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A THEOREMS AND PROOFS

In Sect. 4.2.2, we need to examine whether representative Internal
Validation Measures (IVMs; e.g., Silhouette Coefficient [9], Davies-
Bouldin index [2], and Distance Consistency (DSC) [10]) satisfy in-
variance requirements to be proper clustering validation measures to
compute Label-T&C (R1 to R3 in Sect. 4.2.1).

A.1 Proofs on Silhouette & Davies-Bouldin Index

We first prove that the Silhouette Coefficient and Davies-Bouldin index
do not satisfy requirement R2; hence, they cannot be used for evaluating
CLM distortions.

Theorem 1. Silhouette Coefficient does not satisfy shift invariance
(R2).

Proof. For any input clustering partition P over data S and Euclidean
distance function d, Silhouette Coefficient SC is defined as:

SC(P,S,d) =
1
|P|

·
|P|

∑
i=1

1
|Pi| ∑

x∈Pi

b(x,d)−a(x,d)
max(b(x,d),a(x,d))

.

For a data point x ∈ Pi,

a(x,d) =
1

|Pi|−1 ∑
y∈Pi,x ̸=y

d(x,y),

and

b(x,d) = min
j

1
|Pj| ∑

y∈Pj

d(x,y).

As a(x,d +β ) = a(x,d)+β and b(x,d +β ) = b(x,d)+β ,

SC(P,S,d +β ) =
1
|P|

·
|P|

∑
i=1

1
|Pi| ∑

x∈Pi

b(x)−a(x)
β +max(b(x),a(x))

̸= SC(P,S,d).

Thus, Silhouette Coefficient SC is not shift invariant. □

Theorem 2. Davies-Bouldin index does not satisfy shift invariance
(R2).

Proof. For any input clustering partition P over data S and Euclidean
distance function d, Davies-Bouldin index DB is defined as:

DB(P,S,d) =
1
|P|

|P|

∑
i=1

max
j ̸=i

1
|Pi| ∑

x∈Pi

d(x,ci)+
1
|Pj | ∑

x∈Pj

d(x,c j)

d(ci,c j)
,

where cn denotes the centroid of Pn in S.

For any P and S,

DB(P,S,d +β )

=
1
|P|

|P|

∑
i=1

max
j ̸=i

1
|Pi| ∑

x∈Pi

d(x,ci)+
1
|Pj | ∑

x∈Pj

d(x,c j)+2β

d(ci,c j)+β

̸= DB(C,X ,d).

Thus, Davies Bouldin index DB is not shift invariant. □

A.2 Proofs on Distance Consistency (DSC)
We prove that DSC satisfies all four requirements, and thus can be used
as a proper CVM for Label-T&C. For input clustering partition P over
data S and Euclidean distance function d, DSC is defined as:

DSC(P,S,d) =
|{x ∈ S|x ∈ argmin Pi∈Pd(x,ci)}|

|S|
,

where ci denotes the centroid of Pi in S. DSC counts the proportion
of data that belong to the same class as their nearest class centroid. As
DSC does not require any hyperparameter other than d, it satisfies R4.
Now, we provide proofs for R1, R2, and R3.

Theorem 3. DSC satisfy scale invariance (R1).

Proof. ∀ x ∈ S, argmin Pi∈Pαd(x,ci) = argmin Pi∈Pd(x,ci). Thus, ∀
x ∈ S, DSC(P,S,αd) = DSC(P,S,d). Therefore, DSC satisfies scale
invariance. □

Theorem 4. DSC satisfies shift invariance (R2).

Proof. ∀ x ∈ S, argmin Pi∈P(d +β )(x,ci) = argmin Pi∈P(x,ci). Thus,
∀ x ∈ S, DSC(P,S,d +β ) = DSC(P,S,d). Therefore, DSC satisfies
shift invariance. □

Theorem 5. DSC satisfies range invariance (R3).

