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Carbon capture, storage, and sequestration are crucial for mitigating climate change’s adverse effects. To limit
global temperature rise within the 2 °C target, it is essential to implement both artificial and natural carbon-
capturing techniques and utilize renewable resources. Natural carbon sinks serve as vital resources for CO2
reduction, but quantifying their carbon sequestration is complex due to potential CO, release from the upper
ocean. Accurate assessment requires detailed modeling of interacting natural processes. This review critically
examines various natural carbon pools, methodologies, and modeling techniques for carbon accounting,
particularly in urban landscapes. The strengths and limitations of each approach are analyzed, leading to specific
recommendations. Socio-economic benefits associated with natural carbon sinks are also presented. Ground and
field measurements are found to be the most accurate methods, while accounting methods tend to be study-
specific. Additionally, satellite earth observation, drone, and airborne measurements have significant potential
for enhancing ecosystem analysis, assessment, and mapping. By comprehensively assessing these factors, this
review contributes to the development of effective strategies for carbon accounting and management in diverse

environments.

1. Introduction

Climate change, characterized by global warming and caused by
human activities, has raised carbon emissions significantly and brought
about significant sustainable development challenges to human society
and the natural ecosystems (Deeksha, 2022; Liu and Li, 2012; Salimi and
Al-Ghamdi, 2020). Moreover, fossil fuels released during combustion
have contributed substantially to global warming over the last twenty
years (Tahir et al., 2021). Coal is a particularly harmful fuel because it
produces two times more carbon dioxide (CO3) per unit of energy than
natural gas. Therefore, researchers have focused on cleaner coal tech-
nologies and carbon capture and sequestration (CCS) techniques
(Imteyaz et al., 2021).

Furthermore, researchers are looking at the prospect of using oil and
gas reservoirs for carbon (C) sequestration because of the industry’s
expertise in injecting CO; into these sites for enhanced oil recovery
(EOR) (Aldrich and Koerner, 2011). The terms carbon storage (Cs;or) and

carbon sequestration are interrelated (Nelson et al., 2009). However,
these terms describe two different qualities of climate regulation. Cgtor
measures the capacity of the ecosystem to hold carbon and prevents the
further release of stored carbon. In contrast, carbon sequestration does
not denote reducing and relocating environmental carbon emissions into
long-term pools. It is a time-based process that purges carbon (evenly or
unevenly) from the atmosphere, with the quantity of carbon removed
varying over time. Even if a project shows positive sequestration,
negative sequestration, i.e., carbon discharged into the atmosphere, can
occur (over some time intervals). Thus, the temporal characteristic must
be included for sequestration projects to be more accurately evaluated
(Feng, 2005; Xu et al., 2023b).

Natural carbon sequestration is receiving increased attention from
researchers as a viable option for cost-effective mitigation. Researchers
have developed several indicators showing vegetation’s significance for
carbon capture (Baude and Meyer, 2023; Kolarik et al., 2023; Wang
et al.,, 2022; Xu et al., 2023a). With binding treaties like the Kyoto
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Protocol, countries may be more driven to integrate it into their schemes
to manage and reduce greenhouse gases (GHG). Urban greenery is
gaining prominence as a mitigation measure for climate change because
soil carbon accounts for a quarter of the natural climate solution po-
tential, of which 40% consists of protecting existing soil carbon, while
60% includes rebuilding depleted stocks (Bossio et al., 2020; Habib and
Al-Ghamdi, 2021, 2020). For example, governing bodies of many cities
have adopted policies to enhance tree planting, conserve urban green
spaces, and promote green roofs and facades in architecture (Mannan
and Al-Ghamdi, 2021; Tahir and Al-Ghamdi, 2023). Introducing an
urban green ecosystem includes decreased GHG emissions, improved air
quality and thermal comfort, better-quality run-off water and flood
protection, and savings in energy use.

Additionally, green spaces offer improvements in health and a wide
range of recreational and psychological advantages and encourage so-
cial responsibility by taking positive measures on the environment and
climate change (Mcpherson et al., 1994; Pataki et al., 2011). Although
the social benefits are well-documented, the physical benefits still
require more scientific investigation. For example, there is limited evi-
dence to support the efficacy of urban vegetation in diminishing GHG
emissions or the accumulation of airborne pollutants (Haase et al., 2014;
Velasco et al., 2016).

1.1. Carbon emissions

CO, emissions contribute an estimated 50% to anthropogenic
greenhouse gas emissions (Dakwale and Ralegaonkar, 2012). Compared
to the mid-1800 s, mean CO, concentrations (399 ppm) were 40%
higher in 2015, representing a 2 ppm/year average growth over the past
decade. During this same period, nitrous oxide (N2O) and methane
(CHy4) levels have also substantially increased (International Energy
Agency, 2016). These excessive carbon emissions have led to society’s
significant concern over climate change from both human and natural
sources. Anthropogenic carbon emissions come from cement produc-
tion, deforestation, and fossil fuel combustion, while natural sources
stem from decomposition, ocean release, and respiration. The growing
utilization of fossil fuels is resulting in accelerated emissions globally.
Coal is the most carbon-intensive fossil fuel, with every ton of coal that is
burned producing about 2.5 tons of COy (department for Environment
Food and Rural Affairs, 2013). Moreover, it leads to the loss of biodi-
versity in the ecological system and the frequent occurrence of natural
disasters (Cai et al., 2020). Thus, substantial reduction models must be
applied to limit CO emissions and air pollutants like SO and NO.

1.2. Carbon capture in nature

Carbon sinks act as a primary component of the carbon cycle in
nature, turning carbon into different forms by absorbing CO; from the
atmosphere more than it emits. For example, global carbon pools and
fluxes are integrated to form a global carbon cycle. These natural pools
perform as carbon sinks, absorbing and moving carbon between sinks
via different pathways and mechanisms (Fig. 1). The Earth’s crust is the
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first carbon sink, holding the highest concentration of carbon (Oberle,
2016). The other carbon pools are the stored fossil fuels underneath
(4,000 PgC (Gton of carbon)) and that which is distributed in the at-
mosphere (750 PgC). The transformation of carbon through these pools
can occur via carbon fixation from the atmosphere to plants (through
photosynthesis) or via dissolution into carbonates in the oceans.
Excessive release into the atmosphere causes a carbon cycle imbalance
that leads to warming because the amount of accumulated CO- released
is higher than sequestration. Carbon cycle imbalance also occurs via the
acidification of oceans as the dissolution process increases.

1.3. Purpose of this study

As the accounting methods differ due to the system type or carbon
pool, it is essential to determine the appropriate method to apply to a
particular system. This study aims to collect and evaluate the various
carbon accounting methods that have been used and developed,
emphasizing urban landscapes so that researchers are provided with a
guide that allows them to determine which carbon accounting methods
are suitable concerning the location, geographic scale, and available
resources by answering the following questions:

e What are the various methods being used for terrestrial carbon ac-
counting, and how do they vary for different carbon pools?

e What are the limitations of these methods?

e Can a combination of different methods improve accuracy in biomass
estimates and in carbon accounting?

e What approaches can be deployed based on these methods for col-
lecting accurate data?

In addition, the drawbacks of carbon accounting methods and the
challenges are discussed and presented in this work. This survey com-
prises of review methodology (section 2), an overview of carbon pools,
fluxes, and stocks (section 3), a detailed discussion of carbon accounting
methods (section 4), the socioeconomic benefits of urban landscapes
(section 5), discussion (section 6) and conclusion (section 7).

2. Material and methods

The papers chosen in this review were based on methodologies that
have been used and developed over the past four decades worldwide. A
literature search via the Institute for Scientific Information (ISI), Web of
Science (Elsevier, Springer, etc.), and the Forest Service of the United
States Department of Agriculture (USDA) was done to identify relevant
studies for inclusion. The search also targeted the following key search
terms and Boolean operators: natural carbon sequestration in carbon
pools, urban trees carbon, ecosystem carbon, ecosystem services, urban
landscapes, urban forests, and environment, soil and agroforestry, and
carbon storage valuation or value. The subject of “carbon sequestration”
is interdisciplinary and is found in numerous published journals
covering various disciplines, including planning, land use science, ge-
ography, remote sensing, ecology and landscape ecology, computational
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Fig. 1. Carbon sink types and carbon destination.
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science, biology, planning, forestry, etc. The search returned approxi-
mately 320 records and papers concerning carbon measuring and ac-
counting with various methods applied (based on the type of natural
carbon pools). A check for content relevance was conducted, and those
found to be irrelevant were excluded. Studies examining previous work
were also investigated thoroughly to avoid any similarities. These
checks resulted in 200 + articles included for in-depth analyses. Papers
were analyzed against various carbon accounting methods and tech-
niques (Table 1 and Fig. 2). The focus areas were selected based on the
study type, and thus the method was used in accordance.

3. Carbon stocks and pools

Carbon stocks are the amount of carbon contained in a carbon pool.
Different ecosystems store different amounts of carbon that depend on
their ecosystem productivity (it refers to biomass generation in the
ecosystem). For example, swamps and marshes store more carbon than
temperate forests or cultivated lands (Fridley, 2001). During photo-
synthesis, the carbon fixed by plants is transported across the various
carbon pools. Therefore, the way carbon gets into these ecosystems is
through plants’ leaves. It is a kind of carbon fixation that removes the
CO;, from the atmosphere and is stored as biomass, termed carbon stocks
inside the trees (twigs, branches, trunks, leaves, etc.). The carbon is
pumped from the ground to roots and eventually recycled between the
trees and soil over time. There is a gradual buildup of carbon in the soil.
Estimation is required when preparing an organizational carbon in-
ventory as it is the primary source of carbon information and is recog-
nized as an essential data source for carbon accounting (He et al., 2022;
Yin et al., 2022). The United Nations Framework Convention on Climate
Change (UNFCCC) and the Kyoto Protocol require national governments
to provide annual inventories of all anthropogenic GHG emissions from
sources and deductions from sinks.

3.1. Carbon pools

As per Intergovernmental Panel on Climate Change (IPCC) (IPCC,
2003), there are five carbon pools of a terrestrial ecosystem related to
biomass, namely: aboveground biomass (AGB), belowground biomass
(BGB), soil organic carbon (SOC), the dead mass of litter and the woody
debris (Fig. 3). Carbon pools are carbon reservoirs that can absorb and
release carbon. The global carbon cycle comprises these pools
exchanging carbon with one another, known as carbon fluxes. Carbon
stocks are present in various terrestrial ecosystem carbon pools and the
carbon fluxes between them (Woldemariam, 2015).

3.1.1. Carbon in aboveground biomass (AGB)

Carbon inventories and most mitigation efforts emphasize AGB for
carbon accounting. Under the Kyoto Protocol, it is the main pool for
afforestation and reforestation. Furthermore, carbon estimating meth-
odologies and geographic information system (GIS) models for
computing and projecting aboveground biomass is the most developed
compared to other carbon pools. Biomass in non-forest land-use systems
like farmland and grassland comprises non-woody perennial and annual
plants that account for a small portion of the total carbon stock in the
ecosystem than in forestlands. Because non-woody biomass is a part of
the yearly carbon cycle and is subject to turnover annually or every few
years, the net biomass carbon stock may stay relatively stable over time,
even if stocks decline due to land degradation (Ravindranath and Ost-
wald, 2008).

3.1.2. Carbon in belowground biomass (BGB)

This denotes all living biomass of live roots and soil organic matter.
However, roots less than 2 mm in diameter are often excluded since they
tend to be empirically indistinguishable from soil organic matter or
litter. BGB growth is defined by growth, including root collar and coarse
roots. It comprised organic content in mineral and organic soils

Table 1
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Carbon accounting Types and techniques used for each natural carbon pool.

Carbon Stocks Type

Carbon Accounting
Technique

References

Above ground
carbon:
Trees species &
Litterfall

Belowground: Soil

Organic Carbon &

Roots

Carbon Fluxes and
Transfers

Ground sampling

Allometric equations

Urban Forest Effect
(UFORE) modelCTCC (
CTCC, 2023) &iTree (i-Tree,
2019)

MOTTI stand simulator
(Metla, 2013)

Tree Density (Tree species
Distribution) (Forest sizes)

Field Sampling

Automated mapping
(Remote Sensing & GIS)
Estimations by:

(Mapping)

(GIS)

(Thematic Mapping)
Integrated Valuation of
Ecosystem Services and
Tradeoffs (InVEST) (
Stanford University, 2019)

(Clark et al., 1986a)
(Nowak, 1993)

(Dewar and Cannell, 1992)
(Mcpherson et al., 1994)
(Suwanmontri et al., 2013)
(Wotherspoon et al., 2014)
(Clark et al., 1986b)
(Rowntree and Nowak,
1991)

(Peper et al., 2001)

(Oren et al., 2001)
(Strohbach and Haase,
2012)

(Nowak and Crane, 2002)
(Dorendorf et al., 2015)
(Nowak et al., 2013)
(Baral and Guha, 2004)
(Nowak et al., 2013)
(Soares et al., 2011)
(McPherson et al., 2011)
(Flocks et al., 2011)
(Parmehr et al., 2016)
(Birge et al., 2019)

(Birge and Berger, 2019)
(Riley et al., 2018)

(Riley and Gardiner, 2020)
(Hynynen et al., 2005)
(Salminen et al., 2005)
(Siipilehto et al., 2007)
((Ahtikoski et al., 2011,
2012)

(Mo6nkkonen et al., 2014)
(Hynynen et al., 2014)
(Trivino et al., 2015)
(Rowntree and Nowak,
1991)

(Mcpherson et al., 1994)
(Brack, 2002)

(Nowak et al., 2003)
(Myeong et al., 2006)
(Churkina, 2008)
(Jenkins et al., 2003)
(Churkina et al., 2010)
(Crowther et al., 2015)(
Nowak et al., 2008b)
(Pouyat et al., 2006)
(Oren et al., 2001)

(Resh et al., 2002)
(Edmondson et al., 2012)
(Buchholz et al., 2014)
(Zhu et al., 2017)
(Dorendorf et al., 2015)
(Beesley, 2012; Graham
et al., 2019; Lemma et al.,
2006)

(Kaye et al., 2005; Miller and
Fujii, 2011; Pouyat et al.,
2006; Rossi and Rabenhorst,
2019)

(Nadelhoffer et al., 1999)
(Crowther et al., 2016)

(Potter and Klooster, 1997)
(Liu and Li, 2012)
(Trivino et al., 2015)

(Nelson et al., 2009)
(Strohbach and Haase,
2012)

(Sharp et al., 2018)
(Grafius et al., 2016)
(Chu et al., 2019)

(continued on next page)
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Table 1 (continued)

Carbon Stocks Type Carbon Accounting References

Technique

Eddy covariance method
(Eddy Pro)

(Baldocchi, 2003)
(Papale et al., 2006)
(Qun and Huizhi, 2013)
(Campioli et al., 2016)
(Swain et al., 2018)
(Zhao et al., 2019)
(Dewar and Cannell, 1992)
(Schelhaas et al., 2004)
(Masera et al., 2003)
(Groen et al., 2006)
(Lemma et al., 2007)
(Negash and Kanninen,
2015)

(Potter and Klooster, 1997)
(Tang et al., 2014)

(Xu et al., 2018)

(Cao et al., 2016)

(Feng et al., 2008)
(Miller and Fujii, 2011)
(Cardinael et al., 2015)
(Cardinael et al., 2012)
(Lemma et al., 2006)
(Raciti et al., 2012)
(Churkina et al., 2010)
(Buisson et al., 2019)
(Pataki et al., 2006)
(Viglizzo et al., 2016)
(Viglizzo et al., 2019)

Carbon fixation model
(CO.FIX)

CASA model

Balances Statistical analysis

(ANOVA model)

Land use/ Land cover
change

(including peat) at a depth determined by the country and applied
continuously throughout time. When empirically indistinguishable, fine
live roots (smaller than the specified diameter limit for BGB) are
incorporated with soil organic matter (Food and Agriculture Organiza-
tion of the United Nations, 2005). Soil can be a viable source or sink of
atmospheric carbon and plays a crucial role in climate policymaking,
depending on the organizational practices adopted. Soil performs a
vitally important aspect of carbon sequestration (Adhikari and Harte-
mink, 2016; Lal, 2014; Minasny et al., 2017; Oren et al., 2001; Pouyat
et al., 2006; Villanueva-Lopez et al., 2019).

3.1.3. Soil organic carbon (SOC)

SOC holds the potential of natural climate solutions with a per-
centage of 25%. Within the soil carbon, carbon is divided into protecting
organic matter and restoring the stock depleted through the carbon
fluxes (40% and 60%, respectively) (Bossio et al., 2020). On the other
hand, many crops have roots that only reach around one meter below
the earth. It is unclear what factors influence the lifespan of below-
ground C in various forms. As a result, a greater knowledge of these
mechanisms is essential for improving C sequestration. Moreover, the
quality and ability to support biomass production determine its potential
for sequestration.

Ecological Indicators 154 (2023) 110603

3.1.4. Carbon in woody and other debris/litter

Fine litter on the forest floor (fruits, leaves, twigs, bark pieces,
branches less than 10 cm diameter, etc.), dead trees and snags, and
laying deadwood bigger than 10 cm diameter make up the amount of
detritus in a forest. Fine litter biomass density varies between 2 and 16
Mg ha™! (average of 6 Mg halor less than 5% of AGB), with greater
values in damp situations. However, there is no obvious trend in the
database (Brown and Lugo, 1982). The fine litter quantity on the forest
floor reflects the difference in litterfall inputs (dead plant organic mat-
ter) and decomposition outputs (which is a process of supplying nutri-
ents to the soil), which differ significantly across the tropics and
environmental conditions (Suseela, 2019). The microbial decomposers
in soil receive resources from litter inputs, which they use to release
plant-available nutrients like nitrogen (N) and store organic carbon
(Kerdraon et al., 2020).

3.2. Fluxes, Transfer, and Balances

Carbon transport from one pool to another is known as carbon flux.
Fluxes are typically stated as a rate, with units representing the amount
of a substance transported during a given time period. All of the major
pools and fluxes of carbon within the ecosystem are evaluated for carbon
assessment and accounting; a single carbon pool might sometimes
contain many flows, both adding and withdrawing carbon collectively.

Carbon flux accounting directly measures carbon flow into and out of
the terrestrial environment. Eddy covariance is a technique used by
cutting-edge sensors to continually monitor carbon exchange between
all carbon pools in an ecosystem and the atmosphere. Flux-based esti-
mates are appropriate for supplying net carbon exchange information
(Forest Resarch, 2022). Carbon flow studies are also crucial for vali-
dating estimation methodologies across various pools. Fig. 4 portrays
the major pools and fluxes in the earth’s carbon cycle. Arrows designate
fluxes, while boxes indicate carbon pools. The net ecosystem exchange
(NEE) is the difference between CO; captured via gross primary pro-
duction (GPP) and loss through respiration, ultimately determining
whether the ecosystem is a net carbon source or sink. The NEE shows the
net CO, traded vertically between the land surface and the atmosphere.

