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Multimodal deep learning for liver
cancer applications: a scoping
review

Aisha Siam, Abdel Rahman Alsaify, Bushra Mohammad,
Md. Rafiul Biswas*, Hazrat Ali and Zubair Shah*

College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar

Background: Hepatocellular carcinoma is a malignant neoplasm of the liver and a
leading cause of cancer-related deaths worldwide. The multimodal data combines
several modalities, such as medical images, clinical parameters, and electronic
health record (EHR) reports, from diverse sources to accomplish the diagnosis
of liver cancer. The introduction of deep learning models with multimodal
data can enhance the diagnosis and improve physicians’ decision-making for
cancer patients.

Objective: This scoping review explores the use of multimodal deep learning
techniques (i.e., combining medical images and EHR data) in diagnosing and
prognosis of hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA).

Methodology: A comprehensive literature search was conducted in six databases
along with forward and backward references list checking of the included studies.
PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
extension for scoping review guidelines were followed for the study selection
process. The data was extracted and synthesized from the included studies
through thematic analysis.

Results: Ten studies were included in this review. These studies utilized
multimodal deep learning to predict and diagnose hepatocellular carcinoma
(HCC), but no studies examined cholangiocarcinoma (CCA). Four imaging
modalities (CT, MRI, WSI, and DSA) and 51 unique EHR records (clinical
parameters and biomarkers) were used in these studies. The most frequently used
medical imaging modalities were CT scans followed by MRI, whereas the most
common EHR parameters used were age, gender, alpha-fetoprotein AFP, albumin,
coagulation factors, and bilirubin. Ten unique deep-learning techniques were
applied to both EHR modalities and imaging modalities for two main purposes,
prediction and diagnosis.

Conclusion: The use of multimodal data and deep learning techniques can
help in the diagnosis and prediction of HCC. However, there is a limited
number of works and available datasets for liver cancer, thus limiting the overall
advancements of Al for liver cancer applications. Hence, more research should be
undertaken to explore further the potential of multimodal deep learning in liver
cancer applications.
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1. Introduction

Hepatocellular cancer (HCC) and cholangiocarcinoma (CCA) are two types of liver
cancer that are responsible for significant morbidity and mortality worldwide (Lee et al.,
2011). The early detection and diagnosis of these cancers are essential for improving
patient outcomes, as the survival rate decreases with the advancement of the disease
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2023).
staging of cancer are crucial for improving patient survival

(Asafo-Agyei and Samant, Accurate diagnosis and
and treatment outcomes. Hepatocellular carcinoma (HCC) and
cholangiocarcinoma (CCA) are liver cancer types requiring precise
diagnosis and staging. Traditionally, imaging techniques such as
computed tomography (CT), magnetic resonance imaging (MRI),
whole slide image (biopsy), and ultrasound (US) have been used as
the standard of practice for diagnosing and staging HCC and CCA
(Zhou et al., 2019) along with clinical findings, biological markers
and blood test [liver function test, Alfa fetoprotein (AFP) and
inflammation-based index (IBI)] (Asafo-Agyei and Samant, 2023).
These modalities are analyzed by experts, including pathologists,
oncologists, and gastroenterologists, and remain the gold standard
for diagnosis confirmation.

Recently, there has been an increasing interest in using artificial
intelligence (AI) in the medical field, including the cancer and
oncology. With the digitization of healthcare records, AI modes
can efficiently utilize patient data. Electronic Health Record
(EHR) of patients comprises comprehensive information regarding
their medical history, diagnoses, treatments, laboratory results,
radiology images, genetic profiles, and more (Kohli and Tan, 2016).
Harnessing the potential of this vast data deluge is a significant
challenge but also holds tremendous promise for Medical Al
techniques (Mohsen et al., 2022). Al techniques using machine
learning and deep learning models have emerged as powerful tools
for extracting valuable insights from massive EHRs and developing
multimodal AT methods (Zhou et al., 2019). It can utilize multiple
modalities of data concurrently, such as CT, MRI, and US, along
with clinical findings, biological markers, and blood test results,
including liver function tests, Alfa fetoprotein (AFP), and the
inflammation-based index (IBI), and is able to provide a more
comprehensive and accurate picture of the internal structure and
function of the liver (Zhou et al., 2019).

A multimodal AT refers to an AI framework that integrates and
processes information from multiple modalities or sources, such
as text and images. This approach enables the Al-based system
to learn and make predictions based on information extracted
from different data types, allowing for a more comprehensive and
holistic understanding of the underlying information (Audebert
et al,, 2020; Mohsen et al., 2022). Multimodal data for HCC
provide the integration of multiple data sources such as
blood test reports, CT, MRI, and liver biopsy, and enables
the chances of higher diagnostic accuracy compared to single
modality data. Similarly, the combination of different data types
helps in building better models of potential risk stratification.
Moreover, by combining multiple modalities, multimodal AI
techniques enhance the extraction of meaningful features and
make accurate predictions (Zhou et al., 2019). Deep learning, a
subset of machine learning, involves artificial neural networks
with multiple layers to learn hierarchical representations of
data. In multimodal AI, deep learning models are designed
to handle and process different data types simultaneously,
capturing their inherent relationships and interactions (Zhou
et al, 2019). A multimodal AI technique is useful in aiding
clinicians in predicting various aspects related to HCC and
CCA. Tt can assist in extracting mutually exclusive information
from the data that can help in treatment outcome prediction,
prognosis estimation, survival prediction, staging, and diagnosis.
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By leveraging diverse data sources, the multimodal AI technique
provides with valuable insights for defining optimal treatment
strategies and personalized patient management plans (Zhou et al.,
2019).

