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This supplementary document supports the discussion in the main text by providing technical 
details. Section 1 provides the proof that each Kraus operator kM  is a contraction. Section 2 

proves that O  is a contraction and positive-semidefinite. Section 3 presents the modified 
algorithm for the initial state given in a general matrix form. Section 4 lists the quantum circuits 
used on the IBM Qiskit simulator and the IBM Q 5 Tenerife device. 

 

 

1. Proof that each Kraus operator kM  is a contraction 

As defined in the main text, an operator A  is a contraction if it shrinks or preserves the norm of 

any vector such that the operator norm sup 1 
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. Hence by contradiction each kM  is a contraction. 

 

 

2. Proof that 
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  is a contraction: 
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Where we have used the triangle inequality of the operator norm and the fact that 
HS

O O . 

Note we could have made 
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
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O
  but the operator norm O  is more difficult to calculate 

than the Hilbert-Schmidt norm 
HS

O . To prove 
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  is positive-semidefinite, let min  

be the smallest eigenvalue of O , then min HS
  O O  and 
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Therefore O  is indeed positive-semidefinite. 

 

 

3. Modified algorithm for the initial state in a general matrix form 

In this section we present the quantum algorithm that evolves  t  with the initial   given in a 

general matrix form: 
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We first flatten   into a vector form:  

  11 1 21 2 1,  ... , , ,  ... , ,  ... ... , ,  ... ,        T

n n n nnv   (4) 

for which the norm of v  is given by:  

  2 2 1       ij HS
ij
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where 
HS

 is the Hilbert-Schmidt norm of the density matrix  . Eq. (5) connects the norm of 

v  to the purity  2Tr  which measures how much a mixture is  . 



Now for each k  in †
k k

k

M M  the kM  multiplying from the left is converted into M  k kM I , 

and the †
kM  multiplying from the right is converted into N  k kI M  where   stands for the 

Kronecker product, and the bar over kM  stands for complex conjugation. It is easy to verify that: 

 † MN  equivalent
k k k kM M v   (6) 

The core idea of this quantum algorithm is to represent v  with a quantum state and then simulate 

the effects of  MNk k  with quantum gates. Firstly v  can be normalized and represented by an 

initial quantum state. In the main text we have proven each kM  is a contraction. It follows 

immediately that M  k kM I  and N  k kI M  are also contractions by the norm property of 

the Kronecker product. To simulate MN k k v  with unitary gates, we need two 2-dilations as in Eq. 

(8) in the main text by setting M kA  and N kB : 

  unitary dilation ,0,...,0
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 If kM  has the dimension n  by n , then Mk  and Nk  are 2n  by 2n , and the 2-dilations 
k

UM  and 

k
UN  are 23n  by 23n . Now keeping with the main text we further decompose 

k
UM  and 

k
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sequences of two-level unitary gates and count them towards the gate complexity. For 
k

UM  the 

lower-triangular part contains 
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  non-zero elements from Mk , 3n  non-zero elements from 

k
DM , 2n  non-zero elements from I , and the total count is 

3 23

2 2

n n
 . This count is the same for 

k
UN , thus the total gate complexity to realize MN k k v  is 3 23n n  for each k . Note the classical 

complexity to realize †
k kM M  by two matrix multiplications is 3 24 2n n  (using the naïve 

algorithm counting the number of multiplications and additions) for each k , which is of the same 
order of our proposed quantum algorithm, with a minor difference in the leading coefficient.  

Now the density matrix has been evolved, we proceed to extract physical information from the 

output  k k kt v v= N M . Firstly the diagonal elements of each   †
k k kt  M M  are always non-

negative because †
k kM M  is positive-semidefinite. This implies that the diagonal elements of 

 k t  can be obtained by applying a projection measurement on corresponding entries in  k tv . 

Using an optical setup such as in Ref. 1 the probability of measuring each entry in  k tv  can be 

efficiently obtained by recording the photon distribution at the output of the optical modes. Adding 

the diagonal elements of  k t  over k  gives us the diagonal elements of the final 

  †
k k

k

t M M  which are the populations of the final system state in the basis currently in use. 



