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Amélie Bonnefond 1,2,3, Philippe Froguel 1,2,3,8,*

ABSTRACT

Objective: Characterizing specific metabolites in sub-clinical phases preceding the onset of type 2 diabetes to enable efficient preventive and
personalized interventions.
Research design and methods: We developed predictive models of type 2 diabetes using two strategies. One strategy focused on the
probability of incidence only and was based on logistic regression (MRS1); the other strategy accounted for the age at diagnosis of diabetes and
was based on Cox regression (MRS2). We assessed 293 metabolites using non-targeted metabolomics in fasting plasma samples of 1,044
participants (including 231 incident cases over 9 years) used as training population; and fasting serum samples of 128 participants (64 incident
cases versus 64 controls) used as validation population. We applied a LASSO-based variable selection aiming at maximizing the out-of-sample
area under the receiver operating characteristic curve (AROC) and integrated AROC.
Results: Sixteen and 17 metabolites were selected for MRS1 and MRS2, respectively, with AROC ¼ 90% and 73% in the training and validation
populations, respectively for MRS1. MRS2 had a similar performance and was significantly associated with a younger age of onset of type 2
diabetes (b ¼ �3.44 years per MRS2 SD in the training population, p ¼ 1.56 � 10�7; b ¼ �4.73 years per MRS2 SD in the validation
population, p ¼ 4.04 � 10�3).
Conclusions: Overall, this study illustrates that metabolomics improves prediction of type 2 diabetes incidence of 4.5% on top of known clinical
and biological markers, reaching 90% in total AROC, which is considered the threshold for clinical validity, suggesting it may be used in targeting
interventions to prevent type 2 diabetes.

� 2016 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION

Characterizing metabolic disruptions preceding the onset of type 2
diabetes is critical to identify individuals at risk, especially at the early
asymptomatic stages of the disease when intervention can be most
effective. Given the high rate of complications associated with long
duration hyperglycemia [1], it is particularly important to prevent or at
least delay type 2 diabetes in individuals in their early forties or
younger. Although epidemiological studies have reported numerous
risk factors for type 2 diabetes [2,3], the predictive performances of
statistical models based on these predictors still need to be improved.
Different approaches such as genome-wide association studies
(GWAS) have been proposed to identify new risk factors. GWAS have

generated a catalog of replicated genetic loci that includes up to 100
variants [4]. However, these genetic variants only explain an unex-
pectedly small fraction (<15%) of type 2 diabetes estimated herita-
bility and their inclusion only marginally improves the performances of
previously existing predictive models [5,6].
Metabolomics, defined as the comprehensive analysis of low-
molecular weight metabolites produced by a system, has recently
emerged for disease diagnosis and biomarker identification [7].
Several studies showed that high levels of the branched-chain amino
acids (BCAA) such as leucine, isoleucine, and valine as well as high
levels of the aromatic amino acids phenylalanine and tyrosine are
strong predictors of insulin resistance and type 2 diabetes [8e11].
Furthermore, increased plasma levels of alpha-hydroxybutyrate (AHB)

1CNRS UMR8199, Pasteur Institute of Lille, Lille, France 2European Genomic Institute for Diabetes (EGID), FR-3508, Lille, France 3Lille University, France 4Qatar Biomedical
Research Institute, Doha, Qatar 5INSERM, U1138 (équipe 2: Pathophysiology and Therapeutics of Vascular and Renal Diseases Related to Diabetes, Centre de Recherches
des Cordeliers), Paris, France 6University Paris 7 Denis Diderot, Sorbonne Paris Cité, France 7AP-HP, DHU FIRE, Department of Endocrinology, Diabetology, Nutrition, and
Metabolic Diseases, Bichat Claude Bernard Hospital, Paris, France 8Department of Genomics of Common Disease, School of Public Health, Imperial College London,
Hammersmith Hospital, London, UK 9Division of Genetics and Genomics, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA 10IRSA, La Riche,
France 11INSERM U-1018, CESP, Renal and Cardiovascular Epidemiology, UVSQ-UPS, Villejuif, France

*Corresponding author. Imperial College, Department of Genomics of Common Diseases, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12
0NN, UK. Fax: þ44 (0) 207 594 65 37. E-mail: p.froguel@imperial.ac.uk (P. Froguel).

