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ABSTRACT

Tumor-infiltrating lymphocytes (TILs) play indispensable roles in the progression and response to treat-
ment of solid tumors. However, the prognostic significance of CD4" TILs is not fully disclosed in cancers
generally and in CRC in particular, mainly due to the existence of different functional subsets of CD4*
T cells. We performed transcriptomic profiling of CD4* TLs isolated from CRC patients in order to identify
differentially expressed genes and their functional pathways in early versus advanced disease stages. We
found that in advanced stages, genes related to immune and inflammatory responses, in particular Th1-
mediated immune response and cytotoxicity-mediated genes, were downregulated; while epigenetic-
mediated silencing genes were upregulated. Interestingly, we identified genes, which were steadily
upregulated or downregulated in CD4" TILs with CRC progression from stage | to IV. Additionally, of the
top 200 deregulated genes, 43 upregulated and 64 downregulated genes showed similar deregulation
trends in the cancer genome atlas CRC dataset. From these 97 deregulated genes, we identified a “poor
prognosis CD4 gene signature (ppCD4sig)”. Patients with high ppCD4sig score showed shorter disease-
specific survival (DSS) and progression-free interval (PFl). The ppCD4sig was an independent prognostic
indicator for DSS (HR = 1.73, 95% Cl 1.32-2.27, P = 0.0001) and PFI (HR = 1.75, 95% Cl 1.3-2.35, P = 0.0016).
Additionally, patients at advanced stages and at a younger age (<55 years) were more likely to have a high
ppCD4sig score. Altogether, our data provide novel insights and a unique prognostic gene signature of
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CD4* TILs in the CRC microenvironment.

Introduction

The nature of the tumor microenvironment (TME) is closely
linked with the onset, progression, metastasis, relapse, and
therapy resistance of colorectal cancer (CRC)."! The TME con-
sists of heterogeneous immune cellular components, including
lymphocytes, natural killer cells (NK), macrophages, myeloid
cells, and dendritic cells, which are indispensable for potent
and durable anti-tumor immune responses.>> However, most
of the tumor-infiltrating immune cells (TIICs) have impaired
functions and favor malignant progression by creating an
immune-subversive environment.* Unlike other cancers, it
has been reported that CD4" T-cell infiltration in CRC corre-
lates with a better prognosis of the disease.”® The immuno-
score calculated based on tumor-infiltrating T cells, cytotoxic,
and memory T cells was shown to have a better prediction of
prognosis than TNM staging (Tumor size, lymph Node invol-
vement and Metastatic spread), emphasizing the importance of
TIICs as a predictive biomarker.” Moreover, the development
of biomarkers, which can efficiently predict disease prognosis,
is warranted to improve disease management.

Accumulating evidences suggest that tumor-specific T cells
are potent tumor-reactive effector T cells, which can secrete
effector cytokines upon tumor antigen recognition.>* CD8"

T cells and Thl cells are the most potent tumor-suppressing
immune cells, amongs other immune cells with anti-tumor
activities, which produce IFNy and effectively prevent the
onset and progression of CRC.'* CD3"CD8" TILs have been
shown as potential predictive indicators of tumor relapse and
overall survival of CRC.”'' In contrast, CD4" TILs are less
explored as a predictive biomarker in CRC, and their clinical
significance in disease outcome is still not fully disclosed. We
have recently reported the accumulation of CD3*, CD4" and
FoxP3" TILs in CRC tissues, compared with adjacent normal
tissues.'” Generally, the accumulation of T regulatory cells
(Tregs) within tumor tissues is considered as a poor prognostic
factor in many cancers," while in CRC, Tregs are considered as
a favorable prognostic biomarker associated with better
relapse-free survival.>'* However in CRC, it has been reported
that there are two distinct FoxP3" TILs: FoxP3" suppressive-
competent TILs and Foxp31° non-suppressive TILs.'> CRC
with predominant infiltration of FoxP3' TILs showed signifi-
cantly better prognosis than those with FoxP3™ TILs.'®
Considering the pivotal role of TIICs in anticancer immune
responses, we rationalized that better understanding of CD4"
TILs in the CRC microenvironment requires a stage-wise
comprehensive analysis. Here, we performed transcriptomic
analyses of CD4" TILs from different stages of CRC patients
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to identify the differentially expressed genes (DEGs) in
advanced stages (III and IV), compared with early stages (I
and II), and determine their involvements with the onset and
progression of the disease. We found that immune/inflamma-
tory response and cytokine-mediated cell signaling pathways
were significantly downregulated, while the chromatin silen-
cing-related pathway was upregulated in advanced stages.
Furthermore, we have aligned some of the genes from upregu-
lated and downregulated panel using TCGA dataset from CRC
patients. Based on this, we identified poor prognosis CD4
signature (ppCD4sig) comprising 107 genes, and classified
patients as per the ppCD4sig score (high, intermediate, and
low). Interestingly, we found that high ppCD4sig score patients
had the shortest disease-specific survival (DSS) and progres-
sion-free interval (PFI), compared to those with an intermedi-
ate or low score. Altogether, our data provide significant
insights into the CD4" TILs from different stages of CRC and
identify a gene signature, which could predict the progression
of CRC.

