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Classes are not Clusters: Improving Label-based Evaluation of
Dimensionality Reduction

Hyeon Jeon, Yun-Hsin Kuo, Michaël Aupetit, Kwan-Liu Ma, and Jinwook Seo

Abstract— A common way to evaluate the reliability of dimensionality reduction (DR) embeddings is to quantify how well labeled classes
form compact, mutually separated clusters in the embeddings. This approach is based on the assumption that the classes stay as clear
clusters in the original high-dimensional space. However, in reality, this assumption can be violated; a single class can be fragmented
into multiple separated clusters, and multiple classes can be merged into a single cluster. We thus cannot always assure the credibility of
the evaluation using class labels. In this paper, we introduce two novel quality measures—Label-Trustworthiness and Label-Continuity
(Label-T&C)—advancing the process of DR evaluation based on class labels. Instead of assuming that classes are well-clustered in
the original space, Label-T&C work by (1) estimating the extent to which classes form clusters in the original and embedded spaces
and (2) evaluating the difference between the two. A quantitative evaluation showed that Label-T&C outperform widely used DR
evaluation measures (e.g., Trustworthiness and Continuity, Kullback-Leibler divergence) in terms of the accuracy in assessing how
well DR embeddings preserve the cluster structure, and are also scalable. Moreover, we present case studies demonstrating that
Label-T&C can be successfully used for revealing the intrinsic characteristics of DR techniques and their hyperparameters.

Index Terms—Dimensionality Reduction, Reliability, Clustering, Clustering Validation Measures, Dimensionality Reduction Evaluation

1 INTRODUCTION

Dimensionality reduction (DR) is one of the most widely used tools in
conducting the visual cluster analysis of high-dimensional data [27, 34,
52–54, 70]. Using DR for cluster analysis relies on the assumption that
the cluster structure of the original data is accurately represented in the
low-dimensional DR embeddings. However, DR inherently generates
distortions, i.e., the original cluster structure is imprecisely represented
in the embeddings [2, 7, 26, 40, 41]. As distortions can make visual
cluster analysis performed with DR unreliable [27, 29], it is important
to evaluate how well the original cluster structure is preserved in the
DR embeddings [29, 32, 44, 70], prior to the analysis. There exist ways
to evaluate the reliability of cluster structures in DR embeddings, in
either a perceptual [20, 57, 70] or computational [29, 37, 47, 62] manner.

A general process to evaluate the preservation of cluster structure
in DR embeddings is to utilize class labels. This is done by assessing
cluster-label matching (CLM), that is, the extent to which class labels
form clusters in the embedded space [8, 22, 32, 69, 71, 73]. CLM is
mostly evaluated by using clustering validation measures (CVMs) [42,
68], such as the Silhouette Coefficient [55]. CVMs inform how well the
groups in the given label-based data partition form clear position-based
clusters. The partitions that contain mutually separated and individually
condensed groups are preferred. For the label-based evaluation of DR,
data embeddings and class labels are used as an input dataset and
partition, respectively. Embeddings with good CLM are considered to
have good quality, assuming that the original data also have good CLM.

However, such an assumption can hardly be guaranteed [3,23,28,70].
There is no constraint on labels’ sources. Labels can come from an
external source (e.g., human annotation), possibly unrelated to the
features of the data space. Labels can also result from clustering
techniques, which may not align with the actual clusters. Therefore,
we do not know how well labels make up the clusters in the original
data; a single class can consist of multiple separated clusters, and
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multiple classes can be in close proximity or even overlapped [3] in a
single cluster. These possibilities cast doubt on the conclusions derived
from the general process of label-based DR evaluation. For instance, an
embedding that accurately represents overlapping classes in the original
space might be considered to have low quality as it has bad CLM.

In this work, we revisit the process of evaluating DR using class
labels. We introduce two measures—Label-Trustworthiness (Label-T)
and Label-Continuity (Label-C)—which examine CLM in an alternative
way to assess the reliability of cluster structures in DR embeddings.
In contrast to the general label-based evaluation process, Label-T&C
use CVM to quantify CLM distortions as the difference between CLM
estimated in both original and embedded spaces. Label-T quantifies
the distortion due to the degradation of CLM: the score is lower when
the points of two different classes get closer in the embedding than
in the original space. Conversely, Label-C evaluates the distortion
regarding the exaggeration of CLM: the score is lower when the points
of two different classes get farther apart in the embedding than in the
original space. The rationale behind our measures is that in visual
cluster analysis, it is important to investigate how class labels span the
original cluster structure as seen through the embedding [3–5, 12, 67]
(e.g., examine the individual density of a class or the pairwise proximity
between classes). Since CLM distortions reduce the reliability of cluster
structures represented by the embeddings, Label-T&C scores can be
interpreted as proxies for the credibility of DR-based cluster analysis.

We conduct a series of quantitative experiments to validate the effec-
tiveness of Label-T&C. The results show that Label-T&C can better
capture the distortions of cluster structures than the existing measures
(e.g., Steadiness & Cohesiveness [29] and Trustworthiness & Conti-
nuity [62]) and the general process of label-based DR evaluation (i.e.,
naive application of CVMs). From the scalability analysis, we validate
that the runtime of using Label-T&C is competitive with that of the
existing methods. Finally, we demonstrate two case studies showing
that Label-T&C can be used to reveal how different DR techniques or
hyperparameter settings affect embedding results.

2 BACKGROUND AND RELATED WORKS

We discuss the state-of-the-art in interpreting and measuring the relia-
bility of DR embeddings. We then describe works about the common
assumption that high-dimensional labeled data have good CLM.

2.1 Reliability of Dimensionality Reduction
2.1.1 Dimensionality Reduction
Dimensionality reduction (DR), e.g., t-SNE [61], UMAP [45], aims
to produce the low-dimensional embedding preserving the structure of
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the input high-dimensional data. DR plays an important role in many
visual analytics tasks, including cluster identification [27, 69] or neigh-
borhood search [20, 21, 40]. This research provides reliable measures
for evaluating DR embeddings regarding the matching between clusters
and classes in both input and embedding spaces, establishing a basis
for more trustworthy DR-based visual analysis.

2.1.2 Distortions in Dimensionality Reduction
While transferring the data from broad high-dimensional space to
narrow low-dimensional space, DR unavoidably introduces distor-
tions [2, 50]. As distortions make embeddings less reliable in represent-
ing the original data, informing distortions is important in utilizing DR
for data analysis [29, 50].

Several distortion types were defined to formally explain DR distor-
tions. Aupetit [2] initially defined stretching and compression. Stretch-
ing describes the situation in which the pairwise distances in the em-
bedded space are increased compared to the ones of the original space;
conversely, compression indicates the case that the pairwise distances
decreased. Missing Neighbors and False Neighbors [37, 40, 41, 63]
were introduced as an interpretation of stretching and compression in
terms of the neighborhood structure. Given a high-dimensional point x
and its corresponding low-dimensional point z, Missing Neighbors are
defined as the k-nearest neighbors of x that are not among the ones of
z. Conversely, False Neighbors are defined as the k-nearest neighbors
of z that are not among the ones of x. However, Missing and False
Neighbors are insufficient to explain the distortions of complex, inter-
twined cluster structures. For example, the relative increase of cluster
density in the embedding does not incur Missing and False Neighbors
distortions, because it does not alter the k-nearest neighbor structure
for small k values.