Proof. DSC ranges from 0.5 to 1, where the higher value denotes better
clustering. Thus, DSC is range invariant. □

Note that the satisfaction of the requirements of the between-dataset
Calinski-Harabasz index (CHbtwn), which we use as another proper
option for Label-T&C, has been previously proven by Jeon et al. [5].

B ADDITIONAL DISCUSSIONS ON SENSITIVITY ANALYSIS

In Sect. 5.1.3, we especially focus on discussing the difference be-
tween the patterns shown by Label-T&C and the general process of
label-based evaluation (Silhouette, DSC). Here, we provide detailed
discussions on the remaining measures: local measures (T&C, MRRE),
global measures (KL-divergence, DTM), cluster-level measures (S&C),
and CA-T&C. Note that this discussion is linked with Sect 5.1.2, 5.1.3,
and Fig. 5 in the main document.
Local measures The analysis of the results indicate that local measures
are able to detect the cluster-level distortions, but have no capability
to distinguish False and Missing Groups distortions. For all experi-
ments, all local measures decreased together regardless of the type of
distortions generated for the experiment. Such results indicate that
the occurrence of cluster-level distortions (Missing and False Groups
distortions) also make Missing and False Neighbors distortions occur
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Fig. 1: The subset of the LDA, t-SNE, and UMAP embeddings used in the preliminary experiment (Sect. 3.3). The titles placed over the brackets
depict the dataset name. If the CLM of the original dataset is good, CLM of the embeddings made by three DR techniques is all good. However,
when the CLM of the original dataset is bad, LDA tends to separate class labels more than the other two unsupervised learning techniques.
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Fig. 2: Overall reliability of t-SNE embeddings according to the perplexity (σ ) value, assessed by competitor distortions measures we used in our
evaluations (Sect. 5). Unlike Label-T&C, which showed a clear tradeoff between Label-T and Label-C, all competitor measures promoted an
intermediate range of σ .

simultaneously. Seeking how the distortions at different scales (cluster
and neighbor) interplay with each other will be interesting future work.
Global measures Global measures often fail to detect False and Miss-
ing Groups distortions; for example, in experiments A and D, global
measure scores go up while distortions increase. We can thus con-
clude that using global measures is not suitable to detect cluster-level
distortions.
Steadiness & Cohesiveness (S&C) While Label-T&C precisely pin-
point Missing and False Group distortions, S&C—the only pair of
measures that directly focus on False and Missing Group—failed to
do so. This is mainly because S&C adopts Shared-Nearest-Neighbor
(SNN) [6] as a default distance function. SNN is constructed based on
k-nearest neighbors (kNN) graph. It assigns higher similarity to point
pairs that share more kNNs. Therefore, adding more points between
two points (i.e., fewer shared neighbors) increases the SNN distance
even though the Euclidean distance between the two points does not
change. This makes not only Steadiness but also Cohesiveness de-
crease in Experiment A-C; the overlap between low-dimensional data
points made the SNN distances between the points within the same
classes grow, which lead S&C to interpret that not only compression
but also stretching occurred. In experiments D-F, such unintentional
distance growth occurred in the original space, leading to inaccurate
performances of S&C.
Class-Aware Trustworthiness & Continuity (CA-T&C) Patterns
shown by CA-T&C are generally similar to T&C in experiments A to
C. Such results indicate that CA-T&C can detect False Groups distor-
tions. However, CA-T&C fails to accurately detect Missing Groups
distortions in experiments D to F; in experiment E, the CA-Continuity
score even increases while distortions increase. This indicates that CA-
T&C can only detect False Groups distortions while hardly capturing
Missing Groups, which is well aligned with the design of CA-T&C.
Such results are well aligned with the design of CA-T&C, which gen-
uinely detect the degradation of CLM but not the increment during the
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Fig. 3: The evaluation of three DR techniques (LDA, t-SNE, UMAP)
using the general process of assessing DR based on class labels. We
gathered good-CLM and bad-CLM datasets, applied DR techniques,
and then measured their quality using the Silhouette Coefficient in the
embedded space. While UMAP and t-SNE showed competitive or
better performance compared to LDA with good-CLM datasets (top),
they fell behind LDA with bad-CLM datasets (bottom). The error bars
depict 95% confidence intervals. As LDA tries to maximize class sepa-
ration rather than preserving the intrinsic structure of the original data,
such results indicate that the general label-based evaluation process can
be incorrect with bad-CLM datasets. Refer to Appendix D to see the
embeddings.

reduction, which is described in 2.1.3.

