importance of defining municipal urban 
forest policies (Tyrväinen, 2001). 

5.2.2. Urban ecosystem services (UES) analysis 
A comprehensive investigation discovered that most UES research 

had been undertaken at the city scale in China, Europe, North America, 
and China with assessment methods involving GIS, valuation, and 

biophysical models. Moreover, the research conclusions have not 
translated into substantial land-use policy. The research indicates that to 
get a more accurate assessment of the actual value of UESs. This com
plete regional portrait highlights the concept of ecosystem tradeoffs, and 
the spatially explicit approaches (in an urban context) are required 
(Haase et al., 2014). In one study, Luck et al. (2009) analyzed the so
cioeconomic impact of urbanization on Australia’s urban vegetation for 
20 years. They found a strong correlation between urban vegetation and 
socioeconomics. They concluded that the properties in the areas with 
higher urban vegetation ratios are of higher values than that of regions 
with lower vegetation ratios. Another study (Richards and Thompson, 
2019) suggested that urban ecosystems provide numerous benefits, 
including health, leisure opportunities, and environmental regulations. 

Furthermore, in rural areas, payments for ecosystem services (PES) 
programs are being employed to encourage environmental management 
reforms and conservation efforts, while cities have rarely adopted this 
strategy. The authors highlighted the potential benefits of PES for 
managing, preserving, and protecting urban ecosystems. Additionally, 
Boyd and Banzhaf (2011) defined a public policy demand for stan
dardized units of ecosystem measurement via an inventory of measur
able ecosystem services. They concluded that most ecosystem services 
must be acquired by the government and not through markets, making 
them public goods that fall short of effective oversight and lack market 
provision. Thus, governments need to be held accountable and 
communicate trends in ecological conditions, paving the way for ser
vices defined by performance accounting. Although weighing the rela
tive value of services would pose challenges, it is a starting point for 
governments to systematically tally what is important about nature, 
making this approach similar to socio-cultural valuation methods. 

6. Discussion 

This study summarizes the carbon accounting methods and tools for 
the ecosystem and the effectiveness of such methods and tools. The 
methods to assess carbon estimates/fluxes are summarized in Fig. 13. 
Sound scientific and technical knowledge is required to select a carbon 
accounting method/tool for a particular habitat/region. It is generally 
agreed that remote sensing is a widely used advanced technique. AGB is 
the most accurate carbon pool that can be estimated through remote 
sensing because it covers a large area and is relatively inexpensive to 
measure. Field measurements, a well-developed and accurate method 
for large areas, are the most expensive component of sampling-based 
methods (Tomppo, 2006). The amount of data from each method de
pends on the source’s quality and the trade-offs that must be made be
tween accounting accuracy and costs of resources and time. Remote 
sensing data are integrated with empirical data to measure biomass and, 
subsequently, carbon stocks, either directly using allometric relation
ships or indirectly based on characteristics like canopy cover (Rose
nqvist et al., 2003). 

Additionally, indices that combine reflection from various spectral 
regions can be utilized to estimate biomass. It is necessary to make in
direct estimations utilizing empirical relationships, such as canopy 
cover, indices from different bands, or net primary production (NPP), 
which combines environmental data with remotely sensed data. For 
instance, it can be difficult to interpret remote sensing data/images into 
meaningful insights. Long-term data comparison may also be difficult 
because remote sensing systems’ sensors, bandwidth, or maintenance 
may have changed over time. It is necessary to have expertise in man
aging data from these procedures (Sensing and Techniques, 2008) . 
Therefore, combining various remote sensing data types with field 
measurements is an appropriate method for evaluating alternative land- 
use systems or regions and, consequently, for determining carbon stocks. 
It also has the advantage of tracking changes in carbon stocks and land 
use over an extended period. 