4. Carbon accounting methods

Estimating the biomass and the carbon contents of forestry and
woodland and all other terrestrial ecosystems and their rate of change is
vital in the carbon accounting system. These estimates are usually
calculated using a combination of suitable techniques (Fig. 5). The
optimal approach to adopt is determined by the assessment’s objectives,
location, geographic scale, and resources available to conduct the
evaluation. The most robust and cost-effective carbon stock accounts
will combine all four methodologies. There are four ways for carbon
stock estimations:

i. Ground Sampling techniques of carbon in biomass

Carbon Pools

S E—
Above Ground Beloground Soil Organic Litter debris/
Biomass (AGB) Biomass | Carbon deadwood
- ( [ ( L Y [ L Y [ 1 \ 1 p N [
( Tree ] ) - Field Spectroscopic Carbon | Automated Land Use/ Tree Soil i Wood
( # ’ * 2 >
‘ Species | ‘ Roots ; | Sampling | | analysis | | flux | mapping | T et | Species | | Study | | density
o JREEES
(Ground | [ Allometr ( : i i Exchange
Groun ‘ lometric Tree Densit L .,
2 : y Ground
|_Sampling Equations | (Tree Species sampling . .
Distribution) T InVEST ‘

[ Tree Carbon |
| Calculator |

Fig. 2. The carbon accounting methods for natural carbon sequestration pathways.
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Fig. 3. Pictorial representation of carbon pools of a terrestrial ecosystem (Snowdon et al., 2002).
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Fig. 4. Major pools and fluxes in the earth’s carbon cycle (Battle et al., 2000).

ii. Field measurements (using allometric equations or regression
models)

iii. Explicit spatial analyses (Mapping the ecosystem)

iv. Carbon accounting models

4.1. Ground sampling and experimental analyses

Ground sampling is applied to AGB and BGB as it gives the highest
accuracy measurements and valuation of carbon content. However, plot
sampling for large shrubs and trees may not be practical (Catchpole and
Wheeler, 1992). To get precise measurements, ground sampling for AGB

requires demolishing several samples, leading to an inefficient method
concerning the environment. Therefore, it is more common to take BGB
sampling, where samples can be easily collected and analyzed experi-
mentally (Kaye et al., 2005; Miller and Fujii, 2011; Pouyat et al., 2006;
Rossi and Rabenhorst, 2019). Another alternative and valuable tech-
nique is biomass estimation (Catchpole and Wheeler, 1992). It should be
noted that sampling is an initial necessity for determining accuracy in
assessment for both AGB and BGB while using remote sensing or
modeling techniques using flux measurements gives the highest accu-
racy measurements and valuation of carbon content.
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4.1.1. Aboveground carbon

AGB measurement methods include non-destructive, harvesting
(destructive), or combining these two accounting methods (double
sampling). The destructive method directly measures standing biomass
from a known area’s plots. Vegetation biomass is clipped and removed
for weighing within the plots. Similarly, for harvesting herbaceous
plants (forbs, grasses, and grass-like plants), AGB is clipped and removed
from the aboveground plant parts within the plot (Natural Resources
Conservation Service and Institute, 2000) . For shrubs, entire plants may
be collected, but separation into wood and leaf components may be
required.

4.1.1.1. Destructive Measurements. The destructive method requires the
total removal of a living tree with all the content (roots, stems, branches,
and leaves) to acquire the exact measurement of the tree biomass car-
bon. To determine the contents of tree species’ aboveground carbon,
three trees are destructively harvested (of each species). Roots are
separated from aboveground tree components, such as the trunk, twigs
(residual branches stemming from secondary branches), primary
(branching directly off the trunk), and secondary (first branching off
primary branches) (Miller and Fujii, 2011; Thevathasan and Gordon,
2004; Thomas et al., 2020; Wotherspoon et al., 2014). Arbitrarily, five to
ten disk samples of the size of 2 — 3 cm are cut along the tree component
axis and are subsampled to determine the moisture content at the har-
vesting time. To remove the water content so that the biomass can be
expressed on a dry-matter basis, the subsamples are oven-dried at 65 °C
until they attain a steady dry weight (Catchpole and Wheeler, 1992).
Moisture content and dry biomass are calculated from each tree com-
ponent’s dry and wet weight subsamples. Then, five to ten sawdust
samples from the disks are analyzed to determine the percentage of C in
the respective tree components. Carbon concentration can then be
multiplied by dry biomass to find the C content (Wotherspoon et al.,
2014). Determining the total C pool at the system level requires adding
all C pools (AG-C and BG-C for trees and SOC).

In contrast, calculations of total fluxes are based on inputs and out-
puts of litterfall C, root turnover, assimilation by trees, inputs/outputs of

crop C, and C leachate from data collected in the estimations (Peichl
et al., 2006). Such studies can be applied to Agroforestry to quantify C
and N content above and below-ground in a tree-based intercropping
(TBI) system and compare it to a conventional agricultural system, as
well as to study C dynamic changes at the “system-level’” between tree
ages (Wotherspoon et al., 2014). Wood dust and C content are measured
with LECO CR-12 dry combustion Carbon Analyzer (LECO Corporation,
MI, USA).

4.1.1.2. Non-destructive Measurements. In a non-destructive study, trees
are collected on randomly located plots for all land uses. Tree data
collection includes trunk diameter at breast height (DBH), species, and
tree height. The total shrub area can be measured on each plot, while for
individual shrubs, diameters are measured 6 in. (15 cm) above the
ground line on every tenth plot (Mcpherson et al., 1994). Biomass
equations can vary depending on what portion of the tree biomass is
calculated, whether oven-dry or fresh weight is estimated, and what
diameter ranges are used to develop the equations. Tree biomass is
dispersed with about 20% of the biomass in the crown, 60% in
merchantable stem (to 10 cm top), and 20% in the stump /root system.
To compute the C contents in a tree, the equation is multiplied by spe-
cific factors depending on each tree type (fresh-weight, dry-weight,
merchantable, conifers, and hard wood trees) (Clark et al., 1986b;
Nowak, 1993). Factors considered in C accounting include thinning,
mortality, dead wood, and litterfall as C stocks (Dewar and Cannell,
1992). Statistical methods ensure adequate sample collections to detect
changes that should be considered in measuring biomass and consider
stratification of the land area for collecting a representative variability
of samples of the plant communities being monitored (Angerer et al.,
2016). In estimating tree diameter (year x + 1), the average diameter
growth is added to the existing tree diameter (year x). The amount of C
sequestered annually is the difference in estimated Cgor between years x
and x + 1. To evaluate the quantity of C sequestered due to tree growth,
tree mortality is excluded from the final calculation (Mcpherson et al.,
1994). Another way of measuring C experimentally, is by using an in-
strument to measure the C income through the living leaves of a tree
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(Suwanmontri et al., 2013). This instrument, known as Portable
Photosynthesis System Li-6400 (LI-COR Inc., USA), measures the COy
assimilation and analyzes CO, absorption rate measurements of each
common species from 10 leaves of different trees for 7 h a day (2 days for
one species). Apart from CO; absorption, the instrument simultaneously
measured photosynthetically active radiation (PAR), the actual envi-
ronmental conditions, leaf and ambient temperature, and CO5 concen-
tration in the air.

Non-linear regressions were formed to find a singular relationship
between each species’ net C assimilation and environmental variables.
Various regression functions can be applied: logistic, rise-to-max expo-
nential, and sigmoidal, with the hill and Gaussian functions showing a
peak, i.e., increasing external factors after a peak, negatively affect ab-
sorption, while the latter showed a level-off maximum, i.e., the COy
absorption saturation point to the external factors. COs. PAR clearly
affects tree CO; absorption, and the rate of CO, absorption in the same
environmental condition depends on the tree species. These non-linear
models can help compare CO, absorption with other plants (Suwan-
montri et al., 2013).

4.1.2. Belowground carbon

Belowground biomass sampling technologies are less established and
utilized in the field less frequently. Furthermore, the methodologies for
measuring belowground biomass for various land-use systems are not
uniform (IPCC, 2006). Root biomass is given as a total of live and dead
roots since alive and dead roots are rarely distinguishable. The method
employed varies on the site conditions, vegetation type, and precision
required, although root-to-shoot ratio and allometric equations are the
most widely utilized in carbon inventory studies. The root-to-shoot ratio
considered is 1:5 (20% of the AGB).

As in tillage systems, management practices can highly influence the
SOC distribution within the soil profile, especially where the soil envi-
ronment is altered. Such changes to the soil environment will affect
accumulation in different layers of the soil profile or soil carbon

Ecological Indicators 154 (2023) 110603

retention (Olson and Al-Kaisi, 2015). To quantify the C content found in
the BGB, the soil should be excavated, in replicates, from the area to be
studied with certain patterns taken into consideration (site selection,
sampling method plan, sampling timing, type of soil to be studied, and
type of sampling) as shown in Fig. 6.

A soil profile describes the horizons and their thickness and provides
context for data interpretation and collection (Schoeneberger et al.,
2012). Challenges can occur in sampling soil spatially; soils vary verti-
cally (depth) and horizontally (across the land), and to understand what
the plant’s soil properties are actually exposed to during the different
periods of the plant life cycle, heterogeneity must also be considered,
when soils are sampled (Perkins et al., 2013). For soil organic matter
(and C content) extraction and measurements, sampling methods
depend majorly on the depth of the soil to be excavated. It is remarked as
1 m for average digging with the first two topsoil horizons (Nayak et al.,
2019). Inaccurate results can occur by measuring SOC only within the
top layer of the soil profile because low and high temporal changes due
to soil erosion occur primarily on this horizon (Olson and Al-Kaisi,
2015). However, the characteristic of organic matter differs from layer
to layer and reaches a maximum depth of one meter. In a European study
that tested at various depths, no carbon reduction under sealed surfaces
was observed. The sampling depth was 15 — 100 cm for non-vehicle load
bearing and 40-100 cm for vehicle load-bearing areas with soil sealing
(Edmondson et al., 2012). As most soil C comes from the roots rather
than leaf litter and shoots, a distance of two-meter roots could sequester
far more C than is presently captured (Kell, 2012). Urban areas can store
substantial amounts of carbon (Churkina et al., 2010). The soil bulk
density analyses showed that up to 10 — 20 kg m~2 (100-200 Mg ha™})
can be stored in soil depending on the soil depth, climate zone, and
habitat type (Dorendorf et al., 2015). The upper fifteen centimeters of
lawn soil are limited to organic Cgor. In comparison, below thirty cen-
timeters, the material consists of substantial amounts of the alkaline
building remains and augmented sandstone parent material. Dissolved
organic carbon (DOC) leached directly from the surface of applied

Types of sampling:
Horizon sampling 4[ —_
— O horizon
Increment sampling . Loose and partly
decayed organic matter
Fixed depth sampling _|
A horizon
Sampling Tools: . Mineral matter mixed
1 shovel Topsoil =7 | with some humus
Solum -
2 Screwauger E horizon
. . Oor T Light colored mineral
3 Tube corer: Open-sided cylinder True soil particles.
4 Clay Auger Zone of eluviation and
L leaching
B horizon
X X X X X X |X X Subsoil — @ Accumulation of clay
xx X transported from
X X X XX X X - L above
XX XX
oo X X x| x
X X X X X
X X X X X C horizon
simple Random Stratified Random Partially altered parent
X X X X X material
X X X X X
X X X X X
. , Un-weathered parent
X X X X X Tree soil sampling material
Systematic
Soil sampling plans ( x refers to core location of each individual soil)

Fig. 6. Soil sampling methods for soil organic matters SOC. Types of sampling from (Schoeneberger et al., 2012).
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compost mulch amendment is very mobile to a soil depth of fifteen
centimeters but not at a depth of thirty centimeters; this verifies that the
soluble organic C fraction is limited in vertical redistribution to the
deeper technic horizons (Beesley, 2012). Soil sampling plans can be
designed either by systematic sampling (Line transect and belt transect
methods), simple random, stratified random sampling, approximation,
or transection methods (Al-qahtani, 2018; Resh et al., 2002). The
biotope-type cadaster of a district, field, or city can be utilized to create a
stratified random survey of organic C stored in soil and trees. The
cadaster is constructed from initial existing air photography, maps, and
ground surveys and updated continuously to yield a wide-ranging data
set of varying resolutions (Dorendorf et al., 2015). A transect method
(Graham et al., 2019; Rossi and Rabenhorst, 2019) or a geological sur-
vey (Lemma et al., 2006; Miller and Fujii, 2011) can be applied using
several sampling locations to equate SOC in herbaceous biomass systems
comparative to alternative land-uses, if they are placed at uniformly
spaced intervals, along the transect or to study the effect of time on
accumulating SOC between old and new soils (Miller and Fujii, 2011).
Accurate measurements of baseline data and bulk density (dry soil mass
by its core volume) must be assigned to get correct SOC sequestration
valuations (Al-qahtani, 2018; Dorendorf et al., 2015; Graham et al.,
2019; Nadelhoffer et al., 1999). To account for stored C in urban areas,
some studies examine proxies’ areas (Dorendorf et al., 2015) or used
values derived from other land uses showed that there was less organic C
stored in urban vegetation than in urban soils (Churkina et al., 2010;
Edmondson et al., 2012; Pouyat et al., 2006). There is potential to
sequester substantial amounts of SOC in urban soils, especially in resi-
dential areas, because fewer annual soil disturbances and management
inputs help increase net SOC (Pouyat et al., 2006). Moreover, the dis-
tribution variation throughout the regional LUCC is important in
approximating urban SOC pools (especially wetlands) (Miller and Fujii,
2011; Pouyat et al., 2006). The collected samples are dried for carbon
accounting, and their bulk density and mass are measured. Since the
same horizon thickness value is used to determine the soil bulk density
and C stocks within the horizon on an aerial basis, this method helps
correct potential errors introduced by compaction (Rossi and Raben-
horst, 2019). Total C and N are usually measured via dry combustion (at
950 °C) using a CN-Analyzers (LECO CHN-2000 analyzer (LECO Cor-
poration, St. Joseph, MI) (Rossi and Rabenhorst, 2019)), (LECO-1000,
LECO Corporation, St Joseph, MI, USA (Kaye et al., 2005)) or (Vario
MAX cube, Elementar Analysensysteme GmbH, Hanau, Germany (Al-
gahtani, 2018)). For inorganic C, the soil is combusted at 1300 °C in a
LECO CR-412 carbon analyzer (LECO Corporation, MI, USA).

4.1.3. Estimation for litter and debris

The dead wood amount in tropical forests is difficult to quantify and
varies greatly. It could be a significant source of organic matter, ac-
counting for anything from less than 10% to more than 40% of a forest’s
aboveground biomass, depending on the age and climate of the forest.
Table 2 shows an overview of estimates of other forest component
biomass density represented as a percentage of aboveground biomass in
trees. Due to a lack of data on this important forest component, the total
quantity of biomass in a forest can be underestimated.

Table 2
Estimates summary for forest components shown as the percent of AGB in trees
(Sandra Brown, 1997).

Elements % of matured forest’s AGB
Understorey < 3%

Belowground (roots) 4% — 30%

Fine litter (dead plant material) < 5%

Dead wood 5% - 40%

Ecological Indicators 154 (2023) 110603
4.2. Allometric equations and regression models

The size and age of urban trees influence ecosystem services (ES) and
management costs. In the literature, researchers have developed allo-
metric equations to calculate biomass for each measured tree in the
urban domain (Nowak, 1993; Nowak et al., 2013; Nowak and Crane,
2002). AGB prediction equations convert entire tree biomass (based on
the root-to-shoot ratio) and equations that yield dry-weight biomass by
multiplying fresh-weight biomass by species- or genus-specific-
conversion factors. These conversion factors stem from the average
moistness contents of species. Open-grown trees tend to have less AGB
for equal breast height and diameter maintained than forest-derived
biomass equations predict. At the same time, adjustments were not
developed for trees in more natural environments. A single analytical
equation for an extensive range of diameters for species was obtained by
combining multiple equations used for separate species and produced
results within 2% of the original estimates, using multiple equations for
total Cgor (Fig. 7). Average values were used from equations of the same
genus if no allometric equation was available for an individual species.
The average from all conifers or broadleaf equations was applied if no
genus equations existed. The standard error is given for C report sam-
pling error because the estimation error is either: unknown, greater than
the reported sampling error, includes the ambiguity of using biomass
equations and conversion factors (that may be significant), or has a
measuring error (Nowak and Crane, 2002). Applying equations for the
same species for the same family, genus, or species is a common
approach used in estimating C and N accumulation and biomass pro-
duction by trees (Jenkins et al., 2003; Mcpherson et al., 2016; Strohbach
and Haase, 2012) as summarized in Table 3. Allometric equations also
allow for further predictions of estimated C stored by the trees (Nowak,
1993); for example, planting ten million urban trees per year over one
decade (1991-2000) that survive over fifty years will enable 77 million
Mg of C to be stored by a tree population of 100 million by 2040. In
addition, this will evade the production of 286 million Mg of C. Over the
next fifty years, this brings stored and avoided C to a total of 363 million
Mg, as shown in Fig. 8.

US forest ecosystems store roughly 52.5 billion Mg of C, 31% in live
trees, 59% in soils, 9% in litter, humus, and woody debris, and 1 % in
live understory vegetation (Nowak, 1993). However, their predictive
capability and span of application are limited due to narrow geographic
regions, small sample sizes, young trees or excellent condition trees
only, and few species. Moreover, the allometry of trees managed in
agroforestry systems and within different environments is still not
comprehended because allometric equations are derived from forest-
grown trees. These trees have a different canopy architecture and
growth rate from those in alley-cropping growth conditions. This leads
to substantial over-and under-estimations of biomass. Trees also have a
high morphological and physiological plasticity to adapt to resource
limitations like solar radiation, nutrients, and water. These changes are
dependent on soil and site-specific climatic conditions and impact
allometric equations (Thomas et al., 2020). Mcpherson et al. (Mcpher-
son et al., 1994) and D. J. Nowak et al. (D. Nowak et al., 2008a) found
that the biomass in Chicago’s street trees was 20% lower than predicted
from allometric equations. However, it was discovered that current
allometric equations might overestimate some urban tree species’
biomass while underestimating others (McPherson et al., 2011, 1999).