C LABELED DATASETS

We provide 94 labeled datasets we used in our preliminary experiment
(Sect 3.3), scalability analysis (Sect. 5.2), and the application exam-
ining t-SNE perplexity hyperparameter (Sect 6.1). Please refer to the
full list of the labeled dataset in Table 1. The datasets are sorted in
descending order based on CLM measured by CHbtwn developed by
Jeon et al. [5].



Dataset Points Dims Classes

Weather 365 192
Olivetti Faces 400 4,096 40
MNIST64 1,082 64 6
Optical Recognition of Handwritten Digits 3,823 64 10
Seeds 210 7 3
Wireless Indoor Localization 2,000 7 4
COIL20 1,440 400 20
Iris 150 4 3
Pen-Based Recognition of Handwritten Digits 7,494 16 10
Rice Seed (Gonen&Jasmine) 18,185 10 2
Breast Cancer Wisconsin (Original) 683 9 2
pH-recognition 653 3 15
Echocardiogram 61 10 20
Fashion-MNIST 3,000 784 10
Mobile Price Classification 2,000 20 4
Human Stress Detection 2,001 3 3
Dry Bean 13,611 16 7
HAR 735 561 6
Rice Dataset Cammeo and Osmancik 3,810 7 2
Wine Customer Segmentation 178 13 3
Wine 178 13 3
Zoo 101 16 7
Image Segmentation 210 19 7
Boston 154 13 3
Statlog (Image Segmentation) 2,310 19 7
User Knowledge Modeling 258 5 4
Ecoli 336 7 8
Website Phishing 1,353 9 3
Date Fruit 898 34 7
Music Genre Classification 1,000 26 10
Pistachio 2,148 28 2
Crowdsourced Mapping 10,545 28 6
Raisin 900 7 2
Breast Cancer Wisconsin (Prognostic) 569 30 2
Yeast 1,484 8 10
Dermatology 358 34 6
Glass Identification 214 9 6
Classification in Asteroseismology 1,001 3 2
Breast Tissue 106 9 6
Mammographic Mass 830 5 2
Banknote Authentication 1,372 4 2
Birds Bones and Living Habits 413 10 6
ExtyaleB 319 30 5
Flickr Material Database 997 1,536 10
CNAE-9 1,080 856 9
Fetal Health Classification 2,126 21 3
Durum Wheat Features 9,000 236 3

Dataset Points Dims Classes

Smoker Condition 1,012 7 2
Student Grade 395 29 2
Turkish Music Emotion 400 50 4
CIFAR10 3,250 1,024 10
Ionosphere 351 34 2
SPECTF Heart 80 44 2
Hate Speech 3,221 100 3
Predicting Pulsar Star 9273 8 2
Parkinsons 195 22 2
HTRU2 17,898 8 2
Siberian Weather Stats 1,439 11 9
Patient Treatment Classification 4,412 10 2
SMS Spam Collection 835 500 2
MAGIC Gamma Telescope 19,020 10 2
Orbit Classification For Prediction / NASA 1,748 11 6
Harberman’s Survival 306 3 2
IMDB 3,250 700 2
Pumpkin Seeds 2,500 12 2
World12d 150 12 5
Heart Attack Analysis & Prediction 303 13 2
Diabetic Retinopathy Debrecen 1,151 19 2
Seismic Bumps 646 24 2
Hepatitis 80 19 2
Statlog (German Credit) 1,000 24 2
Wine Quality 4,898 11 7
Sentiment Labeled Sentences 2,748 200 2
Pima Indians Diabetes Database 768 8 2
Blood Transfusion Service Center 748 4 2
Heart Disease 297 13 5
Cardiovascular Study 2,927 15 2
Insurance Company Benchmark 5,822 85 2
Street View House Numbers 732 1,024 10
SkillCraft1 Master Table Dataset 3,338 18 7
HIVA 3,076 1,617 2
Spambase 4,601 57 2
Wilt 4,339 5 2
Breast Cancer Coimbra 116 9 2
SECOM 1,567 590 2
Customer Classification 1,000 11 4
Credit Risk Classification 976 11 2
Planning Relax 182 12 2
Taiwanese Bankruptcy Prediction 6,819 95 2
Labeled Faces in the Wild 2,200 5,828 2
Water Quality 2,011 9 2
Epileptic Seizure Recognition 5,750 178 5
Paris Housing Classification 10,000 17 2
Fraud Detection Bank 20,468 112 2