Materials and methods
Sample collection and storage

Tumor tissues (TT) were obtained from 18 CRC patients who
underwent surgery at Hamad Medical Corporation, Doha,
Qatar. All patients included in the study were treatment-
naive prior to surgery and provided written informed consent
prior to sample collection. Table 1 shows the clinical and
pathological characteristics of all participating patients. All
experiments were performed in accordance with relevant
guidelines and regulations. The clinicopathological para-
meters including TNM staging were confirmed by patholo-
gists. We collected five samples from each stage (I-IV) over
a year. The samples were selected by excluding tumor sam-
ples from patients with other medical conditions including
polyps and other peritoneal diseases. Two patient samples
from stage III were excluded post-RNA-Seq as they did not
pass quality controls. This study was executed under ethical
approvals from Hamad Medical Corporation, Doha, Qatar
(protocol no. MRC-02-18-012) and Qatar Biomedical
Research Institute, Doha, Qatar (protocol no. 2017-006).
All experiments were performed in accordance with the ethi-
cal principles of the Declaration of Helsinki. Tissue speci-
mens were processed and stored as previously described.'®

Table 1. Characteristic features of study populations.

CRC patients

Number 18
Age (median) 62 (23-78)t
Gender (Male:Female) 10:8
TNM stage
| 5
Il 5
N 3
v 5
Histological grade
G2 Moderately differentiated 17
G3 Poorly differentiated 1
CRC; colorectal cancer
t Median age

Cells were dissociated from bulk tumor tissues using mechan-
ical disaggregation. The single-cell suspensions for further
downstream experiments were obtained as previously
described.'

Fluorescence-activated cell sorting

Cells were stained with cell-surface antibodies against CD3-
allophycocyanin-Cy7 (clone SK7, BD Pharmingen, San Jose,
USA), CD4-phycoerythrin (clone RPA-T4, BD Pharmingen),
CD8-fluorescein  isothiocyanate (clone RPA-T8; BD
Pharmingen) and CD33-allophycocyanin (clone WM53, BD
Pharmingen). Cells were washed twice with flow cytometry
staining buffer and re-suspended in Pre-Sort buffer (BD
Biosciences). 7-AAD viability dye (eBioscience, San Diego,
USA) was used to gate live cells. BD FACSAria IIT SORP cell
sorter on BD FACSDiva software (BD Biosciences) was used
for sorting pure CD4" (7AAD CD3"CD4"CD8 CD337), CD8"
(7AAD"CD3*CD4 CD8*CD33") and
CD33"(7AAD CD3 CD4 CD8°CD33") populations.
Applicable measures were taken to ensure minimal sorter-
induced cell stress (SICS). Data analyses were performed on
Flow]Jo V10 software (FlowJo, Ashland, USA).

RNA isolation and amplification

Total RNA was extracted from sorted, pure CD4" T cells, from
18 CRC patients’ tissues using RNA/DNA/protein purification
Plus Micro Kit (Norgen Biotek Corporation, Ontario, Canada)
according to the manufacture’s protocol. RNA was then ampli-
fied using 5X MessageAmp™ II aRNA Amplification Kit
(Invitrogen) as previously described.'” The concentrations of
RNA were determined by Qubit RNA HS or Broad Range
Assay Kits (Invitrogen, California, USA).

Quantitative Reverse Transcriptase PCR (RT-qPCR)

cDNA was prepared from 1 pg of RNA using QuantiTect
Reverse Transcription Kit (Qiagen, Hilden, Germany). All
c¢DNA samples were diluted 1:3 in nuclease-free water and
stored in aliquots at —80°C and used in batches for subsequent
analyses. PCR reactions were performed on QuantStudio 7/6
Flex qPCR (Applied Biosystems, California, USA) using
PowerUP SYBR Green Master Mix (Applied Biosystems). All
data were normalized to B-actin. The ACt values obtained from
lessening target gene Ct with P-actin Ct (target gene Ct — B-
actin Ct). The fold change (FC) for target gene in advanced
stages was calculated by dividing the average Ct value of
advanced stage samples with average Ct value of early-stage
samples. log2 FC was subsequently calculated and plotted for
the corresponding gene from RNA-Seq data.