Several studies have investigated the use of multimodal AI
combining different data modalities for diagnosing HCC and CCA.
However, there is a need for a scoping review to summarize and
synthesize the current evidence on this topic. We are confident
that this scoping review will give readers a thorough understanding
of the developments made in multimodal AI combining imaging
data and EHR for liver cancer applications. The reader will also
get knowledge of how deep learning models might be created
to align data from diverse modalities for distinct therapeutic
tasks. Additionally, by highlighting the dearth of multimodal
data resources for medical imaging and EHR for liver cancer
applications, this review will encourage the research community
to produce more multimodal medical data. Since we include
studies on multimodal deep learning-based AI techniques, we
use the terms multimodal deep learning and multimodal AI
interchangeably in this review.

2. Methods

This scoping review focused extensively on the studies that
used multimodal data and deep learning techniques to predict and
diagnose HCC. There are several steps followed in conducting this
review as below.

2.1. Search sources

A comprehensive literature search was conducted in PubMed,
Scopus, Google Scholar, ACM, IEEEXplore, and CINAHL
databases using relevant keywords. The PubMed database also
covers Medline. The search was limited to studies published in the
English language from January 2018 till August 15, 2023, to capture
the most recent developments in multimodal deep learning-based
AT methods using imaging and EHR data. Our search focused
specifically on studies from 2018 due to the significant increase
in HCC multimodal studies during that period. By limiting our
analysis to studies from 2018, we aimed to capture the most
up-to-date and relevant findings in this rapidly evolving area
of research.

2.2. Search terms

The search terms used in this study were: ((“artificial
intelligence”) OR (“deep learning”)) AND ((“multi-modal”) OR
(“multimodal”) OR (“electronic health record”) OR (“image™”))
AND ((“liver cancer”) OR (“hepatocellular carcinoma”) OR (“bile
duct cancer”) OR (“cholangiocarcinoma”)). Two Boolean operators
were introduced, the OR operator to combine keywords within
each category and the AND operator to merge keywords across
all categories.
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2.3. Study eligibility criteria

We included studies that combined multimodal data, i.e.,
imaging and EHR. The multimodal data combined imaging data
such as MRI and CT scans with clinical parameters such as
laboratory test results and vitals. We included studies that reported
deep learning techniques such as convolutional neural networks
(CNNs), transformers, or neural networks in their methods. The
aim of this study was to identify the use of multimodal deep
learning techniques in liver cancer application. So, we excluded
studies that used only traditional machine-learning techniques. The
types of included studies were peer-reviewed articles, dissertations,
book chapters, and conference proceedings published from 2018
to August 2023. Only English language texts were included. We
excluded studies that did not combine medical imaging and EHR
data and also excluded studies that developed models for diseases
other than liver cancer. We excluded systematic reviews, abstracts,
studies that used languages other than English, and studies that
were published before the year 2018. The study selection process
was carried out by three authors independently. Conflicts among
them were resolved through mutual discussions and through
validation by all the authors.

2.4. Data extraction

The data were extracted from the included studies using a
standardized form, including information on the study design,
sample size, population characteristics, Al methods, interventions,
and outcomes. It was used to ensure accurate and precise
documentation of significant information for each study. The data
extraction form is provided in Appendix A.

3. Results

3.1. Study selection results

Our search terms yielded 363 studies from six different
databases (Google Scholar 60, PubMed and Medline 76, Scopus
143, ACM 77, IEEE 7, CINAHL 0). After going through these
studies’ titles and abstracts, we excluded 276 studies and included
18 studies. The number of excluded studies with their reason for
exclusion are listed in the PRISMA flowchart shown in Figure 1.
After going through the full text of the studies, we excluded 8
studies and were left with a total of 10 studies.

Going through the demographic of the included 10 studies, we
can see that 8 studies were from China and only 2 studies were
from Brazil. During our literature review, we searched for studies
published from 2018 to 2023; however, the final included studies
were only published from 2020 to 2022. All the studies, except one
conference paper, were journal articles.

3.2. Artificial intelligence techniques

The research encompassed multimodal AI techniques that
are capable of identifying not only diagnostic parameters and
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biomarkers in EHRs, but also recognizing HCC abnormalities in
medical image modalities. All of the studies focused on HCC, and
no study involved CCA.

The purpose of employing multimodal deep learning models
for HCC can be categorized into two main objectives: disease
prediction and disease classification or diagnosis. Additionally,
these models were utilized for predicting treatment response,
determining survival rates, and staging the disease.