Table 1: 94 Labeled datasets sorted in descending order by CLM, gathered by the previous research [5]. The left table shows the top half datasets,
while the right one shows the bottom half datasets. The bad-CLM datasets and the good-CLM datasets are used in the preliminary experiment
(Sect 3.3) are emphasized with bold and bold with underline, respectively.

D PRELIMINARY EXPERIMENT

D.1 Objectives and Design
To reveal the threat of the general label-based evaluation process, we
conduct a preliminary experiment (Fig. 3) comparing three DR tech-
niques (LDA [3], t-SNE, UMAP) based on that process. LDA is super-
vised; it takes predefined class labels as input and produces embeddings
that maximize the separation among classes. In contrast, t-SNE and
UMAP are unsupervised; they ignore class labels and try to preserve
the original structure of the data. We deliberately choose these two tech-
niques as they are previously shown to be more capable of capturing
the cluster structure, compared to other widely used unsupervised DR
techniques [12]. To evaluate the techniques, we construct two distinct
sets of labeled datasets: one featuring 10 datasets with good CLM
and another one comprising 10 datasets with poor CLM. We select

the datasets from a collection of 96 datasets previously compiled in a
related study [5], guided by their CLM rankings as provided within
that research. We then generate embeddings of the datasets in the two
sets using the three DR techniques and measure the embeddings’ CLM
using the Silhouette Coefficient. We used the Silhouette Coefficient as
it is the most widely used CVM for visualization research. The detailed
settings we used are as follows:

Datasets Good- and bad-CLM datasets are picked as top-10 and bottom-
10 CLM datasets in the list of 94 datasets (Appendix C). Note that we
only picked the datasets with more than two classes, as it is necessary
to run LDA.

Hyperparameters For t-SNE and UMAP, we used the default hyper-
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Fig. 4: The results of sensitivity analysis (Sect. 5.1) replicated with the class labels generated by HDBSCAN [7] clustering technique.
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Fig. 5: The results of sensitivity analysis (Sect. 5.1) replicated with the class labels generated by K-Means [4] clustering technique.

parameter setting provided by scikit-learn [8] and umap-learn1

library. We used the default setting for t-SNE and UMAP to compare
them fairly against LDA, which has no hyperparameter and generates
embeddings via a fixed algorithm.

DR Embeddings We depict the subset of the embeddings we used in
the preliminary experiment in Fig. 1.

D.2 Results

The results (Fig. 3) demonstrate the issue of using the general label-
based DR evaluation process. We expect a proper measure to always
prefer UMAP and t-SNE to LDA, as LDA focuses on the linear separa-
tion of the classes by design and is thus less sensitive to the intrinsic
structure of the original data. With good CLM datasets, the general
process provides a better score for t-SNE and UMAP than for LDA as
expected. However, with bad-CLM datasets, LDA outperforms both
t-SNE and UMAP. This result shows that the general process of label-
based DR evaluation erroneously assesses CLM distortions when the
original data has bad CLM. Our goal in this work is to introduce a new
way of using class labels for DR evaluation that mitigates such a bias.