Library preparation

cDNA libraries were generated from CD4" T cells using Exome
TruSeq Stranded mRNA Library Prep Kit (illumina, San Diego,
USA) according to the manufacturer’s protocol, and as pre-
viously described.'® Quality-passed libraries were subjected to
clustering using TruSeq PE Cluster Kit v3-cBot-HS (illumina).



The clustered samples were sequenced on an illumina HiSeq
4000 instrument using HiSeq 3000/4000 SBS kit (illumina).

RNA-sequencing data processing and analyses

Pair end reads were quality-trimmed and were aligned to the
hg19 human reference genome in CLC Genomics Workbench
12 (Qiagen) using default settings.'® The abundance of the
expression of transcripts was measured as the score of TPM
(Transcripts Per Million) mapped reads in CLC Genomics
Workbench 12. Abundance data were subsequently subjected
to differential gene expression. For heat maps, the Z-scores
were calculated from the TPM values as previously
described."” Principal component analysis (PCA) and volcano
plots were performed using OrignPro 2020 software
(OriginLab Corporation, Massachusetts, USA) with log2 FC
and P value cutoft <0.05 to identify differentially expressed
genes (DEGs). Furthermore, the functional relationship
among the upregulated and downregulated genes were identi-
fied by uploading them separately to STRING V11.0 tool
(http://string-db.org). The Gene Ontology (GO) analysis and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses of DEGs were performed by the Database
for Annotation, Visualization and Integrated Discovery
(DAVID) tool, as previously described'® and iDEP.91 (inte-
grated Differential Expression and Pathway analysis, http://
bioinformatics.sdstate.edu/idep/), a web-based online analyses
tool using default settings.

TCGA analysis

The top 100 upregulated genes and top 100 downregulated
genes from advanced stage compared to early-stage CRC
were selected for analysis in the TCGA CRC dataset
accessed using the UCSC Xena platform (http://xena.ucsc.
edu/). Of these 100 upregulated genes, 96 genes were anno-
tated in the TCGA CRC RNA-Seq dataset, of which 43
genes (45%) had higher expression in patients with poorer
disease-specific survival (DSS). For the 100 downregulated
genes, 98 genes were annotated in TCGA dataset, of which
64 genes (65%) had lower expression in patients with
poorer DSS. The selected 43 upregulated and 64 down-
regulated genes were used as the ‘poor prognosis CD4"
T-cell gene signature’ (ppCD4sig). The ppCD4sig score
was calculated as the ratio of the average expression of
the 43 upregulated genes to the average of the 64 down-
regulated genes (Supplementary Table 1).

Statistical analyses

Statistical analyses were performed using GraphPad Prism 8
software (GraphPad Software, California, USA). Mantel-
Cox test was used to determine log-rank P value when
comparing DSS and PFI amongst the patient groups with
high, intermediate, and low ppCD4sig score. Multivariate
analyses for DSS and PFI were performed using Cox pro-
portional-hazard model (MedCalculator v12.7, https://www.
medcalc.org/) in comparison to the ppCD4sig (high, inter-
mediate, low), disease stage (IV, III, II, I), residual disease
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(yes, no), age (< 55, 55-64, 65-74, > 74 years of age),
anatomic locations (seven different locations), and gender
(male, female). Chi-squared (Xz) test was used to determine
the association between the different ppCD4sig scores and
disease stage, the presence of residual disease, age, gender,
or different CRC anatomical locations.