For the BGB estimate, a proportion or function of the AGB pool is 
considered because of the complexity of the methods and the more 
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human efforts involved in field measurements, especially for forestlands. 
Additionally, since root biomass is not disrupted and no fresh planting is 
done, BGB for such systems is not expected to be damaged. When root 
biomass equations that are appropriate for the species or the project 
location are unavailable, field measurements may be used instead 
(Hairiah et al., 2001). Furthermore, estimations of carbon flux using 
suitable ecosystem models must be considered, as this process is a 
continuous one that is greatly influenced by land use and management 
(Paustian et al., 1997). 

Measuring the deadwood and litter debris pools concurrently with 
the AGB pool measurement is simple and low-cost. Similar to AGB, the 
stock change measuring approach might be used to estimate litter 
biomass with little additional expense or labor. Expert judgment is 
required to determine whether the dead organic matter should be 
assessed, especially given that it makes up only approximately 10% of 
the total carbon stocks in forests and that annual litter production esti
mates are difficult and time-consuming. However, the accurateness of 
biomass or C estimations depends on the initial data used to develop 
allometric and general equations and biomass factors (Wirth et al., 2004; 
Wutzler et al., 2008), in addition to species-specific volume-to-biomass 
models. Ground sampling and satellite imaging methods can be used to 
classify the ecosystem precisely. Moreover, regional and biome-specific 
research, as well as the calculation of wood-based debris (Keller et al., 
2004; Palace et al., 2007), may refine the carbon content estimates 
(Mäkinen et al., 2006). 

Landsat has been frequently employed for medium spatial resolution 
image development. However, in some cases, because of the limitation 
of the optical sensors, radar and LiDAR are used instead. LiDAR data of 
large and small footprints can also be utilized to extract indirect tree 
height forecasts. However, the elevation variations within the footprint, 
mostly for big footprints, can be significant, making it more challenging 
to approximate tree height with high accuracy. 

Contrary to field inventory, where data is frequently confined to 
small regions, remote sensing (space-borne or airborne) typically offers 
uninterrupted spatial information over large areas. For carbon flux es
timations and statistical models, such as eddy covariance, LUCC, and 
vegetation indices can produce forecasts regarding carbon exchange 
among ecosystems and the atmosphere (NDVI). If there is any incon
sistency in the carbon estimations, it can be due to the following:  

• Imprecise variable measures, such as instrument and calibration 
errors  

• Unsuitable allometric equations  
• Sampling uncertainty  
• The sampling network is poorly represented. 

The lack of adequate and high-precision AGB sample plots is a key 
obstacle to constructing AGB estimate models and validating and 
assessing the accuracy of AGB estimation results. AGB estimate using 
remote sensing is a difficult process. Many factors can influence AGB 
estimate performance, including environmental conditions, mixed 
pixels, data concentration, diverse biophysical factors, inadequate 
sample data, observed remote sensing variables, and the methods used 
(Qureshi et al., 2012). The factors such as time, cost, and expertise for 
some of the above-mentioned methods are listed in Table 4. Future 
studies may integrate multi-source data that entails accurate remote 
sensing implementation, GIS, and modeling tools. The variability of 
biomass estimations at the local level can be reduced by improving the 
resolution of input maps and using more recent GIS techniques as 
technology develops. When new data becomes available, validation 
should be performed. 

7. Conclusion and outlook 

This review identifies natural carbon sinks, pools, and sequestration 
pathways. The carbon accounting methods are classified based on 
planned study types or data availability required to measure the carbon 
stocks and fluxes. In addition, benefits from the natural carbon capture 
systems are discussed from a socio-economic perspective. Some of the 
highlights and key challenges are as follows:  

• It is essential to consider the accuracy of the measurement during the 
analysis. Ground and field measurements are the most accurate 
method applied, as the data provided is exact. However, some dif
ficulties are associated with generalizing results unless the mea
surement was made on a large scale and widely randomized.  

• The soil bulk density analyses show that carbon up to 10 – 20 kg m− 2 

can be stored in soil depending upon the soil depth, climate zone, and 
habitat type. 