As alternatives, cluster-level distortions, named Missing Groups
and False Groups, were proposed by Jeon et al. [29]. Missing Groups
occur when a cluster in the original space splits into multiple separated
clusters in the embedding, and False Groups occur when a cluster in
the embedding consists of multiple separated clusters in the original
space. In the seminal work [29], Missing and False Groups distortions
are examined based on the groups obtained by clustering techniques.

In this work, we focus on evaluating the reliability of the cluster
structure of DR embeddings by quantifying both Missing and False
Groups. However, instead of extracting groups using clustering tech-
niques, we focus on the groups given by the classes of labeled data.

2.1.3 Distortion Measurement without Labels
We discuss distortion measures that do not rely on class labels. These
measures take the original and embedded data as input and quantify
their structural difference. Aligned with the aforementioned distortion
types, they focus on three different levels of structural granularity:
global, local, and cluster. Global measures, such as Kullback-Liebler
divergence (KL Divergence) and Distance to Measure (DTM) [15, 16],
quantify how well the embeddings preserve the global structure of the
original data against stretching and compression. Meanwhile, local
measures focus on neighborhood preservation. Trustworthiness and
Continuity (T&C) [62] measure how Missing and False Neighbors
affected the distance-based ranking of the nearest neighbor for every
data point in both spaces. Mean Relative Rank Errors (MRREs) [37]
extends T&C by additionally regarding the ranking of True Neighbors:
the points that are neighbors in both the original and embedded spaces.
Still, despite local and global measures’ wide usage in practice [29, 30,
35,46,50,69], they do not properly capture cluster-level distortions [29].

This leads to the necessity of measures that capture distortions on
cluster structures (i.e., cluster-level measures). Steadiness and Co-
hesiveness (S&C) [29] assess how much Missing and False Groups
distortions have occurred by (1) extracting clusters from one space and
(2) evaluating their dispersion in the other space. However, S&C re-
quire users to specify the way of extracting and investigating clusters in
both spaces, e.g., using clustering techniques, making the results of the
cluster-level distortion measures sensitive to the clustering technique
and hyperparameters used. S&C also suffers from a scalability issue as
it requires the iterative execution of a clustering technique [25, 29].

Label-T&C is a pair of cluster-level measures that aim to tackle
these limitations. At first, the measures require a CVM as the sole
hyperparameter, which is used to evaluate CLM in the original and
embedded spaces. Thanks to the low complexity of CVM [28, 42], our
measures are very scalable (Sect. 5.2). Furthermore, Label-T&C are
more sensitive in distinguishing Missing and False Groups distortions
compared to previous measures, including S&C (Sect. 5.1).

2.1.4 Distortion Measurement with Labels
Exploiting labels is a common scheme in evaluating DR embeddings
[8, 17, 22, 32, 69, 71, 73]. A general process to do so is to utilize CVM
to measure the CLM of embeddings [8, 22, 32, 73]. However, the
approach is prone to producing errors while examining the quality
of DR embedding. For example, if the CLM of the original data is
bad (e.g., some classes overlap), embeddings that have good CLM for
bad reasons (e.g., DR artificially separates each class into a distinct
cluster) will be considered high-quality embeddings. As non-expert
users typically assume that DR techniques generate reliable embeddings
of the original data, they may incorrectly conclude that CLM is also
good in the high-dimensional space, while it is not actually true [3, 28].

A sole pair of measures that relies on class labels but is independent
of CVM is Class-Aware Trustworthiness and Continuity (CA-T&C)
[17]. CA-T&C is a variant of T&C that assess the degradation of
CLM (i.e., False Groups distortions) by estimating the extent to which
Missing and False Neighbors occurred within and between classes,
respectively. However, CA-T&C hardly captures the Missing Groups
distortions as they do not consider the increase of CLM as distortions.
The measures also mainly focus on local structures and thus cannot
comprehensively examine CLM distortions.

In this work, we propose Label-T&C as novel measures utilizing
class labels to evaluate DR embeddings. As with the general process
of label-based DR evaluation (i.e., the process of naively applying
CVM in the embedded space), our measures utilize CVMs to evaluate
CLM; however, by applying CVM to both the original and embedded
spaces and assessing their difference, our measures precisely capture
cluster-level distortions.

2.2 The Cluster-Label Matching assumption
The assumption that the CLM is good in the high-dimensional data
is used as a basis not only for the label-based evaluation of DR em-
beddings but also for other applications. For example, the labels are
often utilized as the ground truth partition in clustering validations,
where clustering techniques that generate a similar partition to that of
labels obtain higher scores (i.e., external clustering validation; refer to
Sect. 3.1 for details). Another application is the perception-based eval-
uation of DR techniques [20, 21, 57, 69], where techniques that produce
embeddings in which the visual clustering results of human subjects
better match class labels are preferred. However, the assumption can be
easily broken [3, 23], which casts doubt on the applications’ reliability.

Despite such a threat, only a few solutions have emerged. A trivial
solution is to modify datasets to make them better satisfy the assump-
tion. Aupetit [3,6] proposed to check the linear or nonlinear separability
of classes and then merge overlapped classes or preserve one of them
while removing the others [3]. However, classes can be separable but
adjacent, not forming proper clusters (no low density or wide empty
space between them). Such a strategy also does not take into account
whether each class forms a single, compact cluster. Another solution is
to use synthetic datasets [29,30,46], where good CLM is guaranteed by
design. Still, this makes the evaluation hardly generalizable to real data.
Alternatively, Jeon et al. [28] suggested a systematic way to evaluate
CLM; their purpose was to verify the validity of labeled datasets for
use as clustering validation benchmarks. Still, they suggested only uti-
lizing datasets with good CLM, which reduces the number of available
datasets for evaluating DR embeddings.

In this work, we neither verify the CLM of datasets in advance nor
attempt to modify datasets to enhance CLM. Instead, we acknowledge
that datasets may not satisfy the CLM, and rather assess whether the
degree of CLM, either high or low, in the original dataset is well
preserved in the embedding.
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3 GENERAL LABEL-BASED DR EVALUATION PROCESS

The general process of label-based DR evaluation mostly relies on
CVMs. We describe what CVMs are and the process of using them to
evaluate CLM. We then discuss the pitfalls of the process.
Notations We define a high-dimensional data X = {xi ∈ RD, i =
1,2, · · · ,N}. We denote the low-dimensional embedding of X as Z =

{zi ∈Rd | i= 1,2, · · · ,N}, where D> d. For any set S∈{X,Z}, the dis-
tance function δ satisfies δ (x,y)≥ 0, δ (x,y) = δ (y,x) and δ (x,y) = 0
if x = y ∀x,y ∈ S. A partition of S is defined as P = {P1,P2, · · · ,Pk}
satisfying Pi ⊆ S, Pi ∩Pj = /0 and ∪k

i=1Pi = S. If a partition is defined
by class labels, we denote the partition as PL. A clustering technique C
takes S and δ as input and returns a partition PC of S.

