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Abstract

Background: 1n 2021 alone, diabetes mellitus, a metabolic disorder primarily characterized by abnormally high blood glucose
(BG) levels, affected 537 million people globally, and over 6 million deaths were reported. The use of noninvasive technologies,
such as wearable devices (WDs), to regulate and monitor BG in people with diabetes is a relatively new concept and yet in its
infancy. Noninvasive WDs coupled with machine learning (ML) techniques have the potential to understand and conclude
meaningful information from the gathered data and provide clinically meaningful advanced analyticsfor the purpose of forecasting
or prediction.

Objective: The purpose of this study isto provide a systematic review complete with a quality assessment looking at diabetes
effectiveness of using artificial intelligence (Al) in WDs for forecasting or predicting BG levels.

Methods: We searched 7 of the most popular bibliographic databases. Two reviewers performed study selection and data
extraction independently before cross-checking the extracted data. A narrative approach was used to synthesize the data. Quality
assessment was performed using an adapted version of the Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2)
tool.

Results:. From the initial 3872 studies, the features from 12 studies were reported after filtering according to our predefined
inclusion criteria. Thereference standard in all studies overall (n=11, 92%) was classified aslow, asall ground truths were easily
replicable. Since the data input to Al technology was highly standardized and there was no effect of flow or time frame on the
final output, both factors were categorized in alow-risk group (n=11, 92%). It was observed that classical ML approaches were
deployed by half of the studies, the most popular being ensemble-boosted trees (random forest). The most common evaluation
metric used was Clarke grid error (n=7, 58%), followed by root mean sguare error (n=5, 42%). The wide usage of
photopl ethysmogram and near-infrared sensors was observed on wrist-worn devices.

Conclusions; This review has provided the most extensive work to date summarizing WDs that use ML for diabetic-related
BG level forecasting or prediction. Although current studies are few, this study suggests that the general quality of the studies
was considered high, as revealed by the QUADAS-2 assessment tool. Further validation is needed for commercially available
devices, but we envisage that WDs in general have the potential to remove the need for invasive devices completely for glucose
monitoring in the not-too-distant future.

Trial Registration: PROSPERO CRD42022303175; https://tinyurl.com/3n9jaayc
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Introduction

Background

Despite advances over the past decades, including improved
life expectancy and quality of life [1], in 2021 alone, diabetes
mellitus, a metabolic disorder primarily characterized by high
blood glucose (BG) levels, affected 537 million people globally.
According to the International Diabetes Federation, over 6
million deaths were reported. These staggering figures are
projected to increase in the coming years, with forecasts
predicting that 643 million people (1 in 9 adults) will have
diabetes by 2030. Furthermore, it is estimated that 784 million
peoplewill have diabetes mellitus by 2045 [2]. For peopleliving
with diabetes, maintaining anormal range of BG levelsisvital;
otherwise, short- or long-term complications can occur due to
hyperglycemia or  hypoglycemia.  The risk  of
cardiovascular-related disease is dramatically increased if a
higher than optimal BG level is observed, which could
ultimately lead to death. Complications can aso lead to heart
attacks, strokes, loss of vision, kidney failures, and nerve
damage, aswell as complications during pregnancy. The World
Health Organization outlines the need for collaborative
intervention from various stakeholders, such as hedth care
providers, governments, medicine suppliers, and food suppliers,
along with the technology industry, which is seen as a key
component, for there to be asignificant impact in the reduction
of diabetes [3].

Despite breakthroughs in BG monitoring techniques, most
detection technologies remain invasive. The commonly used
home electronic glucose meters need the person with diabetes
to invasively self-prick to extract blood from the fingertips of
the person with diabetes, exposing the person with diabetes to
infectionsaswell as stress and suffering caused by the recurrent
operation, which is often expected numeroustimes per day. The
availability and improvements of smart gadgets such as
smartphones have made diabetes-related functions more
accessible. Many studies have been conducted to investigate
this much-appreciated technology [4,5]. These often till
necessitate the use of an externally attachable sensor, and
monitoring is then given via an app or a separate continuous
glucose monitoring device, which is often semi-invasive and
requires connectivity range via Bluetooth or Wi-Fi signal. The
use of completely noninvasive technologies, such as wearable
devices (WDs), to regulate and monitor BG levels in people
with diabetesisareatively new concept and still in itsinfancy.
Researchers have reported on the efficacy of sensors in
commercialy accessible products such as smart watches and
smart bands in diabetes monitoring [6,7].

When used properly, thesetechnol ogies are affordable and easily
accessible, and they can improve the quality of life of patients
noninvasively. Due to their wide adoption and acceptance
globally, researchers and patients have a unique opportunity to
leverage WDsfor the purpose of providing noninvasive medical
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care away from hospital settings in a portable yet affordable
manner. Even though WDs do not possess the capabilities of
smartphones, they areincreasingly ableto gather, store, transmit,
and process data, the features of which can be applied for
management, treatment, assessment, forecasting (based on past
observations), and even prediction (taking associated data into
consideration, eg, diet, activity, and medications along with
previous BG values), the latter 2 terms often used
interchangeably. For the purpose of this study, neither did we
distinguish these termsin our search and filter processes asthis
ishow wefound their usagein the reviewed studies, nor did we
attempt to classify them according to these definitions. Many
WDs are often linked through Wi-Fi or Bluetooth to external
devices such as smartphones, where computationally intensive
processing is conducted for the simple purpose of storage or as
a gateway to cloud spaces. Cloud storage allows physicians to
monitor patients without requiring hospitalization. Severa
valuable sensors are aready integrated into WDs like
smartphones, including near-infrared (NIR) accelerometer,
galvanic  skin  response, electrocardiogram, and
photopl ethysmography (PPG) sensors. Due to WDs being in
close contact with the user, they provide further advantages
over external sensor-driven devices when it comes to sensing
physiological signssuch as skintemperature and heart rate. This
is particularly interesting for forecasting and monitoring
diabetes-related metrics.