The primary deep learning architecture employed in these
models was CNN. The multimodal deep learning models used a
combination of two different deep learning neural network models
trained on processing two different types of datasets modalities
(medical imaging and EHRs). The included studies used models
like VGG16, VGG19, Inception V3, and ResNet18, to extract and
analyze detailed spatial features of medical images in creating
multimodal AI techniques (Menegotto et al.,, 2020, 2021; Zhen
et al., 2020; Gao et al,, 2021; Hou et al., 2022; Zhang et al., 2022).
Additionally, multi-task deep learning neural networks, UNet,
MTNet, were used to integrate multiple modalities of data in
addition to recurrent neural network (RNN) which can utilize, and
process text information and numerical figures (clinical parameters
and biological markers) derived from EHRs (Fu et al., 2021). Other
techniques like Cox proportional hazards models’ classifiers were
used to develop predictive models from whole slides images (WSI)
and clinical genetic data (Hou et al., 2022).

The studies included in this analysis employ multimodal
deep-learning methods for the diagnosis and prediction of liver
cancer. State-of-the-art deep learning models such as VGG19
and DeepAttnMISL, which is a state-of-the-art are employed
for recognizing image modalities (Hou et al, 2022), while
GhostNet/CNN, a combination of two single deep learning neural
network models, is used for predicting treatment response to trans-
arterial chemoembolization (TACE) (Sun et al., 2021).

Weighted gene co-expression network analysis (WGCNA)
is used to analyze mRNA gene expression data from patients’
files, while Cox-regression utilizes its outcome and the outcome
from VGG16 (WSI processing model) to predict HCC patient
survival (Hou et al., 2022). Multimodal AI techniques such as the
multimodal Xception CNN and the Spatial Extractor-Temporal
Encoder-Integration-Classifier (STIC) models are also used, which
combine different modalities to improve diagnosis performance.
Additionally, AI techniques combining deep learning architectures
with machine learning methods such as SVM, Random Forest, and
Cox regression are employed for survival analysis.

Overall, these models and techniques have the potential to
improve medical diagnosis, prediction, and survival analysis by
integrating different data sources. By combining information
from multiple modalities and utilizing advanced deep learning
techniques, multimodal AI techniques can provide more accurate
and reliable predictions, ultimately leading to improved patient
outcomes. The 10 studies discussed four different types of medical
images, explained in Figure 2. The most common imaging modality
used in the studies was CT used in six studies (Liu et al., 2020;
Menegotto et al., 2020, 2021; Fu et al., 2021; Gao et al., 2021; Sun
et al., 2021), followed by MRI used in two studies (Zhen et al,
20205 Song et al., 2021), WSI used in one study (Hou et al., 2022),
and Digital Subtraction Angiography (DSA) used in one study
(Zhang et al., 2022), respectively. All these studies used single image
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modality and did not report combined use of multiple imaging
modalities. Meanwhile, these multimodal deep learning models
were capable of processing more than 1 biological marker or clinical
parameter (in some models, the number of different types of clinical
parameters was 22).

Prediction was the most common purpose for the use of
multimodal AI techniques, addressed in six studies (Liu et al., 2020;
Fu et al.,, 2021; Song et al., 2021; Sun et al., 2021; Hou et al., 2022;
Zhang et al., 2022), while four studies (Menegotto et al., 2020, 2021;

Frontiersin Artificial Intelligence

Zhen et al., 2020; Gao et al., 2021) used multimodal AT techniques
for the purposes of diagnosis or classification of HCC (Menegotto
et al., 2020, 2021; Zhen et al., 2020; Gao et al., 2021). The HCC
predicting multimodal AI techniques are sub-categorized based on
the type to survival prediction (Hou et al., 2022), Tran’s catheter
arterial chemoembolization (TACE) treatment response prediction
(Sun et al.,, 2021), and microvascular invasion (MVI) prediction
(Fu et al,, 2021; Song et al,, 2021). One study (Liu et al., 2020)
introduced a multimodal AI model capable of performing all three
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FIGURE 2
Image modalities used in the included studies.

types of predictions. For prediction purpose, the commonly used
imaging modality was MRI and CT scans used in two studies (Song
etal., 2021; Sun et al,, 2021), followed by WSI and DSA, each used
in one study (Hou et al., 2022; Zhang et al., 2022), respectively.

The remaining four studies used multimodal Al for diagnosis
or classification of the HCC. Three of these studies used CT
(Menegotto et al., 2020, 2021; Gao et al.,, 2021), while one study
used MRI (Zhen et al., 2020). The summary of the usage of different
imaging modalities is shown in Figure 2.

The included studies reported the use of 51 unique EHR
parameters. Among the EHR related biomarkers and diagnostic
parameters were patients age, gender, platelet (PLT), total bilirubin
(TBIL), alpha fetoprotein (AFP), carbohydrate antigen 19-9 (CA19-
9), carcinoembryonic antigen (CEA), carbohydrate antigen 125
(CA125), hepatitis B surface antigen (HBsAg), and liver function
test. All other parameters are specified in Figure 3.