3.1 Clustering Validation Measures

Clustering validation measures (CVMs) evaluate how well-clustered
the given partition (i.e., clustering) is in the given data. We use CVMs
to find the optimal clustering technique or hyperparameter setting
that produces the partition of the data that best matches its cluster
structure. CVMs are largely divided into two types: internal CVM
(IVM) [42, 43] and external CVM (EVM) [68]. IVMs evaluate a
partition based on the internal structure of data. Formally, the IVM
score mI(P,X,δ ) quantifies how well the groups within the partition
P of X are individually condensed and mutually separated in X based
on distance δ . For example, the Silhouette Coefficient [55] examines
how the within-group and between-group distances differ on average
while using Euclidean distance as δ . Alternatively, EVMs, such as the
adjusted rand index [64], rely on a ground truth partition PGT . Here,
the EVM score mE(P,PGT ) simply quantifies the degree of matching
between the given partition P and PGT , regardless of the internal cluster
structure of S. A higher score is assigned if P better matches with PGT .
Data class labels PL are typically used as ground truth PGT [23, 28].

3.2 Using CVM to Evaluate CLM

We use CVMs to quantify the CLM of a DR embedding as a proxy for
its reliability [8, 32, 69, 73]. The process depends on the type of CVM:
IVM-based evaluation For a given embedding Z, distance function δ ,
and class labels PL, mI(PL,Z,δ ) represents the CLM between PL and
Z. The Silhouette Coefficient is widely adopted in the visualization
community [20, 22, 32, 65, 69]. The Davies-Bouldin index [18] is
preferable in the context of star coordinates and Radviz [1,14]. Notably,
while Distance Consistency (DSC) [59] was designed for DR visual
quality evaluation [19, 56, 58], it can also be viewed as a CVM since it
considers only the separation of class labels in the embeddings.
EVM-based evaluation Given Z, δ , PL, and a clustering technique C
providing a partition PC =C(Z,δ ) of the embedded data, mE(PC,PL)
represents CLM between PL and Z. K-Means and the adjusted rand
index are commonly used for C and mE , respectively [31, 71, 74].

Notice that CVMs cannot account for the internal compactness of
each class in isolation, but the CVM of a class partition will get worse if
some of these classes lack compactness or split across several clusters.

3.3 Pitfalls

The general process of label-based DR evaluation promotes embeddings
with good CLM regardless of the CLM of the original data (Sect. 1). In
other words, the process examines the extent to which CLM is harmed
in embeddings while assuming that the original data has good CLM.
Thus, if the assumption is broken, the process will frame embeddings
that correctly represent overlapped classes to have False Groups distor-
tions. As the process considers good CLM embeddings as high-quality
ones, it is also incapable of detecting Missing Groups distortions that
may arise from CLM amplification. These pitfalls were identified for
the first time by Aupetit [3]. Our preliminary experiment confirms such
a threat (Appendix D). The general process of label-based evaluation
erroneously prefers DR techniques that maximize the separation among
classes, instead of the ones that aim to preserve the original structure
of data if the datasets have bad CLM. Here, we aim to introduce a new
way of using class labels for DR evaluation that mitigates such a bias.

4 LABEL-TRUSTWORTHINESS & LABEL-CONTINUITY

We introduce two distortion measures—Label-Trustworthiness and
Label-Continuity (Label-T&C)—as an alternative way of using class
labels for DR evaluation. Our measures examine how CLM differs in
both the original and embedded spaces where CVM is used to quantify
CLM. Label-T and Label-C capture the False and Missing Groups
distortions, respectively. The measures are named after Trustworthiness
and Continuity, two local distortion measures that focus on capturing
False and Missing Neighbors [62].

4.1 Design Rationale
Inputs, output, and hyperparameters Label-T&C take (1) the high-
dimensional data X, (2) its DR embedding Z, and (3) class labels
PL = {PL,1,PL,2, · · ·PL,k} as inputs. Both Label-T and Label-C output
a number between 0 and 1; a higher value indicates lower distortions
and a better embedding. For hyperparameters, a CVM m with distance
function δ is given. If m is an EVM, we need to additionally select the
clustering technique C as a hyperparameter (Sect. 3.2). The m should
assign higher scores to better clusterings and range from 0 to 1 (refer
to Sect. 4.2.1 for a detailed explanation about this requirement).
Step 1. Measuring CLM in the original and embedded spaces We
apply CVM to both the original and embedded spaces to examine CLM.
Here, unlike the general process of label-based DR evaluation that
applies CVM to all classes at once, we apply CVM to every pair of
classes, so that we can take account of the relationships of classes in
more detail. Formally, we construct the class-pairwise CLM matrices
M(X) and M(Z), where the (i, j)-th cell of the matrices M(S)i, j (S ∈
{X,Z}) is defined as:
⎧⎨
⎩

m({PL,i,PL, j},S,δ ) if i �= j and m is an IVM
m(C(PL,i ∪PL, j,δ ),{PL,i,PL, j}) if i �= j and m is an EVM

0 if i = j
.

Step 2. Computing distortion matrices We construct a matrix M∗ =
M(X)−M(Z) representing CLM distortions. We then compute MFG

and MMG, where MFG
i, j = (M∗

i, j if M∗
i, j > 0, else 0), and MMG

i, j = (−M∗
i, j

if M∗
i, j < 0, else 0). MFG and MMG abstract the CLM decrement (False

Groups) and increment (Missing Groups), respectively.
Step 3. Aggregating distortions Finally, we average the upper-
diagonal elements of MFG and MMG into final scores:

LABEL-TRUSTWORTHINESS: 1− avgi, jM
FG
i> j

LABEL-CONTINUITY: 1− avgi, jM
MG
i> j .

Note that we subtract the average from 1 to make embeddings with
fewer distortions receive higher quality scores.

4.2 Selecting CVM for Label-T&C
We establish the requirements for CVM to get proper Label-T&C
scores and present suitable CVM options. In this section, we denote
m(P,S,δ ) as a CVM score with respect to P, S, and δ . If m is an
IVM mI , we set m(P,S,δ ) = mI(P,S,δ ). If m is an EVM mE , we set
m(P,S,δ ) = mE(C(S,δ ),P) with C, the chosen clustering technique.

4.2.1 Requirements
We set the first three requirements based on the following proposition:
to be used for Label-T&C, a proper CVM should be comparable across
X and Z. In other words, m shall consider only how well the given parti-
tion is clustered in the given data and be invariant to the characteristics
that differ between X and Z but are not related to the cluster structure.
For example, the scaling of the pairwise distances should not alter the
score. Otherwise, the evaluation will be unreliable; for example, we
can simply manipulate Label-T&C scores by scaling the original or
embedded data while there is no change in the cluster structure.