Results

Differential analysis of CD4" T cell transcriptome in
advanced stages of CRC

Following sorting pure CD4" TILs (Figure la), we per-
formed RNA-sequencing (RNA-Seq) from 18 CRC patients’
tissues with different pathological stages, classified into two
groups, early (stage I and II) and advanced (III and IV),
containing five patients per stage (except stage III, which
has only three patients). There were 1,517 differentially
expressed genes in CD4" TILs in advanced stages, com-
pared with the early stages of CRC (FC >2 and P value
cutoff < 0.05, Supplementary Figure la and Supplementary
Table 2). Among these 1517 genes, 831 were upregulated
and 686 were downregulated in advanced stages (Figure
1b). PCAs of the total data sets confirmed the close rela-
tiveness of biological replicates (Supplementary Figure 1b).
Selected number of downregulated genes (TIM-3, TOX,
DNMT3B and TET3) and upregulated gene (TOX3) from
RNA-Seq data were subsequently validated using quantita-
tive reverse transcriptase-PCR and confirmed their concor-
dant expression to those observed in RNA-Seq data
(Supplementary Figure 1c). Next, we analyzed set of genes
related to regulatory T cell (Treg) signatures, immune
checkpoints, Th1/2/17, T-cell exhaustion (Tex) markers
and interleukins (Supplementary Table 3). We found that
Th1/Th17-related genes including IFNy, TBX21, IRFS, IL22,
IL17A and ILI17F were significantly downregulated, while
IL2 was significantly upregulated in advanced stages, com-
pared with early stages (Figure 1c). Furthermore, we found
that Tex markers including TOX2, MKI67, CERS6, PDCDI
and CD160 were significantly downregulated and TOX3 and
EOMES were significantly upregulated in advanced stages,
compared with early stages (Figure 1c). These data suggest
that CD4" TILs could be more exhausted in advanced
stages, compared with early stages of CRC, given that
TOX2 and PDCDI may act as early T cell activation
markers.

To elucidate the functional pathways, we performed gene
ontology (biological process) and KEGG pathway analyses using
the DAVID platform. We found that H3K27me3 (trimethylation
at lysine 27 of histone H3)- and chromatin silencing-related genes
were significantly upregulated in advanced stages (P < 0.05,
Figure 1d and e). At the same time, immune/inflammatory
response-related genes, including IFNy, IL23 and IL4, and gran-
zyme B, and T-cell proliferation/differentiation-related genes
were significantly downregulated in advanced stages compared
with early stages (P < 0.05, Figure 1d and e). These data suggest
that in CD4" TILs, epigenetic silencing might play important
roles in the downregulation of immune response-related genes
in advanced stages, compared with early stages of CRC.
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Figure 1. Transcriptomic characterization of CD4" TILs of CRC patients. RNA-Seq was performed on CD4" TILs isolated from 18 CRC tissues at different disease
stages. Flow cytometric plots illustrate the gating strategy to isolate CD4* TILs with high purity (a). Volcano plot showing significantly (P < 0.05) upregulated (red) and
downregulated transcripts (green) from advanced (stage Ill & IV) vs. early (I & Il) stages of CRC (b). Comparisons of selected differentially expressed gene panels including
immune checkpoints, Th-, Treg- and Tex-related genes from advanced (A) vs. early (e) comparison. Volcano plot and heat map (Z-scores) showing the differential
expression of significantly (P < 0.05) upregulated or downregulated genes in advanced vs. early stages of CRC (c). Bar plots illustrating the functional characterization of
significantly upregulated and downregulated genes from advanced vs. early stages of CRC (d). Heat maps of the differential expression of genes from selected

upregulated or downregulated pathways (e).

Analyses of functional pathways enriched in CD4" TILs
from different stages of CRC

To identify potential functional annotation and pathway
enrichment of DEGs in particular stage, we performed
differential expression analyses from all different compar-
isons (Supplementary Figure 2). The significantly enriched
functional pathways (KEGG) of upregulated and downre-
gulated genes from each pathological stage comparison
were analyzed subsequently. We found that majority of
pathways related to antitumor immune responses were
enriched within the downregulated genes. Stage II vs.
I and III vs. IV were excluded from our analyses due to
the similarity in differentially expressed genes, compared
with other comparisons (III vs. I, IV vs. I, II vs. II and
IV vs. II; data not shown). Downregulated genes were
significantly enriched within pathways related to cell

adhesion and NK cell-mediated cytotoxicity in stage III,
cytokine/receptor interaction in stage III and IV, cell
cycle, chemokine signaling, inflammatory response, and
p53-mediated signaling in stage IV, compared with stage
I (Figure 2a). Additionally, downregulated genes in stage III
and IV, compared with stage II, were commonly enriched
within pathways related to NK cell-mediated cytotoxicity,
cytokine/receptor, antigen processing and presentation, and
chemokine signaling. However, downregulated genes in
stage IV, compared to stage II, were distinctively enriched
within inflammatory response-, JAK-STAT-, PPAR- and
cell cycle-mediated pathways (Figure 2a). Moreover, the
hierarchy of pathway enrichment of downregulated genes
in advanced stages was cytokine-cytokine receptor interac-
tion (27% genes), chemokine signaling pathway (18%
genes), NK cell-mediated cytotoxicity (17% genes), cell
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Figure 2. KEGG/Gene ontology pathway enrichment analyses of deregulated genes from stage-wise comparison. Differentially expressed genes from stage-wise
comparisons were analyzed using the DAVID platform to identify functional pathways enrichment in stage Ill or IV compared to stage | or Il, and in advanced stage (A: Il
and IV) vs. early stage (E: | and Il). Charts showing significantly downregulated KEGG pathways enriched in each comparison with percentage of the number of enriched
genes for each pathway to the total number of genes (a). Venn diagrams showing the shared pathway and the pathway lists which were enriched in the downregulated
genes (b) and upregulated genes (c). The alphabets in the Venn diagrams represent the shared gene ontology clusters listed in the tables.

cycle (17% genes), inflammatory response (8% genes), anti-
gen processing and presentation (7% genes) and p53-
signaling pathway (6%) (Figure 2a).