To estimate the errors, one can apply the Bootstrap method that
repeats the Cgor calculation by means of the corresponding equations
and their stated residual standard error. The Cgo; for each plot is sum-
med. The procedure is repeated one thousand times, creating a thousand
repetitions of 10 plots per land cover, each varying slightly because of
the residual standard error of the allometric equations (Strohbach and
Haase, 2012). This makes it possible to compare computed mean Cgo in
trees from one city to another. Thus, in comparing research findings, it is
important to consider the differences in geology, historical backgrounds,
and climate of cities and the methodologies. Davies et al. (Davies et al.,
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2011) and Mcpherson et al. (Mcpherson et al., 2016) attempted to
overcome many of these limitations by constructing an urban tree
database (UTD) that holds measurements for almost fifteen thousand
urban park and street trees. They created nearly four hundred allometric
equations for the tree species across the U.S. Eight equations for each of
the twenty most abundant species constitute a “set.” Tree age can be
used to predict species DBH. Where remote sensing is applied, DBH is
predicted, in some cases, by average crown diameter, and consequently,
additional data can be acquired.

4.3. Explicit spatial analysis

To fully capture the C cycle and fluxes through the entire ecosystem,
it is essential to get the whole frame of ecosystem boundaries through
explicit spatial analysis. It automatically demonstrates the carbon fluxes
distribution by studying the biogeochemical cycles and land use land
cover change (LUCC) in large-scale areas, regions, cities, continents, and
even globally (Pataki et al., 2006; Tang et al., 2018). It provides a sci-
entific foundation for industrial distribution change, land planning, and
C management activity spatial adjustment. A macro-scale scale is a
large-scale unit used to measure and describe the dynamics of weather
and climate factors (Viglizzo et al., 2016). Creating stronger linkages
between C management and prediction and earth system processes
research disciplines will improve the co-representation of managed and
natural systems needed in decision-making (Pataki et al., 2006; West
et al., 2018). Scale sensitivities govern the type of service being
modeled. For example, dynamic flow models like sediment erosion are
the most sensitive to spatial resolution, whereas stock estimates like Cgyor
are the most susceptible to aggregation across scales (Grafius et al.,
2016). Satellite earth observation and drone and airborne measurements
have huge potential to refine analysis, assessment of ecosystems and
their services, and mapping. Optical, radar, high-resolution QuickBird
satellite images (Galidaki et al., 2017; McPherson et al., 2011; Viher-
vaara et al., 2017), and light detection and ranging (LiDAR) technology
can provide high-resolution quantification for land-cover and biomass
assessments (Angerer et al., 2016; Lesiv et al., 2019; McPherson et al.,
2011). This data can be employed for direct measurements or to collect
the input information for the models (Davies et al., 2011; Zhang et al.,
2017). Image-based methods offer larger area mapping using vast

numbers of temporal databases of satellite imagery, and spectral indices
offer a method to monitor biomass (Asrar et al., 1985; Franklin, 1986;
Franklin and Hiernaux, 1991; Roy and Ravan, 1996). In studying esti-
mates of forest C density, LiDAR data achieves higher accuracy and
lower uncertainty than QuickBird. This is because LiDAR allows for
higher biomass-to-height correlation and undercounting of trees by the
crown detection algorithm (with an overall accuracy of 70- 97%)
(Gonzalez et al., 2010). As evidenced by the integration and comparison
of multisource data, LiDAR proves to be the best single sensor for esti-
mating biomass, as height metrics usually outperform cover metrics.

Moreover, integrating optical data into methodologies increases
biomass estimation accuracy (Galidaki et al., 2017). A data-based clas-
sification of the ecosystem mapping methods was done by Vihervaara
et al. (Vihervaara et al., 2018). It consists of three types of measure-
ments: direct, indirect, and modeling systems. Depending on the type of
analysis required and the amount of data available, the mapping anal-
ysis can be chosen and used, as shown in Fig. 9.

4.3.1. Direct measurements

Field observation is the primary approach allowing for substantially
accurate measurements regarding quantification, mapping, and assess-
ment of ES. In the natural sciences, data collection has traditionally
centered on field observations and direct measurements (based on
physical units). National or regional sample systems, such as biodiver-
sity surveys, national forest inventories, or land cover measurements,
can include them (Vihervaara et al., 2018). Moreover, field analysis uses
two models, combined with GIS, empirical coefficient, and ecological
network (Negash and Kanninen, 2015), to clarify the C metabolism
process network consisting of natural and socio-economic C metabolism
of several classes of vegetation (Nowak and Crane, 2002; Pouyat et al.,
2006) from similar climatic zones across the globe and with a time-lapse
measurement (Raciti et al., 2012). Another method includes surveys that
provide a quick overview of the study and select what other models can
be utilized in mapping and assessment (Liu and Li, 2012). They can also
be used for C density comparison by reflecting top-down landscape
policies from the local authority level (Davies et al., 2011) and location-
based analysis for GHG inventory approaches (Li et al., 2017). The role
of surveys in ecosystem assessment and decision support is crucial as
they can be used to evaluate uncertainties of other methodologies.
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Table 3
Urban Cg,, in vegetation in some cities with climate and methods used for
assessment. Modified from (Strohbach and Haase, 2012).

City Climate Method Tree Reference
Carbon
Storage
Mg C
ha 1)

Overall Varied Aboveground C in 14.1 (Rowntree
mean US trees, stratified (average) and Nowak,
cities random sampling 7.2-35.8 1991)

across the land cover (range)
(canopy cover)
Oakland, Warm, Aboveground and 11.0 (Nowak,
CA, USA with dry belowground C in (average) 1993)
summer trees, stratified 0.5-27.9
random sampling (range)
across land cover

Chicago II Snow Aboveground and 14.1 (Mcpherson

USA climate belowground C in (average) et al., 1994)
and trees, stratified 7.2-35.8
humid random sampling (range)
across the city area

Mean USA Varied Aboveground C in 0.5-4.7 (Nowak and
cities trees, UFORE model, (2.51) Crane, 2002)

and field data

Hamburg Warm Aboveground C in 2.74 (Dorendorf

and trees allometric et al., 2015)
humid equations and

below-ground

sampling

Barcelona, Warm Aboveground and 11.2 (Chaparro
Spain and dry belowground C in (average) and

summer trees, UFORE model, 0.3-33.3 Terrasdas,
and field data (range) 2009)

Leicester, Warm Aboveground C in 3.1631.6 (Davies et al.,
United and vegetation, stratified ~ (average) 2011)
Kingdom humid random sampling 1.4-288.6

across the land (range)
cover, and land
ownership
Karlsruhe, Warm Aboveground C in 3.23 (Kandler
Germany and trees, inventory data etal., 2011)
humid of forests, and
linking field data to
the remote sensing
material

Leipzig, Warm Aboveground C in 1.18 (Strohbach

Germany and trees, stratified and Haase,
humid random sampling 2012)
across land cover

Cities in Snow Aboveground and 4.7-7.2 (Jo, 2002)
Middle climate, belowground C in (urban)

Korea dry trees, stratified 26-60.1
winter random sampling (natural)
across two land
cover classes

Hangzhou, Warm Forest inventory, 30.3 (Zhao et al.,
China and trees in built areas (average) 2010)

humid are missing

The digital remote sensing method offers an objective, observable,
fast, and effective way to analyze urban forest dynamics. Accuracy
assessment allows researchers to determine the quality of the remotely
sensed data. It is highly accurate when used in tandem with data derived
from aerial photos, close to the time of satellite overpass, or with ground
reference data (Powell et al., 2018; Qun and Huizhi, 2013). Remote
sensing is not expected to provide better accuracy of biomass estimates
at the stand or plot level. However, field-based biomass estimations are
essential in calibrating and verifying remote-sensing methodologies
(Galidaki et al., 2017). Remote sensing technology boosts technical
support, allowing a more accurate study of the LUCC impact on the
terrestrial ecosystem C cycle and improved monitoring of change and
land use over time (Raciti et al., 2012). The emergence of software like
ArcGIS provides additional possibilities (Zhang et al., 2018). Combining
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remote sensing, GIS, and empirical data allows for a better spatial
expression between the C emissions and LUCC relationship (Vihervaara
et al., 2012). Remote sensing is usually used in tandem with GIS to
measure the LUCC, representing high-value C sinks, like forests with
young trees and wetlands converted into urban built-up areas (Pan et al.,
2019). With a 10 — 100 m range, it is defined as the medium spatial
resolution in the remote sensing literature (Tang et al., 2018; Vihervaara
et al., 2012). Predictive regression models can be generated for forested
areas in various biomes. These models link tree density to GIS layers and
spatially explicit remote sensing layers of typography, vegetation char-
acteristics, climate, and anthropogenic land use (Crowther et al., 2015).
A single forest tree density map (on a per-hectare scale) is produced via
regressions run in an algebra framework map. Equation coefficients and
intercepts are applied independently to each pixel (Tuanmu and Jetz,
2014). To quantify aboveground C density annual changes of tropical
woody live vegetation, Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite data can be used for a given period and provide direct,
measurement-based evidence (Baccini et al., 2019).

4.3.2. Indirect measurements

Derivatives of remote sensing and Earth observation are used to get
the quantitative capacity ES indirectly. These measurements include
normalized difference vegetation index (NDVI), land cover change,
surface temperatures, and primary production. Their importance de-
pends on the sources they are derived from. For instance, NVDI is a
spectral index derived from red and infrared spectral band differences.
At the same time, land cover change results from the automated clas-
sification of remote sensing images or visual interpretation (Vihervaara
et al., 2018). NDVI can be obtained from MODIS on the EOS-1Terra
satellite, providing an annual assessment of global land coverage with
high resolution (Angerer et al., 2016; Baccini et al., 2019; Qun and
Huizhi, 2013) or from the red or near-infrared bands of Landsat thematic
mapper (TM) imagery (Franklin, 1986). Cgor can be quite easily ob-
tained via image analysis, as the image normalization methods in
detecting changes over time appear promising (Myeong et al., 2006;
Vihervaara et al., 2018; Xu et al., 2018; Zhang et al., 2017). Some
synthetic data can be acquired through the National Aeronautics and
Space Administration’s (NASA) Airborne Visible/InfraRed Imaging
Spectrometer (AVIRIS) (Dungan, 1998); such results usually provide
illustrative information only. Spatial prediction methods differ in ac-
curacy depending on sample size and specific case (Dungan, 1998). They
also integrate both high-performance parallel computing (through
shuttle radar topography mission (SRTM) tiles for canopy height
extraction and biomass and C estimations) and GIS-based geospatial
analysis (Kumar et al., 2015; Lesiv et al., 2019; Tang et al., 2018).

4.3.3. Land use/Land cover change (LUCC)

LUCC and changes in urban systems C sequestration dynamics can be
more complex than those in natural ecosystems due to intrinsic natural
factors, as well as extrinsic human activities (Xu et al., 2018). LUCC data
can be divided into forest, residential, or other developed classes
(developed open space, industrial, commercial, and institutional) (Raciti
et al., 2012). The LUCC information can be combined into an ecosystem
process model to improve the accuracy of the C cycle dynamics and can
be studied based on activity or land accounting (Fig. 10). Additionally, a
C sink map of a study region can be created, based on the most current
land use map, with classes of vegetation types included (cultivated
crops, grass, shrubs, forest, pasture, and both herbaceous and woody
wetlands) (Davies et al., 2011; Pan et al., 2019), or by forest type and
plantation (pine or eucalyptus plantations, pastures, grassland, and ri-
parian forests) (Vihervaara et al., 2012).

4.3.4. Urban tree distribution

The urban trees’ Cgor estimation study by Nowak (Nowak, 1993)
used canopy cover analysis to estimate the C budget. There have been
several explicit efforts to compute the ES provision at a city-wide scale.
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Fig. 8. The amount of accumulated C is stored and avoided with the assumption of 10 million urban trees planted (with no tree mortality assumption), data taken

from (Nowak, 1993).
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Fig. 10. Carbon accounting approaches based on land-use changes adopted from (Land-use, 2000) .

The perception remains that urban ecosystems have a lower value
because they are relatively small and heavily modified by humans
(Nowak and Crane, 2002; Pouyat et al., 2006). However, urban areas as
an entire ecosystem of both a driver of CO2 emissions and C cycling in
urban soils and plants must be thoroughly comprehended (Pataki et al.,
2006). In terms of city scale, some cities acted as C sources (Li et al.,
2017), while other regions were in the process of transitioning from C
sources to C sinks (Lesiv et al., 2019; Nowak and Crane, 2002; Pouyat
etal., 2006). Later, the characteristic of C stock distribution within a city
analyzed the C emissions discrepancy of land components like slums,
urban green areas, and built-up areas (Li et al., 2017; Pan et al., 2019),
and the spatial distribution of C sinks spatial distribution of many urban
forests (McPherson et al., 2005). These studies concentrated not on the
gradient change of C uptake and emissions but on the discrete form
(Zhang et al., 2018). High spatial resolution LUCC data sets typically
include natural and semi-natural classes like human-related and bio-
physical, including their interactions (Churkina, 2008; Strohbach and
Haase, 2012). To gauge the role urban forests play in climate change, the
amount of sequestration and Cgr by urban trees is quantified (Lar-
ondelle and Haase, 2013). Remotely sensed data on biomass was used,
with exceptional accuracy and spatial resolution, for the investigation of
the entire pantropic (including tropical Africa, America, and Asia using
remotely sensed data on biomass) and associated land cover with the aid
of multi-sensor satellite data (Chaplin-Kramer et al., 2015) and LiDAR
(Baccini et al., 2012) to estimate AGB. Additional LUCC studies were
done in the rural lands in Brazil, Paraguay, Argentina, and Uruguay)
(Viglizzo et al., 2019) and parts of the Mediterranean ecosystem (Gali-
daki et al., 2017). Because it is imperative to map values to create
conservation strategies that combine sustainable forest use and regional
forest protection, explicit spatial approaches have been employed in
mapping rent distribution across the biome of non-timber forest prod-
ucts (NTFPs) (Strand et al., 2018). Satellite imagery is employed to
generate annual estimates of the amount of C stored in tree forests.
However, in interpreting the relationships between AGB increase and
other C stock attributes, one must consider that this imagery also cap-
tures shrub and herb productivity (Powell et al., 2018). As C accounts for
half the dry-weight biomass of trees, spectral indices can also be applied
to detecting Cstor changes in trees (Davies et al., 2011; Powell et al.,
2018). As location-based inventory delivers explicit spatial information,
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it can be used for environmental education, improved mitigation policy-
making, and in-depth examination of the relationship between city
landscapes and GHG emissions distribution, which is beneficial to low C
practice, city research (Li et al., 2017), and the emission discounting
influences economic decisions (Fearnside et al., 2000; Watson et al.,
2000).

4.3.5. Statistical analysis

Statistical analyses are usually applied to these systems to measure
the accuracy of study outcomes. Analysis of variance (ANOVA) model,
least square method, Tukey-Kramer test, or a combination of two of
these analyses can be opted. ANOVA utilizes a one or two-way approach
to analyze statistical data such as gaseous C fluxes (Feng et al., 2008;
Miller and Fujii, 2011); a tree’s DBH with height class as a factor
(Martinez-Falero et al., 2016); effects on the soil N and SOC pools within
a tree species and given site (Raciti et al., 2012; Resh et al., 2002;
Thomas et al., 2020); soil core ID and total SOC concentration and other
soil properties (Cardinael et al., 2015; Lemma et al., 2006). ANOVA can
also be enhanced with a functions package (to fit linear and non-linear
mixed-effects models) like the LMER Convenience Functions package
for R to calculate the upper bound P- values for the effect of the mi-
crobial community in the SOC richness. ANOVA can also be combined
with the least square method to assess litter decomposition and plant
biomass production (Miller and Fujii, 2011). Additionally, ANOVA can
be combined with the Tuke-Kramer test to determine and compare the
significance of variation and difference between the data analyzed
(Cardinael et al., 2015; Raciti et al., 2012).

4.4. Modeling systems and approaches

Many models were developed to estimate and analyze the forest
functions/structures, attributes (such as tree health, species composi-
tion, species diversity, diameter distribution, and native vs. exotic spe-
cies distribution), C sequestration, and economic aspects. The urban
forest effects (UFORE/i-tree) model (USDA Forest Service et al., 2006)
assists users in quantifying urban forest functions and structure using
meteorological data, local hourly air pollution, and standardized field
data from randomly located plots. It also calculates values and forest
functions related to tree effects on building energy use, air pollution,
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global warming potentials, and GHGs (Nowak et al., 2007). Backed by
peer-reviewed research and varied data collection techniques, UFORE
forecasts the financial values of regulating urban ecosystems (UESs) by
urban forests using a revealed preference approach (D. Nowak et al.,
2008a). Because of the data inputs of this approach, the model is usually
applied to a single or numerous closely related UESs (Haase et al., 2014).
Richness, abundance, size class of native and exotic tree species, and
diversity can also be quantified. For example, a survey of inner-city
residential and vacant lots and suburban residential lots was
completed using the i-Tree eco model and demonstrated that inner-city
and suburban residential lots supported three times fewer trees, less tree
diversity, and fewer native and exotic trees than inner-city vacant lots
(McPherson et al., 2011). Since the program outputs are ultimately
based on various assumptions of mathematical relationships and avail-
able data, estimates can be expected to change as computational
methods evolve and data sources change over time. In addition, while
geographically inclusive, the relatively low data resolution creates a
higher margin of error within spatially diverse urban areas (Riley and
Gardiner, 2020).

Another example of an ecosystem model is InVEST (Integrated
Valuation of Environmental Services and Tradeoffs) which permits users
to value and map multitudinous ES (Tao et al., 2015). It has accessible
options and is widely used to create large-scale scenario models to assess
a broad range of freshwater and marine ecosystems and terrestrial and
over twenty sub-models (Bottalico et al., 2016). InVEST can estimate
biodiversity conservation, economic values and levels of ES, and market
value of commodities provided by the landscape through LUCC patterns
(Pathak et al., 2019; Shukla et al., 2018). Additionally, the model can
also evaluate the economic and social importance of the C sequestration,
highlighting tradeoffs and synergies between multiple ES, market
returns to landowners, and biodiversity conservation (Nelson et al.,
2009; Sharp et al., 2018). The impacts of future land-use change on
sequestration or Cgor can be modeled using Cgor estimates found in the
literature (Nelson et al., 2009). The InVEST model does have a few
drawbacks. It assumes a linear change in C sequestration over time, uses
an oversimplified C cycle, and potentially inaccurate discounting rates
(Sharp et al., 2018). Moreover, C sequestration studies built on sub-type
LUCC are insufficiently understood (Polasky et al., 2011; Zhang et al.,
2017).