Previous works [10, 28] set axioms defining how a CVM can be
independent of such features. They require CVMs to be invariant to the
change of scale, dimensionality, and the number of points and classes
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and to have a fixed range. As X and Z already share the number of
points and classes, we require CVMs to ensure the other three axioms.

The first axiom requires CVMs to be invariant against the scaling of
distances between points, which can be inherently different in X and Z:

Scale Invariance [10] A CVM m is scale invariant if ∀ partition P, data
S, and distance function δ , m(P,S,δ ) = m(P,S,αδ ) ∀α > 0 (where
αδ is a distance function satisfying αδ (x,y) = α ·δ (x,y), ∀x,y ∈ S.).

(R1) A CVM should satisfy scale invariance.

The second axiom focuses on the effect of the data dimension on
the distance δ , due to the so-called curse of dimensionality [9]. The
growing dimensions increase the average of pairwise distances while
the variances remain constant [11, 24, 38], thus the differences between
distances become negligible. To be used for Label-T&C, CVM should
be shift invariant [38, 39] to cancel the shift of the average distances
due to the different dimensions of X and Z.

Shift Invariance [28] A CVM m is shift invariant if ∀P,S,δ ,
m(P,S,δ ) = m(P,S,δ +β ) ∀β > 0 (where δ +β is a distance function
satisfying (δ +β )(x,y) = δ (x,y)+β , ∀x,y ∈ S).

(R2) A CVM should satisfy shift invariance.

The final axiom is about requiring CVMs to produce scores that
conform to a fixed range of values, which is designed to capture the
remaining subtle factors that are not influenced by the cluster structure.

Range Invariance [28] A CVM m is range invariant if ∀S,δ ,
minP m(P,S,δ ) = α and maxP m(P,X,δ ) = β , where α,β are con-
stants satisfying α < β (arbitrarily set to 0 and 1, respectively).

(R3) A CVM should satisfy range invariance.

Additionally, we want CVMs to be stable against the change of
hyperparameters. This is because the alteration of CVM scores due to
the hyperparameter change can induce uncertainty in utilizing Label-
T&C. This leads to the last axiom:

(R4) A CVM should have no hyperparameter or should produce similar
scores on the same input regardless of the hyperparameter settings.

4.2.2 CVM Candidates
We examine CVMs commonly used for DR evaluation (Sect. 3.2) as
potential candidates to be used for Label-T&C. For EVMs, we find that
the combination of K-Means and adjusted rand index cannot be used.
This is because the parameter K (i.e., number of clusters) in K-Means
leads to the violation of R4. Indeed, as clustering techniques commonly
require hyperparameters, EVMs hardly satisfy the aforementioned
requirements. Studying how EVMs and clustering techniques can
satisfy R4 is beyond the scope of this work.

For IVMs, neither the Silhouette Coefficient [55] nor the Davies-
Bouldin index [18] satisfies shift invariance (R2; refer to Appendix A
for the proof). However, we found that DSC satisfies all requirements,
setting it as a proper CVM for Label-T&C (Appendix A).

We additionally found that the between-dataset Calinski-Harabasz
index (CHbtwn) [28], a variant of Calinski-Harabasz index [60], satisfies
the four requirements: satisfaction of R1, R2, and R3 has been demon-
strated earlier [28]; it also satisfies R4 as its unique hyperparameter is
the number of Monte-Carlo simulations for normalizing the measure,
which barely affects the output if the number is sufficiently high. We
give a brief description of these two CVMs usable for Label-T&C:
Distance Consistency (DSC) [59] DSC is defined as the number of
data points closer to the centroid of another class than their own in the
data, normalized by the total number of data points. As DSC ranges
from 0.5 to 1 if the number of classes is two and assigns a lower score
for a better CLM, we use the value 2(1−DSC) to make it satisfy R3
(Sect. 4.1 (Step 1)).
Between-dataset Calinski-Harabasz index (CHbtwn) [28] CHbtwn is
defined as the ratio of compactness to separability. Compactness is
defined as the distance between data points and the class centroids
to which each point belongs, and separability is determined by the
distances between class centroids and the centroid of the entire data.

Fig. 1. Guidelines to infer the CLM of the high-dimensional data based
on the CLM of the embedded data (left column) and the scores given by
Label-T (L-T) and Label-C (L-C) (first row) (see Sect. 4.3 for details).

4.3 Guidelines to Interpret Label-T&C

We present the guidelines to interpret embeddings based on Label-T&C.
If Label-T and Label-C are both high, the CLM of the embedding
accurately depicts the CLM in the original space (Fig. 1A). High Label-
T and low Label-C (Fig. 1B) mean that Missing Groups distortions
have occurred, i.e., the CLM of the original data is worse than it
appears in the embedding (first row); some pairs of classes appear more
separated than they actually are in the data space. When the CLM of
the embedding is already low (e.g. due to overlapping classes), Missing
Groups distortions are more unlikely to happen as the CLM in the data
would have to be even worse (second row). In contrast, low Label-T
and high Label-C (Fig. 1C) inform that False Groups distortions have
occurred; the CLM in the original data is better than in the embedding
(second row). As False Groups distortions deteriorate the CLM of
the embedding, the situation is unlikely to occur if the embedding has
a good CLM, and thus can hardly become better (first row). Due to
such a tradeoff between False and Missing Groups (i.e., more Missing
Groups lead to fewer False Groups, and vice versa), it is unlikely to get
low Label-T and Label-C at the same time (Fig. 1D). Our sensitivity
analysis (Sect. 5.1; Fig. 4) confirms the existence of the tradeoff.

4.4 Time Complexity

The complexity of Label-T&C depends on the CVM. As DSC is
O(|S||PL|ΔS), where ΔS denotes the dimensionality of S, applying
it to a pair of classes PL,i,PL, j requires O(|PL,i ∪PL, j|ΔS). As each class
is considered |PL| times, Label-T&C with DSC is O(|S||PL|ΔS). Sim-
ilarly, as CHbtwn is O(|S||PL|2ΔS), applying it to a pair of classes
PL,i,PL, j requires O(|PL,i ∪ PL, j|ΔS). Therefore, Label-T&C with
CHbtwn is O(|S||PL|ΔS). In both cases, the time complexity is linear in
all variables. We evaluate the scalability of Label-T&C in Sect. 5.2.

4.5 Implementation & Deployment

We deploy Label-T&C as a Python library. We provided an interface
that allows users to implement and test custom CVM as a hyperparam-
eter. The source code is available at github.com/hj-n/ltnc.