Next, we investigated the shared pathways from both upre-
gulated and downregulated genes among the different

comparisons. We found that immune response-, positive reg-
ulation of gene expression- and inflammatory response-
mediated pathways were significantly downregulated in
advanced stage comparisons (Figure 2b). Interestingly, we
found that chromatin silencing and H3K27me3 pathways
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were significantly upregulated in advanced stages (Figure 2c).
These data confirm our previous findings that epigenetic-
mediated silencing pathways were upregulated and immune
response-related pathways were downregulated in advanced
stages of CRC, compared with early stages.

Functional analyses of steadily deregulated genes with
CRC progression

We analyzed the coding genes that were steadily upregulated or
downregulated in CD4" TILs with the progression of CRC. The
DEGs were selected from the advanced vs. early-stage analyses
(P < 0.05). We found that the expression of 51 genes steadily
increased and 134 genes steadily decreased, as the disease
progressed from stage I to IV (P < 0.05, Figure 3a and b).
Functional pathways enrichment analysis found that cellular
response to IFNy, IL1f, IL23, and IL6, immune/inflammatory
response, ERK and TCR signaling pathways were significantly
enriched in the downregulated genes (Figure 3c and d). On the
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other hand, chromatin silencing and negative regulation of
gene expression pathways were significantly enriched in the
upregulated genes (Figure 3c and d). Moreover, protein—pro-
tein interaction analysis (PPI, String-db) using stringent cri-
teria showed that the vast majority of upregulated genes in
advanced stages were related to nucleosome organization and
gene/chromatin silencing including HIST1, HIST2 and HIST4
(Figure 4a). STRING database identified 38 nodes and 17 edges
with PPI enrichment P value 0.000181, an average clustering
coefficient of 0.347 and an average node degree of 0.895 (Figure
4a). PPI analysis of downregulated genes found connectivity in
the inflammatory, immune response, chemokine signaling, NK
cell-mediated cytotoxicity and cell cycle with 119 nodes and
251 edges (Figure 4b). The PPI enrichment P value was < 1.0E-
16 with an average clustering coefficient of 0.418 and an aver-
age node degree of 4.22 (Figure 4b). These data confirm our
previous findings that the immune and inflammatory
responses were downregulated in CD4" TILs during the pro-
gression of CRC.
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Figure 3. Transcriptomic characterization of steadily deregulated genes across stages of CRC. Significantly upregulated (a) and downregulated genes (b) which
were deregulated in an order with staging were used for further analyses on DAVID platform. Heat maps show the expression (Z-scores) of 51 upregulated and 134
downregulated genes. Bar plots show the fold change of each functional pathways, which were significantly upregulated and downregulated from gene ontology
enrichment analyses (c). Heat map showing the expression of genes (Z-scores) discovered in the selected functional network from panel C (d).
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Figure 4. PPl network analyses of deregulated genes in advanced stage of CRC. PPl network analyses using the STRING database of significantly upregulated (a)
and downregulated (b) genes obtained from analyses of advanced stages vs. early stages. The unconnected nodes were removed from the networks. GO ontologies,
description and false discovery rate (FDR) using the whole transcriptome as reference are stated for each subnetwork. The overall network statistics are shown in the

gray boxes.

TCGA analyses of RNA-Seq data and deriving a poor
prognosis CD4 gene signature

The downregulated genes in CD4" T cells in late-stage
disease were used to calculate the poor prognosis CD4"
T cell gene signature (ppCD4sig) score as described in the
Methods section. The CRC TCGA cases were labeled as
high, intermediate, and low groups according to the
ppCD4sig. Patients with high ppCD4sig score had poorer
DSS and shorter PFI compared to patients with intermedi-
ate or low ppCD4sig score (Figure 5a and b). The
ppCD4sig was an independent prognostic indicator for
DSS (HR = 1.73, 95% CI 1.32-2.27, P = 0.0001, Figure