CASA (Carnegie-Ames-Stanford approach) is a simulation model
that pools together climate, multi-year satellite, and other land surface
databases to predict regional or global biosphere-atmosphere inter-
change of water, energy, and trace gases from soils and plants. The
model is driven by global monthly solar radiation, climate and satellite
input data, soil, and vegetation types and can directly evaluate the net
primary production (NPP), i.e., the incoming quantity of energy and C
into ecosystems (Xu et al. CASA has been used in multiple simulations
for ecosystem C flux predictions and used to validate terrestrial NPP
fluxes in specific sites against CO5 sampling stations (Neigh, 2008). The
model is employed for aboveground net primary productivity (ANPP),
which is particularly important for predicting global C cycle changes
and directional climate changes (Cao et al., 2016). However, the CASA
biosphere model shows that the annual production of CO; from fossil
fuel emissions is a tenth of that of annual CO, production from soils
(Potter and Klooster, 1997). At the same time, the model also illustrates
that this is offset because plants absorb CO, in amounts equal to that
produced by the soils. The model also shows that 60% of COz produced
is absorbed in tropical latitudes, permitting researchers to gain better
insight into land changes and tropical deforestation’s impact on atmo-
spheric trace emissions and their roles in global biogeochemical cycles.
CASA is an integral part of NASA’s Earth Science Enterprise (ESE), as
independent observations continually refine and validate its approach.
Their data inform policymakers on how human actions impact the global
environment.

The most widely used technique for flux measurements is Eddy
covariance Technique (EddyPro); developed by LI-COR, the EddyPro
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model processes eddy covariance (EC) data. It measures fluxes of CO, by
using a micro-meteorological technique and Biometric Methods (BM) to
quantify CO, exchange between terrestrial ecosystems and atmosphere
net ecosystem production (NEP) (Campioli et al., 2016). It can also
compute fully processed methane and other trace gas fluxes, water vapor
(evapotranspiration), and energy. The EC technique is founded on the
mass balance principle, as seen in Fig. 11. The schematic explains that,
during stationary and horizontally homogenous conditions of a studied
volume, the turbulent vertical flux (Zref) should equal S(z), the integral
over all sinks and sources. Eddies create related variations in vertical
wind speed (w’) and scalar concentration (s’). This results in the efficient
transport of energy and mass vertically. Thus, the greatest accuracies are
achieved during steady atmospheric conditions and when vegetation is
homogeneous and situated upwind on flat terrain for an extended dis-
tance. The EC method is considered an advanced method of estimating
turbulent fluxes of COs. It can still be used for more complex landscapes
and turbulent atmospheric conditions. However, when applying Eddy-
Pro in these conditions, flux divergence, advection, and atmospheric
storage measurements must be included to quantify CO, exchange be-
tween the atmosphere and the biosphere. It is a scale-appropriate
method that allows scientists to assess the net CO, exchange of a
whole ecosystem and measure ecosystem CO» exchange across a wide
time range—from hours to years (Baldocchi, 2003; Qun and Huizhi,
2013). Carbon exchange processes and the responses to ecological fac-
tors in a meadow grassland at a wide-scale ecosystem using long-term
continuous EC measurements are compared (Zhao et al., 2019). Dur-
ing the dry and wet seasons, periodic and seasonal changes in carbon
dioxide, methane, and energy interchange from irrigated lowland rice-
rice ecosystems were examined using an open-path EC system (Swain
et al., 2018). Long-term continuous EC measurements were taken to test
inter-annual fluctuations of potential C sink potential and source for
grasslands (Zhao et al., 2019). It used long-term continuous EC mea-
surements to study the C exchange processes and the responses to
environmental factors in a meadow steppe in a wide-scale ecosystem.

Zhao et al. (2019) took long-term continuous EC measurements to
test inter-annual fluctuations of potential C sink potential and source for
grassland. Combining EC instruments with a digital camera to capture
time-lapse images at a fixed location setup can better understand the
relationship between C flux dynamics and canopy development. A
methodology presented by Papale et al. (2006) has been integrated into
the European EC measurements database with a new standardized set of
corrections. Terrestrial Ecosystem Respiration (TER) and Gross Primary
Production (GPP) uncertainties associated with these corrections were
assessed in Europe for eight different forest sites. The outcome proved
that standardized data processing is required to underpin inter-annual
variability and provide effective comparison across biomass. Such
analysis was also performed in the Arctic to examine the average relative
flux uncertainties under stable and unstable stratification (Aalstad,
2015).

Carbon fixation approach (CO2FIX): The CO2FIX is an open-source
simulation software based on the concept of the C flow model and
works to enumerate C fluxes and stocks in wood products, soil organic
matter, and forest biomass chain. CO, fixation takes place through
photosynthesis, converting solar into chemical energy that aids plants
and other living organisms in developing and growing (Baldocchi,
2003). Growth of stem volume and pattern of allocation to foliage, roots,
and branches are input into the CO2FIX biomass module and tabulated
to determine the balance of C (between growth and turnover, harvest,
and mortality) for a one-year time interval; it can be applied to decid-
uous forests, monocultures, coniferous forests, or mixed tree stands
(Schelhaas et al., 2004). Continuous C build-up occurs on the forest floor
in non-woody and woody biomass litter. Part of this biomass transforms
into soil organic matter during each cycle and decomposes into CO5. The
model assumes: that the yearly tree growth pattern remains constant,
there is no ground vegetation, and quantiles of C lost to recalcitrant soil
organic matter or in groundwater are minimal (Dewar and Cannell,
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Fig. 11. A schematic explanation of the Eddy covariance technique principle. Edited from (Finnigan et al., 2003; Launiainen, 2011).

1992). The model was enhanced into the programmed software, CO2FIX
Version 3.1, and is categorized into six modules: bioenergy, financial, C
accounting, biomass, and soil. The bioenergy module calculates biomass
use over fossil fuels for energy production. The financial module allows
cost and revenue inputs for different scenarios to compare project
profitability for different scenarios. The C accounting model enables
users to simulate C fluxes and stocks and determine how many C credits
a project can generate for different crediting systems. The soil module
defines soil C dynamics and decomposition in well-drained soils.
(Schelhaas et al., 2004). CO2FIX Version 3.1 has worldwide applica-
tions: afforestation projects, multiple cohort forest ecosystems, and se-
lective logging systems (Groen et al., 2006). It is an extremely useful tool
that has been utilized for the IPCC’s climate assessments in the context
of the Kyoto Protocol.

5. Socioeconomic benefits of urban landscapes
5.1. Air pollution removal

Urban shrubs and trees act to rid large volumes of air pollutants,
improving the health of humans and the environment. Once inside the
leaf, gases diffuse into the leaf’s intercellular spaces and are absorbed by
water films, reacting with inner-leaf surfaces or creating acids (Smith,
1990). Trees also remove pollution by intercepting airborne particles
and absorbing them into the tree. They are only temporal retention sites
as particles are usually washed off by rain or dropped to the ground with
twigs and leaf fall (Nowak et al., 2006). A modeling study using pollu-
tion concentration and hourly meteorology exhibited an estimated total
pollution removal of 711,000 metric Mg valued at almost $4B in U.S.
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Fig. 12. Potential removal of some air pollutants by trees with economic values estimations using the typical range published in leaf dry deposition velocities, data

taken from (Lovett, 1994; Nowak et al., 2006).
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cities by urban trees (Fig. 12). A benefit-cost analysis study of Modesto,
California’s urban forest, indicated that avoided emissions, due to
energy-saving devices, of nitrogen dioxide (NOs), volatile organic
compounds (VOC), and particulate matter, with a diameter of 10 pm
(PM10) were minor, totaling approximately 7.2 Mg with a value just
under $70 K. However, there was a considerable benefit in pollution
uptake (particulate interception and pollution deposition), totaling 157
Mg valued at nearly $1.4 M. This translated to an average savings of
almost $16/tree. Thus, the total benefit was significant, with net air-
quality savings coming primarily from pollutant uptake (McPherson
et al.,, 1999). In addition to improving air quality through pollution
removal, integrated studies reveal that urban tree canopy cover man-
agement can improve air and health quality and reduce air temperature.
Because percentage gains in air quality due to pollution removal are
small, combining this effort with increased urban tree canopy cover, i.e.,
urban management, allows for a significant total effect (Nowak et al.,
2006). During daylight hours, when water transpires from tree leaves,
urban trees have the greatest impact on ozone, NOy and SO, whereas
removal of particulate matter, intercepted by both bark and leaf surface,
happens around the clock and throughout the year. Furthermore,
removal of carbon monoxide (CO) also occurs around the clock, during
in-leaf season and at a much lower rate than for the other pollutants.

5.2. Economic benefits of carbon sequestration

There is an increasing research effort to study the action and inaction
of CO; reduction and quantify a global perspective on the economics of
CO;, reduction. Studying C sinks and using real economic estimations
can quantify the economic benefits associated with enhancing the nat-
ural C sinks. Moreover, the evaluations do not solely count the C
reduction but include all benefits, i.e., energy savings, air quality,
stormwater prevention, etc.

5.2.1. Natural carbon sinks

Researchers in Chicago analyzed links between forest functions and
values with vegetation structure, discovering that trees in the region
removed almost 5,575 metric Mg of air pollution, equating to just over
$9M in clean air and approximately 316,000 metric Mg of C annually
was sequestered. Furthermore, up to $90 per dwelling unit could be
saved in annual cooling and heating expense with just a ten percent
increase in planting three trees per building lot or increasing tree cover
by 10 % due to lower summertime air temperature, reduction in
neighborhood wind speeds, and increased shade once trees matured.
Researchers estimated the services of the trees contributed to a net
present value (NPV) of about $400, while the long-term benefits
exceeded twice the NPV costs (McPherson et al., 1997). The researchers
also analyzed the economic benefits of urban forests in Modesto, Cali-
fornia, using the UFORE/iTree Eco model (McPherson et al., 1999) with
evidence that residents benefitted more than twice from an estimated
92,000 public trees to residents than the cost of maintaining these trees.
In fact, researchers monetized the benefits at $4.95 million (about $27
per resident or $54 per tree).

To determine the economic benefits of cultural UESs, like green area
aesthetics, hedonic pricing methods can be applied, i.e., the price of a
good is related to the services it provides or its characteristics. For
example, in two Finnish towns, an investigation showed clear evidence
that positive benefits were attained by the nature and social functions of
the towns’ urban forests. In contrast, negative results were achieved
concerning the towns’ timber production. The takeaway from this
investigation emphasizes the importance of defining municipal urban
forest policies (Tyrvainen, 2001).

5.2.2. Urban ecosystem services (UES) analysis

A comprehensive investigation discovered that most UES research
had been undertaken at the city scale in China, Europe, North America,
and China with assessment methods involving GIS, valuation, and
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biophysical models. Moreover, the research conclusions have not
translated into substantial land-use policy. The research indicates that to
get a more accurate assessment of the actual value of UESs. This com-
plete regional portrait highlights the concept of ecosystem tradeoffs, and
the spatially explicit approaches (in an urban context) are required
(Haase et al., 2014). In one study, Luck et al. (2009) analyzed the so-
cioeconomic impact of urbanization on Australia’s urban vegetation for
20 years. They found a strong correlation between urban vegetation and
socioeconomics. They concluded that the properties in the areas with
higher urban vegetation ratios are of higher values than that of regions
with lower vegetation ratios. Another study (Richards and Thompson,
2019) suggested that urban ecosystems provide numerous benefits,
including health, leisure opportunities, and environmental regulations.
Furthermore, in rural areas, payments for ecosystem services (PES)
programs are being employed to encourage environmental management
reforms and conservation efforts, while cities have rarely adopted this
strategy. The authors highlighted the potential benefits of PES for
managing, preserving, and protecting urban ecosystems. Additionally,
Boyd and Banzhaf (2011) defined a public policy demand for stan-
dardized units of ecosystem measurement via an inventory of measur-
able ecosystem services. They concluded that most ecosystem services
must be acquired by the government and not through markets, making
them public goods that fall short of effective oversight and lack market
provision. Thus, governments need to be held accountable and
communicate trends in ecological conditions, paving the way for ser-
vices defined by performance accounting. Although weighing the rela-
tive value of services would pose challenges, it is a starting point for
governments to systematically tally what is important about nature,
making this approach similar to socio-cultural valuation methods.

6. Discussion

This study summarizes the carbon accounting methods and tools for
the ecosystem and the effectiveness of such methods and tools. The
methods to assess carbon estimates/fluxes are summarized in Fig. 13.
Sound scientific and technical knowledge is required to select a carbon
accounting method/tool for a particular habitat/region. It is generally
agreed that remote sensing is a widely used advanced technique. AGB is
the most accurate carbon pool that can be estimated through remote
sensing because it covers a large area and is relatively inexpensive to
measure. Field measurements, a well-developed and accurate method
for large areas, are the most expensive component of sampling-based
methods (Tomppo, 2006). The amount of data from each method de-
pends on the source’s quality and the trade-offs that must be made be-
tween accounting accuracy and costs of resources and time. Remote
sensing data are integrated with empirical data to measure biomass and,
subsequently, carbon stocks, either directly using allometric relation-
ships or indirectly based on characteristics like canopy cover (Rose-
nqvist et al., 2003).

Additionally, indices that combine reflection from various spectral
regions can be utilized to estimate biomass. It is necessary to make in-
direct estimations utilizing empirical relationships, such as canopy
cover, indices from different bands, or net primary production (NPP),
which combines environmental data with remotely sensed data. For
instance, it can be difficult to interpret remote sensing data/images into
meaningful insights. Long-term data comparison may also be difficult
because remote sensing systems’ sensors, bandwidth, or maintenance
may have changed over time. It is necessary to have expertise in man-
aging data from these procedures (Sensing and Techniques, 2008) .
Therefore, combining various remote sensing data types with field
measurements is an appropriate method for evaluating alternative land-
use systems or regions and, consequently, for determining carbon stocks.
It also has the advantage of tracking changes in carbon stocks and land
use over an extended period.

For the BGB estimate, a proportion or function of the AGB pool is
considered because of the complexity of the methods and the more
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Carbon Estimation Techniques
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Fig. 13. Summary of carbon estimation techniques.

human efforts involved in field measurements, especially for forestlands.
Additionally, since root biomass is not disrupted and no fresh planting is
done, BGB for such systems is not expected to be damaged. When root
biomass equations that are appropriate for the species or the project
location are unavailable, field measurements may be used instead
(Hairiah et al., 2001). Furthermore, estimations of carbon flux using
suitable ecosystem models must be considered, as this process is a
continuous one that is greatly influenced by land use and management
(Paustian et al., 1997).

Measuring the deadwood and litter debris pools concurrently with
the AGB pool measurement is simple and low-cost. Similar to AGB, the
stock change measuring approach might be used to estimate litter
biomass with little additional expense or labor. Expert judgment is
required to determine whether the dead organic matter should be
assessed, especially given that it makes up only approximately 10% of
the total carbon stocks in forests and that annual litter production esti-
mates are difficult and time-consuming. However, the accurateness of
biomass or C estimations depends on the initial data used to develop
allometric and general equations and biomass factors (Wirth et al., 2004;
Wautzler et al., 2008), in addition to species-specific volume-to-biomass
models. Ground sampling and satellite imaging methods can be used to
classify the ecosystem precisely. Moreover, regional and biome-specific
research, as well as the calculation of wood-based debris (Keller et al.,
2004; Palace et al., 2007), may refine the carbon content estimates
(Makinen et al., 2006).

Landsat has been frequently employed for medium spatial resolution
image development. However, in some cases, because of the limitation
of the optical sensors, radar and LiDAR are used instead. LiDAR data of
large and small footprints can also be utilized to extract indirect tree
height forecasts. However, the elevation variations within the footprint,
mostly for big footprints, can be significant, making it more challenging
to approximate tree height with high accuracy.

Contrary to field inventory, where data is frequently confined to
small regions, remote sensing (space-borne or airborne) typically offers
uninterrupted spatial information over large areas. For carbon flux es-
timations and statistical models, such as eddy covariance, LUCC, and
vegetation indices can produce forecasts regarding carbon exchange
among ecosystems and the atmosphere (NDVI). If there is any incon-
sistency in the carbon estimations, it can be due to the following:

e Imprecise variable measures, such as instrument and calibration
errors

e Unsuitable allometric equations

e Sampling uncertainty

e The sampling network is poorly represented.

The lack of adequate and high-precision AGB sample plots is a key
obstacle to constructing AGB estimate models and validating and
assessing the accuracy of AGB estimation results. AGB estimate using
remote sensing is a difficult process. Many factors can influence AGB
estimate performance, including environmental conditions, mixed
pixels, data concentration, diverse biophysical factors, inadequate
sample data, observed remote sensing variables, and the methods used
(Qureshi et al., 2012). The factors such as time, cost, and expertise for
some of the above-mentioned methods are listed in Table 4. Future
studies may integrate multi-source data that entails accurate remote
sensing implementation, GIS, and modeling tools. The variability of
biomass estimations at the local level can be reduced by improving the
resolution of input maps and using more recent GIS techniques as
technology develops. When new data becomes available, validation
should be performed.

7. Conclusion and outlook

This review identifies natural carbon sinks, pools, and sequestration
pathways. The carbon accounting methods are classified based on
planned study types or data availability required to measure the carbon
stocks and fluxes. In addition, benefits from the natural carbon capture
systems are discussed from a socio-economic perspective. Some of the
highlights and key challenges are as follows:

e Itisessential to consider the accuracy of the measurement during the
analysis. Ground and field measurements are the most accurate
method applied, as the data provided is exact. However, some dif-
ficulties are associated with generalizing results unless the mea-
surement was made on a large scale and widely randomized.

o The soil bulk density analyses show that carbon up to 10 — 20 kg m 2
can be stored in soil depending upon the soil depth, climate zone, and
habitat type.
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Table 4
Comparison of different accounting methods in terms of time, cost, and expertise.
Method Time Cost Expertise Accuracy Remarks
Models based Effective Costly Complex Low Spatial scale is limited
Remote sensing Effective Costly Simple Low Large-area coverage
Forest Inventory Effective Economical Simple Low
Eddy Covariance Effective Costly Complex Low
Carbon flux Effective Economical Simple Low For BGB
Field Measurements Time-consuming Costly Simple High Spatial scale is limited
Allometric Equations Effective Economical Simple Low
e Research showed that live sampling provided the highest accuracy; References
however, it is a destructive method that is not recommended except
for soil sampling and some restricted analyses. Aalstad, K., 2015. Applying the Eddy Covariance Method Under difficult conditions.
. . . . Adhikari, K., Hartemink, A.E., 2016. Linking soils to ecosystem services — A global
e Collecting field data for the whole ecosystem is sometimes not

approachable (with big forest measurements or in large-scale anal-
ysis). The ecosystem elements are not always acquirable and are
generally not cost or time-effective.

Satellite earth observation and drone and airborne measurements
have huge potential to refine analysis, assessment of ecosystems and
their services, and mapping.