Fig. 13. Summary of carbon estimation techniques.  
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• Research showed that live sampling provided the highest accuracy; 
however, it is a destructive method that is not recommended except 
for soil sampling and some restricted analyses.  

• Collecting field data for the whole ecosystem is sometimes not 
approachable (with big forest measurements or in large-scale anal
ysis). The ecosystem elements are not always acquirable and are 
generally not cost or time-effective.  

• Satellite earth observation and drone and airborne measurements 
have huge potential to refine analysis, assessment of ecosystems and 
their services, and mapping.  

• LiDAR is the best single sensor for estimating biomass, as height 
metrics usually outperform cover metrics.  

• Estimation calculations were able to provide good quantitative 
measurements. However, when leveled to a large scale with higher 
biodiversity (big city or state), uncertainties reached 40%.  

• In assessing carbon sequestration projects, it is critical to account for 
time regarding carbon storage estimates and compares carbon sinks 
and other climatic change mitigation options.  

• Combining remote sensing, GIS, and empirical data allows for a 
better spatial expression between the carbon emissions and LUCC 
relationship.  

• The various accounting approaches differ in how they treat the 
concept of time. The accounting approach chosen to investigate 
sequestration options is typically study-specific. Countries and re
gions are free to choose the accounting method that best fits their 
sequestration program.  

• Although these estimations did not provide entirely accurate values, 
they can be used as indicators demonstrating the considerable 
impact and benefits that the trees and biome systems had on 
reducing atmospheric carbon and other pollutants.  

• The natural carbon sinks greatly benefit pollution uptake (particulate 
interception and deposition). The integrated studies revealed that 
urban tree canopy cover management could improve air and health 
quality and reduce air temperature. 

CRediT authorship contribution statement 

Salma Habib: Conceptualization, Data curation, Formal analysis, 
Investigation, Methodology, Visualization, Writing – original draft. 
Furqan Tahir: Data curation, Formal analysis, Investigation, Visuali
zation, Writing – review & editing. Fabiha Hussain: Formal analysis, 
Investigation, Visualization, Writing – review & editing. Nadine Mac
auley: Formal analysis, Investigation, Writing – review & editing. Sami 
G. Al-Ghamdi: Conceptualization, Funding acquisition, Project admin
istration, Resources, Supervision, Writing – review & editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

No data was used for the research described in the article. 

References 

Aalstad, K., 2015. Applying the Eddy Covariance Method Under difficult conditions. 
Adhikari, K., Hartemink, A.E., 2016. Linking soils to ecosystem services — A global 

review. Geoderma 262, 101–111. https://doi.org/10.1016/j. 
geoderma.2015.08.009. 

Ahtikoski, A., Tuulentie, S., Hallikainen, V., Nivala, V., Vatanen, E., Tyrväinen, L., 
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for the biomass supply potential and the future development of Finnish forest 
resources [WWW Document]. Finnish For. Res. Inst. 

Imteyaz, B., Tahir, F., Habib, M.A., 2021. Thermodynamic Assessment of Membrane- 
Assisted Premixed and Non-Premixed Oxy-Fuel Combustion Power Cycles. J. Energy 
Resour. Technol. 143 https://doi.org/10.1115/1.4049463. 