To digest meaningful knowledge from the large amounts of
continuous data generated by WDs, artificial intelligence (Al)
algorithms are used to provide advanced and clinicaly
meaningful analytics. Machine learning (ML) asaterminology
is often used interchangeably with Al, although technically it
is asubset of Al. Asabroad definition, Al is when machines
are made smarter, and ML is a set of Al algorithms that learn
patterns from data while having the ability to self-learn; over
time, they get ever smarter without human intervention. Deep
learning isafurther branch of Al, which processeslarge amounts
of data using neural networks that are computational models
mimicking the human brain. Thereare 2 typesof ML algorithms
classifications: classical and modern. In comparison to modern
approaches, classical methods require less training data and
computer resourcesfor pattern recognition. Modern approaches,
on the other hand, frequently outperform traditional ones. Deep
learning is a modern ML methodology in which algorithms
replicate the brain’s neural networks to train with or without
supervision; yet, unlike classical ML approaches, which are
easy to explain, it might suffer from the “black box” problem.
While some researchers have produced prototypes specifically
designed with diabetesin mind, many have taken existing WDs
not originally designed for diabetes management and adapted
them by changing the sensory data in order to use them for
diabetes-related metrics [8,9]. WDs have awide range of uses,
including forecasting, diagnostics, glucose estimation,
monitoring, prevention, and classification. Unfortunately, the
reported studies are still low compared to that of smartphones.
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By using ML agorithms from the expanding field of Al and
correctly managing and processing enormous amounts of data,
there is untapped potential to improve the quality of life for
those with diabetes.

Research Gap and Aim

Several studies have explored the use of WDs that use ML
models for forecasting BG levels, but the evidence from these
studies is scattered. Existing studies may also have different
scopes and various aims, and therefore, systematic reviews are
needed to aggregate the avail able evidence and draw conclusions
about their effectiveness. A recent systematic review looked at
mobile and wearable technology for monitoring parameters
related to diabetes mellitus; although the authors report some
ML features of each review, it does not include in-depth
extraction of features (ie, the focus is not on Al) [10].
Furthermore, the same study does not report metrics related to
the performance of ML algorithms used within each reviewed
study, such asaccuracy, Clarkegrid error (CGE), and root mean
sguare error (RMSE). Another recent systematic review does
report outcome metrics such as sensitivity and accuracy.
Although their review contains WDs within, the focus was on
any technologiesusing deep learning for diabetes care, therefore
no in-depth ML-related features were extracted [11]. Other
recent reviews in this field are not detailed systematic reviews
that focus on using ML; rather, they discuss the devel opment
of WDs for glucose biosensing [12] or the current status and
challenges with available devices [13]. To address these
limitations, this review aims to examine the effectiveness of
WDs that use ML models for the purpose of BG-level
forecasting. To the best of our knowledge, this is the first
systematic review covering thistopic.

Methods

Study Registration

This systematic review was conducted following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines [14]. The protocol has been registered
with the International Prospective Register of Systematic
Reviews (PROSPERQ; |D: CRD42022303175).

Search Strategy

Search Sources

To identify relevant studies, 6 electronic databases were
searched: MEDLINE, Psycinfo, Embase, |IEEE Xplore, ACM
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Digital Library, and Web of Science. Google Scholar was used
to identify further grey literature. We inspected the first 100
hits retrieved by searching Google Scholar, as it sorts by
relevance according to the search topic, typically returning
several hundred items. The bibliographic collection took place
from October 25, 2021, to October 30, 2021. Thereferencelists
of the included articles were then searched for additional
sources. Therelevant papersthat cited theincluded studiesusing
Google Scholar's “cited by” tool (forward reference list
checking) were also checked.

Search Terms

Keywords were compiled by authors according to each database
term; for example, IEEE and Google Scholar limit search queries
were truncated based on their allowed limits. We applied a
combination of keywords, “ Diabetic” OR “Diabetes’ describing
the relevant population (diabetes), with each kind of relevant
intervention to wearables (“wearable*” OR “smart watch*” OR
smartwatch* OR “fitness band*” OR “flexible band*” OR
“wristband*” OR “smart insole*” OR “bracelet*”) and Al
(“Artificial Intelligence” OR “Machine Learning” OR “Deep
Learning” OR “Decisiontree” OR “K-Nearest Neighbor*” OR
“Support vector machineg*” OR “Recurrent neural network*”
OR *“convolutional neural network*” OR “Artificia neural
network*” OR “Naive Bayes’ OR “Naive Bayes’ OR “Fuzzy
Logic” OR “K-Means’ OR “Random Forest” OR “LSTM” OR
“autoencoder” OR “boltzmann machine” OR “deep belief
network™). For example, the following search term was applied
in Google Scholar: (“Artificial Intelligence” OR “Machine
Learning” OR “Deep Learning” OR “convolutional neural
network*” OR “Artificia neural network*”) AND (wearable*”
OR “smart watch*” OR “smart*”) AND (“Diabetic’ OR
“Diabetes’). A search time limit was set within the query from
2015 to the present, and the language in each database was set
to English only.

