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This supplementary document supports the discussion in the main text by providing technical
details. Section 1 provides the proof that each Kraus operator M, is a contraction. Section 2

proves that O is a contraction and positive-semidefinite. Section 3 presents the modified
algorithm for the initial state given in a general matrix form. Section 4 lists the quantum circuits
used on the IBM Qiskit simulator and the IBM Q 5 Tenerife device.

1. Proof that each Kraus operator M, is a contraction

As defined in the main text, an operator A is a contraction if it shrinks or preserves the norm of

any vector such that the operator norm ||A[|=supt—+ Iav] ” <1. We have ZMTM =1, suppose an

arbitrary one M, is not a contraction, then for M, there exists a vector v, such that
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positive-semidefinite with v/M!M,v, >0 . However because ZMZM,{:I we also have
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2. Proof that O = % is a contraction and positive-semidefinite
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Where we have used the triangle inequality of the operator norm and the fact that ||O|| < ||O|| s -

0 +1||0|

Note we could have made O =
2|of

but the operator norm ||O|| is more difficult to calculate

than the Hilbert-Schmidt norm ||O|| To 6—% i itive-semidefinite, let A
s prove O = 2”0” 18 positive-semidetinite, let 4.
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v||2 for any v. Now

be the smallest eigenvalue of O, then |4,;,|<[0] <[0], and viOv=> 2
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we have for any v:
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Therefore O is indeed positive-semidefinite.

3. Modified algorithm for the initial state in a general matrix form

In this section we present the quantum algorithm that evolves ,O(t ) with the initial p given in a

general matrix form:

P o P
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We first flatten p into a vector form:
T
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for which the norm of v, is given by:

v = [Zlef =lel,s =7 () <1 5)
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where H ,OH s 18 the Hilbert-Schmidt norm of the density matrix p . Eq. (5) connects the norm of

v, to the purity 7r ( pz) which measures how much a mixture is p .



Now for each & in ZM ,PM| the M, multiplying from the left is converted into M, =M, ®1,
k

and the M| multiplying from the right is converted into .#, =I®M, where ® stands for the

Kronecker product, and the bar over M, stands for complex conjugation. It is easy to verify that:
Mk le equivalent ‘/I/k Mvp ( 6)

The core idea of this quantum algorithm is to represent v, with a quantum state and then simulate
the effects of M, with quantum gates. Firstly v, can be normalized and represented by an
initial quantum state. In the main text we have proven each M, is a contraction. It follows
immediately that #, =M, ®I and ., =I®M, are also contractions by the norm property of
the Kronecker product. To simulate .#, M, v, with unitary gates, we need two 2-dilations as in Eq.

(8) in the main text by setting A =/, and B=.4,:
./’/k‘/l/l%vp unitary dilation U/Vk Umk (Vi , 0, o O)T (7)

If M, has the dimension #n by n, then J/, and W, are n° by n’, and the 2-dilations U x, and

U, are 3n” by 3n°. Now keeping with the main text we further decompose U « and U, into

sequences of two-level unitary gates and count them towards the gate complexity. For U, the
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lower-triangular part contains -n non-zero elements from ./, , n” non-zero elements from
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D n* non-zero elements from I, and the total count is 7+? This count is the same for

‘//4 >
U, , thus the total gate complexity to realize A, M, v, is 3n’ +n” for each k . Note the classical

complexity to realize M, poM| by two matrix multiplications is 4n° —2n’ (using the naive

algorithm counting the number of multiplications and additions) for each &, which is of the same
order of our proposed quantum algorithm, with a minor difference in the leading coefficient.

Now the density matrix has been evolved, we proceed to extract physical information from the
output v, (¢) = A, MV , - Firstly the diagonal elements of each p, (t)=M,pM; are always non-

negative because M, pM| is positive-semidefinite. This implies that the diagonal elements of
Joi (t ) can be obtained by applying a projection measurement on corresponding entries in V, (t) .

Using an optical setup such as in Ref. ! the probability of measuring each entry in Vv, (t) can be
efficiently obtained by recording the photon distribution at the output of the optical modes. Adding

the diagonal elements of p, (t) over k gives us the diagonal elements of the final

p(t) = ZM ,PM| which are the populations of the final system state in the basis currently in use.
k



Although the off-diagonal elements of ,Ok(t) cannot be directly obtained without quantum

tomography, they are nonetheless carried by Vv, (t) and can become physically important. For
example, if we want to obtain the populations of the final system in another basis, we can carry
out a basis transformation 0, () >Tp, (¢)T', or correspondingly v, (1) - (I ®T)(T®I)v, (),
where the off-diagonal elements are required. Here T is unitary such that T®I and IQT are
unitary, and therefore no dilations are needed. For the additional T®I and I®T gates, the
quantum gate count is increased by n° —n’ to a total of 4n’ for each k, while the classical
complexity adds an overhead cost of 4n° —2n° for p(t) —)Tp(t) T (independent from the &

count) to the original 4n° —2n” for each k. We remark that when the total number of M ‘

operators is small, the quantum algorithm outperforms the classical one by taking advantage of the

unitarity of T . The off-diagonal elements of p, (t) are also important if we want to calculate the

expectation value of an observable: <O> = Tr(Op(t)) = ZTr(Opk (t)) Here we use the same
k