5¢) and PFI (HR = 1.75, 95% CI 1.3-2.35, P = 0.0016,
Figure 5d), as indicated by multivariate analyses using Cox
proportional-hazard model even in the presence of disease
stage as another indicator. Patients at advanced stages (III
and IV, (x2 P < 0.0001)) and patients at younger age (<
55 years, X2 P = 0.0276) were more likely to have high
ppCD4sig score (Figure 5e and f). Intestinally, the splenic
flexure, descending and sigmoid colon anatomical loca-
tions (left-sided colon cancer) were more likely to have
a high ppCD4sig score, whereas the transverse colon and
the right-sided colon cancer (hepatic flexure, ascending
colon and the cecum) were more likely to have a low
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Figure 5. Evaluating of the prognostic relevance of “poor prognosis CD4* TIL gene signature” in TCGA CRC dataset. The selected genes as described in Methods
were used to calculate the ‘poor prognosis CD4* TIL gene signature’ (ppCD4sig) score; calculated as the ratio of the average expression of the 43 upregulated genes to
the average of the 64 downregulated genes. The ppCD4sig was evaluated in TCGA CRC RNA-Seq dataset. Disease-specific survival (a) and progression-free interval (b)
were compared between patients with high (top 33%), intermediate (middle 33%) or low (bottom 33%) ppCD4sig scores. The number (n) of patients in each of
ppCD4sig groups and the log-rank P value from Mantel-Cox test are indicated. Multivariate analyses, using Cox proportional-hazard model, comparing the ppCD4sig
(high, interm, low), disease stage (stages IV, Ill, Il 1), residual disease (yes, no), age (<55, 55-64, 65-74, >74 years of age), anatomic locations (7 different locations), and
sex (male, female). Multivariate analysis was done for disease-specific survival (c) and progression-free interval (d). Data shown are the hazard ratio (HR) + 95%
confidence interval (Cl), and the multivariate P values are indicated (n.s.: not significant). Distribution of patients with high, intermediate, or low sCD4sig scores across
diseases stage (e) or age at diagnosis (f). Stated P-values are from Chi-square (x?) test (GraphPad Prism).

ppCD4sig score (Supplementary Figure 3a). There was Differential expression analyses between high scored and
a trend for the presence of residual disease after primary low scored ppCD4sig

therapy in patients with high ppCD4sig score
(Supplementary Figure 3b). Additionally, the ppCDd4sig
score did not differ between male and female
(Supplementary Figure 3c). Altogether, the TCGA analysis
supports that the signature we developed can predict the
poorer survival and more aggressive clinicopathological
features.

To understand the differences of biological characteristics
between CD4" T cells with high ppCD4sig score and low
score, we grouped patients into two groups as described in
Methods (nine patients with high score and nine patients with
low score, Supplementary Table 4). The differential analyses
showed 1613 deregulated genes of them 952 genes were
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Figure 6. Transcriptomic analyses of high ppCD4sig score vs. low score for CRC patients. The ppCD4sig score for the 18 patients was calculated based on the ratio
between the average expression (TPM) of upregulated genes to the average expression of downregulated genes. Patients were dichotomized as high score (above
median score) and low score (below median score) groups. Differential expression analyses were performed on data comparing high score vs. low score patients to
identify deregulated and functional networks using iDEP platform. Hierarchical heat map shows the distinct cluster of high score and low score patient groups (FC >2
and P value < 0.05) (a). PCA plot showing the variability in gene expression between high score and low score CRC patients. First two principal components are shown
(b). Heat map shows the four functional clusters from gene ontology enrichment analyses (c). Expression of clustered transcripts is depicted as color code, displayed
below the heat map. The number of genes annotated in each cluster is represented (left side) of the heat map.



upregulated and 661 genes were downregulated in high
ppCD4sig score, compared with low-scored patients (Figure
6a). PCAs of the total data sets confirmed the close relativeness
of the biological replicates. PC1 shows 32% variance, while PC2
shows 16% (Figure 6b). Gene ontology (biological process)
enrichment analyses showed that four clusters (A-D) were
mainly enriched in the deregulated genes (Figure 6¢ and
Supplementary Table 5). Out of which, clusters belong to
chromatin silencing and gene regulation-related genes were
upregulated (clusters D), and clusters belong to cell cycle/divi-
sion and immune response- and cytokine signaling-related
genes were downregulated (clusters A) in high score patients,
compared with low score patients (Figure 6c and
Supplementary Table 5). The ability to find the same pathways
as described earlier confirmed that the ppCD4sig score based
on the 107 selected genes retained the difference between the
transcriptomes of CD4" TILs in advanced stage versus early-
stage CRC.