5 QUANTITATIVE EVALUATIONS AND DISCUSSIONS

We conduct quantitative experiments to evaluate Label-T&C with DSC
and CHbtwn, i.e., Label-T&C [DSC] and Label-T&C [CHbtwn], respec-
tively. In the sensitivity analysis (Sect. 5.1), we check the accuracy
of Label-T&C and competitors in quantifying distortions. We also
evaluate the runtime of the measures (Sect. 5.2).
Competitors. We first consider all distortion measures without labels
(Sect. 2.1.3) as competitors. For global measures, we use KL divergence
and DTM. T&C and MRRE are used as representative local measures.
MRRE [Missing] and MRRE [False] target Missing and False Neigh-
bors, respectively. We select S&C as the sole pair of measures targeting
cluster-level distortions. For the measures using labels (Sect. 2.1.4), we
first add CA-T&C. We then select Silhouette and DSC as representative
CVMs used in the general label-based evaluation. For T&C, MRRE,
and CA-T&C, we average their score across k-nearest neighbor values:
k = [5,10,15,20,25], following Jeon et al. [29]. For KL divergence
and DTM, we average the scores across different standard deviation
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Fig. 2. The high-dimensional (HD) datasets and low-dimensional (LD) embeddings used in experiments A, B, and C of sensitivity analysis (Sect. 5.1).
The experiments aim to check the distortion measures’ ability to capture False Groups distortions. Class labels are mapped to colors. (A) The
Coil-20 [49] dataset and the embeddings generated by randomizing the positions of the embedded points with a certain probability. (B) A HD dataset
consists of six well-separated hyperballs (left) and its synthetic embeddings (right) made by initializing the embedding with six well-separated discs
and gradually overlapping the discs in two different manners (B-1, 2). (C) The Fashion-MNIST [72] dataset and the PCA embeddings with different
numbers of principal components (PC); here we depict the UMAP projection of PCA embeddings if it has more than two PCs (i.e., dimensionality is
higher than two). We depict the relation between explained variance ratio and the number of PC in the line chart next to the embeddings.

Fig. 3. The low-dimensional (LD) embeddings and corresponding high-dimensional (HD) datasets represented as UMAP embeddings, used in
experiments D, E, and F of sensitivity analysis (Sect. 5.1) to examine distortion measures’ ability to capture Missing Groups distortions. (D) An UMAP
embedding of the Coil-20 [49] dataset (right), and the variants of the Coil-20 dataset made by randomizing the coordinates of data points in HD
space with a certain probability. (E) A 2D embedding with six well-separated discs and synthetic HD datasets. We create the datasets by generating
six 100D hyperballs and gradually overlapping them. (F) A 2D PCA embedding of the Fashion-MNIST dataset and corresponding HD datasets
variants, created by slicing 20 principal components (PC) with different rankings. The line chart shows their corresponding explained variance ratio.

values of Gaussian kernels σ : [0.01,0.1,1], following Moor et al. [46].
For S&C, we use the default hyperparameter setting [29].

5.1 Sensitivity Analysis

We conduct six experiments (A-E) to examine Label-T&C’s sensitivity
in quantifying False Groups (Fixed data and variable embeddings in
experiments A, B, and C) or Missing Groups (Variable data and fixed
embeddings in experiments D, E, and F) distortions. The labeled data
and embeddings used in the experiments can be found in Fig. 2 (A, B,
and C) and Fig. 3 (D, E, and F). In all of them, we run Label-T&C and
competitors to evaluate the embeddings.

5.1.1 Objectives and Design

Experiment A: Randomizing embeddings We examine whether
Label-T&C and competitors can accurately quantify False Groups
distortions. We generate a 2D UMAP embedding of the Coil-20 [49]
dataset. We then create variants of the embedding with different levels
of False Groups distortions by randomizing the location of the points.
We create 21 variants, ranging the replacement probability from 0%
(same as the original embedding) to 100% (totally randomized) with an
interval of 5%. The original class assignments of Coil-20 are used as
labels. We hypothesize that Label-T will decrease as the replacement
probability grows, properly capturing False Groups distortions, while
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Fig. 4. The results of the sensitivity analysis (Sect. 5.1; experiments A-F). Solid lines and dashed lines represent the measure that focuses on
compression (e.g., False Groups, False Neighbors) and stretching (e.g., Missing Groups, Missing Neighbors), respectively. Dotted lines represent
global measures and CVMs. A pair of compression and stretching measures is represented with the same line color. Measure names in red, blue,
and purple correspond to our approach, the measures without labels (Sect. 2.1.3), and the measures with labels (Sect. 2.1.4), respectively. In
summary, Label-T (blue and orange bold line) and Label-C (blue and orange dotted line) accurately detect Missing and False Groups distortions,
respectively. Meanwhile, all other measures, including general label-based DR evaluation (i.e. DSC and Silhouette), fail to capture these distortions.

Label-C will ignore the distortions.
Experiment B: Overlapping discs We aim to check distortion mea-
sures’ ability to precisely capture False Groups distortions, as with
experiment A. We create a high-dimensional dataset consisting of six
hyperballs with a radius of 5 lying in 100 dimensions. We set the
hyperballs to be equidistant (= 10) from the origin. We then create an
artificial 2D embedding consisting of six discs (radius of 1.5) evenly
and equidistantly (= 4) distributed around the origin O. Data points
and labels within each disc correspond to those of each hyperball. The
positions of each point within the disc and hyperball are determined
randomly. The label is also set based on the disc each point belongs
to. We gradually overlap the discs to artificially generate distortions.
Here, we use two overlapping schemes to evaluate the sensitivity of
Label-T&C in detail, resulting in two separate subexperiments (B-1,
B-2). In B-1, three independent pairs of adjacent discs are overlapped;
for each pair of discs (A,B) with centers CA, CB, we adjusted ∠CAOCB
from 60◦ to 0◦ with an interval of 2.4◦ (25 embedding variants in total).
In B-2, we overlap all discs at once by moving them toward the origin;
for each disc A, we gradually decrease CAO from 4 to 0 with an interval
of 0.16 (25 embedding variants). We hypothesize that the Label-T score
will go down as False Groups distortions increase due to the overlap
of the discs, while Label-C will stay still. We also hypothesize that
Label-T will decrease more in B-2 than in B-1, as the overlap is larger.
Experiment C: Decreasing the dimension of the embedded space
We generate False Groups distortions by decreasing the dimensionality
of embedded space and check whether the measures can detect the
distortions. We prepare the Fashion-MNIST [72] as a high-dimensional
dataset. We generate PCA embeddings with a decreasing number of
top principal components (10 to 1 with an interval of 1; 10 embeddings
in total). We expect the embeddings with a smaller number of principal
components (i.e., embeddings lying in the space with fewer dimensions)
to have more False Groups distortions as they have a smaller explained
variance ratio (line chart in Fig. 2). We use the class assignments of the
Fashion-MNIST dataset as labels. Our hypothesis is that Label-T will
decrease as the dimensionality decreases, while Label-C will stay still.
Experiment D: Randomizing the original data We want to evaluate
Label-T&C and competitors’ capability in accurately quantifying Miss-