The most frequently used parameters are gender (reported in
nine studies), age (reported in eight studies), alpha-fetoprotein
(AFP) (reported in seven studies), platelet (PLT) count (reported
in five studies), albumin (reported in six studies), and prothrombin
time (PT) (reported in four studies). These parameters are used
in multiple studies and are considered to be important in the
diagnosis and prediction of liver cancer. Other commonly used
parameters include total bilirubin (reported in four studies),
Child-Pugh classification (reported in four studies), hepatitis
B virus (HBV) (reported in three studies), ALT (reported in
three studies), serum aspartate aminotransferase (AST) (reported
in three studies), tumor marker (AFP, CEA, CA-125, CA19-
9) (reported in two studies), carbohydrate antigen 19-9 (CA19-
9) (reported in two studies), carcinoembryonic antigen (CEA)
(reported in two studies), and carbohydrate antigen 125 (CA125)
(reported in two studies).

Figure 3 shows the unique EHR parameters that various
multimodal deep learning models can process. The Cox
proportional hazards model is capable of processing 3/51
EHR modalities. GhostNet/CNN, a combination of GhostNet
and convolutional neural network (CNN), can process 14 EHR
modalities. Google Inception-ResNet V2 CNN, combined with an
auto encoder neural network CNN, can process 16 EHR modalities.
CNN+DLC, which combines CNN and deep learning classifier
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(DLC), can process 22 EHR modalities. Last but not least, the
multi-task deep learning neural network (MTNet) is capable of
processing 22 EHR parameters.

The model CNN combined with MTNet used the highest
number of EHR parameters employing 22 clinical parameters
(Song et al., 2021). Xception CNN used 20 clinical parameters
(Menegotto et al., 2021), Google Inception-ResNet-V2 CNN used
16 clinical parameters (Zhen et al.,, 2020). GhostNet/CNN used
14 clinical parameters (Sun et al., 2021). Cox-Proportional Hazard
(Cox-PH), CNN + Gated recurrent neural network (RNN) Spatial
Extractor-Temporal Encoder-Integration-Classifier (STIC), and
Cox proportional hazards model had the lowest number of EHR
modalities, i.e., 9, 8, and 3, reported in Liu et al. (2020), Gao et al.
(2021),and Hou et al. (2022), respectively. Table 1 summarizes each
multimodal AT technique and the unique EHR parameters used to
train the multi-modal deep learning model. Appendix explains the
technical terms and the various names of deep learning models used
in this text.

3.2.1. Implementation

The softwares used for the implementation of the multimodal
deep learning models were Pytorch reported in three studies (Liu
et al., 20205 Song et al., 2021; Hou et al.,, 2022) and TensorFlow
reported in three studies (Zhen et al., 2020; Gao et al, 2021;
Menegotto et al., 2021). One study also reported the use of LabelMe
software tool (Zhang et al., 2022).

3.3. Datasets

3.3.1. Data sources

The average number of samples for all the studies was 7,984,
where the highest number was 38,424 MRI combined with 16
different clinical parameters per dataset, used in Zhen et al. (2020),
and 37,084 CT scans combined with 20 clinical parameters per
dataset, used in Menegotto et al. (2021). The size of the datasets of
the remaining studies was between 145 and 766 with an average of
492 after removing the two extremes (Zhen et al., 2020; Menegotto
et al., 2021). Four studies used datasets from open sources whereas
the rest used datasets from private sources (Liu et al., 2020; Gao
et al., 2021; Menegotto et al., 2021; Hou et al., 2022).

3.3.2. Data sizes/training and testing

The training datasets were mentioned in all studies while
validation and testing sets were not specified in some studies. Seven
studies mentioned the validation set size (Menegotto et al., 2020,
2021; Zhen et al., 2020; Fu et al., 2021; Gao et al,, 2021; Sun et al.,
2021; Zhang et al.,, 2022) while only five studies mentioned the
test set size (Menegotto et al., 2020, 2021; Gao et al., 2021; Song
et al,, 2021; Hou et al,, 2022). The training time was mentioned
in only five studies whereas it was not provided in the remaining
studies. The highest epoch documented was 1,000, and the lowest
was 20.
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3.3.3. Code availability

Only four studies provided links for the source code used
for the development of multimodal deep learning models (Fu
et al, 2021; Gao et al, 2021; Song et al, 2021; Hou et al,
2022). Table 2 summarizes the datasets categorization and how
they were processed by the multimodal deep learning models
(training, validation, and testing). The table also provides the
data sources, training time, and type of modalities reported in
each study.

Frontiersin Artificial Intelligence

3.4. Validation/evaluation metrics

3.4.1. Type of validation

Various metrics and validation techniques were used to evaluate
the performance of the multimodal AI models. Six studies have
mentioned the validation type namely, three studies reported 5-
fold cross-validation (Zhen et al., 2020; Gao et al., 2021; Hou et al.,
2022), two studies reported external validation (Fu et al., 2021;
Gao et al,, 2021) and one study reported 10-fold cross-validation
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TABLE 1 Multimodal deep learning techniques.

References

Deep learning

models

Image
modality
used

EHR modality used (clinical
parameters and biological
markers)

10.3389/frai.2023.1247195

Number of
unique EHR
parameters

Purposes of
study

Hou et al. (2022)

VGG19, Cox
proportional hazards
model (Cox-regression)

Whole slide images
(WSI)

Gene expression (DCAF13, ELAC2,
ZNF320, KIF18B, FERMT3)/gender and
age.