1https://umap-learn.readthedocs.io/

E EXAMINING THE EFFECT OF t -SNE PERPLEXITY WITH
OTHER DISTORTION MEASURES

Objectives and design As an extension of Sect. 6.1., we want to ana-
lyze the effect of t-SNE perplexity hyperparameter using the competitor
distortion measures we used in our evaluations (Sect. 5). We conduct
the same analysis using the following measures: local measures (T&C,
MRRE), cluster-level measures (S&C), global measures (KL Diver-
gence, DTM), CA-T&C, and the general process of label-based DR
evaluation (i.e., Silhouette, DSC).

Results Fig. 2 depicts the results. We found that all distortion measures
we considered assigned higher scores to the embeddings with inter-
mediate σ than the ones with low and high σ , regardless of the target
distortion (stretching or compression) evaluated in the experiment. The
only insight we can obtain is that t-SNE with intermediate σ generates
better embeddings in terms of both stretching and compression. Such
results contradict the conclusion with Label-T&C: Missing and False
Groups distortions have a clear tradeoff. Regarding our qualitative
findings with Fashion-MNIST dataset [13] (Fig. 7 and 9) support the
conclusion of Label-T&C, and also considering that Label-T&C pre-
cisely captures cluster-level distortions compared to competitors (Sect.
5.1), we believe that the conclusion with Label-T&C is more reliable
than the one with competitors.

https://umap-learn.readthedocs.io/en/latest/


Acronym Definition

DR Dimensionality Reduction
CLM Cluster-Label Matching
CVM Clustering Validation Measures
Label-T&C Label-Trustworthiness & Label-Continuity
KL Divergence Kullback-Liebler Divergence
DTM Distance-to-Measure
T&C Trustworthiness & Continuity
MRREs Mean Relative Rank Errors
S&C Steadiness & Cohesiveness
CA-T&C Class-Aware Trustworthiness & Continuity
IVM Internal CVM
EVM External CVM
DSC Distance Consistency
CHbtwn Between-Dataset Calinski-Harabasz Index

Table 2: The list of acronyms used in the paper and their definitions.

F CONDUCTING SENSITIVITY ANALYSIS WITH THE LABELS
GENERATED BY CLUSTERING TECHNIQUES

Objectives and Design In Sect. 5.1, we conduct six experiments
validating distortion measures’ sensitivity in quantifying Missing and
False Groups distortions. Here, we replicate the experiments while
feeding the labels made by clustering techniques. To generate class
labels, we use K-Means [4] and HDBSCAN [1], with the implementa-
tions provided by scikit-learn and McInnes et al. [7]. We exploit
Bayesian optimization [11] to obtain optimal clustering results, using
the hyperparameter range suggested by Jeon et al. [5].
Results Fig. 4 and Fig. 5 present the results with labels created by
HDBSCAN [7] and K-Means [4], respectively. Overall, our findings
show that Label-T&C and CA-T&C results consistently align with the
original experiment (see Sect. 5.1; Fig. 4 in the main document). The
results indicate that Label-T&C produces stable scores regardless of
the change in class labels. However, the difference with the original
experiment is that the amount of decrement made in experiments C
and D decreases when the class labels are made with K-Means. Such
results indicate that Label-T&C result is not completely independent of
the CLM of the high-dimensional space. Examining the relationship
between label characteristics and Label-T&C result will be interesting
future work.

Note that for experiments B-1, B-2, and E, the result is exactly the
same as the original experiment. This indicates that optimal clustering
results made by K-Means and HDBSCAN exactly match the original
class labels. Such a situation happens as we set individual hyperspheres,
which are clearly separated, as classes.

However, the general process of label-based DR evaluation, such
as DSC and Silhouette, fails to replicate these results. Particularly in
experiments D-F, the DSC and Silhouette scores diverge substantially
from those of the original experiment. These findings suggest that the
general process of label-based DR evaluation is susceptible to changes
in class labels. Therefore, our results underscore the need to consider
high-dimensional data when evaluating DR embeddings. The results
also highlight the potential pitfalls of employing a general label-based
DR evaluation process.

G ACRONYMS

Here, we organize the acronyms and their long-form definitions used in
the paper. Please refer to Table 2 for the list.
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