ing Groups distortions. We first generate a fixed 2D UMAP embedding
of the Coil-20 [49] dataset. We then generate the variants of the orig-
inal data by mixing the points in the high-dimensional space with a
fixed probability, producing Missing Groups distortions. We control
the replacement probability from 0% to 100% with an interval of 5%,
resulting in 21 variants. The class assignments of the original data are
used as labels. We hypothesize that Label-C will decrease as Missing
Groups distortions increase (i.e., replacement probability increase), and
that Label-T will ignore the distortions.
Experiment E: Overlapping hyperballs We want to evaluate whether
Label-T&C and competitors can precisely capture Missing Groups
distortions. We prepare variants of high-dimensional data and fixed
low-dimensional embedding consisting of six 100D hyperballs and
corresponding 2D discs, respectively. The points within the same disc
have the same label. All discs are well separated from each other. We
artificially overlap hyperballs to generate Missing Groups distortions.
For each hyperball AH , we gradually decrease CAH O from 4 to 0 with
an interval of 0.16 (25 variants in total). We hypothesize that Label-C
will decrease as hyperballs overlap, while Label-T will stay still.
Experiment F: Decreasing the dimension of the original data space
We examine whether the distortion measures can detect the Missing
Groups distortions made by the decrease in the dimensionality of the
original data. We prepare a 2D PCA embedding of the Fashion-MNIST
dataset. We then select ten 20D PCA embeddings with different sets
of principal components as high-dimensional datasets; the i-th dataset
variant consists of the (i)-th to (i+19)-th principal components, where
1 ≤ i ≤ 10. We expect the dataset with a higher order to have more
Missing Groups distortions over the embedding as they have a smaller
explained variance ratio (line chart in Fig. 3). We used the class assign-
ments of the Fashion-MNIST dataset as labels. We hypothesize that
Label-C will decrease as the starting index of principal components
increases, while Label-T will stay still.

5.1.2 Results

Fig. 4 shows the results of our experiments that we comment on below.
Experiment A As the randomization probability grows, both Label-T
[DSC] and Label-T [CHbtwn] similarly decrease linearly while Label-C
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[DSC] and Label-C [CHbtwn] slightly increase, confirming our hypoth-
esis. Meanwhile, S&C and local measures decrease regardless of the
distortion type, while global measures slightly increase. In the case
of label-based measures, both CA-T&C and the general CVM-based
process (DSC and Silhouette) show mainly decreasing scores.
Experiment B In B-1, as the overlap between the discs grows, both
Label-T [DSC] and Label-T [CHbtwn] decrease in a similar manner,
while Label-Cs stay still. Such results validate our hypothesis, con-
firming Label-T&C’s capability in properly detecting False Groups
distortions. Meanwhile, S&C, T&C, and MRREs all decrease, while
Steadiness, Trustworthiness, and MRRE [False] decrease more than Co-
hesiveness, CA-Continuity, and MRRE [Missing], respectively. Global
measures stay still. CA-T&C partially succeed in properly detecting
False Groups distortions; both CA-Continuity and CA-Trustworthiness
decrease, but CA-Continuity’s decrement was subtle compared to the
one of CA-Trustworthiness. CVMs show a decreasing trend. In B-2, the
amount of decrement becomes bigger than in B-1 for Label-T [DSC]
and Label-T [CHbtwn] while Label-Cs again stay still, confirming our
second hypothesis. The amount of decrement also becomes bigger
than in B-1 for T&C, MRREs, and Cohesiveness, while Steadiness
showed a similar drop as in B-1. In the case of KL divergence, DTM,
and Silhouette, the patterns are almost identical to B-1 except that the
scores rebound when the discs are nearly overlapped. The decrement
becomes bigger also for CA-T&C and DSC.
Experiment C As the number of PCs decreases, Label-Ts decrease
while Label-Cs stay still, validating our hypothesis. Global measures
(KL divergence, DTM) stay still while all other measures decrease.
Experiment D As we increase the randomization probability, both
Label-C [DSC] and Label-C [CHbtwn] decrease, while Label-Ts stay
still, verifying our hypothesis. However, while Label-C [DSC] de-
creases right before the data are perfectly mixed, Label-C [CHbtwn]
decreases from the start. For local measures, both T&C and MRREs
decrease. Steadiness decreases, while Cohesiveness suddenly goes up
after decreasing for a while. Global (KL divergence, DTM) measures in-
crease in general. CA-Trustworthiness goes down while CA-Continuity
stays still, and CVMs (DSC and Silhouette) stay still.
Experiment E. When the overlap between hyperballs increases, both
Label-C [DSC] and Label-C [CHbtwn] decrease, while Label-Ts stay
still, verifying our hypothesis. However, as in experiment D, Label-
C [DSC] and Label-C [CHbtwn] decrease differently; while Label-C
[DSC] decreases right before the hyperballs perfectly overlap, Label-C
[CHbtwn] decreases before Label-C [DSC] does. Meanwhile, local mea-
sures (T&C, MRRE) decrease, while global measures (KL divergence,
DTM) stay still. Steadiness decreases while Cohesiveness temporarily
pops up when Steadiness starts to decrease. CA-Trustworthiness main-
tains a maximum score while the CA-Continuity score increases before
the perfect overlap of the hyperballs. CVMs stay still.
Experiment F. The results confirm our hypothesis; as the starting index
of the PCs that we slice increases, both Label-C [DSC] and Label-C
[CHbtwn] decrease while Label-Ts stay still. Local measures (T&C,
MRRE) decrease, and global measures (KL divergence, DTM) stay still.
S&C decrease, while Steadiness decreases more than Cohesiveness.
CA-T&C show a similar trend; CA-Trustworthiness decreases, while
CA-Continuity decreases to a smaller extent. CVMs stay still.

5.1.3 Discussions

Label-T&C and competitors’ capability in detecting cluster-level
distortions. The results from experiments A-C confirm that Label-T
is sensitive to False Groups distortions, while Label-C is not, as we
intended. Moreover, the difference between the B-1 and B-2 results
validates Label-T’s accuracy at measuring the amount of False Groups
distortions. The results from experiments D-F, on the other hand,
confirm that Label-C accurately captures Missing Groups distortions,
while Label-T ignores them.

The results also validate that previous measures fail to accurately
detect the distortions or to distinguish specific distortion types. Global
measures (KL Divergence, DTM) hardly discover distortions for all
six experiments. Local measures (T&C, MRRE) fail to pinpoint spe-
cific distortion types; all measures decrease regardless of the type of

Fig. 5. Results of the scalability analysis. Name and line colors match
with Fig. 4. Label-T&C [DSC] (dark blue) is on par with CVMs (Silhouette,
DSC), while Label-T&C [CHbtwn ] is similar to most of the other measures.
S&C is the slowest.

distortion they aim to measure. Cluster-level measures (S&C) fail
to distinguish False Groups distortions in experiments A-C. For ex-
periments D-F, the situation is even worse; Steadiness reacts more
sensitively to Missing Groups distortions although it was originally
designed to aim at False Groups distortions. CA-T&C succeed in pin-
pointing False Groups distortions for B-1, but fails to do so for the
remaining experiments.