LiDAR is the best single sensor for estimating biomass, as height
metrics usually outperform cover metrics.

Estimation calculations were able to provide good quantitative
measurements. However, when leveled to a large scale with higher
biodiversity (big city or state), uncertainties reached 40%.

In assessing carbon sequestration projects, it is critical to account for
time regarding carbon storage estimates and compares carbon sinks
and other climatic change mitigation options.

e Combining remote sensing, GIS, and empirical data allows for a
better spatial expression between the carbon emissions and LUCC
relationship.

The various accounting approaches differ in how they treat the
concept of time. The accounting approach chosen to investigate
sequestration options is typically study-specific. Countries and re-
gions are free to choose the accounting method that best fits their
sequestration program.

o Although these estimations did not provide entirely accurate values,
they can be used as indicators demonstrating the considerable
impact and benefits that the trees and biome systems had on
reducing atmospheric carbon and other pollutants.

The natural carbon sinks greatly benefit pollution uptake (particulate
interception and deposition). The integrated studies revealed that
urban tree canopy cover management could improve air and health
quality and reduce air temperature.

CRediT authorship contribution statement

Salma Habib: Conceptualization, Data curation, Formal analysis,
Investigation, Methodology, Visualization, Writing — original draft.
Furqan Tahir: Data curation, Formal analysis, Investigation, Visuali-
zation, Writing — review & editing. Fabiha Hussain: Formal analysis,
Investigation, Visualization, Writing — review & editing. Nadine Mac-
auley: Formal analysis, Investigation, Writing — review & editing. Sami
G. Al-Ghamdi: Conceptualization, Funding acquisition, Project admin-
istration, Resources, Supervision, Writing — review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

No data was used for the research described in the article.

review. Geoderma 262, 101-111. https://doi.org/10.1016/j.
geoderma.2015.08.009.

Ahtikoski, A., Tuulentie, S., Hallikainen, V., Nivala, V., Vatanen, E., Tyrvainen, L.,
Salminen, H., 2011. Potential trade-offs between nature-based tourism and forestry,
a case study in Northern Finland. Forests 2, 894-912. https://doi.org/10.3390/
£2040894.

Ahtikoski, A., Salminen, H., Hokké&, H., Kojola, S., Penttild, T., 2012. Optimising stand
management on peatlands: the case of Northern Finland. Can. J. For. Res. 42,
247-259. https://doi.org/10.1139/X11-174.

Aldrich, E.L., Koerner, C., 2011. Analysis of Carbon Capture and Sequestration Pore
Space Legislation: a Review of Existing and Possible Regimes. Electr. J. 24, 22-33.
https://doi.org/10.1016/j.tej.2011.03.001.

Al-qahtani, K.M., 2018. Carbon Sequestration by the Terrestrial Soil-Plant System in a
Heavily Polluted Area of Riyadh City , Saudi Arabia. Journal(of Mater. Environ. Sci.
2508, 536-543. 10.26872/jmes.2018.9.2.58.

Angerer, J.P., Fox, W.E., Wolfe, J.E., 2016. Land Degradation in Rangeland Ecosystems,
in: Biological and Environmental Hazards, Risks, and Disasters. Elsevier, pp.
277-311. 10.1016/B978-0-12-394847-2.00017-6.

Asrar, G., Kanemasu, E.T., Jackson, R.D., Pinter, P.J., 1985. Estimation of total above-
ground phytomass production using remotely sensed data. Remote Sens. Environ.
17, 211-220. https://doi.org/10.1016/0034-4257(85)90095-1.

Baccini, A., Goetz, S.J., Walker, W.S., Laporte, N.T., Sun, M., Sulla-Menashe, D.,
Hackler, J., Beck, P.S.A., Dubayah, R., Friedl, M.A., Samanta, S., Houghton, R.A.,
2012. Estimated carbon dioxide emissions from tropical deforestation improved by
carbon-density maps. Nat. Clim. Chang. 2, 182-185. https://doi.org/10.1038/
nclimate1354.

Baccini, A., Walker, W., Carvalho, L., Farina, M., Houghton, R.A., 2019. Response to
Comment on “Tropical forests are a net carbon source based on aboveground
measurements of gain and loss”. Science 80 (363), 230-234. https://doi.org/
10.1126/science.aat1205.

Baldocchi, D.D., 2003. Assessing the eddy covariance technique for evaluating carbon
dioxide exchange rates of ecosystems: Past, present and future. Glob. Chang. Biol. 9,
479-492. https://doi.org/10.1046/j.1365-2486.2003.00629.x.

Baral, A., Guha, G.S., 2004. Trees for carbon sequestration or fossil fuel substitution: The
issue of cost vs. carbon benefit. Biomass Bioenergy 27, 41-55. https://doi.org/
10.1016/j.biombioe.2003.11.004.

Battle, M., Bender, M.L., Tans, P.P., White, J.W.C,, Ellis, J.T., Conway, T., Francey, R.J.,
2000. Global carbon sinks and their variability inferred from atmospheric O2 and
813C. Science 80 (287), 2467-2470. https://doi.org/10.1126/
science.287.5462.2467.

Baude, M., Meyer, B.C., 2023. Changes in landscape structure and ecosystem services
since 1850 analyzed using landscape metrics in two German municipalities. Ecol.
Indic. 152, 110365 https://doi.org/10.1016/j.ecolind.2023.110365.

Beesley, L., 2012. Carbon storage and fluxes in existing and newly created urban soils.
J. Environ. Manage. 104, 158-165. https://doi.org/10.1016/j.
jenvman.2012.03.024.

Birge, D., Berger, A.M., 2019. Transitioning to low-carbon suburbs in hot-arid regions: A
case-study of Emirati villas in Abu Dhabi. Build. Environ. 147, 77-96. https://doi.
org/10.1016/j.buildenv.2018.09.013.

Birge, D., Mandhan, S., Qiu, W., Berger, A.M., 2019. Potential for sustainable use of trees
in hot arid regions: A case study of Emirati neighborhoods in Abu Dhabi. Landsc.
Urban Plan. 190, 103577 https://doi.org/10.1016/j.Jandurbplan.2019.05.008.

Bossio, D.A., Ellis, P.W., Fargione, J., Sanderman, J., Smith, P., Wood, S., Zomer, R.J.,
Unger, M., Emmer, .M., Griscom, B.W., 2020. The role of soil carbon in natural
climate solutions. Nat. Sustain. 0-1 https://doi.org/10.1038/541893-020-0491-z.

Bottalico, F., Pesola, L., Vizzarri, M., Antonello, L., Barbati, A., Chirici, G., Corona, P.,
Cullotta, S., Garfi, V., Giannico, V., Lafortezza, R., Lombardi, F., Marchetti, M.,
Nocentini, S., Riccioli, F., Travaglini, D., Sallustio, L., 2016. Modeling the influence
of alternative forest management scenarios on wood production and carbon storage:
A case study in the Mediterranean region. Environ. Res. 144, 72-87. https://doi.org/
10.1016/j.envres.2015.10.025.

Boyd, J.W., Banzhaf, H.S., 2011. What are Ecosystem Services? The Need for
Standardized Environmental Accounting Units. SSRN Electron. J. 10.2139/
ss1n.892425.

Brack, C.L., 2002. Pollution mitigation and carbon sequestration by an urban forest.
Environ. Pollut. https://doi.org/10.1016/50269-7491(01)00251-2.


https://doi.org/10.1016/j.geoderma.2015.08.009
https://doi.org/10.1016/j.geoderma.2015.08.009
https://doi.org/10.3390/f2040894
https://doi.org/10.3390/f2040894
https://doi.org/10.1139/X11-174
https://doi.org/10.1016/j.tej.2011.03.001
https://doi.org/10.1016/0034-4257(85)90095-1
https://doi.org/10.1038/nclimate1354
https://doi.org/10.1038/nclimate1354
https://doi.org/10.1126/science.aat1205
https://doi.org/10.1126/science.aat1205
https://doi.org/10.1046/j.1365-2486.2003.00629.x
https://doi.org/10.1016/j.biombioe.2003.11.004
https://doi.org/10.1016/j.biombioe.2003.11.004
https://doi.org/10.1126/science.287.5462.2467
https://doi.org/10.1126/science.287.5462.2467
https://doi.org/10.1016/j.ecolind.2023.110365
https://doi.org/10.1016/j.jenvman.2012.03.024
https://doi.org/10.1016/j.jenvman.2012.03.024
https://doi.org/10.1016/j.buildenv.2018.09.013
https://doi.org/10.1016/j.buildenv.2018.09.013
https://doi.org/10.1016/j.landurbplan.2019.05.008
https://doi.org/10.1038/s41893-020-0491-z
https://doi.org/10.1016/j.envres.2015.10.025
https://doi.org/10.1016/j.envres.2015.10.025
https://doi.org/10.1016/S0269-7491(01)00251-2

S. Habib et al.

Brown, S., Lugo, A.E., 1982. The Storage and Production of Organic Matter in Tropical
Forests and Their Role in the Global Carbon Cycle. Biotropica 14, 161. https://doi.
org/10.2307/2388024.

Sandra Brown, 1997. Methods for Estimating Biomass Density from Existing Data [WWW
Document]. Estim. Biomass Biomass Chang. Trop. For. a Prim. URL https://www.
fao.org/3/w4095e/w4095e06.htm#3.5 biomass of other forest component
(accessed 2.20.22).

Buchholz, T., Friedland, A.J., Hornig, C.E., Keeton, W.S., Zanchi, G., Nunery, J., 2014.
Mineral soil carbon fluxes in forests and implications for carbon balance
assessments. GCB Bioenergy. https://doi.org/10.1111/gcbb.12044.

Buisson, E., Le Stradic, S., Silveira, F.A.O., Durigan, G., Overbeck, G.E., Fidelis, A.,
Fernandes, G.W., Bond, W.J., Hermann, J.M., Mahy, G., Alvarado, S.T., Zaloumis, N.
P., Veldman, J.W., 2019. Resilience and restoration of tropical and subtropical
grasslands, savannas, and grassy woodlands. Biol. Rev. 94, 590-609. https://doi.
org/10.1111/brv.12470.

Cai, W., Song, X., Zhang, P., Xin, Z., Zhou, Y., Wang, Y., Wei, W., 2020. Carbon emissions
and driving forces of an island economy: A case study of Chongming Island. China. J.
Clean. Prod. 254, 120028 https://doi.org/10.1016/j.jclepro.2020.120028.

Campioli, M., Malhi, Y., Vicca, S., Luyssaert, S., Papale, D., Penuelas, J., Reichstein, M.,
Migliavacca, M., Arain, M.A., Janssens, I.A., 2016. Evaluating the convergence
between eddy-covariance and biometric methods for assessing carbon budgets of
forests. Nat. Commun. 7, 1-12. https://doi.org/10.1038/ncomms13717.

Cao, S., Sanchez-Azofeifa, G.A., Duran, S.M., Calvo-Rodriguez, S., 2016. Estimation of
aboveground net primary productivity in secondary tropical dry forests using the
Carnegie-Ames-Stanford approach (CASA) model. Environ. Res. Lett. 11 https://doi.
org/10.1088/1748-9326/11/7/075004.

Cardinael, R., Thevathasan, N., Gordon, A., Clinch, R., Mohammed, I., Sidders, D., 2012.
Growing woody biomass for bioenergy in a tree-based intercropping system in
southern Ontario. Canada. Agrofor. Syst. 86, 279-286. https://doi.org/10.1007/
s10457-012-9572-y.

Cardinael, R., Chevallier, T., Barthes, B.G., Saby, N.P.A., Parent, T., Dupraz, C.,
Bernoux, M., Chenu, C., 2015. Impact of alley cropping agroforestry on stocks, forms
and spatial distribution of soil organic carbon - A case study in a Mediterranean
context. Geoderma 259-260, 288-299. https://doi.org/10.1016/j.
geoderma.2015.06.015.

Catchpole, W.R., Wheeler, C.J., 1992. Estimating plant biomass: A review of techniques.
Austral Ecol. 17, 121-131. https://doi.org/10.1111/§.1442-9993.1992.tb00790.x.

Chaparro, L., Terrasdas, J., 2009. Ecological Services of Urban Forest in Barcelona.
Shengtai Xuebao/ Acta Ecologica Sinica. 10.13140/RG.2.1.4013.9604.

Chaplin-Kramer, R., Ramler, 1., Sharp, R., Haddad, N.M., Gerber, J.S., West, P.C.,
Mandle, L., Engstrom, P., Baccini, A., Sim, S., Mueller, C., King, H., 2015.
Degradation in carbon stocks near tropical forest edges. Nat. Commun. 6, 10158.
https://doi.org/10.1038/ncomms10158.

Chu, X., Zhan, J., Li, Z., Zhang, F., Qi, W., 2019. Assessment on forest carbon
sequestration in the Three-North Shelterbelt Program region. China. J. Clean. Prod.
215, 382-389. https://doi.org/10.1016/j.jclepro.2018.12.296.

Churkina, G., 2008. Modeling the carbon cycle of urban systems. Ecol. Modell. 216,
107-113. https://doi.org/10.1016/j.ecolmodel.2008.03.006.

Churkina, G., Brown, D.G., Keoleian, G., 2010. Carbon stored in human settlements: The
conterminous United States. Glob. Chang. Biol. 16, 135-143. https://doi.org/
10.1111/j.1365-2486.2009.02002.x.

Clark, A., Saucier, J.R., McNab, W.H., 1986b. Total-tree weight, stem weight, and
volume tables for hardwood species in the Southeast [WWW Document].

Clark, A., Saucier, J.R., McNab, W.H., 1986a. Total-tree weight, stem eight, and volume
tables for hardwood species in the southeast, Georgia Forest Research paper.
Research Division Georgia Froestry Commission.

Crowther, T.W., Glick, H.B., Covey, K.R., Bettigole, C., Maynard, D.S., Thomas, S.M.,
Smith, J.R., Hintler, G., Duguid, M.C., Amatulli, G., Tuanmu, M.N., Jetz, W.,

Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S.J.,
Wiser, S.K., Huber, M.O., Hengeveld, G.M., Nabuurs, G.J., Tikhonova, E.,
Borchardt, P., Li, C.F., Powrie, L.W., Fischer, M., Hemp, A., Homeier, J., Cho, P.,
Vibrans, A.C., Umunay, P.M., Piao, S.L., Rowe, C.W., Ashton, M.S., Crane, P.R.,
Bradford, M.A., 2015. Mapping tree density at a global scale. Nature 525, 201-205.
https://doi.org/10.1038/nature14967.

Crowther, T.W., Todd-Brown, K.E.O., Rowe, C.W., Wieder, W.R., Carey, J.C.,
MacHmuller, M.B., Snoek, B.L., Fang, S., Zhou, G., Allison, S.D., Blair, J.M.,
Bridgham, S.D., Burton, A.J., Carrillo, Y., Reich, P.B., Clark, J.S., Classen, A.T.,
Dijkstra, F.A., Elberling, B., Emmett, B.A., Estiarte, M., Frey, S.D., Guo, J., Harte, J.,
Jiang, L., Johnson, B.R., Kroél-Dulay, G., Larsen, K.S., Laudon, H., Lavallee, J.M.,
Luo, Y., Lupascu, M., Ma, L.N., Marhan, S., Michelsen, A., Mohan, J., Niu, S.,
Pendall, E., Penuelas, J., Pfeifer-Meister, L., Poll, C., Reinsch, S., Reynolds, L.L.,
Schmidt, LK., Sistla, S., Sokol, N.W., Templer, P.H., Treseder, K.K., Welker, J.M.,
Bradford, M.A., 2016. Quantifying global soil carbon losses in response to warming.
Nature 540, 104-108. https://doi.org/10.1038/nature20150.

CUFR Tree Carbon Calculator (CTCC) [WWW Document], n.d. . Clim. Chang. Resour.
Cent.

Dakwale, V.A., Ralegaonkar, R.V., 2012. Review of carbon emission through buildings:
Threats, causes and solution. Int. J. Low-Carbon Technol. 7, 143-148. https://doi.
org/10.1093/ijlct/ctr032.

Davies, Z.G., Edmondson, J.L., Heinemeyer, A., Leake, J.R., Gaston, K.J., 2011. Mapping
an urban ecosystem service: Quantifying above-ground carbon storage at a city-wide
scale. J. Appl. Ecol. 48, 1125-1134. https://doi.org/10.1111/j.1365-
2664.2011.02021.x.

Deeksha, S., A.k.,, 2022. Ecosystem Services: A Systematic Literature Review and Future
Dimension in Freshwater Ecosystems. Appl. Sci. 12, 8518. https://doi.org/10.3390/
app12178518.

18

Ecological Indicators 154 (2023) 110603

department for Environment Food and Rural Affairs, 2013. Conversion Factors for
Company Reporting: Methodology Paper for Emission Factors, Defra. v 1.2.1 final.

Dewar, R.C., Cannell, M.G.R., 1992. Carbon sequestration in the trees, products and soils
of forest plantations: an analysis using UK examples. Tree Physiol. 11, 49-71.
https://doi.org/10.1093/treephys/11.1.49.

Dorendorf, J., Eschenbach, A., Schmidt, K., Jensen, K., 2015. Both tree and soil carbon
need to be quantified for carbon assessments of cities. Urban For. Urban Green. 14,
447-455. https://doi.org/10.1016/j.ufug.2015.04.005.

Dungan, J., 1998. Spatial prediction of vegetation quantities using ground and image
data. Int. J. Remote Sens. 19, 267-285. https://doi.org/10.1080/
014311698216242.

Edmondson, J.L., Davies, Z.G., McHugh, N., Gaston, K.J., Leake, J.R., 2012. Organic
carbon hidden in urban ecosystems. Sci. Rep. 2 https://doi.org/10.1038/srep00963.

Fearnside, P.M., Lashof, D.A., Moura-Costa, P., 2000. Accounting for time in mitigating
global warming through land-use change and forestry. Mitig. Adapt. Strateg. Glob.
Chang. https://doi.org/10.1023/A:1009625122628.

Feng, H., 2005. The dynamics of carbon sequestration and alternative carbon accounting,
with an application to the upper Mississippi River Basin. Ecol. Econ. 54, 23-35.
https://doi.org/10.1016/j.ecolecon.2005.02.003.

Feng, H.O., Zhao, J., Erine, C., 2008. The time path and implementation of carbon
sequestration.

Finnigan, J.J., Clement, R., Malhi, Y., Leuning, R., Cleugh, H.A., 2003. Re-evaluation of
long-term flux measurement techniques. Part I: Averaging and coordinate rotation.
Boundary-Layer Meteorol. 107, 1-48. https://doi.org/10.1023/A:10215549002.25.