Study Eligibility Criteria

The eligibility of the retrieved studies was checked against the
criteriashown in Textbox 1. We included peer-reviewed articles
and proposals that were about Al-driven WDs used by
individuals for forecasting BG outside of aclinical setting. Al
for the purpose of diabetes was a key criterion for inclusion,

and the process had to be noninvasive. Refer to Textbox 1 for
inclusion and exclusion criteria.
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Inclusion criteria
« Publicationsthat are in English and published in 2015 and onwards

o  Peer-reviewed articles and proposals

.  Empirical studieslooking at blood glucose levels in diabetes

Exclusion criteria
«  Nondiabetic-related population

« Any study that does not contain Al as an intervention

«  Sensorsor tracking devices infused inside a person’s body

«  Wearable devices that need professional or hospital sittings

«  Population with, or suspected to have, diabetes. No restrictions regarding age, gender, and ethnicity
«  Commercial, medical, or prototypes but with condition wearable device and uses artificial intelligence (Al)
«  Wearable useable by individual person not with the help of clinical staff or plugged in to hospital setting

«  Wearables using methods for diabetes analysis are to be noninvasive

«  Publications that are not in English, published before 2015, and not peer-reviewed

« Not awearable device (eg, artificia implant or body-infused device)

«  Studiesthat include only statistical measures for the analysis of collected data

Selection Process

For study selection, 2 reviewers (first and second author) having
identified and removed duplicates independently reviewed the
titles and abstracts of all retrieved papers. In the second phase,
the reviewers read the full texts of the papers included in the
first step. All the articles acquired from databasesin aResearch
Information Systemsformat were uploaded to Rayyan software
(Qatar Computing Research Ingtitute, Hamad Bin Khalifa
University) [15], a web-based tool for data management of
systematic reviews. Rayyan was used to filter citation
management. Throughout the process, any disagreements
between the 2 reviewers were resolved through consensus via
discussion and a third reviewer (third coauthor). To examine
interrater agreement among reviewers, Cohen Kk [16] was
computed, and it was 0.88 and 0.91 in the first and second steps
of the selection procedure, respectively, suggesting a very
excellent degree of agreement.

Data Collection Process

A data extraction form was designed by the first and second
authors, as shown in Multimedia Appendix 1. The same 2
authors extracted the data using MS Excel, and any
discrepancies were resolved by discussion and agreement.

https://www.jmir.org/2023/1/e40259

Study Risk of Bias (Quality) Assessment and Concerns
of Applicability

Two reviewers independently assessed the risk of bias of the
included using an adapted version of the Quality Assessment
of Diagnostic Accuracy Studies—Revised (QUADAS-2) tool
[17]. A checklist was compiled after consulting other similar
study approaches [18-20]. A third reviewer resolved
disagreements between both reviewers. This toal is intended
for use in systematic reviews to assess the risk of bias and
applicability of primary diagnostic accuracy studies. Thequality
of chosen publications was assessed using the QUADAS-2
criteria, which evaluated four domains: (1) patient selection,
(2) index test, (3) reference standard, and (4) flow and timing.
As shown in Table 1, the signaling questions for each
QUADAS-2 domain were adapted to the purpose of this
evaluation. For each domain, this evaluation gave arisk of bias
to research and ranked it as low (score=2), high (score=1), or
unclear (score=0). Each study’s total score was computed by
summing the number of satisfied criteria for each signaling
question following under respective domains, with a higher
score reflecting greater methodological quality. The 2
independent reviewers (authors 1 and 2) piloted the adapted
QUADAS-2 toal (a checklist was formed after consultation
with similar papers) before applying it to the selected studies
(12 articles), and disagreements were addressed by consensus.
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Table 1. Quality Assessment of Diagnostic Accuracy Studies-2 criteria used for qualitative assessment description.

Patient selection

Index test

Reference standard

Flow and timing

Signaling question 1: Data prepro-
cessing specified?

Signaling question 2: At least 50
participants were selected for analy-

Signaling question 1: Data acquisi-
tion methods detailed?

Signaling question 2: BG%level

Signaling question 1: Isthe refer-
ence standard likely to correctly
classify the target condition?

Signaling question 2: Were the ref-
erence standard results interpreted

Signaling question 1: Was there an
appropriate interval between index
tests and reference standard?

Signaling question 2: Did all pa-
tients receive areference standard?

forecasting or prediction approach
detailed? That is, network architec-

tureprovided or M L models param-
eters?

sis

Signaling question 3: Balance of
number of participants within the
subgroups (ie, diabetic or nondiabet-
ic, male or female, healthy or some
disease)

Signaling question 3: Morethan one
performance metrics used

without knowledge of the results of
the index test?