S. Habib et al.                                                                                                                                                                                                                                   

https://doi.org/10.2307/2388024
https://doi.org/10.2307/2388024
https://doi.org/10.1111/gcbb.12044
https://doi.org/10.1111/brv.12470
https://doi.org/10.1111/brv.12470
https://doi.org/10.1016/j.jclepro.2020.120028
https://doi.org/10.1038/ncomms13717
https://doi.org/10.1088/1748-9326/11/7/075004
https://doi.org/10.1088/1748-9326/11/7/075004
https://doi.org/10.1007/s10457-012-9572-y
https://doi.org/10.1007/s10457-012-9572-y
https://doi.org/10.1016/j.geoderma.2015.06.015
https://doi.org/10.1016/j.geoderma.2015.06.015
https://doi.org/10.1111/j.1442-9993.1992.tb00790.x
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0160
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0160
https://doi.org/10.1038/ncomms10158
https://doi.org/10.1016/j.jclepro.2018.12.296
https://doi.org/10.1016/j.ecolmodel.2008.03.006
https://doi.org/10.1111/j.1365-2486.2009.02002.x
https://doi.org/10.1111/j.1365-2486.2009.02002.x
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0190
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0190
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0190
https://doi.org/10.1038/nature14967
https://doi.org/10.1038/nature20150
https://doi.org/10.1093/ijlct/ctr032
https://doi.org/10.1093/ijlct/ctr032
https://doi.org/10.1111/j.1365-2664.2011.02021.x
https://doi.org/10.1111/j.1365-2664.2011.02021.x
https://doi.org/10.3390/app12178518
https://doi.org/10.3390/app12178518
https://doi.org/10.1093/treephys/11.1.49
https://doi.org/10.1016/j.ufug.2015.04.005
https://doi.org/10.1080/014311698216242
https://doi.org/10.1080/014311698216242
https://doi.org/10.1038/srep00963
https://doi.org/10.1023/A:1009625122628
https://doi.org/10.1016/j.ecolecon.2005.02.003
https://doi.org/10.1023/A:1021554900225
https://doi.org/10.1089/env.2010.0018
https://doi.org/10.1080/01431168608948931
https://doi.org/10.1080/01431168608948931
https://doi.org/10.1080/01431169108929732
https://doi.org/10.1034/j.1600-0706.2001.930318.x
https://doi.org/10.1034/j.1600-0706.2001.930318.x
https://doi.org/10.1080/01431161.2016.1266113
https://doi.org/10.1080/01431161.2016.1266113
https://doi.org/10.1016/j.rse.2010.02.011
https://doi.org/10.1016/j.rse.2010.02.011
https://doi.org/10.1007/s10980-015-0337-7
https://doi.org/10.1007/s10457-018-0272-0
https://doi.org/10.1007/s10457-018-0272-0
https://doi.org/10.1007/s10584-006-1827-z
https://doi.org/10.1007/s10584-006-1827-z
https://doi.org/10.1007/s13280-014-0504-0
https://doi.org/10.1061/9780784482964.028
https://doi.org/10.3389/fenvs.2021.635365
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0335
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0335
https://doi.org/10.1111/acfi.12789
https://doi.org/10.1016/j.foreco.2004.10.015
https://doi.org/10.1016/j.foreco.2004.10.015
https://doi.org/10.1115/1.4049463


Ecological Indicators 154 (2023) 110603

19

International Energy Agency, 2016. Statisticts: CO2 emissions from fuel combustion, 
International Journal of Electrochemical Science. 

IPCC, 2003. IPCC Good Practice Guidance for LULUCF. Institute for Global 
Environmental Strategies (IGES), Hayama, Kanagawa, Japan. 

IPCC, 2006. IPCC - Task Force on National Greenhouse Gas Inventories. 
i-Tree, 2019. i-Tree [WWW Document]. 
Jenkins, J.C., Chojnacky, D.C., Heath, L.S., Birdsey, R.A., 2003. National-scale biomass 

estimators for United States tree species. For. Sci. https://doi.org/10.1093/ 
forestscience/49.1.12. 

Jo, H.K., 2002. Impacts of urban greenspace on offsetting carbon emissions for middle 
Korea. J. Environ. Manage. 64, 115–126. https://doi.org/10.1006/jema.2001.0491. 

Kändler, G., Adler, P., Hellbach, A., 2011. Wie viel Kohlenstoff speichern Stadtbäume ? 
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Toman, M., 2018. Spatially explicit valuation of the Brazilian Amazon Forest’s 
Ecosystem Services. Nat. Sustain. 1, 657–664. https://doi.org/10.1038/s41893-018- 
0175-0. 