Prediction: survival
prediction

Sun et al. (2021)

GhostNet/CNN

MRI

Age, Gender, ALT, AST, HBsAg status,
Child-Pugh classification, AFP (ng/ml),
hepatocirrhosis status, response to
therapy/inflammation-based indexes IBI
(platelet, Lymphocyte, Monocite <
neutrophil). Neutrophil-to-lymphocyte
ratio (NLR), platelet-to-lymphocyte
ratio (PLR), monocyte-to-lymphocyte
ratio (MLR), systemic
immune-inflammation index (SII), and
neutrophil-to-lymphocyte ratio (SIRI)
(clinical indexes are lymphocytes,
platelets, monocytes, and neutrophils)
(inflammatory indexes NLR, MLR, PLR,
SII, and SIRI).

14

Prediction:
treatment response
(TACE)

Zhen et al. (2020)

Google

Inception-ResNet V2
CNN + autoencoder
neural network CNN

MRI

Clinical data was encoded using one-hot
encoding. For example, gender. Age,
gender, cirrhosis-related history, other
cancers, tumor marker (AFP, CEA,
CA-125, CA19-9, PSA, and Ferritin),
and liver function (albumin, total
bilirubin, prolonged prothrombin time,
hepatic encephalopathy, and ascites).

16

Diagnosis: HCC

Song et al. (2021)

Radiomics, CNN

MRI

Age, gender, HBV hepatitis B virus, TB
total bilirubin, ALB albumin, ALT
alanine aminotransferase, GGT
glutamyl transpeptidase, PT
prothrombin time, AFP alpha
fetoprotein, MVI microvascular
invasion [The minimum Akaike
information criterion (AIC) index was
used as the stop criterion to determine
the optimal characteristics. Then, the
selected parameters were incorporated
into the deep learning model to form
the DLC model (Figure 1). Notably, for
the selected parameters, categorical
variables were encoded by one digit (i.e.,
—1 or 1 for each state), and continuous
variables were normalized to (—0.5,
0.5)]. Neutrophils count, Lymphocytes
count, INR, lobl10AFP, and tumor size.
Clinical parameters were collected,
including sex, age, routine blood test,
blood biochemical test, blood
coagulation function test, markers of
hepatic fibrosis, hepatitis virus B
carriers, AFP, and tumor size. Serum
component index, such as
platelet-lymphocyte ratio (PLR),
neutrophil-lymphocyte ratio (NLR),
lymphocyte-to-monocyte ratio (LMR),
prognostic nutritional index (PNI),
aspartate aminotransferase-to-platelet
ratio index (APRI), aspartate
aminotransferase-to-neutrophil ratio
index (ANRI) and aspartate
aminotransferase-lymphocyte ratio
(ALR), were calculated as previous
reported.

22

Prediction: MVI
(micro vascular
invasion)

Frontiersin Artificial Intelligence

07

(Continued)

frontiersin.org



https://doi.org/10.3389/frai.2023.1247195
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Siam et al.

TABLE 1 (Continued)

References

Deep learning

models

Image
modality
used

EHR modality used (clinical
parameters and biological
markers)

10.3389/frai.2023.1247195

Number of
unique EHR
parameters

Purposes of
study

Fuetal. (2021)

UNet, radiomics,
multi-task deep learning
neural network (MTNet)

CT

Age, gender, initial treatment, HBV,
Child-Pugh class, number of lesions,
AFP level, Barcelona clinic liver cancer
BCLC stages. Age, sex, Child-Pugh
grade, HBV infection, and CT identified
cirrhosis; tumor burden (location, lesion
number, maximum diameters, alpha
fetoprotein level, and BCLC stages); and
initial treatments. We added nine
qualitative radiological characteristics as
previously reported: (22) fusion lesions,
invasive shape, HCC capsule, HCC
capsule breakthrough, corona
enhancement, corona with low
attenuation, mosaic architecture,
nodule-in-nodule architecture, and
enhancement ratio of the HCC lesions.

22

Prediction: MVI
(micro vascular
invasion)

Menegotto et al. (2020)

Deep convolutional
neural network (DCNN)

CT

Anthropometric and sociodemographic:
gender, age at diagnosis, height, weight,
race E ethnicity—clinical: other
malignancy, family history cancer
indicator, family history cancer number
relatives, alcohol consumption,
hemochromatosis, hepatitis,
non-alcoholic fatty liver disease, other
liver disease—laboratory tests results:
alpha-fetoprotein, platelets,
prothrombin time, albumin, bilirubin,
creatinine.

20

Diagnosis: HCC

Gao et al. (2021)

VGG16, Imagenet, CNN,
Gated RNN

CT

Age, gender, platelet (PLT), total
bilirubin (TBIL), alpha fetoprotein
(AFP), carbohydrate antigen 19-9
(CA19-9), carcinoembryonic antigen
(CEA), carbohydrate antigen 125
(CA125) and hepatitis B surface antigen
(HBsAg).