Signaling question 3: Sufficient de-
tail to allow replication about defini-
tion of ground truth (Was the

method described in sufficient detail
to reproduce the presented results?)

3BG: blood glucose.
BML: machine learning.

Data Synthesis M ethods

The narrative technique was used to synthesize the data from
the included research. Narrative research is a broad term that
encompasses a wide range of methods that rely on people's
written or spoken words, aswell as visual representations[14].
Study information and data were synthesized by the second
author from an Excel data extraction sheet related to the
characteristics of recognized studies meeting the inclusion or
exclusion criteria. The focus of the analysis was on studies that
make use of Al and ML technologies for diabetes patients
management and handling via WDs for BG level forecasting
or prediction.

A traditiona meta-analysis was not possible due to (1) the
paucity and lack of raw data required to meta-analyze accuracy
measures and (2) the considerable clinical and methodological
heterogeneity in theincluded studiesin terms of characteristics
of WDs (eg, WD type, placement of the WD, device brand, and
sensing approach), Al algorithms (eg, ML category, data size,

https://www.jmir.org/2023/1/e40259

datatype, and type of validation), and performance metrics (eg,
accuracy, mean absolute deviation, RMSE, and Clarke grid
error). Due to this, we were unable to comment on pooled
metrics. Previous systematic reviewslooking at the application
of Al also reported similar reasoning [19,21].

Results

Study Selection

Having searched 7 bibliographic databases, this study returned
3872 citations. Asshownin Figure 1, we subsequently removed
294 duplicates. Further, 3422 records were excluded after
checking their titles and abstracts for the reasons reported in
Figure 1. Of the remaining 156 references, 144 publications
were excluded during the full-text screening. With 12 studies
remaining, this number remained unchanged even &fter
performing backward and forward referencelist checking. The
final synthesisincludes 12 studiesthat met our inclusion criteria
Figure 1 illustrates the PRISMA process that was followed.
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Figure 1. Preferred Reporting Items for Systematic Reviews and Meta-Analyses chart. IC: inclusion criteria; EC: exclusion criteria.

—
£ ACM =452 IEEE = 2648 Medline =383
',% Embase =213 Psyclnfo = 1 Web of Science =375
& Google Scholar = 100
- lotal = 3872
o
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— —'| 294 duplicates removed
3578 unique titles and abstracts
3422 excluded after seanning
titles and abstracts:
El - Population: » = 1901 (EC b.)
= - Tvpe of publication: n = 984
H (ECa)
& = Intervention : w = 337 (EC c..
ECd)
156 unique full-text studies

—

— 144 publications excluded after
scanning full texts based on 1C
and EC
- Intervention : n =88 (EC c..

ECd.)
=Twpe of publication: i =27
(ECa.)
z - Population: n = 22(EC b.)
E = Unavailable: #=7
20
& 12 unique atter data extraction
- No publication found via
backward and forward
reference list checking

—_—

;; 12 included studies for systematic
= review
=

[

Study Char acteristics

Table 2 shows that 6 of the included articles were published in
2019, whereas 2018, 2020, and 2021 each have 2 publications.
The countries of Asia mainly Bangladesh, China, Pakistan,
India, Sri Lanka, and Taiwan had the most publications (n=8,
66%), followed by North America, which included the United
States and Mexico (n=3, 25%), and Europe, comprising
Switzerland, had single study. The number of participants was
reported in 10 studies and ranged from 2 to 514 subjects, with

https://www.jmir.org/2023/1/e40259

RenderX

an average of 77 subjects. The diversity in participants was
observed in a number of publications, such as the selection of
peoplewith diabetesin 42% (n=5) or gender differencesin 50%
(n=6) of studies. Half of the studies (50%) specified the age
range of included participants, and al of them contained
participants in the age range of 18-50 years. The duration of
data collection from participants varies from study to study,
with aminimum duration of 8 seconds and amaximum duration
of 7 months.
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Study Year Country Participants,n Male,n  Medical conditions Age (years) Duration of data collection
Hinaet a [22] 2020 Pakistan 200 112 Diabetics 18-71 N/AR
Alfianet al [23] 2018 Switzerland 71 N/A Diabetics NRP Months
Alarcon-Paredeset a [24] 2019 Mexico 514 N/A N/A 18-44 Minutes
Islam et al [8] 2019  Bangladesh 25 N/A Diabetics 22-25 Days
Kularathne et a [25] 2019 Sri Lanka 50 NR N/A 40-50 N/A
Joshi et a [26] 2020 India 46 26 N/A 24-50 Seconds
Zhou et a [27] 2019 China 8 4 Diabetics NR Weeks
Mahmud et a [28] 2019 Bangladesh 15 12 N/A NR Minutes
Bent et al [29] 2021 United States 16 7 Prediabetics 35-65 Days
Leeeta [9] 2021 Taiwan N/A N/A N/A NR N/A
Shresthaet a [30] 2019 United States  N/A N/A N/A NR Seconds
Lietal [31] 2018 China 2 N/A N/A NR N/A

3NA: not applicable.
BNIR: not reported.