Strohbach, M.W., Haase, D., 2012. Above-ground carbon storage by urban trees in 
Leipzig, Germany: Analysis of patterns in a European city. Landsc. Urban Plan. 104, 
95–104. https://doi.org/10.1016/j.landurbplan.2011.10.001. 

Suseela, V., 2019. Potential roles of plant biochemistry in mediating ecosystem responses 
to warming and drought, in: Ecosystem Consequences of Soil Warming. Elsevier, pp. 
103–124. 10.1016/B978-0-12-813493-1.00005-3. 

Suwanmontri, C., Kositanont, C., Panich, N., 2013. Carbon dioxide absorption of 
common trees in chulalongkorn university. Mod. Appl. Sci. 7, 1–7. https://doi.org/ 
10.5539/mas.v7n3p1. 

Swain, C.K., Nayak, A.K., Bhattacharyya, P., Chatterjee, D., Chatterjee, S., Tripathi, R., 
Singh, N.R., Dhal, B., 2018. Greenhouse gas emissions and energy exchange in wet 
and dry season rice: eddy covariance-based approach. Environ. Monit. Assess. 190 
https://doi.org/10.1007/s10661-018-6805-1. 

Tahir, F., Al-Ghamdi, S.G., 2023. Climatic change impacts on the energy requirements for 
the built environment sector. Energy Rep. 9, 670–676. https://doi.org/10.1016/j. 
egyr.2022.11.033. 

Tahir, F., Ajjur, S.B., Serdar, M.Z., Al-Humaiqani, M.M.A., Kim, D., Al-Thani, S.K., Al- 
Ghamdi, S.G., 2021. Qatar Climate Change Conference 2021: A platform for 
addressing key climate change topics facing Qatar and the world. Hamad bin Khalifa 
University Press (HBKU Press), Doha, Qatar. 10.5339/conf_proceed_qccc2021. 

Tang, C., Fu, X., Jiang, D., Fu, J., Zhang, X., Zhou, S., 2014. Simulating Spatiotemporal 
Dynamics of Sichuan Grassland Net Primary Productivity Using the CASA Model and 
in Situ Observations. Sci. World J. 2014 https://doi.org/10.1155/2014/956963. 

Tang, W., Zheng, M., Zhao, X., Shi, J., Yang, J., Trettin, C.C., 2018. Big geospatial data 
analytics for global mangrove biomass and carbon estimation. Sustain. 10, 472. 
https://doi.org/10.3390/su10020472. 

Tao, Y., Li, F., Wang, R., Zhao, D., 2015. Effects of land use and cover change on 
terrestrial carbon stocks in urbanized areas: A study from Changzhou. China. J. 
Clean. Prod. 103, 651–657. https://doi.org/10.1016/j.jclepro.2014.07.055. 

Thevathasan, N.V., Gordon, A.M., 2004. Ecology of tree intercropping systems in the 
North temperate region: Experiences from southern Ontario. Canada. Agrofor. Syst. 
61–62, 257–268. https://doi.org/10.1023/B:AGFO.0000029003.00933.6d. 

Thomas, A.L., Kallenbach, R., Sauer, T.J., Brauer, D.K., Burner, D.M., Coggeshall, M. V., 
Dold, C., Rogers, W., Bardhan, S., Jose, S., 2020. Carbon and nitrogen accumulation 
within four black walnut alley cropping sites across Missouri and Arkansas, USA. 
Agrofor. Syst. 10.1007/s10457-019-00471-8. 

Tomppo, E., 2006. The Finnish national forest inventory. Forest Inventory. Springer 
179–194. 