The general process of label-based DR evaluation based on CVMs
(DSC and Silhouette) succeeds in detecting the False Groups distortions
in experiments A-C. However, in experiments D-F, the process fails to
detect Missing Groups distortions. Moreover, the process does not have
a specific focus on distortion type and thus cannot explain whether the
False or Missing Groups distortions occurred. Such results confirm the
threat of using the general label-based evaluation of DR in practice,
providing clear evidence for adopting Label-T&C instead.
Effect of CVM choice on Label-T&C. Label-T&Cs with two different
CVMs (DSC or CHbtwn) show a consistent pattern in experiments A-
C. However, they behave differently in experiments D and E; Label-
C [CHbtwn] starts decreasing for the lower level of generated CLM
distortions than Label-C [DSC]. This observation may be CVM-specific
as DSC and CHbtwn use different schemes in examining how the classes
are clustered. In Label-C [DSC], the score only drops when classes
overlap. Therefore, Label-C [DSC] is sensitive to Missing Groups
distortions only if the overlapped classes in the original space are
more separated in the embedding. In contrast, CHbtwn decreases as the
proximity between classes increases, whether the classes overlap or not.
Thus, when proximity increases, Label-C [CHbtwn] is more sensitive to
Missing Groups distortions than Label-C [DSC]. The results indicate
that CHbtwn has a larger range of variation, being more sensitive to
CLM than DSC, but it is less sensitive to class overlap. Creating a
CVM both sensitive to CLM and class overlap while fulfilling our
requirements (Sect. 4.2.1) constitutes an interesting future work.
Discussions on the competitors. We discuss the patterns shown by
competitors with more detail in Appendix B.

5.1.4 Sensitivity Analysis with the Class Labels Generated by
Clustering Techniques

We want to validate whether the results of our study are replicable with
the labels that come from other sources. We thus conduct experiments
A-F while generating class labels with clustering techniques (Appendix
F). We find that Label-T&C show consistent results regardless of the
sources of labels, while the general label-based DR evaluation process
(i.e., CVMs) fails to do so. Such results confirm the robustness of the
Label-T&C in evaluating the quality of DR embeddings.

5.2 Scalability Analysis
5.2.1 Objectives and Design
We evaluate the scalability of Label-T&C against the competitors. We
gather 96 labeled datasets [28] that vary in dimensionality, the number
of data points, and the number of classes. We exclude two datasets as
the implementation of S&C provided by the authors1 fails to process
them, resulting in 94 datasets (Appendix C). We generate embeddings
using t-SNE, UMAP, PCA, and random projection for all 94 datasets.

1github.com/hj-n/steadiness-cohesiveness
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Fig. 6. t-SNE embeddings of Fashion-MNIST [72] data with diverse perplexity (σ ) values. Combined with the class-pairwise CLM of the original
dataset (Fig. 8), the patterns in the embeddings qualitatively support the findings about the effect of σ revealed by Label-T&C (Fig. 7; Sect. 6.1).

Fig. 7. Overall reliability of t-SNE embeddings according to the σ value
quantified by Label-T&C [DSC] and Label-T&C [CHbtwn]. For each σ
value, we average the score of the embeddings generated from 94
labeled datasets (95% confidence interval shaded).

Fig. 8. Heatmaps detailing the CLM matrix of the Fashion-MNIST dataset
(M(X) in Sect. 4.1). The color of each cell depicts the CVM (DSC, CHbtwn)
score measured for each pair of classes corresponding to rows and
columns.

We check the overall execution time applying all measures to the em-
beddings, adding up the running times of the measures run in pairs
(Label-T&C, T&C, MRRE, S&C, and CA-T&C). We use the provided
implementation for S&C and scikit-learn [51] for the Silhouette. We
implement the remaining measures in Python with Numba parallel
computing [36] to maximize the scalability. We run the experiments on
a Linux server with 40-core Intel Xeon Silver 4210 CPUs.

5.2.2 Results and Discussion

Fig. 5 show that the running time of Label-T&C highly depends on
the CVM. Among all measures, DSC is the fastest, followed by Label-
T&C [DSC]. If CHbtwn is used as the CVM, Label-T&C becomes less
scalable. Still, Label-T&C [CHbtwn] has scalability similar to local
(T&C, MRRE) and global (KL Divergence, DTM) measures and to
CA-T&C, all being more than twice faster than S&C.

6 CASE STUDIES

We report two case studies demonstrating the usefulness of Label-T&C
to characterize DR techniques and their hyperparameters.

6.1 Examining the Effect of t-SNE Perplexity

6.1.1 Objectives and Design

We want to use Label-T&C to evaluate the reliability of the cluster
structures from t-SNE embeddings (Sect. 5.1) depending on its per-
plexity hyperparameter σ . σ adjusts the balance between local and
global cluster structures [13, 66]. We generate the t-SNE embeddings
of the 94 labeled datasets used for the scalability analysis (Sect. 5.2)
using different σ values (σ ∈ {2i | i = 0, · · · ,10}) and evaluate them
using Label-T&C [CHbtwn] and Label-T&C [DSC]. We also inspect
the t-SNE embeddings of the Fashion-MNIST [72] dataset with vari-
ous perplexity values (σ ∈ {4,16,64,256,1024}; Fig. 6) to gain more
qualitative insights. Moreover, we compute the “ground-truth” CLM
matrix of the Fashion-MNIST dataset (Fig. 8), where the (i, j)-th cell
represents the CVM score (CHbtwn or DSC) of the i-th and j-th classes.
Note that this CLM matrix is identical to M(X) in Sect. 4.1.

6.1.2 Results and Discussions

In the case of Label-T&C [CHbtwn], we found a clear tradeoff be-
tween Label-T and Label-C (Fig. 7A). When σ is low or high, Label-T
[CHbtwn] gives low scores to t-SNE embeddings, indicating more False
Groups distortions, while Label-C [CHbtwn] gives high scores, meaning
fewer Missing Groups distortions. This means that t-SNE underrep-
resents the extent to which classes are clustered. In contrast, when σ
has an intermediate value, Label-T&C [CHbtwn] indicate more Missing
Groups and fewer False Groups distortions; hence, t-SNE exaggerates
the degree to which classes are clustered.

These results align well with the intent of σ . With low σ , t-SNE
focuses more on a small number of neighbors, likely fewer than the
clusters’ sizes, interpreting each cluster as made of loosely-connected
components in the data space. Thus, the embedding is more likely to
split classes into several clusters in the embedding. This phenomenon
occurs in the Fashion-MNIST embedding (Fig. 6); the Sneaker class
is less dense if σ is low (region α1) and relatively condensed when
σ has intermediate values (α2 and α3). For the latter, the number of
neighbors that t-SNE focuses on will likely match the size of natural
clusters within the original data. Therefore, t-SNE embeddings will
tend to dismiss the inter-cluster connections, exaggerating the between-
cluster distances. The number of neighbors that t-SNE focuses on
with high σ values will likely be bigger than the clusters’ sizes. Thus,
t-SNE will detect all data clusters as one densely-packed component
and generate embeddings with smaller inter-cluster distances.

The relation between the Trouser and Dress classes of the Fashion-
MNIST embeddings (Fig. 6) qualitatively verifies these hypotheses.
Their DSC scores are almost maximum (the black circle in Fig. 8),
meaning they slightly overlap in the data space. However, their dis-
tance in the embedding is exaggerated with intermediate σ (β1 and
β2) compared to high σ (β3 and β4). The same effect was observed
qualitatively by Jeon et al. [29] while Label-T&C does so quantitatively.