Quality Assessment Results

Risk of Biasin Studies

In the patient selection domain, over one-third of the studies
(n=6, 38.5%) reported ahigh risk of biasin patient sampling as
they did not use an appropriate sampling process to select
diverse participants among different subgroups. Incomplete
coverage of data processing measures were taken for the
conversion of WD-attained data as input to Al models (Figure
2). In most studies, the sample size was less than adequate for
training and testing algorithms, which minimizes the impact of
overfitting and enhances the quality performance metrics[32].
Therisk of biasin index tests was rated as low in most studies
(n=11, 92%), due to proper documentation of the nature of the
tests, where the models data acquisition process, network
architecture details, forecasting methodologies, and reasons

Figure 2. Risk of bias assessment.

Flow and timing

Reference standard

Index test -

Q 2 4

W High Low

Concerns of Applicability

Figure 3 demonstrates the applicability concern in the patients
selection domain. It was considered high in the majority of

https://www.jmir.org/2023/1/e40259

were specified. The index test was evaluated on multiple
performance metrics, thus better signifying the model prediction
accuracy. Most of the studies used medically approved invasive
methodsfor diabetes measurements asareference standard, but
one did not specify the details, which led to an unclear risk of
bias. The reference standard in al studies overall (n=11, 92%)
wasclassified aslow asall ground truthswere easily replicable.
Since the datainput to Al technology was highly standardized
and therewas no effect of flow or time frame on thefinal output,
both factors were categorized in alow-risk group (n=11, 92%)
except for one study that did not specify detailsand another that
used a subset of participantsand only considered the availability
of better results if a specific medical condition (low BG level)
was targeted. Multimedia Appendix 2 shows the QUADAS-2
tool risk of bias judgment in each included study across all 3
domains as well as applicability concerns for each study.

11 1

11 1

11

&

o

10 12

Unclear

included studies (n=4, 33%) asthe patient’s characteristics and
the condition and setting of each test do not match the review
guestion and criteria. Some studies selected participants
randomly without checking their diabetic conditions, while
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some selected patients from other medical illnesses without
considering the target audience. Similarly, in theindex test, the
included studieswere deemed to have alow applicability issue.
Thisisbecause the Al algorithm approach used in the included
research corresponds to the review definition of Al. However,

Figure 3. Concerns of applicability.

Reference standard

Index test

Patient selection

o

2 4

mHigh mLow

Features of WD

Most studies developed their prototype (n=9, 75%), whereas
only 25% (n=3) made use of commerciadly available WDs
(Figure 4). Asshown in Table 3, the most common type of WD
used in theincluded studies was wearable sensors at 58% (n=7).
More than half of the WDs were wrist-worn (n=7, 58%),
followed by finger-worn (n=3, 25%). The Raspberry Pi Zero
device brand was the most popular among studies (n=3, 25%).
The sensing approach opted by most of the devices was
opportunistic (=7, 58%), where minimal to no input datawere
required from the participant’s side and sensors automatically
collected data, while others (42%, n=5) used a participatory
approach, where users' input was exclusively required. Most

Figure 4. Evolution of wearable technology type.
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the reference standard’s applicability was assessed as unclear
and high in single studies because the data samples in these
studies were acquired from various databases without detailing
selected conditions. Multimedia Appendix 3 demonstrates the
details regarding each domain.

" -

6 & 10 12

Unclear

of the studies used a single WD (n=10, 83%). The sensing
technology type used in WDs was either built-in devices or
comprised of multiple sensors incorporated in more than 1
device. Among the sensors used, NIR sensing was the most
used (n=5, 42%) in combination with other sensors, followed
by PPG sensor usage (n=5, 42%). The smartphone was the most
common (n=6, 50%) gateway device used in studies for
transferring data from WDs to end-host devices. The mode of
data transfer between end points was mostly Bluetooth (n=5,
42%), followed by internet technology (n=3, 25%) consisting
of either Wi-Fi signalsor cellular networks; 5G technology was
aso observed. The end data host device (ie, where data were
processed or stored) was cloud services, in half of the studies
(n=6, 50%).

u Commaercial

W Prototype

2020 2021
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Table 3. Features of wearable devices used for blood glucose forecasting or prediction.

Authors  Wearable  Wearablede- Place-  Devicetech- Sensing De- Sensing type Gateway Hostde- Mode of da-
technology vicetype ment of  nology or approach vices, vice tatransfer
type wear- brand n
able de-
vice

Hinaeta Prototype Wearable Finger  pya2 Participatory 1 NI Rb, PPGC N/A N/A N/A
[22] sensor
Alfianet Commer-  Smart wrist- Wrist MiBand2:  Participatory 4 BLEY sensors Smart- Cloud  Bluetooth
a [23] cia band Mi Band 2, phone