Diagnosis: HCC

Menegotto et al. (2021)

Xception CNN

CT

Alpha-fetoprotein, bilirubin, platelets,
weight, ethnicity, family history cancer
number relatives, family history cancer
indicator, other malignancy, race,
gender, other liver disease, alcohol
consumption, hepatitis, height, albumin,
age at diagnosis, hemochromatosis,
creatinine, prothrombin time,
non-alcoholic fatty liver disease.

20

Diagnosis: HCC

Liu et al. (2020)

Cox-proportional hazard
(Cox-PH)

CT

Age, sex, history of hepatic virus
infection, Child-Pugh class, AFP, serum
aspartate aminotransferase (AST),
albumin-bilirubin (ALBI) score (39),
treatment histories, and tumor response
(CR, PR, PD, and SD).

Prediction: survival
prediction

Zhang et al. (2022)

UNet model, ResNet,
CNN

Digital subtraction
angiography (DSA)

Clinical characteristics included age, sex,
hepatitis B virus (HBV), a-Fetoprotein
(AFP), prothrombin time (PT), and
liver function parameters, which
included Child-Pugh score, ascites, total
bilirubin (TBIL), albumin (ALB),
aspartate aminotransferase (AST),
alanine aminotransferase (ALT), and
C-reactive protein (CRP). All laboratory
data were obtained within the 3 days
before the first TACE session.

11

Prediction:
treatment response
(TACE)
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TABLE 2 Description of datasets of liver cancer.

Data sources
(public or
private)

Dataset size (humber of samples)

Training Validation

10.3389/frai.2023.1247195

Number References
of epochs

for

training

the model

Modality
(type of
images

and the
number

of clinical
parameters
from

Public 220 N/A 107 327 WSI+3 N/A Hou et al., 2022

https://github.com/ clinical

Houjiaxin123/ parameters

Integrative-

Histology-

Genomic-HCC-

Prognosis- Analysis

Private 319 80 N/A 399 MRI + 14 50 Sun et al., 2021
biological
markers

Private 31,608 6816 N/A 38424 MRI + 16 20 Zhen et al., 2020
biological
markers

Private 461 N/A 140 601 MRI + 22 1,000 Song et al., 2021
clinical
parameters

Private 281 85 N/A 366 CT +22 N/A Fuetal.,, 2021
biological
markers

Private 536 153 77 766 CT 4+ 20 N/A Menegotto et al.,
biological 2020
markers

Public 499 111 113 723 CT + 8 clinical | 50 Gao etal., 2021

https://github.com/ parameters

ruitian-olivia/

STIC-model

Public 29,104 3,816 4,164 37,084 CT+ 20 500 Menegotto et al.,

https://github.com/ clinical 2021

amenegotto/ parameters

pyLiver/blob/

master/csv/

clinical_data.csv

Public 145 N/A N/A 145 CT + 9 clinical N/A Liu et al,, 2020

https://github.com/ parameters

havakv/pycox/

Private 360 245 N/A 605 DSA + 11 N/A Zhang et al., 2022
clinical
parameters

N/A, not available.

(Menegotto et al., 2021). One study used both external validations
along with 5-fold cross-validation (Gao et al., 2021).

3.4.2. Evaluation metrics

To evaluate the performance of the multimodal AI models,
various metrics and validation techniques were used for this
purpose. The two most commonly utilized evaluation metrics in the
included studies were AUC (Area under the Curve) and accuracy.
AUC was used in seven studies (Liu et al., 2020; Zhen et al., 2020; Fu
et al,, 2021; Gao et al,, 2021; Song et al., 2021; Sun et al., 2021; Hou
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etal., 2022) and accuracy was used in six studies (Zhen et al., 2020;
Gao et al,, 2021; Menegotto et al., 2021; Song et al., 2021; Sun et al.,
2021; Zhang et al., 2022). Sensitivity was used in five studies (Zhen
etal., 2020; Fu et al., 2021; Gao et al.,, 2021; Song et al., 2021; Zhang
et al., 2022), and specificity was reported in five (Zhen et al., 2020;
Fuetal, 2021; Gao et al., 2021; Song et al., 2021; Zhang et al., 2022).
The performance of predicting HCC was mostly measured using
the AUC (reported in five studies) (Liu et al., 2020; Fu et al., 2021;
Song et al,, 2021; Sun et al., 2021; Hou et al., 2022), followed by
accuracy (Song et al., 2021; Sun et al,, 2021; Zhang et al., 2022) and
sensitivity (Fuetal., 2021; Song etal., 2021; Zhang et al., 2022) (each

frontiersin.org
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reported in three studies). The performance of HCC diagnosis was
mainly tested using accuracy (reported in three studies) (Zhen et al.,
20205 Gao et al,, 2021; Menegotto et al,, 2021), followed by AUC,
sensitivity, and specificity (each reported in two studies) (Zhen
et al,, 2020; Gao et al., 2021). A summary of the commonly used
metrics is shown in Figure 4.

Decision curve analysis (DCA) is a method used to evaluate
the clinical value of the AI models. It involves comparing the
net benefit of using the model to make clinical decisions with
the net benefit of using a different decision-making strategy.
Additionally, the use of various statistical tests like NRI (Net
Reclassification Index), Integrated Discrimination Improvement
(IDI), and calibration helped assess the models’ performance. The
use of different evaluation metrics is summarized in Table 3. Table 3
shows the minimum to maximum performance reported in the
included studies for each evaluation metric.