Although the off-diagonal elements of  k t cannot be directly obtained without quantum 

tomography, they are nonetheless carried by  k tv  and can become physically important. For 

example, if we want to obtain the populations of the final system in another basis, we can carry 

out a basis transformation     †
k kt t T T , or correspondingly        k kt t  v I T T I v , 

where the off-diagonal elements are required. Here T  is unitary such that T I  and I T  are 

unitary, and therefore no dilations are needed. For the additional T I  and I T  gates, the 

quantum gate count is increased by 3 2n n  to a total of 34n  for each k , while the classical 

complexity adds an overhead cost of 3 24 2n n  for     †t t T T  (independent from the k  

count) to the original 3 24 2n n  for each k . We remark that when the total number of kM  

operators is small, the quantum algorithm outperforms the classical one by taking advantage of the 

unitarity of T . The off-diagonal elements of  k t  are also important if we want to calculate the 

expectation value of an observable:      k
k
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and positive-semidefinite. Now by Cholesky decomposition we have †O LL  and: 
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where each  †
k tL L  is positive-semidefinite and its diagonal elements can be obtained by 

projection measurements. †L  is obviously a contraction because O  is a contraction. To realize  

     † † †equivalent
k k kt    L L I L L I vN M   (9) 

we need all four matrices to be in the 4-dilation form: 
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where    † †,  ,  or k k  A L I I L N , M : 
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 Now after  †
k tL L  has been obtained   Tr tO  can be calculated, then we have:  
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where we have successfully obtained O  for the original observable. The  † L I  and  †I L  

gates ( †L  is upper triangular requiring reduced number of two-level unitaries for the 
decomposition) plus the additional two levels of dilation for Mk  and Nk  increase the quantum 

gate count to 3 25 11n n  for each k . Calculating 
HS

O  requires 22 1n   classical arithmetic steps. 

The Cholesky decomposition has various implementations but generally it requires 
3

3

n
 classical 

arithmetic steps2. Thus 
3

22 1
3

n
n   classical steps should be added as an overhead cost 

(independent from the k  count) when evaluating the total cost of the quantum algorithm. In the 

meanwhile the classical complexity of evaluating   Tr tO  adds an overhead of 3 22n n  to the 

original 3 24 2n n  for each k . 

Next we demonstrate the method proposed above on the same amplitude damping model used in 

the main text. To calculate the populations in the current basis  0 , 1  we can construct 
k

UM  and 

k
UN  of the 2-dilation form in Eq. (8) using k k M IM , k k I MN , and † AD I A A  

with ,  k kA NM : 
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where 8m   here is the number of zeros after T
v . We use the same parameters as in the main text: 

set 9 11.52 10 s    (typical nanosecond lifetime), numerically calculate 0k k
U U vN M  from 0t   

to 1000 pst   with a time step of 10 picosecond, and obtain the populations of the ground and 

excited states from the first and fourth entries of 0k k
U U vN M . The results are the same as the smooth 

lines in Figure 1 in the main text. To calculate the populations in another basis  ,   where 
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0 1

2
   , we need the transformation matrix 
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N M  and we can obtain the populations of the   

states. The results are the same as the smooth lines in Figure 2 in the main text. Now we evaluate 

the expectation value of an observable O  for 
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O  the same as used in the main text. 

We construct  †I L
U ,  †L I

U , 
k

UM  and 
k

UN  of the 4-dilation form in Eq. (10) and apply them to 

the initial state 0v  in the form of Eq. (15) with 16m  . Numerically calculating the output vector 

will give us O  by Eq. (12). The results are the same as the smooth line in Figure 3 in the main 

text. 



4. Quantum circuits used for the IBM Qiskit and Q 5 Tenerife device. 

To implement Method 2 on the IBM simulator and quantum device, we further decompose the 
unitary gates into 1-qubit and 2-qubit elementary gates and construct the quantum circuits. All the 
gates used below are standard. For each circuit, only the   parameter of the 
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 gate changes during the time evolution. The circuits 

below show the 3U  at the last time step at 991ps.  

First for evolution in the original basis: 

0 1MU v : 

 

0 2MU v : 

 

1 1MU v : 
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Next for evolution with a basis transformation: 
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For the evolution with O  evaluation, due to the large number of gates involved we only show 

the circuit for †
0 1ML

U U v : 
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