Mi Smart

Scale, Care-

sens, and

Omro
Alarcon- Prototype  Wearable Hand N/A Participatory 1 PPG sensor and N/A N/A N/A
Paredes sensor GSR® sensor
et al [24]
Isamet  Prototype Wearable Finger RaspberryPi  Participatory 1 Raspberry Pi cam- N/A Smart Internet
a [8] sensor Zero era devices
Ku- Prototype  Wearable Foot Raspberry Pi - Opportunistic 1 Tilt switch sensor,  N/A Smart Internet
larathne sensor Zero calibrated load cell devices
etal [29] Sensor, DHT22'
Joshietal Prototype Wearable Finger  N/A Opportunistic 1 NIR Smart- Cloud Internet
[26] sensor phone
Zhouet  Commer-  Smartwatch Wrist  Glutrac Opportunistic 1 NIR and ECGY Smart- Cloud  Bluetooth
a [27] cia phone
Mahmud Prototype  Smart watch Wrist Arduino Opportunistic 2 PPG, temperature, N/A Respber-  Wired
et a [28] andwearable Nano, Rasp- GSR sensors ry Pi

sensor berry Pi
Bentetal Commer-  Smart wrist- Wrist EmpaticaE4 Opportunistic 1 PPG, ACC EDA!,  Smart- Cloud  Bluetooth
[29] cia band or GSR sensor, in-  Phoneor
frared thermopile PC
Leeetal Prototype Smartwatch Wrist Custom Opportunistic 1 PPG and NIR Smart- Cloud  Bluetooth
[9] phone
Shrestha  Prototype  Smart wrist-  Wrist N/A Participatory 1 Meta oxidesemi- Smart- Cloud  Bluetooth
et d [30] band conductor-based  phone
chemical sensors

Lieta Prototype  Wearable Wrist Custom Opportunistic 1 NIR N/A None N/A
[31] sensor

8N/A: not applicable.

BNIR: near-infrared.

®PPG: photopl ethysmography.

dBLE: Bluetooth low energy.

€GSR: galvanic skin response.

‘DHT22: digital-output relative humidity and temperature sensor.
9ECG: electrocardiogram.

hACC: accelerometer.

'EDA: electrodermal activity.

Al-Related Features of WDs

A hierarchical categorization of the ML approaches was used
in the chosen research; Figure 5 illustrates this. We observed
that classical ML approaches were deployed by half of the
studies (n=6, 50%) of those who mostly opted for
ensembl e-boosted trees mainly comprising random forest (n=5,
42%). In the majority of modern approaches, artificial neural

https://www.jmir.org/2023/1/e40259

RenderX

networks-type convolutional neural networks (n=3, 17%) were
used.

Theinput data used for ML models by a quarter (n=3, 25%) of
the publications were BG levels, PPG signals, or NIR. Among
all the other included articles, Shrestha et al [30] did not disclose
the input details of the model. The validation method used by
most of the studies wastrain or test split (=8, 67%). The data
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decomposition of data sets used in studies was done based on
the number of samples selected; the majority of the studies have
separate data sampl es collected for testing purposes (n=5, 42%).
The best model sidentified among studiesfrom classical models
were random forest (n=3, 25%) and convolutional neural
network (n=3, 25%) in modern. Multiple and varied evaluation
metrics were reported by studies, and the evaluation outcomes
of the corresponding best models in each study are reported in
Table 4. The most common evaluation metric used was CGE
(n=7, 58%), followed by RMSE (n=5, 42%). However, owing
to the lack of a uniform assessment metric across research, we

Figure5. Hierarchical categorization of machine learning approaches.
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do not summarize the reported metrics (calculation of mean,
SD, etc). To validate the performance of ML models for
forecasting or predicting BG levelsfrom wearable data collected,
all the studies made use of at least 1 ground truth method for
reference glucose measurement. More than half of the studies
made use of medical devices (med-devices, n=10, 83%) such
as, glucometer or any portable device method used in daily
routine. Other options used for ground truth collection were
medical tests that may comprise laboratory blood tests or
medical examinations, which were used by 25% (n=3), and an
expert opinion was opted for in one of the studies [23].

¥

Modemn |

Artificial Neural

Network

Convolutional Neural
> Network

.

Deep Neural
Network

Long Short Term
Memory
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Table4. Artificial intelligence—related features of wearable devices for forecasting.