4. Discussion

4.1. Research implications

There are certain challenges related to the multimodal deep
learning models developed in the included studies (Sun et al,
2021; Hou et al, 2022). Firstly, the models lack enough multi-
centers data, which hinders the ability to evaluate its performance
effectively. This insufficiency in diverse and representative data sets
reduces the reliability and generalizability of the model’s results.
Secondly, the potential relationship between different modalities
within the multimodal deep learning model is not adequately
understood or clearly defined. The model’s ability to accurately
represent complex relationships and phenomena is compromised
without a comprehensive understanding of how these modalities
interact and influence each other. Furthermore, the research
results primarily focus on the application level, meaning that they
predominantly address practical uses rather than investigating the
underlying mechanisms responsible for the observed outcomes.
This limitation restricts the depth of understanding achieved by
the study and leaves gaps in the comprehension of the fundamental
processes involved (Hou et al., 2022).

To address these shortcomings, several suggestions are
reported. Firstly, exploring effective algorithms that can extract
relevant and meaningful information from multimodal data is
recommended. This step is crucial for improving the model’s
performance and enhancing its ability to leverage the diverse
information contained within different modalities. Secondly, this
study emphasizes the need to model the connections between
modalities. Researchers can improve the model’s accuracy and
predictive capabilities by establishing clear and comprehensive
models that capture the relationships and interactions between
different modalities. Lastly, the study proposes the use of
computational representations grounded in biological discoveries.
Biological insights and principles can enhance the models
validity and align it more closely with natural systems’ underlying
mechanisms and processes. Addressing these challenges and
implementing the suggested solutions would strengthen the
multimodal deep learning model, enhancing its reliability,
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explanatory power, and potential for advancing scientific
understanding in the field.

Three of the included studies were conducted retrospectively,
meaning that they analyzed past data and events to draw
conclusions (Liu et al., 2020; Zhen et al., 2020; Sun et al., 2021).
To ensure the applicability of the findings across the entire range
of liver diseases encountered in clinical practice, future training
should include a larger number of patients with specific types of
focal liver diseases. To broaden the scope of the research, it would
be ideal to include less common liver masses in future studies.
Examples of such masses could be abscesses, adenomas, and rare
malignancies. By incorporating these less frequent liver masses,
a more comprehensive understanding of the diverse spectrum of
liver diseases can be achieved, leading to improved diagnostic
and treatment approaches. Furthermore, conducting high-quality
prospective studies involving multiple medical centers is crucial.
These studies should be designed to gather data in real time,
allowing for more accurate and up-to-date assessments of the
effectiveness and outcomes of different diagnostic and treatment
approaches. This is particularly important for high-risk patients
with cirrhosis, as their specific needs and challenges warrant
specialized attention and investigation. By incorporating these
recommendations, future research efforts can enhance the breadth
and depth of knowledge in the field of liver diseases, enabling more
precise and effective management strategies for patients across the
full range of liver pathologies encountered in clinical practice.

Two studies acknowledge that the deep learning architectures
are often perceived as a “black box” due to their complex and
intricate nature (Fu et al, 2021; Song et al., 2021). This means
that the inner workings of a deep learning model and the
specific correlation between the features used in the model and
TS results are not easily explainable or interpretable. Despite
demonstrating the stability of their final deep learning model, the
study recognizes the limitation of not being able to provide a
pathological interpretation for deep learning radiomics. This refers
to the inability to directly relate the outputs or predictions of the
deep learning models to specific pathological changes observed
in cases of HCC. The “black box” effect commonly encountered
in deep learning studies implies that the model’s decision-making
process and the reasons behind its predictions are not transparent
or easily understood. Therefore, it becomes challenging to establish
a clear connection between the features used in the deep learning
model and the pathological changes that occur in HCC.

To address this challenge, further research is needed to explore
and establish the relationship between the deep learning model’s
predictions and the actual pathological changes observed in HCC.
This indicates the need to delve deeper into understanding how
the deep learning model’s outputs align with the underlying
pathological mechanisms and processes associated with the disease.
By conducting additional research and investigations, researchers
should shed light on the “black box” nature of the deep learning
method, elucidate the correlation between relevant features used
in the model and the outcomes, and ultimately provide a clearer
pathological interpretation of the deep learning radiomics in the
context of HCC.

The studies utilized different deep learning models for
processing medical images and electronic health record (EHR)
data separately and then combined the results with building the
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FIGURE 4
Evaluation metrics used in the studies.

Evaluation Metrics

m Decision curve analysis (DCA)

= AUC

= C-index
ROC

= Accuracy

= Precision

m F1 Score

m Specificity

m Sensitivity

= NRI

u DI

m Decision curve

TABLE 3 Summary of evaluation metrics used in included studies.