Discussion

Infiltration of lymphocyte is considered as one of the major
host defense mechanisms in the majority of solid tumors, and
could be used as a diagnostic/prognostic marker of colorectal
cancer.”® Numerous studies showed the favorable prognostic
impact of T cell infiltration in various tumors.”’ We have
previously reported that CD4" T cell infiltration was signifi-
cantly higher in the CRC microenvironment, compared with
normal tissue with no significant differences between early and
advanced stages.'” In this study, we investigated the transcrip-
tomes and potential functional networks of CD4" TILs from
various stages of CRC. Our analyses led to developing a gene
signature based on the transcriptome of CD4" TILs with
a prognostic potential for CRC.

Reports show that 20-30% of CRC patients have tumor-
specific T cells, which play an indispensable role in the elim-
ination of tumor cells as a primary defense mechanism.'®**
CRC patients with higher T-cell infiltration have better disease
outcome.” In particular, Th1, Th17, and cytotoxic T cells are
critical to inhibit the proliferation of cancer cells and induce
apoptosis.”**”> Our data demonstrate that CD4" TILs upregu-
late Thl- and Thl7-related genes including IFNy, TBX2I,
IRF8, IL22, IL17A, and ILI7F in the early stages of CRC,
compared with advanced stages. Furthermore, some studies
reported that increased infiltration of Th1 cells were positively
correlated with improved prognosis and outcome, while the
infiltration of Th17 cells in early stages negatively influences
the prognosis of CRC patients.”>*” In contrast to these reports,
it has been reported that Th17 cells are multifaceted, favor the
recruitment of cytotoxic CD8" T cells to the tumor microen-
vironment and are associated with better survival of CRC
patients.>* Moreover, in prostate tumor, it has been reported
that the differentiation of Th17 cells was reduced by the over-
expression of IL-2 within the tumor microenvironment and
creates an immune-subversive environment to favor malignant
progression.”® In agreement with these data, we also found that
IL2 expression was upregulated, and the expression of Th17-
related genes were downregulated in advanced stages of CRC,
compared with early stages. Taken together, our data suggest
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that patients with advanced stages have less immune/inflam-
matory response, which could lead to tumor progression.

Apart from traditional Thl, Th2, Thl7, and Treg CD4
T helper lineages, Th22 is a unique T-helper subset, which is
significantly associated with the development of CRC.* This
Th lineage is evident by releasing IL22, which was previously
considered as Thl1/17 cytokine.30 Moreover, it has been
reported that transcriptomic expression of IL22 is significantly
higher in tumor tissues, compared with that in normal
tissues.”” Another report showed that Th17 and Th22 cells
were higher in CRC tissues and were negatively correlated
with tumor progression.’’ The levels of IL22 and ILI7 tran-
scripts were also significantly higher in early stages of CRC,
compared with advanced stages.”’ Interestingly, after tumor
resection, their levels were significantly increased in patients
with advanced stages.31 Furthermore, in breast cancer it has
been reported that IL22 inhibits ERK1/2 pathways leading to
the reduction in tumor growth.’” In concordance with these
reports, we found that both IL22 and IL17 were significantly
downregulated in advanced stages of CRC, compared with
early stages. Moreover, ERK1/2 pathway was found to be sig-
nificantly reduced in advanced stages. These data suggest that
reduced expression of IL22 and IL17 might be associated with
the progression of CRC.

The tumor microenvironment is highly heterogenous with
the TILs constituting the vast majority of immune infiltrates.>
The chronic exposure of cancer antigen to the memory T cells
could alter their differentiation and activation, leading to
exhaustion.”* It has been reported that T-cell exhaustion is
initiated in early stages after the onset of tumor in preclinical
tumor models.”> Additionally, upregulation of immune check-
points including PD-1, CTLA-4, and TIM-3 and alterations in
transcriptional/metabolic pathways are considered as the hall-
mark of T cell exhaustion.>® In concordance with these reports,
we found that the majority of T-cell exhaustion markers,
including the expression of PDCDI (gene for PD-1), TOX2
and MKI67, were upregulated in the early stages of CRC,
compared with advanced stages. These data evidently discri-
minate phenotypical and functional characteristics of CD4"
TILs in early and advanced stages of CRC. On the other
hand, we found that TOX3 and EOMES were significantly
upregulated in advanced stages of CRC. It has been reported
that PD-1 and Ki67 were expressed on proliferating T cells and
could be considered as recent activation markers upon
infection.”” Furthermore, EOMES™ TILs were considered as
partially exhausted T cells, which could efficiently produce
IFN-y and TNF-a, despite of the expression of PD-1.*®
Notably, a report showed that TOX3 is significantly upregu-
lated in advanced stages leading to invasive breast
malignancy.” Moreover, EOMES and TOX3 expressions are
strongly associated with poor prognosis of breast cancer
patients.‘w’41 These data suggest that, similar to breast cancer,
high expression of TOX3 and EOMES in advanced stages might
be associated with poor progression of CRC.