Author Machine  Algorithm used Input Datavalida- Dataset decomposi-  Algorithm  Reported best diag-  Ground truth
learning  for forecasting tion method tion best perfor-  nostic performance
category  or predictions mance of model
Hinaetal Classical Linearregress  ppgC signdl Trainortest «  Training: 60%of FGSVR « Coefficientof Med-device
[22] sion, FGSVR2 split 200 subjects determination
S\/Rb, and en- . Validation: 40% (Rz)l 0.937
semble-boosted *  mARD%
trees 7.62%
*  RMSE® 1120
mg/dL
o Clarkeerror
grid: 95%
Alfianet  Modern | gTmf Insulindose, Trainortest Two BG datasets: LSTM « Correlationco- Expert and
a [23] BGY level, split . Dataset 1 148 efficient (r)and med-device
meal inges- records RMSE
tion, and ex- *  cGM" dataset: - (Daastl)
ercise activi- single diabetes RMSE: 25.621
ty : ) mg/dL, r:0.647
patient taken:
« (Dataset?2)
26,167 records RMSE: 2.285
Both data sets used mg/dL, r: 0.999
80% for training and
rest for testing
Alarcon-  Modern  Npl_ANNS Fingertipim- K-foldcross «  Training: 514 ANN «  MAEMK 1037 Medica
Paredes ages validation, hostograms . Clakegrider-
etal [24] trainortest .«  Trainor test (for ror: 90.32%
split mode! selection):
70% of whole
data set
o Védlidation subset
(model valida-
tion): 30%
Isamet Modern N PPGsignal, Trainortest « 210datapoints CNN « Clakegrider- Med-device
al [10] GSR™ and  SPlit +  Training: 204 da- ror: 80%
BG ta points
« Testing: 6 data
points (4 nondia-
betic and 2 dia-
betic)
Ku- Classical Linearregress  Age BMI,  pnAD NA Linearre- « \sg® 00150 Medical and
larathne sion current gression . R?score med-device
et d [25] blood glu- 0.7834 ’
;Zzeetliivg’c g . \/ari ance score:
tors, smok- 0.7346
ing,
HbA1c,Cabs
Joshietal Classical Deep neural NIRIsignals Tranortest «  Training sam- MPR3 « mMARD: 486% Medica and
[26] and mod- network, MPRP split ples: 187 « AvgE: 4.88%  med-device
ern «  Testing samples: «  Mean absolute
46 deviation:
9.42%
. RMSE: 13.57
mg/dL
Zhouet Classca R NIR signals, Trainortest .  Training sam- RF « Clakegrider- Med-device
a [27] heart rate split ples: ND ror: 80.35%
variahility, o  Testsamples: « AvgRMSE:
pulse trans- 168 1.44 mg/dL
fer time, BG
level
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Author Machine  Algorithm used Input Datavalida- Dataset decomposi-  Algorithm  Reported best diag-  Ground truth
learning  for forecasting tion method tion best perfor-  nostic performance
category  or predictions mance of model
Mahmud Modern  CNN Infrared Trainortest «  Training sam- CNN « Clakegrider- Med-device
et a [28] channels, split ples: 15 instance ror (values not
GSR and data of 15 sub- mentioned)
temperature jects
signal «  Testing: another
25 data
«  Chosen data
length: 1024
Bentetal Classica Multipleregres- Interdtitial Trainortest « Training: 16 par- RF « RMSE: 357 Med-device
[29] sion model, RF  glucosesum-  split, leave ticipants mg/dL
mary and on out o  Testing: 10 par- «  Mean absolute
glucose vari- ticipants percentage er-
ability met- ror: 5.1%
rics
Leeeta Modern CNN PPGsigna  Trainortest 349of PPGdatasam- CNN « Clarkeerror Med-device
[9] split ples: grid: 84.29%
« Training: 279
sets
o  Testing: 70 sets
Shrestha  Classica  gypS NA NA NA SVM « Accuracy: 97% Med-device
et al [30]
Lieta Classica RF NIR signa NA NA RF . MAE: 17.27% Med-device
[31] « Clarkeerror

grid: 56.52%

8FGSVR: fine Gaussian support vector regression.
bSVR: support vector regression.

®PPG: photopl ethysmography.

4mARD: mean absolute relative difference.
®RM SE: root mean square error.

fLsT™: long short term memory.

9BG: blood glucose.

RCGM: continuous glucose monitoring.
'ND: not defined.

JANN: artificial neural network.

KMAE: mean absolute error.

|CNN: convolutional neural network.
MGSR: galvanic skin response.

"NA: not applicable.

OMSE: mean square error.

PMPR: multiple polynomial regression.
INIR: near-infrared.

'RF: random forest.

SSVM: support vector machine.

Discussion

Principal Findings

ML for BG forecasting using WDs holds great promise. Most
of the studies reported RM SE and CGE for eval uation purposes,
with only acouple of studiesreporting high accuracy asametric.
Support vector machine algorithm was reported in 1 study with
up to 97% accuracy. The general quality of the studies was
considered high, as revealed by the QUADAS-2 assessment

https://www.jmir.org/2023/1/e40259

RenderX

tool. The patient selection category was deemed low in half the
studies, largely due to an inappropriate sampling process for
selecting diverse participants among different subgroups. There
wereal so no real applicability concernsin the quality assessment
of the majority of the studies, except in the patient selection
domain. The features extracted reflect the current situation as
to the technologies that are commercial products, but also
identify what the future holds with many prototypes in the
included studies. Thisfield is very much in its infancy, but we
hereby provide insight for researchers with our findings.
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Strengths

This review followed the PRISMA extension for systematic
reviews, and the protocol was preapproved by International
Prospective Register of Systematic Reviews. The authorsbelieve
that by providing the quality assessment aspect, thisisthefirst
in-depth review of itskind focusing on WDstargeting BG level
forecasting for diabetes using Al techniques. Compared to
previous reviews, we consider our list of extracted features to
be exhaustive in this field. The authors consisted of expertsin
the research computer sciencefield aswell asmedical research
practitioners, which allowed the exploration of current
technologies in detail. As a result, this review reports
high-impact findings to help identify gaps in the research
community. The most popular databases were searched within
the IT and health care fields, with further searches in Google
Scholar and forward and backward referencelist checking, thus
reducing the risk of publication bias by allowing an exhaustive
search of the literature.