. _ . = _0+Ijo],
procedure as in the main text to define an operator O —2”0”
HS

and positive-semidefinite. Now by Cholesky decomposition we have O=LL' and:

(0)=7r(0p(t)) =Tr(LL p(t)) = Tr (L' p(t)L) = Zk:Tr(L*pk (r)L) ®)

, Which is both a contraction

where each LTpk (t)L is positive-semidefinite and its diagonal elements can be obtained by

projection measurements. L' is obviously a contraction because O is a contraction. To realize
L p, ()L (IQL) (L' @ 1) A, M, v, 9)

we need all four matrices to be in the 4-dilation form:

A 000 D,
D, 0 0 0 —-A'
U,=| 0 I .00 0 (10)
0 010 0
0 00T 0
where A =(L'®I), (I®L'), 4, or M, :
(1B T)(U O1) Ay, —sn sy 0 U U (o) (D)

Now after L] yop (t)L has been obtained 7} r(f)p(t)) can be calculated, then we have:



(0)=1r(0p(1))
=7+((2]o],, 0 -1]0],, )~ (1)) (12)

=2[0], 7(0p (1)) [l

where we have successfully obtained <O> for the original observable. The (L* ® I) and (I ® I_f)

gates ( L' is upper triangular requiring reduced number of two-level unitaries for the
decomposition) plus the additional two levels of dilation for .4, and .#, increase the quantum

gate countto 5n° +11n” foreach k . Calculating HOH s Tequires 2n” —1 classical arithmetic steps.

3
The Cholesky decomposition has various implementations but generally it requires % classical

3
arithmetic steps®. Thus n?+2n2—1 classical steps should be added as an overhead cost

(independent from the £ count) when evaluating the total cost of the quantum algorithm. In the
meanwhile the classical complexity of evaluating 77 (Op (t)) adds an overhead of 21’ —n” to the

original 4n’ —2n” for each k .

Next we demonstrate the method proposed above on the same amplitude damping model used in
the main text. To calculate the populations in the current basis {| 0>,

1>} we can construct U, and

U, of the 2-dilation form in Eq. (8) using M, =M, ®I, 4, =I®M,, and D, =VI-A'A
with A=M,, A, :
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With an initial p:l , :ﬁ,the input state is:
41 3 a2
v, = ! v’'.0,...,0 —L11130 0 (15)
0 ||p||HS p’ 9y 2\/5 b ] b 9

where m =8 here is the number of zeros after VT . We use the same parameters as in the main text:
set ¥ =1.52x10’s™" (typical nanosecond lifetime), numerically calculate U , Uy v, from £=0
to #=1000 ps with a time step of 10 picosecond, and obtain the populations of the ground and

excited states from the first and fourth entries of U , U, v, . The results are the same as the smooth

lines in Figure 1 in the main text. To calculate the populations in another basis {|+>, —>} where

1 (1 1
+)=—=(|0)£|1)), we need the transformation matrix T=— . Now numerically
=5 (021 504
T®I I®T
calculate I I U, U, v, and we can obtain the populations of the ‘i>
I I

states. The results are the same as the smooth lines in Figure 2 in the main text. Now we evaluate

-2 0.5
the expectation value of an observable <O> for O = (0 5 1 j the same as used in the main text.

U

We construct U( U, and U, of the 4-dilation form in Eq. (10) and apply them to

1®ﬁ) > (U@I) >

the initial state v, in the form of Eq. (15) with m =16. Numerically calculating the output vector

will give us <O> by Eq. (12). The results are the same as the smooth line in Figure 3 in the main
text.



4. Quantum circuits used for the IBM Qiskit and Q 5 Tenerife device.

To implement Method 2 on the IBM simulator and quantum device, we further decompose the
unitary gates into 1-qubit and 2-qubit elementary gates and construct the quantum circuits. All the
gates used below are standard. For each circuit, only the & parameter of the

0 u . 0

cos—  —e”sin—

U, =(9,¢, /1)= ) " gate changes during the time evolution. The circuits
el 1( A+

sin— e COS—
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below show the U, at the last time step at 991ps.

First for evolution in the original basis:
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Next for evolution with a basis transformation:
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For the evolution with <6> evaluation, due to the large number of gates involved we only show

the circuit for U, Uy, v,:
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