Flocks, J., Escobedo, F., Wade, J., Varela, S., Wald, C., 2011. Environmental Justice
Implications of Urban Tree Cover in Miami-Dade County. Florida. Environ. Justice 4,
125-134. https://doi.org/10.1089/env.2010.0018.

Food and Agriculture Organization of the United Nations, 2005. Food and Agriculture
Organization of the United Nations. Rome.

Franklin, J., 1986. Thematic mapper analysis of coniferous forest structure and
composition. Int. J. Remote Sens. 7, 1287-1301. https://doi.org/10.1080/
01431168608948931.

Franklin, J., Hiernaux, P.H.Y., 1991. Estimating foliage and woody biomass in Sahelian
and Sudanian woodlands using a remote sensing model. Int. J. Remote Sens. 12,
1387-1404. https://doi.org/10.1080/01431169108929732.

Fridley, J.D., 2001. The influence of species diversity on ecosystem productivity: how,
where, and why? Oikos 93, 514-526. https://doi.org/10.1034/j.1600-
0706.2001.930318.x.

Galidaki, G., Zianis, D., Gitas, 1., Radoglou, K., Karathanassi, V., Tsakiri-Strati, M.,
Woodhouse, 1., Mallinis, G., 2017. Vegetation biomass estimation with remote
sensing: focus on forest and other wooded land over the Mediterranean ecosystem.
Int. J. Remote Sens. 38, 1940-1966. https://doi.org/10.1080/
01431161.2016.1266113.

Gonzalez, P., Asner, G.P., Battles, J.J., Lefsky, M.A., Waring, K.M., Palace, M., 2010.
Forest carbon densities and uncertainties from Lidar, QuickBird, and field
measurements in California. Remote Sens. Environ. 114, 1561-1575. https://doi.
org/10.1016/j.rse.2010.02.011.

Grafius, D.R., Corstanje, R., Warren, P.H., Evans, K.L., Hancock, S., Harris, J.A., 2016.
The impact of land use/land cover scale on modelling urban ecosystem services.
Landsc. Ecol. 31, 1509-1522. https://doi.org/10.1007/510980-015-0337-7.

Graham, J., Voroney, P., Coleman, B., Deen, B., Gordon, A., Thimmanagari, M.,
Thevathasan, N., 2019. Quantifying soil organic carbon stocks in herbaceous
biomass crops grown in Ontario, Canada. Agrofor. Syst. 93, 1627-1635. https://doi.
org/10.1007/s10457-018-0272-0.

Groen, T., Nabuurs, G.J., Schelhaas, M.J., 2006. Carbon Accounting and Cost Estimation
in Forestry Projects Using CO2Fix vol 3. Clim. Change 74, 269-288. https://doi.org/
10.1007/510584-006-1827-z.

Haase, D., Larondelle, N., Andersson, E., Artmann, M., Borgstrom, S., Breuste, J., Gomez-
Baggethun, E., Gren, A., Hamstead, Z., Hansen, R., Kabisch, N., Kremer, P.,
Langemeyer, J., Rall, E.L., McPhearson, T., Pauleit, S., Qureshi, S., Schwarz, N.,
Voigt, A., Wurster, D., Elmqvist, T., 2014. A quantitative review of urban ecosystem
service assessments: Concepts, models, and implementation. Ambio 43, 413-433.
https://doi.org/10.1007/513280-014-0504-0.

Habib, S., Al-Ghamdi, S.G., 2020. Estimation of Atmospheric Carbon Mitigation through
Urban Landscaping in Arid Areas Using Native Species. In: World Environmental and
Water Resources Congress 2020. American Society of Civil Engineers, Reston, VA,
pp. 280-289. https://doi.org/10.1061/9780784482964.028.

Habib, S., Al-Ghamdi, S.G., 2021. Estimation of Above-Ground Carbon-Stocks for Urban
Greeneries in Arid Areas: Case Study for Doha and FIFA World Cup Qatar 2022.
Front. Environ. Sci. 9 https://doi.org/10.3389/fenvs.2021.635365.

Hairiah, K., Sitompul, S.M., Van Noordwijk, M., Palm, C., 2001. Methods for sampling
carbon stocks above and below ground. ICRAF Bogoi.

He, R., Luo, L., Shamsuddin, A., Tang, Q., 2022. Corporate carbon accounting: a
literature review of carbon accounting research from the Kyoto Protocol to the Paris
Agreement. Account. Financ. 62, 261-298. https://doi.org/10.1111/acfi.12789.

Hynynen, J., Ahtikoski, A., Siitonen, J., Sievédnen, R., Liski, J., 2005. Applying the MOTTI
simulator to analyse the effects of alternative management schedules on timber and
non-timber production. For. Ecol. Manage. 207, 5-18. https://doi.org/10.1016/j.
foreco.2004.10.015.

Hynynen, J., Salminen, H., Ahtikoski, A., Huuskonen, S., Ojansuu, R., Siipilehto, J.,
Lehtonen, M., Rummukainen, A., Kojola, S., Eerikdinen, K., 2014. Scenario analysis
for the biomass supply potential and the future development of Finnish forest
resources [WWW Document]. Finnish For. Res. Inst.

Imteyaz, B., Tahir, F., Habib, M.A., 2021. Thermodynamic Assessment of Membrane-
Assisted Premixed and Non-Premixed Oxy-Fuel Combustion Power Cycles. J. Energy
Resour. Technol. 143 https://doi.org/10.1115/1.4049463.


https://doi.org/10.2307/2388024
https://doi.org/10.2307/2388024
https://doi.org/10.1111/gcbb.12044
https://doi.org/10.1111/brv.12470
https://doi.org/10.1111/brv.12470
https://doi.org/10.1016/j.jclepro.2020.120028
https://doi.org/10.1038/ncomms13717
https://doi.org/10.1088/1748-9326/11/7/075004
https://doi.org/10.1088/1748-9326/11/7/075004
https://doi.org/10.1007/s10457-012-9572-y
https://doi.org/10.1007/s10457-012-9572-y
https://doi.org/10.1016/j.geoderma.2015.06.015
https://doi.org/10.1016/j.geoderma.2015.06.015
https://doi.org/10.1111/j.1442-9993.1992.tb00790.x
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0160
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0160
https://doi.org/10.1038/ncomms10158
https://doi.org/10.1016/j.jclepro.2018.12.296
https://doi.org/10.1016/j.ecolmodel.2008.03.006
https://doi.org/10.1111/j.1365-2486.2009.02002.x
https://doi.org/10.1111/j.1365-2486.2009.02002.x
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0190
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0190
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0190
https://doi.org/10.1038/nature14967
https://doi.org/10.1038/nature20150
https://doi.org/10.1093/ijlct/ctr032
https://doi.org/10.1093/ijlct/ctr032
https://doi.org/10.1111/j.1365-2664.2011.02021.x
https://doi.org/10.1111/j.1365-2664.2011.02021.x
https://doi.org/10.3390/app12178518
https://doi.org/10.3390/app12178518
https://doi.org/10.1093/treephys/11.1.49
https://doi.org/10.1016/j.ufug.2015.04.005
https://doi.org/10.1080/014311698216242
https://doi.org/10.1080/014311698216242
https://doi.org/10.1038/srep00963
https://doi.org/10.1023/A:1009625122628
https://doi.org/10.1016/j.ecolecon.2005.02.003
https://doi.org/10.1023/A:1021554900225
https://doi.org/10.1089/env.2010.0018
https://doi.org/10.1080/01431168608948931
https://doi.org/10.1080/01431168608948931
https://doi.org/10.1080/01431169108929732
https://doi.org/10.1034/j.1600-0706.2001.930318.x
https://doi.org/10.1034/j.1600-0706.2001.930318.x
https://doi.org/10.1080/01431161.2016.1266113
https://doi.org/10.1080/01431161.2016.1266113
https://doi.org/10.1016/j.rse.2010.02.011
https://doi.org/10.1016/j.rse.2010.02.011
https://doi.org/10.1007/s10980-015-0337-7
https://doi.org/10.1007/s10457-018-0272-0
https://doi.org/10.1007/s10457-018-0272-0
https://doi.org/10.1007/s10584-006-1827-z
https://doi.org/10.1007/s10584-006-1827-z
https://doi.org/10.1007/s13280-014-0504-0
https://doi.org/10.1061/9780784482964.028
https://doi.org/10.3389/fenvs.2021.635365
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0335
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0335
https://doi.org/10.1111/acfi.12789
https://doi.org/10.1016/j.foreco.2004.10.015
https://doi.org/10.1016/j.foreco.2004.10.015
https://doi.org/10.1115/1.4049463

S. Habib et al.

International Energy Agency, 2016. Statisticts: CO2 emissions from fuel combustion,
International Journal of Electrochemical Science.

IPCC, 2003. IPCC Good Practice Guidance for LULUCF. Institute for Global
Environmental Strategies (IGES), Hayama, Kanagawa, Japan.

IPCC, 2006. IPCC - Task Force on National Greenhouse Gas Inventories.

i-Tree, 2019. i-Tree [WWW Document].

Jenkins, J.C., Chojnacky, D.C., Heath, L.S., Birdsey, R.A., 2003. National-scale biomass
estimators for United States tree species. For. Sci. https://doi.org/10.1093/
forestscience/49.1.12.

Jo, H.K., 2002. Impacts of urban greenspace on offsetting carbon emissions for middle
Korea. J. Environ. Manage. 64, 115-126. https://doi.org/10.1006/jema.2001.0491.

Kandler, G., Adler, P., Hellbach, A., 2011. Wie viel Kohlenstoff speichern Stadtbaume ?
Eine Fallstudie am Beispiel der Stadt Karlsruhe Konzept zur Erfassung der
Kohlenstoff-Speicherleistung von Stadtbaumen am Beispiel der Stadt Karlsruhe.
FVA-Einblick 7-10.

Kaye, J.P., McCulley, R.L., Burke, I.C., 2005. Carbon fluxes, nitrogen cycling, and soil
microbial communities in adjacent urban, native and agricultural ecosystems. Glob.
Chang. Biol. 11, 575-587. https://doi.org/10.1111/j.1365-2486.2005.00921 x.

Kell, D.B., 2012. Large-scale sequestration of atmospheric carbon via plant roots in
natural and agricultural ecosystems: Why and how. Philos. Trans. R. Soc. B Biol. Sci.
367, 1589-1597. https://doi.org/10.1098/rstb.2011.0244.

Keller, M., Palace, M., Asner, G.P., Pereira, R., Silva, J.N.M., 2004. Coarse woody debris
in undisturbed and logged forests in the eastern Brazilian Amazon. Glob. Chang.
Biol. 10, 784-795. https://doi.org/10.1111/j.1529-8817.2003.00770.x.

Kerdraon, D., Drewer, J., Chung, A.Y.C., Majalap, N., Slade, E.M., Bréchet, L.,
Wallwork, A., Castro-Trujillo, B., Sayer, E.J., 2020. Litter Inputs, but Not Litter
Diversity, Maintain Soil Processes in Degraded Tropical Forests—A Cross-
Continental Comparison. Front. For. Glob. Chang. 2 https://doi.org/10.3389/
ffgc.2019.00090.

Kolarik, N.E., Roopsind, A., Pickens, A., Brandt, J.S., 2023. A satellite-based monitoring
system for quantifying surface water and mesic vegetation dynamics in a semi-arid
region. Ecol. Indic. 147, 109965 https://doi.org/10.1016/j.ecolind.2023.109965.

Kumar, L., Sinha, P., Taylor, S., Alqurashi, A.F., 2015. Review of the use of remote
sensing for biomass estimation to support renewable energy generation. J. Appl.
Remote Sens. 9, 097696 https://doi.org/10.1117/1.jrs.9.097696.

Lal, R., 2014. Soil Carbon Management and Climate Change. In: Soil Carbon. Springer
International Publishing, Cham, pp. 339-361. https://doi.org/10.1007/978-3-319-
04084-4_35.

Land-use, 2000. Land-Use Change. and Forestry —. IPCC.

Larondelle, N., Haase, D., 2013. Urban ecosystem services assessment along a rural-
urban gradient: A cross-analysis of European cities. Ecol. Indic. 29, 179-190.
https://doi.org/10.1016/j.ecolind.2012.12.022.

Launiainen, S., 2011. Canopy Processes, Fluxes and Microclimate in a Pine Forest, Report
Series in Aerosol Science.

Lemma, B., Kleja, D.B., Nilsson, I., Olsson, M., 2006. Soil carbon sequestration under
different exotic tree species in the southwestern highlands of Ethiopia. Geoderma
136, 886-898. https://doi.org/10.1016/j.geoderma.2006.06.008.

Lemma, B., Kleja, D.B., Olsson, M., Nilsson, 1., 2007. Factors controlling soil organic
carbon sequestration under exotic tree plantations: A case study using the CO2Fix
model in southwestern Ethiopia. For. Ecol. Manage. 252, 124-131. https://doi.org/
10.1016/j.foreco.2007.06.029.

Lesiv, M., Shvidenko, A., Schepaschenko, D., See, L., Fritz, S., 2019. A spatial assessment
of the forest carbon budget for Ukraine. Mitig. Adapt. Strateg. Glob. Chang. 24,
985-1006. https://doi.org/10.1007/s11027-018-9795-y.

Li, Y., Qian, X., Zhang, L., Dong, L., 2017. Exploring spatial explicit greenhouse gas
inventories: Location-based accounting approach and implications in Japan.

J. Clean. Prod. 167, 702-712. https://doi.org/10.1016/j.jclepro.2017.08.219.

Liu, C., Li, X., 2012. Carbon storage and sequestration by urban forests in Shenyang,
China. Urban For. Urban Green. 11, 121-128. https://doi.org/10.1016/j.
ufug.2011.03.002.

Lovett, G.M., 1994. Atmospheric deposition of nutrients and pollutants in North America:
An ecological perspective. Ecol. Appl. 4, 629-650. https://doi.org/10.2307/
1941997.

Luck, G.W., Smallbone, L.T., O’Brien, R., 2009. Socio-Economics and Vegetation Change
in Urban Ecosystems: Patterns in Space and Time. Ecosystems 12, 604-620. https://
doi.org/10.1007/510021-009-9244-6.

Makinen, H., Hynynen, J., Siitonen, J., Sievdnen, R., 2006. Predicting the Decomposition
of Scots Pine, Norway Spruce, and Birch Stems in Finland. Ecol. Appl. 16,
1865-1879. https://doi.org/10.1890/1051-0761(2006)016[1865:PTDOSP]2.0.CO;
2.

Mannan, M., Al-Ghamdi, S.G., 2021. Active Botanical Biofiltration in Built Environment
to Maintain Indoor Air Quality. Front. Built Environ. 7 https://doi.org/10.3389/
fbuil.2021.672102.

Martinez-Falero, E., Martin-Fernandez, S., Garcia-Abril, A.D. (Eds.), 2016. Quantitative
Techniques in Participatory Forest Management, Quantitative Techniques in
Participatory Forest Management. CRC Press. 10.1201/b15366.

Masera, O.R., Garza-Caligaris, J.F., Kanninen, M., Karjalainen, T., Liski, J., Nabuurs, G.J.,
Pussinen, A., De Jong, B.H.J., Mohren, G.M.J., 2003. Modeling carbon sequestration
in afforestation, agroforestry and forest management projects: The CO2FIX vol 2
approach. Ecol. Modell. 164, 177-199. https://doi.org/10.1016/50304-3800(02)
00419-2.

Mcpherson, E.G., Van Doorn, N.S., Peper, P.J., 2016. United States Department of
Agriculture Urban Tree Database and Allometric Equations. 10.2737/RDS-2016-
0005.

Mcpherson, E.G., Nowak, D.J., Rowntree, R., a,, 1994. Chicago’s Urban Forest
Ecosystem: Results of the Chicago Urban Forest Climate Project. Urban Ecosyst. 201.

19

Ecological Indicators 154 (2023) 110603

McPherson, E.G., Nowak, D., Heisler, G., Grimmond, S., Souch, C., Grant, R.,
Rowntree, R., 1997. Quantifying urban forest structure, function, and value: the
Chicago Urban Forest Climate Project. Urban Ecosyst. 1, 49-61. https://doi.org/
10.1023/A:1014350822458.

McPherson, E.G., Simpson, J.R., Peper, P.J., Xiao, Q., 1999. Benefit-cost analysis of
Modesto’s municipal urban forest. J. Arboric. 25, 235-248.

McPherson, G., Simpson, J.R., Peper, P.J., Maco, S.E., Xiao, Q., 2005. Municipal forest
benefits and costs in five US cities. J. For. https://doi.org/10.1093/jof/103.8.411.

McPherson, E.G., Simpson, J.R., Xiao, Q., Wu, C., 2011. Million trees Los Angeles canopy
cover and benefit assessment. Landsc. Urban Plan. 99, 40-50. https://doi.org/
10.1016/j.landurbplan.2010.08.011.

Metla,, 2013. Finnish Forest Research Institute [WWW Document]. For. Res.

Miller, R.L., Fujii, R., 2011. Re-establishing marshes can turn a current carbon source
into a carbon sink in the Sacramento-San Joaquin Delta of California. Sacramento,
USA.

Minasny, B., Malone, B.P., McBratney, A.B., Angers, D.A., Arrouays, D., Chambers, A.,
Chaplot, V., Chen, Z.S., Cheng, K., Das, B.S., Field, D.J., Gimona, A., Hedley, C.B.,
Hong, S.Y., Mandal, B., Marchant, B.P., Martin, M., McConkey, B.G., Mulder, V.L.,
O’Rourke, S., Richer-de-Forges, A.C., Odeh, 1., Padarian, J., Paustian, K., Pan, G.,
Poggio, L., Savin, L., Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.C.,
Végen, T.G., van Wesemael, B., Winowiecki, L., 2017. Soil carbon 4 per mille.
Geoderma 292, 59-86. https://doi.org/10.1016/j.geoderma.2017.01.002.

Monkkonen, M., Juutinen, A., Mazziotta, A., Miettinen, K., Podkopaev, D., Reunanen, P.,
Salminen, H., Tikkanen, O.-P., 2014. Spatially dynamic forest management to
sustain biodiversity and economic returns. J. Environ. Manage. 134, 80-89. https://
doi.org/10.1016/j.jenvman.2013.12.021.

Myeong, S., Nowak, D.J., Duggin, M.J., 2006. A temporal analysis of urban forest carbon
storage using remote sensing. Remote Sens. Environ. 101, 277-282. https://doi.org/
10.1016/j.rse.2005.12.001.

Nadelhoffer, K.J., Emmett, B.A., Gundersen, P., Kjgnaas, O.J., Koopmans, C.J.,
Schleppi, P., Tietema, A., Wright, R.F., 1999. Nitrogen deposition makes a minor
contribution to carbon sequestration in temperate forests. Nature 398, 145-148.
https://doi.org/10.1038/18205.