Increasing evidence suggests that epigenetics play an indis-
pensable role in the progression of CRC.'®**** It has been
reported that epigenetics contribute to cancer progression in
three ways: (i) restricting the expression of proliferation-
related genes, (i) chromosomal degradation, and (iii)
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chromatin dysfunction.** Moreover, changes in global DNA
methylation patterns of TILs influence CRC progression from
onset to metastasis.*® Herein, we found that T cell proliferation
and differentiation- and cell cycle-related genes were signifi-
cantly downregulated and chromatin-mediated epigenetic
silencing pathways were upregulated in advanced stages of
CRC, compared with early stages. These data suggest that
chromatin-silencing plays an indispensable role in the progres-
sion of CRC. Reports showed that global changes in histone 3
(H3) could be exploited as a promising biomarker in tumor
transformation.*®*”  Similarly, histone modifiers including
polycomb-group proteins (PcGs) are engaged in silencing of
key regulatory enzymes during the onset and differentiation of
tumor cells,">* and play an indispensable role in chromatin
remodeling and nuclear reprogramming.”® Additionally, the
average number of H3K27me3-enriched genes was reported
to be higher in prostate cancer tissues and positively correlates
with disease progression.’' Similar to these cancer cell studies,
we found that H3K27me3-mediated pathways were signifi-
cantly upregulated in CD4" TILs in the advanced stages of
CRC. These data rationalize that H3K27me3 could be a key
player behind the upregulation of chromatin-silencing path-
ways in advanced stages of CRC.

The higher levels of CD4" TILs are considered as an
unfavorable prognostic aspect in different cancer types
including non-small-cell lung,>* breast™ and prostate®® can-
cers. In contrast, the tumor infiltration of CD4" and
FOXP3™ TILs were reported as a favorable prognostic factor
in CRC.” The rationale behind this prognostic divergence
remains unclear, but it could be due to the functional
discrepancy in CD4" TILs within various tumors. These
data justify the significant role of CD4" TILs in controlling
immune system to fight against malignancy. In the CRC
microenvironment, naive CD4" T cells can differentiate to
all Th phenotypes (Th1/Th2/Th17/Th22/Treg) depending
on the expression of transcription factors and cytokine
release.”>” Additionally, in CRC patients the higher
expression of Thl7 transcripts are associated with poor
prognosis, whereas higher expression of Thl and cytotoxi-
city transcripts are associated with favorable prognosis.*’
However, Th2 transcripts have no prognostic importance
in CRC.* In our data, we also found that Th1, Th17, Th22,
and cytotoxicity-mediated transcripts were highly expressed
in the early stages of CRC, compared with advanced group.

Based on our TCGA analyses of the upregulated and down-
regulated genes in CD4" TILs in advanced stages, we identified
a gene signature that predicts the survival of CRC patients. The
ppCD4sig score showed that patients with higher scores have
poorer disease/progression-free survival, compared to patients
with low or intermediate scores. Back-analyses of the CD4"
TILs transcriptomes based on dichotomization of CRC cases to
high score and low score showed that high score patients have
less expression of Thl and cytotoxicity-related genes. These
data are in concordance with previous reports suggesting that
Thl and cytotoxicity-related transcripts are correlated with
positive prognosis in CRC.>**”*® Interestingly, we found that
younger CRC patients have high ppCD4sig score.
A retrospective report showed that younger patients have
more aggressive behavior and worst prognosis.”” Moreover,

in the majority of young CRC patients, tumors are poorly
differentiated with advanced disease stages.”® Taken together,
our data suggest that the identified ppCD4sig could have prog-
nostic potentials in young CRC patients.

Our data show that genes responsible for Th1 responses and
cytotoxicity were downregulated, while epigenetic-mediated
silencing genes were upregulated in advanced stages of CRC,
compared with early stages. Sets of genes, which were steadily
upregulated or downregulated in CD4" TILs with CRC pro-
gression from stage I to stage IV, were identified. Additionally,
we have identified a poor prognosis gene signature, in which
patients with higher scores have poorer disease-free survival
and progression-free interval. Taken together, this study pro-
vides critical insights into the functional characteristics of
CD4" TILs and their prognostic significance in early and
advanced stages of CRC patients.
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