Evaluation metrics Performance result (%) Number of studies References

Decision curve analysis N/A 2 Fu et al,, 2021; Hou et al., 2022

AUC 0.72-0.99 7 Liu et al., 2020; Zhen et al., 2020; Fu et al., 2021; Gao et al.,
2021; Song et al., 2021; Sun et al., 2021; Hou et al., 2022

C-index 0.746 1 Hou et al., 2022

ROC N/A 2 Fu et al,, 2021; Hou et al., 2022

Accuracy 0.72-0.98 6 Zhen et al., 2020; Gao et al., 2021; Menegotto et al., 2021;
Song et al., 2021; Hou et al., 2022; Zhang et al., 2022

Precision 0.89-0.97 2 Menegotto et al,, 2021; Hou et al., 2022

F1 Score 0.86-0.98 2 Menegotto et al,, 2021; Sun et al., 2021

Specificity 0.78-0.83 4 Zhen et al., 2020; Gao et al., 2021; Song et al., 2021; Zhang
etal., 2022

Sensitivity 0.50-0.89 5 Zhen et al., 2020; Fu et al., 2021; Gao et al., 2021; Song et al.,
2021; Zhang et al., 2022

NRI N/A 1 Fuetal., 2021

IDI N/A 1 Fuetal, 2021

Decision curve N/A 2 Fu et al.,, 2021; Hou et al., 2022

Recall 0.75-0.86 1 Menegotto et al., 2021

Range of values show performance from minimum to maximum as reported in the included studies. N/A, not available.

multimodal AI model. There was no single variant of CNN
architecture used across all the studies. CT scans were the most
commonly used medical imaging modality, followed by MRI. We
identified more than 50 clinical parameters and biomarkers related
to HCC that were used to train and test the multimodal ATl models.
However, none of the studies included the history of jaundice or
bile duct disorders as part of the clinical parameters, despite their
importance as signs of liver abnormalities.

It is that  the
modalities processed does not necessarily
to the performance of the deep learning model. Other
architecture and training

of EHR
correspond

worth  noting number

factors, such as the model
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data also play roles in

model’s performance.

important determining  the

The multimodal AI techniques lacked multi-centers data
and the potential relationship between modalities was not clear.
To address these challenges, effective algorithms for extracting
multimodal data information should be explored, computational
representations based on biological discoveries should be used,
larger populations and multicenter studies should be conducted,
and feature selection techniques and clinical indexes should
be employed.

However, this scoping review allows researchers to investigate
more uses of multimodal AI for the diagnosis of HCC and to

frontiersin.org



https://doi.org/10.3389/frai.2023.1247195
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Siam et al.

study multimodal AI techniques developed for recognizing more
medical imaging modalities. It also encourages researchers to study
multimodal AT techniques for purposes other than those mentioned
in this paper and to start conducting similar studies in CCA.
Datasets utilized by the included studies are mainly from private
sources and are used as training and validation datasets. Some
studies do not mention the type of validation adopted for the model
training and evaluation.

4.2. Limitations

While our scoping review offers valuable insights into the
use of multimodal AI in liver cancer research, it is important to
acknowledge the limitations of our study. One major limitation
is that some of the datasets used in the studies were not
fully described, leaving questions about their labeling and
generalizability. Additionally, the lack of specificity regarding data
sources used in the studies could make it difficult to reproduce or
compare the models’ performances. Finally, we focused on studies
published within the past 5 years, which may have limited the scope
of our analysis but captured the most recent development in the
field of multimodal deep learning for the detection and diagnosis
of liver cancer. The specific inclusion criteria on EHR+images data
also limited the number of studies.

Despite these limitations, our review provides a foundation for
understanding the application of Multimodal AT techniques in liver
cancer research. By identifying common variables and models used
across studies, we can better assess the potential of these models in
improving HCC prediction and treatment response.

5. Conclusion

The detection and prognosis of liver cancer, or HCC, have
recently been facilitated by recent advancements in deep learning-
based AI techniques. In this scoping review, we analyzed 10
studies that investigated the application of multimodal deep
learning models in HCC. We did not find any studies related
to the use of multimodal deep learning models for CCA.
The studies focused primarily on HCC prediction rather than
HCC classification or diagnosis, with a particular emphasis on
predicting response to TACE treatment. Overall, the studies
highlighted the potential of multimodal AI for improving
HCC prediction and treatment response assessment, but more
research is needed to explore their effectiveness in other areas
of liver cancer research. Multimodal AI techniques have the
capacity to simultaneously evaluate vast quantities of complex
data, including medical images and electronic health records,
and infer useful patterns and insights. With the use of this
technology, HCC diagnoses might be made more accurately,
and the course of the disease could be predicted, which may
ultimately lead to better outcomes and a higher survival rate.
However, these models face limitations such as the lack of
diverse data sets, unclear relationships between modalities, and
a focus on explanations and understanding of the underlying
mechanisms. Suggestions include exploring effective algorithms,
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establishing clear inter-modality relationships, and incorporating
biological insights. In the context of HCC, the studies reviewed
in this work primarily focused on HCC prediction and treatment
response assessment using different multimodal AI techniques.
However, limitations such as the “black box” nature of deep
learning and the need for pathological interpretations persist.
Future research should address these limitations, expand to other
liver diseases, and incorporate larger populations and multicenter
studies for comprehensive understanding and improved diagnostic
and treatment approaches.
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