Natural Resources Conservation Service, Grazing Lands Technology Institute, 2000.
National Range and Pasture Handbook, Arizona Supplement.

Nayak, A.K., Rahman, M.M., Naidu, R., Dhal, B., Swain, C.K., Nayak, A.D., Tripathi, R.,
Shahid, M., Islam, M.R., Pathak, H., 2019. Current and emerging methodologies for
estimating carbon sequestration in agricultural soils: A review. Sci. Total Environ.
665, 890-912. https://doi.org/10.1016/j.scitotenv.2019.02.125.

Negash, M., Kanninen, M., 2015. Modeling biomass and soil carbon sequestration of
indigenous agroforestry systems using CO2FIX approach. Agric. Ecosyst. Environ.
203, 147-155. https://doi.org/10.1016/j.agee.2015.02.004.

Neigh, C., 2008. Identifying and undertsanding North American carbon cycle
perturbations from natural and anthropogenic disturbances. University of Maryland.

Nelson, E., Mendoza, G., Regetz, J., Polasky, S., Tallis, H., Cameron, D.R., Chan, KM.A.,
Daily, G.C., Goldstein, J., Kareiva, P.M., Lonsdorf, E., Naidoo, R., Ricketts, T.H.,
Shaw, M.R., 2009. Modeling multiple ecosystem services, biodiversity conservation,
commodity production, and tradeoffs at landscape scales. Front. Ecol. Environ. 7,
4-11. https://doi.org/10.1890/080023.

Nowak, D.J., 1993. Atmospheric carbon reduction by urban trees. J. Environ. Manage.
37, 207-217. https://doi.org/10.1006/jema.1993.1017.

Nowak, D.J., Crane, D.E., 2002. Carbon storage and sequestration by urban trees in the
USA. Environ. Pollut. 381-389. https://doi.org/10.1016/50269-7491(01)00214-7.

Nowak, D.J., Crane, D.E., Stevens, J.C., Hoehn, R.E., 2003. The urban forest effects
(UFORE) model: Field data collection manual. USDA Forest Service.

Nowak, D.J., Crane, D.E., Stevens, J.C., 2006. Air pollution removal by urban trees and
shrubs in the United States. Urban For. Urban Green. 4, 115-123. https://doi.org/
10.1016/j.ufug.2006.01.007.

Nowak, D., Crane, D.E., Stevens, J.C., Hoehn, R.E., Walton, J.T., Bond, J., 2008a.

A Ground-Based Method of Assessing Urban Forest Structure and Ecosystem
Services. Arboric. Urban For. 34, 347-358.

Nowak, D.J., Hoehn, R.E., Crane, D.E., Stevens, J.C., Walton, J.T., 2007. Assessing Urban
Forest Effects and Values New York City * s Urban Forest. Agriculture 1-22.

Nowak, D.J., Walton, J.T., Stevens, J.C., Crane, D.E., Hoehn, R.E., 2008b. Effect of plot
and sample size on timing and precision of urban forest assessments. Arboric. Urban
For. 34, 386-390.

Nowak, D.J., Greenfield, E.J., Hoehn, R.E., Lapoint, E., 2013. Carbon storage and
sequestration by trees in urban and community areas of the United States. Environ.
Pollut. 178, 229-236. https://doi.org/10.1016/j.envpol.2013.03.019.

Oberle, B., 2016. Carbon Relations, the Role in Plant Diversification of, in: Encyclopedia
of Evolutionary Biology. Elsevier, pp. 260-266. 10.1016/B978-0-12-800049-
6.00261-4.

Olson, K.R., Al-Kaisi, M.M., 2015. The importance of soil sampling depth for accurate
account of soil organic carbon sequestration, storage, retention and loss. Catena 125,
33-37. https://doi.org/10.1016/j.catena.2014.10.004.

Oren, R., Ellsworth, D.S., Johnsen, K.H., Phillips, N., Ewers, B.E., Maier, C., Schéfer, K.V.
R., McCarthy, H., Hendrey, G., McNulty, S.G., Katul, G.G., 2001. Soil fertility limits
carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature
411, 469-472. https://doi.org/10.1038/35078064.

Palace, M., Keller, M., Asner, G.P., Silva, J.N.M., Passos, C., 2007. Necromass in
undisturbed and logged forests in the Brazilian Amazon. For. Ecol. Manage. 238,
309-318. https://doi.org/10.1016/j.foreco.2006.10.026.

Pan, H., Page, J., Zhang, L., Cong, C., Ferreira, C., Jonsson, E., Nasstrom, H.,

Destouni, G., Deal, B., Kalantari, Z., 2019. Understanding interactions between
urban development policies and GHG emissions: A case study in Stockholm Region.
Ambio 1-15. https://doi.org/10.1007/513280-019-01290-y.


https://doi.org/10.1093/forestscience/49.1.12
https://doi.org/10.1093/forestscience/49.1.12
https://doi.org/10.1006/jema.2001.0491
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0390
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0390
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0390
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0390
https://doi.org/10.1111/j.1365-2486.2005.00921.x
https://doi.org/10.1098/rstb.2011.0244
https://doi.org/10.1111/j.1529-8817.2003.00770.x
https://doi.org/10.3389/ffgc.2019.00090
https://doi.org/10.3389/ffgc.2019.00090
https://doi.org/10.1016/j.ecolind.2023.109965
https://doi.org/10.1117/1.jrs.9.097696
https://doi.org/10.1007/978-3-319-04084-4_35
https://doi.org/10.1007/978-3-319-04084-4_35
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0920
https://doi.org/10.1016/j.ecolind.2012.12.022
https://doi.org/10.1016/j.geoderma.2006.06.008
https://doi.org/10.1016/j.foreco.2007.06.029
https://doi.org/10.1016/j.foreco.2007.06.029
https://doi.org/10.1007/s11027-018-9795-y
https://doi.org/10.1016/j.jclepro.2017.08.219
https://doi.org/10.1016/j.ufug.2011.03.002
https://doi.org/10.1016/j.ufug.2011.03.002
https://doi.org/10.2307/1941997
https://doi.org/10.2307/1941997
https://doi.org/10.1007/s10021-009-9244-6
https://doi.org/10.1007/s10021-009-9244-6
https://doi.org/10.1890/1051-0761(2006)016[1865:PTDOSP]2.0.CO;2
https://doi.org/10.1890/1051-0761(2006)016[1865:PTDOSP]2.0.CO;2
https://doi.org/10.3389/fbuil.2021.672102
https://doi.org/10.3389/fbuil.2021.672102
https://doi.org/10.1016/S0304-3800(02)00419-2
https://doi.org/10.1016/S0304-3800(02)00419-2
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0500
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0500
https://doi.org/10.1023/A:1014350822458
https://doi.org/10.1023/A:1014350822458
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0510
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0510
https://doi.org/10.1093/jof/103.8.411
https://doi.org/10.1016/j.landurbplan.2010.08.011
https://doi.org/10.1016/j.landurbplan.2010.08.011
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0525
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0530
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0530
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0530
https://doi.org/10.1016/j.geoderma.2017.01.002
https://doi.org/10.1016/j.jenvman.2013.12.021
https://doi.org/10.1016/j.jenvman.2013.12.021
https://doi.org/10.1016/j.rse.2005.12.001
https://doi.org/10.1016/j.rse.2005.12.001
https://doi.org/10.1038/18205
https://doi.org/10.1016/j.scitotenv.2019.02.125
https://doi.org/10.1016/j.agee.2015.02.004
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0570
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0570
https://doi.org/10.1890/080023
https://doi.org/10.1006/jema.1993.1017
https://doi.org/10.1016/S0269-7491(01)00214-7
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0590
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0590
https://doi.org/10.1016/j.ufug.2006.01.007
https://doi.org/10.1016/j.ufug.2006.01.007
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0600
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0600
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0600
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0605
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0605
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0610
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0610
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0610
https://doi.org/10.1016/j.envpol.2013.03.019
https://doi.org/10.1016/j.catena.2014.10.004
https://doi.org/10.1038/35078064
https://doi.org/10.1016/j.foreco.2006.10.026
https://doi.org/10.1007/s13280-019-01290-y

S. Habib et al.

Papale, D., Reichstein, M., Aubinet, M., Canfora, E., Bernhofer, C., Kutsch, W.,
Longdoz, B., Rambal, S., Valentini, R., Vesala, T., Yakir, D., 2006. Towards a
standardized processing of Net Ecosystem Exchange measured with eddy covariance
technique: algorithms and uncertainty estimation. Biogeosciences 3, 571-583.
https://doi.org/10.5194/bg-3-571-2006.

Parmehr, E.G., Amati, M., Taylor, E.J., Livesley, S.J., 2016. Estimation of urban tree
canopy cover using random point sampling and remote sensing methods. Urban For.
Urban Green. 20, 160-171. https://doi.org/10.1016/j.ufug.2016.08.011.

Pataki, D.E., Alig, R.J., Fung, A.S., Golubiewski, N.E., Kennedy, C.A., Mcpherson, E.G.,
Nowak, D.J., Pouyat, R.V., Lankao, P.R., 2006. Urban ecosystems and the North
American carbon cycle. Glob. Chang. Biol. https://doi.org/10.1111/j.1365-
2486.2006.01242.x.

Pataki, D.E., Carreiro, M.M., Cherrier, J., Grulke, N.E., Jennings, V., Pincetl, S.,
Pouyat, R.V., Whitlow, T.H., Zipperer, W.C., 2011. Coupling biogeochemical cycles
in urban environments: Ecosystem services, green solutions, and misconceptions.
Front. Ecol. Environ. 9, 27-36. https://doi.org/10.1890,/090220.

Pathak, S., Ojha, C.S.P., Shukla, A.K., Garg, R.D., 2019. Assessment of Annual Water-
Balance Models for Diverse Indian Watersheds. J. Sustain. Water Built Environ. 5
https://doi.org/10.1061/JSWBAY.0000881.

Paustian, K., Andrén, O., Janzen, H.H., Lal, R., Smith, P., Tian, G., Tiessen, H.,
Noordwijk, M., Woomer, P.L., 1997. Agricultural soils as a sink to mitigate CO 2
emissions. Soil Use Manag. 13, 230-244. https://doi.org/10.1111/j.1475-
2743.1997.tb00594.x.

Peichl, M., Thevathasan, N.V., Gordon, A.M., Huss, J., Abohassan, R.A., 2006. Carbon
sequestration potentials in temperate tree-based intercropping systems, southern
Ontario. Canada. Agrofor. Syst. 66, 243-257. https://doi.org/10.1007/510457-005-
0361-8.

Peper, P.J., McPherson, E.G., Mori, S.M., 2001. Equations for predicting diameter,
height, crown width, and leaf area of San Joaquin valley street trees. J. Arboric. 27,
306-317.

Perkins, L.B., Blank, R.R., Ferguson, S.D., Johnson, D.W., Lindemann, W.C., Rau, B.M.,
2013. Quick start guide to soil methods for ecologists. Perspect. Plant Ecol. Evol.
Syst. 15, 237-244. https://doi.org/10.1016/j.ppees.2013.05.004.

Polasky, S., Nelson, E., Pennington, D., Johnson, K.A., 2011. The impact of land-use
change on ecosystem services, biodiversity and returns to landowners: A case study
in the state of Minnesota. Environ. Resour. Econ. 48, 219-242. https://doi.org/
10.1007/s10640-010-9407-0.

Potter, C.S., Klooster, S.A., 1997. Global model estimates of carbon and nitrogen storage
in litter and soil pools: Response to changes in vegetation quality and biomass
allocation. Tellus. Ser. B Chem. Phys. Meteorol. 49, 1-17. https://doi.org/10.3402/
tellusb.v49i1.15947.

Pouyat, R.V., Yesilonis, I.D., Nowak, D.J., 2006. Carbon storage by urban soils in the
United States. J. Environ. Qual. 35, 1566-1575. https://doi.org/10.2134/
jeq2005.0215.

Powell, P.A., Nanni, A.S., Nazaro, M.G., Loto, D., Torres, R., Gasparri, N.I., 2018.
Characterization of forest carbon stocks at the landscape scale in the Argentine Dry
Chaco. For. Ecol. Manage. 424, 21-27. https://doi.org/10.1016/j.
foreco.2018.04.033.

Qun, D., Huizhi, L., 2013. Seven years of carbon dioxide exchange over a degraded
grassland and a cropland with maize ecosystems in a semiarid area of china. Agric.
Ecosyst. Environ. 173, 1-12. https://doi.org/10.1016/j.agee.2013.04.009.

Qureshi, A., Pariva, B., R., Hussain, S.A.,, 2012. A review of protocols used for assessment
of carbon stock in forested landscapes. Environ. Sci. Policy 16, 81-89. https://doi.
org/10.1016/j.envsci.2011.11.001.

Raciti, S.M., Hutyra, L.R., Rao, P., Finzi, A.C., 2012. Inconsistent definitions of “urban”
result in different conclusions about the size of urban carbon and nitrogen stocks.
Ecol. Appl. 22, 1015-1035. https://doi.org/10.1890/11-1250.1.

Ravindranath, N.H., Ostwald, M., 2008. Carbon Inventory Methods Handbook for
Greenhouse Gas Inventory, Carbon Mitigation and Roundwood Production Projects.
Springer Netherlands, Dordrecht. 10.1007/978-1-4020-6547-7.

Forest Resarch, 2022. Carbon accounting [WWW Document]. Publ. Res. URL https://
www.forestresearch.gov.uk/research/forestry-and-climate-change-mitigation/
carbon-accounting/ (accessed 2.24.22).

Resh, S.C., Binkley, D., Parrotta, J.A., 2002. Greater soil carbon sequestration under
nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 5, 217-231.
https://doi.org/10.1007/s10021-001-0067-3.

Richards, D.R., Thompson, B.S., 2019. Urban ecosystems: A new frontier for payments
for ecosystem services. People Nat. 1, 249-261. https://doi.org/10.1002/pan3.20.

Riley, C.B., Gardiner, M.M., 2020. Examining the distributional equity of urban tree
canopy cover and ecosystem services across United States cities. PLoS One 15.
https://doi.org/10.1371/journal.pone.0228499.

Riley, C.B., Herms, D.A., Gardiner, M.M., 2018. Exotic trees contribute to urban forest
diversity and ecosystem services in inner-city Cleveland. OH. Urban For. Urban
Green. 29, 367-376. https://doi.org/10.1016/j.ufug.2017.01.004.

Rosengqvist, /?\., Milne, A., Lucas, R., Imhoff, M., Dobson, C., 2003. A review of remote
sensing technology in support of the Kyoto Protocol. Environ. Sci. Policy 6, 441-455.
https://doi.org/10.1016/51462-9011(03)00070-4.

Rossi, A.M., Rabenhorst, M.C., 2019. Organic carbon dynamics in soils of Mid-Atlantic
barrier island landscapes. Geoderma 337, 1278-1290. https://doi.org/10.1016/j.
geoderma.2018.10.028.

Rowntree, R.A., Nowak, D.J., 1991. Quantifying the role of urban forests in removing
atmospheric carbon dioxide, Journal of Arboriculture.

Roy, P.S., Ravan, S.A., 1996. Biomass estimation using satellite remote sensing data - An
investigation on possible approaches for natural forest. J. Biosci. 21, 535-561.
https://doi.org/10.1007/BF02703218.

20

Ecological Indicators 154 (2023) 110603

Salimi, M., Al-Ghamdi, S.G., 2020. Climate change impacts on critical urban
infrastructure and urban resiliency strategies for the Middle East. Sustain. Cities Soc.
54, 101948 https://doi.org/10.1016/j.5¢5.2019.101948.

Salminen, H., Lehtonen, M., Hynynen, J., 2005. Reusing legacy FORTRAN in the MOTTI
growth and yield simulator, in: Computers and Electronics in Agriculture. Elsevier,
pp. 103-113. 10.1016/j.compag.2005.02.005.

Schelhaas, M.J., van Esch, P.W., Groen, T.A., de Jong, B.H.J., Kanninen, M., Liski, J.,
Masera, O., Mohren, G.M.J., Nabuurs, G.J., Palosuo, T., Pedroni, L., Vallejo, A.,
Vilén, T., 2004. CO2FIX V 3.1 - a modelling framework for quantifying carbon
sequestration in forest ecosystems. Alterra-rapport.

Schoeneberger, P.J., Wysocki, D.A., Benham, E.C., Broderson, W.D., 2012. Field Book for
Describing and Sampling Soils, National Soil Survey Center.

Remote Sensing and GIS Techniques for Terrestrial Carbon Inventory, 2008. , in: Carbon
Inventory Methods Handbook for Greenhouse Gas Inventory, Carbon Mitigation and
Roundwood Production Projects. Springer Netherlands, Dordrecht, pp. 181-199.
10.1007/978-1-4020-6547-7_14.

Sharp, R., Tallis, H.T., Ricketts, T., Guerry, A.D., Wood, S.A., Chaplin-Kramer, R., Nelson,
E., Ennaanay, D., Wolny, S., Olwero, N., Vigerstol, K., Pennington, D., Mendoza, G.,
Aukema, J., Foster, J., Forrest, J., Cameron, D., Arkema, K., Lonsdorf, E., Kennedy,
C., Verutes, G., Kim, C.K., Guannel, G., Papenfus, M., Toft, J., Marsik, M., Bernhardt,
J., Griffin, R., Glowinski, K., Chaumont, N., Perelman, A., Lacayo, M., Mandle, L.,
Hamel, P., Vogl, A.L., Rogers, L., Bierbower, W., Denu, D., Douglass, J., 2018.
InVEST User’s Guide. The Natural Capital Project, Stanford University, University of
Minnesota, The Nature Conservancy, and World Wildlife Fund.

Shukla, A.K., Pathak, S., Pal, L., Ojha, C.S.P., Mijic, A., Garg, R.D., 2018. Spatio-temporal
assessment of annual water balance models for upper Ganga Basin. Hydrol. Earth
Syst. Sci. 22, 5357-5371. https://doi.org/10.5194 /hess-22-5357-2018.

Siipilehto, J., Sarkkola, S., Mehtitalo, L., 2007. Comparing regression estimation
techniques when predicting diameter distributions of scots pine on drained
peatlands. Silva Fenn. 41, 333-349. https://doi.org/10.14214/sf.300.

Smith, W.H., 1990. Air Pollution and Forests, Springer Series on Environmental
Management. Springer US, New York, NY. 10.1007/978-1-4612-3296-4.

Snowdon, P., Raison, J., Keith, H., Ritson, P., Grierson, P., Adams, M., Montagu, K., Bi,
H., Burrows, W., Eamus, D., 2002. Protocol for Sampling Tree and Stand Biomass.
https://www.doi.org/10.13140/RG.2.1.2825.8967.