Limitations

A traditional meta-analysis was not possible due to the paucity
of raw data required to meta-analyze evaluation metrics.
Furthermore, there was considerable clinical and methodological
heterogeneity in the included studies. Studies in the English
language published between 2015 and 2021 were included;
therefore, thereisthe possibility that some rel evant studieswere
overlooked. Devices that could not be classified as WDs were
excluded, such as el ectroencephal ogram and el ectrocardiogram
machines limited to hospital settings. The focus was on Al
therefore, studiesthat only had a statistical measurement, which
is not considered an Al approach, were excluded. WD brands
within our keyword searches, such as Fitbit and Apple Watch,
were not included as this would return too many irrelevant
results; this is in line with previous review search strategies.
However, as a result, some relevant studies may have been
missed in the search.

Practical and Research Implications

There are several practical and research implications for this
work. For practical implications, we find that noninvasive
methods for calculating BG levels for people with diabetes to
forecast BG levels are a much-welcomed advancement in this
field. The ability to have such sensors on WDs that can be both
stylish and fashionable, the ability to be paired with other smart
devices, and general connectivity to cloudsallowsfor continuous
collection of data using many biosensors. This alows the
measurement of vitalsand biosignal swithout user interference;
all of these reasons allow for awider acceptance than existing
traditional approaches such as continuous glucose monitoring.
Despite the fact that there have been many studies published
using WDs for diabetes, we found alack of those that reported
usage of ML and only a handful used for the purpose of BG
forecasting. Although the number of studies reported in this
paper issmall, thereis great promise due to the general quality
assessment, including the accuracy levels of the ML approaches
used at high levels. We see that a lot of studies are still
developing their prototypes, whereas the existing commercially
available devices that have aready been thoroughly tested for
usability and are already popular products on the market can

https://www.jmir.org/2023/1/e40259
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easily be repurposed. Commercial devices are waiting to be
validated with ML applications by researchers and reported in
scientific journals; a quick search on retail sites reveals many
commercia devices that claim to measure BG levels but have
no associated studies. Adapting these existing devices would
instill consumer confidenceif engineers and data scientists came
together and further validated these devices by reporting their
effectivenesswhen ML techniques are applied to the generated
data. Currently, there is no standard way studies are reporting
performance and accuracy. Even when papers report high
accuracy, this can be misleading, asfrom aclinical perspective,
it is not important when BG levels are normal or around the
normal band; the real applicability of the algorithm is in the
glycemic event range. Therefore, the accuracy of these
algorithms needsto be measured and reported in the rangewhere
it matters. Studies need to report these findings and not just
average accuracies, providing readers with more clinically
meaningful metrics. We fedl it is high time that devices often
classified as WDs, such as continuous glucose monitoring,
which are still semi-invasive, should beless of afocus, and that
studies should now focus on completely noninvasive devices,
such as commercially avail able smart watches that make use of
noninvasive sensors. There are al'so many opportunities within
the loT field; again, we feel there could be more integration of
WDs used for BG monitoring with existing technologies and
ML with Alexa, Google Homes, and Apple Watches. Thiscould
allow endless opportunities for gathering data from multiple
sensors in real-time and personal patient data. Of course, the
issue of privacy and data sovereignty needsto be taken seriously
when it comesto mass data storage on cloud-based systems and
the various interconnected devices, hospital datacenters, and
consent legal and moral obligations. A multidisciplinary effort
from medical practitioners, engineers, and legal experts is
needed.

Conclusions

A comprehensive systematic review, including quality
assessment looking at WDs for BG level forecasting using Al
and WDs, is presented following PRISMA guidelines and the
QUADAS-2 tool for quality assessment.

Despite the low study numbers reported, we see great promise
due to the general quality assessment, including the high
accuracy levels of the ML approaches used. There is a large
scope for further quality studiesin thisfield.

The research community needs to differentiate between
forecasting (based on past observations) and prediction (taking
associated data, such as diet, activity, and medications along
with a previous BG value, into consideration). For this study,
we did not categorize studies based on the difference in
definitions of these 2 terms as we found them used
interchangeably in the reviewed studies.

While there are commercial-grade WDs, to the best of our
knowledge, none of these devices have undergone safety and
efficacy trials to be classified as medical-grade (FDA or CE),
thereby currently limiting their usein clinical decision support.
For example, insulin pumps, especialy for patients with type
1 diabetes, require BG devices to be safe to ensure automated
delivery of proper insulin dosage. However, WDs hold real
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promise, largely due to the broader consumer acceptance of
commercially available devices coupled with their noninvasive
sensors alowing for BG forecasting, which have been used
using ML approaches for patients with diabetes. These WDs
are getting better over time due to (1) the development of more
accurate noninvasive sensors and (2) improved ML agorithms
that not only use past BG values (forecasting) but also consider
other information such as activity, sleep, and BMI that are also
actively being measured by collocated sensors for better

Ahmed et &

much in its infancy, but we hereby provide insight for
researchers with our findings.

We envisage the elimination of invasive devices due to WDs,
but for this to happen, commercial WD manufacturers need to
make raw data available as opposed to black box outputs
calculating diabetes-related parameters. For example, major
players currently do not provide raw PPG signal s despite using
PPG or NIR sensors, with the exception of devices such as
Empatica; thisrestricts research studiesto validate and optimize

prediction. parameters related to glucose management and BP against

Researchers have an opportunity to perform studies and traditional measurements.

validation on commercially available devices. Thisfieldisvery
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