Meanwhile, Label-C [DSC] decreases slightly for intermediate val-
ues of σ (Fig. 7B dotted line). As Label-T&C [DSC] focuses more
on class overlaps and less on between-class distances compared to
Label-T&C [CHbtwn] (see D and E in Sect. 5.1), it indicates that t-SNE
preserves well the extent to which classes overlap regardless of σ . To
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Fig. 9. CLM distortion evaluation of a linear (PCA) and five nonlinear (t-SNE, UMAP, Isomap, LLE, and Densmap) unsupervised DR techniques.
(A-D) Evaluation results with Label-T&C [CHbtwn/DSC] where class labels are obtained from the hierarchical clustering of the original data at multiple
granularity levels (x-axis). Label-T&C evaluates more coarse-grained (global) clusterings for higher levels. See details in Sect. 6.2. (E-F) Evaluation
results of the techniques with T&C (E) and KL Divergence (F). Note that for all figures, higher scores indicate better embeddings.

quantitatively validate these findings, we searched for the overlapped
classes within the CLM matrices, assuming that t-SNE accurately de-
picts class overlap for all σ values. We observed that the Pullover, Coat,
and Shirt classes overlap in the high-dimensional space (red circles in
Fig. 8; both their DSC and CHbtwn class-pairwise scores are low). We
found that these classes overlap in all embeddings in Fig. 6 (γ1 to γ5),
confirming our assumption.

In summary, we can conclude that for non-overlapping classes in
t-SNE embeddings, the amount of proximity between them depends
essentially on σ and is not indicative of the proximity of these classes
in the data space: t-SNE is not trustworthy regarding the original
distance between visually separated classes. However, classes with
strong overlaps in the data are depicted as overlapping in the embedding
too: t-SNE is more trustworthy for overlapping classes. Such results
align with the qualitative findings of Wattenberg et al. [66].

Overall, these findings demonstrate the effectiveness of Label-T&C
to enhance our understanding of the effect of σ on t-SNE results. We
conduct the same analysis utilizing the competitor measures we used
in our evaluation (Sect. 5.1); refer to Appendix E for the results.

6.2 Analyzing DR Techniques’ Performance in Detail
6.2.1 Objectives and Design
We use Label-T&C to analyze the quality of unsupervised DR tech-
niques across fine-grained to coarse-grained cluster structures. We
embed each of the previous 94 datasets using six DR techniques: t-
SNE, PCA, UMAP, Isomap, LLE, and Densmap [48]. We also apply
hierarchical clustering, getting 20 clustering partitions with different
granularity levels for each of these datasets. The levels of granularity
are obtained by thresholding the pairwise distances computed by Ward
linkage [33] into 20 equal ranges. We use Label-T&C [CHbtwn] and
Label-T&C [DSC] to evaluate the embeddings using each of the 20
clusterings as class labels.

We also want to check whether the results obtained by Label-T&C
align with the ones made by previous measures. We thus evaluate the
embeddings using T&C and KL divergence as representative local and
global measures, respectively. We use the same hyperparameter setting
with the sensitivity analysis (Sect. 5.1).

6.2.2 Results and Discussions
Fig. 9 depicts the results. LLE generates few Missing Groups distor-
tions (highest Label-C score; Fig. 9B, D) at any level, but more False
Groups distortions as the granularity level increases (Label-T decreases;
Fig. 9A, C). This finding aligns with the fact that LLE obtains the worst
KL divergence score among all techniques (Fig. 9F). Such results are
coherent with how LLE works, trying to reconstruct the “local patches”
consisting of each point and its nearest neighbors while neglecting the
overlap between the patches.

There is a Label-C downward trend across all other techniques as the
level increases, while Label-C [DSC] shows higher scores than Label-C
[CHbtwn] (Fig. 9B, D). This implies that Missing Groups distortions
generally occur more for coarse-grained structures than for fine-grained
ones; DR techniques exaggerate the separation between clusters at
a global level. t-SNE and UMAP especially give the worst Label-C

scores because they focus on the preservation of local neighborhoods,
casting doubts on their reliability in identifying global clusters. T&C
and KL divergence score provide strong evidence to the reliability of
that claim. t-SNE and UMAP are in the top-2 highest ranks for T&C
but fail to do so for KL divergence.

For Label-T&C except Label-C [CHbtwn], PCA gets the best score
at higher granularity, suggesting that PCA is more reliable to conduct
global tasks such as the density and similarity identification of clusters.
These results align with the fact that PCA earns the best score for KL
divergence. The phenomenon confirms the experimental observation
made by Xia et al. [69]. This is also coherent with the fact that PCA
embeds the data along the top two principal axes that preserve most
of their variance, better representing coarse-grained structures than
fine-grained ones.

We also find that Densmap, which is a variant of UMAP better pre-
serving cluster density [48], gets worse Label-T [CHbtwn] scores than
UMAP (Fig. 9A) but better Label-C [CHbtwn] scores (Fig. 9B), at all
levels. This means that Densmap generates fewer Missing Groups but
more False Groups distortions than UMAP. As Densmap approximately
maintains the cluster locations of UMAP [48], such difference indi-
cates that the clusters generally become bigger in Densmap compared
to UMAP, hence the cluster density is relatively lower. Meanwhile,
Densmap gets better Label-T&C [DSC] scores than UMAP for high
granularity levels, confirming Densmap’s advantage in investigating
the overlap of clusters. The result is consistent with the KL divergence
scores, indicating Densmap’s advantage in preserving global structures
when compared to UMAP (Fig. 9F).

These findings confirm the ability of Label-T&C to reveal the char-
acteristics of DR methods over a wide range of clustering granularities.
Although typical evaluation approaches of DR quality using both local
and global measures (Fig. 9E, F) [19, 30, 46] show consistent results,
they cannot reveal how the quality changes across granularity levels,
as different measures are incomparable.

7 CONCLUSIONS

The general process of label-based DR evaluation relies on the as-
sumption that the original data has good CLM, which can lead to erro-
neous conclusions when this assumption is violated. We introduce two
new distortion measures—Label-Trustworthiness and Label-Continuity
(Label-T&C)—that use class labels for DR evaluation while eliminating
the need to check the validity of the CLM assumption. Our quantitative
experiments show that Label-T&C outperforms previous DR measures
in terms of precision and sensitivity in detecting Missing and False
Groups distortions. Use cases show that Label-T&C can be used to
characterize DR techniques and their hyperparameters.

As future work, we will study new CVM to make Label-T&C more
sensitive to the CLM distortions than using DSC or CHbtwn. Enriching
the embedding with CLM distortions [40] could also better inform
analysts about the credibility of visual patterns. Yet another direction
would be to evaluate supervised DR techniques with Label-T&C. We
also believe that supervised DR techniques using class labels in their
optimization process could benefit from incorporating Label-T&C in
their loss function. Overall, our proposal aims toward getting more
trustworthy DR-based visual analysis.
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