Soares, A.L., Rego, F.C., McPherson, E.G., Simpson, J.R., Peper, P.J., Xiao, Q., 2011.
Benefits and costs of street trees in Lisbon. Portugal. Urban For. Urban Green. 10,
69-78. https://doi.org/10.1016/j.ufug.2010.12.001.

Stanford University, 2019. Carbon | Natural Capital Project [WWW Document]. Stanford
Univ. website.

Strand, J., Soares-Filho, B., Costa, M.H., Oliveira, U., Ribeiro, S.C., Pires, G.F.,
Oliveira, A., Rajao, R., May, P., van der Hoff, R., Siikamaki, J., da Motta, R.S.,
Toman, M., 2018. Spatially explicit valuation of the Brazilian Amazon Forest’s
Ecosystem Services. Nat. Sustain. 1, 657-664. https://doi.org/10.1038/541893-018-
0175-0.

Strohbach, M.W., Haase, D., 2012. Above-ground carbon storage by urban trees in
Leipzig, Germany: Analysis of patterns in a European city. Landsc. Urban Plan. 104,
95-104. https://doi.org/10.1016/j.landurbplan.2011.10.001.

Suseela, V., 2019. Potential roles of plant biochemistry in mediating ecosystem responses
to warming and drought, in: Ecosystem Consequences of Soil Warming. Elsevier, pp.
103-124. 10.1016/B978-0-12-813493-1.00005-3.

Suwanmontri, C., Kositanont, C., Panich, N., 2013. Carbon dioxide absorption of
common trees in chulalongkorn university. Mod. Appl. Sci. 7, 1-7. https://doi.org/
10.5539/mas.v7n3pl.

Swain, C.K., Nayak, A.K., Bhattacharyya, P., Chatterjee, D., Chatterjee, S., Tripathi, R.,
Singh, N.R., Dhal, B., 2018. Greenhouse gas emissions and energy exchange in wet
and dry season rice: eddy covariance-based approach. Environ. Monit. Assess. 190
https://doi.org/10.1007/510661-018-6805-1.

Tahir, F., Al-Ghamdi, S.G., 2023. Climatic change impacts on the energy requirements for
the built environment sector. Energy Rep. 9, 670-676. https://doi.org/10.1016/j.
egyr.2022.11.033.

Tahir, F., Ajjur, S.B., Serdar, M.Z., Al-Humaiqani, M.M.A., Kim, D., Al-Thani, S.K., Al-
Ghamdi, S.G., 2021. Qatar Climate Change Conference 2021: A platform for
addressing key climate change topics facing Qatar and the world. Hamad bin Khalifa
University Press (HBKU Press), Doha, Qatar. 10.5339/conf_proceed_qccc2021.

Tang, C., Fu, X, Jiang, D., Fu, J., Zhang, X., Zhou, S., 2014. Simulating Spatiotemporal
Dynamics of Sichuan Grassland Net Primary Productivity Using the CASA Model and
in Situ Observations. Sci. World J. 2014 https://doi.org/10.1155/2014/956963.

Tang, W., Zheng, M., Zhao, X., Shi, J., Yang, J., Trettin, C.C., 2018. Big geospatial data
analytics for global mangrove biomass and carbon estimation. Sustain. 10, 472.
https://doi.org/10.3390/5u10020472.

Tao, Y., Li, F., Wang, R., Zhao, D., 2015. Effects of land use and cover change on
terrestrial carbon stocks in urbanized areas: A study from Changzhou. China. J.
Clean. Prod. 103, 651-657. https://doi.org/10.1016/j.jclepro.2014.07.055.

Thevathasan, N.V., Gordon, A.M., 2004. Ecology of tree intercropping systems in the
North temperate region: Experiences from southern Ontario. Canada. Agrofor. Syst.
61-62, 257-268. https://doi.org/10.1023/B:AGF0.0000029003.00933.6d.

Thomas, A.L., Kallenbach, R., Sauer, T.J., Brauer, D.K., Burner, D.M., Coggeshall, M. V.,
Dold, C., Rogers, W., Bardhan, S., Jose, S., 2020. Carbon and nitrogen accumulation
within four black walnut alley cropping sites across Missouri and Arkansas, USA.
Agrofor. Syst. 10.1007/510457-019-00471-8.

Tomppo, E., 2006. The Finnish national forest inventory. Forest Inventory. Springer
179-194.

Trivino, M., Juutinen, A., Mazziotta, A., Miettinen, K., Podkopaev, D., Reunanen, P.,
Monkkonen, M., 2015. Managing a boreal forest landscape for providing timber,


https://doi.org/10.5194/bg-3-571-2006
https://doi.org/10.1016/j.ufug.2016.08.011
https://doi.org/10.1111/j.1365-2486.2006.01242.x
https://doi.org/10.1111/j.1365-2486.2006.01242.x
https://doi.org/10.1890/090220
https://doi.org/10.1061/JSWBAY.0000881
https://doi.org/10.1111/j.1475-2743.1997.tb00594.x
https://doi.org/10.1111/j.1475-2743.1997.tb00594.x
https://doi.org/10.1007/s10457-005-0361-8
https://doi.org/10.1007/s10457-005-0361-8
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0680
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0680
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0680
https://doi.org/10.1016/j.ppees.2013.05.004
https://doi.org/10.1007/s10640-010-9407-0
https://doi.org/10.1007/s10640-010-9407-0
https://doi.org/10.3402/tellusb.v49i1.15947
https://doi.org/10.3402/tellusb.v49i1.15947
https://doi.org/10.2134/jeq2005.0215
https://doi.org/10.2134/jeq2005.0215
https://doi.org/10.1016/j.foreco.2018.04.033
https://doi.org/10.1016/j.foreco.2018.04.033
https://doi.org/10.1016/j.agee.2013.04.009
https://doi.org/10.1016/j.envsci.2011.11.001
https://doi.org/10.1016/j.envsci.2011.11.001
https://doi.org/10.1890/11-1250.1
https://doi.org/10.1007/s10021-001-0067-3
https://doi.org/10.1002/pan3.20
https://doi.org/10.1371/journal.pone.0228499
https://doi.org/10.1016/j.ufug.2017.01.004
https://doi.org/10.1016/S1462-9011(03)00070-4
https://doi.org/10.1016/j.geoderma.2018.10.028
https://doi.org/10.1016/j.geoderma.2018.10.028
https://doi.org/10.1007/BF02703218
https://doi.org/10.1016/j.scs.2019.101948
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0785
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0785
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0785
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0785
https://doi.org/10.5194/hess-22-5357-2018
https://doi.org/10.14214/sf.300
https://doi.org/10.1016/j.ufug.2010.12.001
https://doi.org/10.1038/s41893-018-0175-0
https://doi.org/10.1038/s41893-018-0175-0
https://doi.org/10.1016/j.landurbplan.2011.10.001
https://doi.org/10.5539/mas.v7n3p1
https://doi.org/10.5539/mas.v7n3p1
https://doi.org/10.1007/s10661-018-6805-1
https://doi.org/10.1016/j.egyr.2022.11.033
https://doi.org/10.1016/j.egyr.2022.11.033
https://doi.org/10.1155/2014/956963
https://doi.org/10.3390/su10020472
https://doi.org/10.1016/j.jclepro.2014.07.055
https://doi.org/10.1023/B:AGFO.0000029003.00933.6d
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0895
http://refhub.elsevier.com/S1470-160X(23)00745-8/h0895

S. Habib et al.

storing and sequestering carbon. Ecosyst. Serv. 14, 179-189. https://doi.org/
10.1016/j.ecoser.2015.02.003.

Tuanmu, M.N., Jetz, W., 2014. A global 1-km consensus land-cover product for
biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 23, 1031-1045. https://
doi.org/10.1111/geb.12182.

Tyrvainen, L., 2001. Economic valuation of urban forest benefits in Finland. J. Environ.
Manage. 62, 75-92. https://doi.org/10.1006/jema.2001.0421.

USDA Forest Service, Davey Tree Expert Company, Aborday Fundation, Society of
Municipal Arborists, International Society of Arboriculture, Casey Trees, SUNY
College of Environmental Sciencie and Forestry, 2006. Learn about i-Tree | i-Tree
[WWW Document].

Velasco, E., Roth, M., Norford, L., Molina, L.T., 2016. Does urban vegetation enhance
carbon sequestration? Landsc. Urban Plan. 148, 99-107. https://doi.org/10.1016/j.
landurbplan.2015.12.003.

Viglizzo, E.F., Jobbagy, E.G., Ricard, M.F., Paruelo, J.M., 2016. Partition of some key
regulating services in terrestrial ecosystems: Meta-analysis and review. Sci. Total
Environ. 562, 47-60. https://doi.org/10.1016/j.scitotenv.2016.03.201.

Viglizzo, E.F., Ricard, M.F., Taboada, M.A., Vazquez-Amabile, G., 2019. Reassessing the
role of grazing lands in carbon-balance estimations: Meta-analysis and review. Sci.
Total Environ. 661, 531-542. https://doi.org/10.1016/j.scitotenv.2019.01.130.

Vihervaara, P., Marjokorpi, A., Kumpula, T., Walls, M., Kamppinen, M., 2012. Ecosystem
services of fast-growing tree plantations: A case study on integrating social
valuations with land-use changes in Uruguay. For. Policy Econ. 14, 58-68. https://
doi.org/10.1016/j.forpol.2011.08.008.

Vihervaara, P., Auvinen, A.P., Mononen, L., Torma, M., Ahlroth, P., Anttila, S.,
Bottcher, K., Forsius, M., Heino, J., Heliol4, J., Koskelainen, M., Kuussaari, M.,
Meissner, K., Ojala, O., Tuominen, S., Viitasalo, M., Virkkala, R., 2017. How
Essential Biodiversity Variables and remote sensing can help national biodiversity
monitoring. Glob. Ecol. Conserv. 10, 43-59. https://doi.org/10.1016/j.
gecco.2017.01.007.

Vihervaara, P., Mononen, L., Nedkov, S., Viinikka, A., 2018. Biophysical Mapping and
Assessment Methods for Ecosystem Services.

Villanueva-Lépez, G., Lara-Pérez, L.A., Oros-Ortega, 1., Ramirez-Barajas, P.J., Casanova-
Lugo, F., Ramos-Reyes, R., Aryal, D.R., 2019. Diversity of soil macro-arthropods
correlates to the richness of plant species in traditional agroforestry systems in the
humid tropics of Mexico. Agric. Ecosyst. Environ. 286, 106658 https://doi.org/
10.1016/j.agee.2019.106658.

Wang, Z., Li, X., Mao, Y., Li, L., Wang, X., Lin, Q., 2022. Dynamic simulation of land use
change and assessment of carbon storage based on climate change scenarios at the
city level: A case study of Bortala. China. Ecol. Indic. 134, 108499 https://doi.org/
10.1016/j.ecolind.2021.108499.

Watson, R., Noble, L., Bolin, B., Ravindranath, N., Verardo, D., Dokken, D., 2000. Land
Use, Land-Use Change, and Forestry. Responses For. Ecosyst. to Environ. Chang.
367-373 https://doi.org/10.1007/978-94-011-2866-7_33.

21

Ecological Indicators 154 (2023) 110603

West, T.O., Gurwick, N., Brown, M.E., Duren, R., Mooney, S., Paustian, K., McGlynn, E.,
Malone, E., Rosenblatt, A., Hultman, N., Ocko, 1., 2018. Chapter 18: Carbon Cycle
Science in Support of Decision Making. Second State of the Carbon Cycle Report
728-759. 10.7930/SOCCR2.2018.Ch18.

Wirth, C., Schumacher, J., Schulze, E.-D., 2004. Generic biomass functions for Norway
spruce in Central Europe-a meta-analysis approach toward prediction and
uncertainty estimation. Tree Physiol. 24, 121-139. https://doi.org/10.1093/
treephys/24.2.121.

Woldemariam, T., 2015. GHG Emission Assessment Guideline Volume II: Aboveground
Biomass Field Guide for Baseline Survey. Echnoserve Consulting.

Wotherspoon, A., Thevathasan, N.V., Gordon, A.M., Voroney, R.P., 2014. Carbon
sequestration potential of five tree species in a 25-year-old temperate tree-based
intercropping system in southern Ontario. Canada. Agrofor. Syst. 88, 631-643.
https://doi.org/10.1007/510457-014-9719-0.

Wautzler, T., Wirth, C., Schumacher, J., 2008. Generic biomass functions for Common
beech (Fagus sylvatica) in Central Europe: predictions and components of
uncertainty. Can. J. For. Res. 38, 1661-1675. https://doi.org/10.1139/X07-194.

Xu, Q., Dong, Y.X., Yang, R., 2018. Influence of land urbanization on carbon
sequestration of urban vegetation: a temporal cooperativity analysis in Guangzhou
as an example. Sci. Total Environ. 635, 26-34. https://doi.org/10.1016/j.
scitotenv.2018.04.057.

Xu, C., Zhang, Q., Yu, Q., Wang, J., Wang, F., Qiu, S., Ai, M., Zhao, J., 2023a. Effects of
land use/cover change on carbon storage between 2000 and 2040 in the Yellow
River Basin. China. Ecol. Indic. 151, 110345 https://doi.org/10.1016/j.
ecolind.2023.110345.

Xu, D., Zhang, Y., Yang, Z., 2023b. From Geospatial to Temporal Separation. A Review
on Carbon Accounting Endogenizing Fixed Capital. Ecosyst. Heal. Sustain. 9 https://
doi.org/10.34133/ehs.0002.

Yin, L., Sharifi, A., Ligiao, H., Jinyu, C., 2022. Urban carbon accounting: An overview.
Urban Clim. 44, 101195 https://doi.org/10.1016/j.uclim.2022.101195.

Zhang, Y., Wu, Q., Fath, B.D., 2018. Review of spatial analysis of urban carbon
metabolism. Ecol. Modell. 371, 18-24. https://doi.org/10.1016/j.
ecolmodel.2018.01.005.

Zhang, F., Zhan, J., Zhang, Q., Yao, L., Liu, W., 2017. Impacts of land use/cover change
on terrestrial carbon stocks in Uganda. Phys. Chem. Earth 101, 195-203. https://doi.
org/10.1016/j.pce.2017.03.005.

Zhao, H., Jia, G., Wang, H., Zhang, A., Xu, X., 2019. Seasonal and interannual variations
in carbon fluxes in East Asia semi-arid grasslands. Sci. Total Environ. 668,
1128-1138. https://doi.org/10.1016/j.scitotenv.2019.02.378.

Zhao, M., Kong, Z.H., Escobedo, F.J., Gao, J., 2010. Impacts of urban forests on offsetting
carbon emissions from industrial energy use in Hangzhou. China. J. Environ.
Manage. 91, 807-813. https://doi.org/10.1016/j.jenvman.2009.10.010.

Zhu, W., Egitto, B.A,, Yesilonis, 1.D., Pouyat, R.V., 2017. Soil carbon and nitrogen cycling
and ecosystem service in cities. Urban Soils. 121-136. https://doi.org/10.1201/
9781315154251.


https://doi.org/10.1016/j.ecoser.2015.02.003
https://doi.org/10.1016/j.ecoser.2015.02.003
https://doi.org/10.1111/geb.12182
https://doi.org/10.1111/geb.12182
https://doi.org/10.1006/jema.2001.0421
https://doi.org/10.1016/j.landurbplan.2015.12.003
https://doi.org/10.1016/j.landurbplan.2015.12.003
https://doi.org/10.1016/j.scitotenv.2016.03.201
https://doi.org/10.1016/j.scitotenv.2019.01.130
https://doi.org/10.1016/j.forpol.2011.08.008
https://doi.org/10.1016/j.forpol.2011.08.008
https://doi.org/10.1016/j.gecco.2017.01.007
https://doi.org/10.1016/j.gecco.2017.01.007
https://doi.org/10.1016/j.agee.2019.106658
https://doi.org/10.1016/j.agee.2019.106658
https://doi.org/10.1016/j.ecolind.2021.108499
https://doi.org/10.1016/j.ecolind.2021.108499
https://doi.org/10.1007/978-94-011-2866-7_33
https://doi.org/10.1093/treephys/24.2.121
https://doi.org/10.1093/treephys/24.2.121
https://doi.org/10.1007/s10457-014-9719-0
https://doi.org/10.1139/X07-194
https://doi.org/10.1016/j.scitotenv.2018.04.057
https://doi.org/10.1016/j.scitotenv.2018.04.057
https://doi.org/10.1016/j.ecolind.2023.110345
https://doi.org/10.1016/j.ecolind.2023.110345
https://doi.org/10.34133/ehs.0002
https://doi.org/10.34133/ehs.0002
https://doi.org/10.1016/j.uclim.2022.101195
https://doi.org/10.1016/j.ecolmodel.2018.01.005
https://doi.org/10.1016/j.ecolmodel.2018.01.005
https://doi.org/10.1016/j.pce.2017.03.005
https://doi.org/10.1016/j.pce.2017.03.005
https://doi.org/10.1016/j.scitotenv.2019.02.378
https://doi.org/10.1016/j.jenvman.2009.10.010
https://doi.org/10.1201/9781315154251
https://doi.org/10.1201/9781315154251

	Current and emerging technologies for carbon accounting in urban landscapes: Advantages and limitations
	Current and emerging technologies for carbon accounting in urban landscapes: Advantages and limitations
	1 Introduction
	1.1 Carbon emissions
	1.2 Carbon capture in nature
	1.3 Purpose of this study

	2 Material and methods
	3 Carbon stocks and pools
	3.1 Carbon pools
	3.1.1 Carbon in aboveground biomass (AGB)
	3.1.2 Carbon in belowground biomass (BGB)
	3.1.3 Soil organic carbon (SOC)
	3.1.4 Carbon in woody and other debris/litter

	3.2 Fluxes, Transfer, and Balances

	4 Carbon accounting methods
	4.1 Ground sampling and experimental analyses
	4.1.1 Aboveground carbon
	4.1.1.1 Destructive Measurements
	4.1.1.2 Non-destructive Measurements

	4.1.2 Belowground carbon
	4.1.3 Estimation for litter and debris

	4.2 Allometric equations and regression models
	4.3 Explicit spatial analysis
	4.3.1 Direct measurements
	4.3.2 Indirect measurements
	4.3.3 Land use/Land cover change (LUCC)
	4.3.4 Urban tree distribution
	4.3.5 Statistical analysis

	4.4 Modeling systems and approaches

	5 Socioeconomic benefits of urban landscapes
	5.1 Air pollution removal
	5.2 Economic benefits of carbon sequestration
	5.2.1 Natural carbon sinks
	5.2.2 Urban ecosystem services (UES) analysis


	6 Discussion
	7 Conclusion and outlook
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	References