Triviño, M., Juutinen, A., Mazziotta, A., Miettinen, K., Podkopaev, D., Reunanen, P., 
Mönkkönen, M., 2015. Managing a boreal forest landscape for providing timber, 

S. Habib et al.                                                                                                                                                                                                                                   

https://doi.org/10.5194/bg-3-571-2006
https://doi.org/10.1016/j.ufug.2016.08.011
https://doi.org/10.1111/j.1365-2486.2006.01242.x
https://doi.org/10.1111/j.1365-2486.2006.01242.x
https://doi.org/10.1890/090220
https://doi.org/10.1061/JSWBAY.0000881
https://doi.org/10.1111/j.1475-2743.1997.tb00594.x
https://doi.org/10.1111/j.1475-2743.1997.tb00594.x
https://doi.org/10.1007/s10457-005-0361-8
https://doi.org/10.1007/s10457-005-0361-8
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0680
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0680
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0680
https://doi.org/10.1016/j.ppees.2013.05.004
https://doi.org/10.1007/s10640-010-9407-0
https://doi.org/10.1007/s10640-010-9407-0
https://doi.org/10.3402/tellusb.v49i1.15947
https://doi.org/10.3402/tellusb.v49i1.15947
https://doi.org/10.2134/jeq2005.0215
https://doi.org/10.2134/jeq2005.0215
https://doi.org/10.1016/j.foreco.2018.04.033
https://doi.org/10.1016/j.foreco.2018.04.033
https://doi.org/10.1016/j.agee.2013.04.009
https://doi.org/10.1016/j.envsci.2011.11.001
https://doi.org/10.1016/j.envsci.2011.11.001
https://doi.org/10.1890/11-1250.1
https://doi.org/10.1007/s10021-001-0067-3
https://doi.org/10.1002/pan3.20
https://doi.org/10.1371/journal.pone.0228499
https://doi.org/10.1016/j.ufug.2017.01.004
https://doi.org/10.1016/S1462-9011(03)00070-4
https://doi.org/10.1016/j.geoderma.2018.10.028
https://doi.org/10.1016/j.geoderma.2018.10.028
https://doi.org/10.1007/BF02703218
https://doi.org/10.1016/j.scs.2019.101948
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0785
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0785
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0785
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0785
https://doi.org/10.5194/hess-22-5357-2018
https://doi.org/10.14214/sf.300
https://doi.org/10.1016/j.ufug.2010.12.001
https://doi.org/10.1038/s41893-018-0175-0
https://doi.org/10.1038/s41893-018-0175-0
https://doi.org/10.1016/j.landurbplan.2011.10.001
https://doi.org/10.5539/mas.v7n3p1
https://doi.org/10.5539/mas.v7n3p1
https://doi.org/10.1007/s10661-018-6805-1
https://doi.org/10.1016/j.egyr.2022.11.033
https://doi.org/10.1016/j.egyr.2022.11.033
https://doi.org/10.1155/2014/956963
https://doi.org/10.3390/su10020472
https://doi.org/10.1016/j.jclepro.2014.07.055
https://doi.org/10.1023/B:AGFO.0000029003.00933.6d
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0895
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0895


Ecological Indicators 154 (2023) 110603

21

storing and sequestering carbon. Ecosyst. Serv. 14, 179–189. https://doi.org/ 
10.1016/j.ecoser.2015.02.003. 

Tuanmu, M.N., Jetz, W., 2014. A global 1-km consensus land-cover product for 
biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 23, 1031–1045. https:// 
doi.org/10.1111/geb.12182. 
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role of grazing lands in carbon-balance estimations: Meta-analysis and review. Sci. 
Total Environ. 661, 531–542. https://doi.org/10.1016/j.scitotenv.2019.01.130. 

Vihervaara, P., Marjokorpi, A., Kumpula, T., Walls, M., Kamppinen, M., 2012. Ecosystem 
services of fast-growing tree plantations: A case study on integrating social 
valuations with land-use changes in Uruguay. For. Policy Econ. 14, 58–68. https:// 
doi.org/10.1016/j.forpol.2011.08.008. 

Vihervaara, P., Auvinen, A.P., Mononen, L., Törmä, M., Ahlroth, P., Anttila, S., 
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