Received July 19, 2016 � Revision received August 12, 2016 � Accepted August 16, 2016 � Available online 23 August 2016

http://dx.doi.org/10.1016/j.molmet.2016.08.011

Original Article

918 MOLECULAR METABOLISM 5 (2016) 918e925 � 2016 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
Delta:1_surname
Delta:1_given name
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:p.froguel@imperial.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1016/j.molmet.2016.08.011&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com
http://dx.doi.org/10.1016/j.molmet.2016.08.011


and decreased levels of 1-linoleoyl-glycerophosphocholine (L-GPC)
were associated with glucose intolerance [12]. Other studies also have
reported carbohydrates (glucose, mannose, 1,5-anhydroglucitol)
[13,14], gamma-glutamyl derivatives (g-glutamylphenylalanine, g-
glutamyltyrosine, g-glutamylvaline) [15], glycine [14], and serine [15]
as good predictors of type 2 diabetes.
Despite this increasing catalog of potential predictors, statistical ap-
proaches implemented to train predictive models suffer from two main
limitations. The first limitation relates to the commonly admitted
assumption that significantly associated (often under a regression
framework) metabolites would automatically be good predictors [16].
Although partially true, this assumption ignores that predictive per-
formances are driven not only by a significant shift in the metabolite
mean level (as classically captured by a test of association) but also
generally by any change in the entire distribution of the metabolites. As
a consequence, if the variance of a metabolite is significantly different
between incident cases and controls, despite no significant difference
in means, the latter metabolite can be a rather good predictor.
The second limitation of most implemented approaches is that the
bivalent notion of incidence is often overlooked. Indeed, incidence
covers two distinct, yet complementary, aspects that are: first, the
probability of developing the disease in the future, and secondly the
speed at which this occurs (Supplementary Figure 1). Most studies
using metabolomics to study the incidence of type 2 diabetes have
been focused only on characterizing the probability to develop the
disease, but have mostly ignored the second aspect of incidence. This
is illustrated by the recurrent use of logistic regression models in the
related literature [6,8,10,12,14,17]. Even when more suitable models
such as Cox regression are used, the model performances are often
assessed using static metrics such as the area under the receiver
operating characteristic curve (AROC) or the net reclassification index
(NRI). Instead, the use of dynamic metrics such as the integrated time-
dependent AROC (iAROC) should be used to take full advantage of the
time-dependent nature of the predicted outcome [18]. One expected
consequence of these classical modeling choices is a sub-optimal
performance in both evaluating the probability of the incidence and
predicting who will develop the disease earlier or later.
The present study aimed to overcome these two limitations by cali-
brating two predictive models; one focused on the probability to
develop type 2 diabetes in the future regardless of the time scale
(Strategy 1: Metabolomic Risk Score 1; MRS1) and the other trying to
simultaneously predict the risk and the age of onset (Strategy 2:
Metabolomic Risk Score 2; MRS2). To complete this aim, we used a
comprehensive profiling of metabolites in plasma and serum samples
from middle-aged participants of prospective cohorts. The comparison
of the two prediction strategies is an underlying aim of this study that
would bring to light metabolites simultaneously and/or specifically
contributing to type 2 risk and early onset of diabetes. We also aimed
to evaluate the stability over time of the metabolites found through both
strategies, which is a key element in their clinical use. Indeed, tar-
geting metabolites conserved in time is mandatory to implement any
measurable preventive intervention. Finally, we aimed to investigate
the capacity of the calibrated predictive models to improve risk pre-
diction on top of known clinical and biological risk factors.

2. RESEARCH DESIGN AND METHODS

2.1. Training population
We studied men and women who participated in the nine-year follow-
up study D.E.S.I.R., a middle-aged, European cohort [5,19,20]. A case-
cohort design was used to include 231 cases of incident type 2

diabetes and 836 participants randomly sampled from the entire
cohort. Baseline and follow-up clinical characteristics of participants
included in the training population are shown in Supplementary
Table 1. Type 2 diabetes was defined using one of the following
criteria: use of glucose lowering medication, fasting plasma glucose
[FG] �7 mmol/L, or glycated hemoglobin A1c [HbA1c] �6.5%
(48 mmol/mol) [21]. Clinical and biological evaluations were performed
at inclusion and after three, six, and nine years, as previously
described [22,23]. All participants provided written informed consent
and the study protocol was approved by the Ethics Committee for the
Protection of Subjects for Biomedical Research of Bicêtre Hospital,
France.

2.2. Validation population
To provide an external assessment of the predictive models from the
training population, we selected 64 incident type 2 diabetes cases and
64 controls (matched on age at inclusion, sex and body mass index
[BMI]) from French families with type 2 diabetes or obesity recruited by
the CNRS UMR8199 unit (Lille, France) [24e26]. Among the recruited
participants we selected those with baseline characteristics (age, sex,
BMI, fasting glucose, 2-hour glucose and glucose lowering treatment)
available, with a follow-up including at least two measurements and
with at least 100 mL of fasting serum available. Baseline clinical
characteristics of participants included in the validation population are
shown in Supplementary Table 1. Type 2 diabetes was defined using
the following criteria: use of glucose lowering medication, fasting
plasma glucose [FG]�7 mmol/L, or 2-hour glucose� 11 mmol/L. The
average follow-up length was 8.6 years (standard deviation: 4.6 years)
in the validation population. Informed consent was obtained from all
subjects, and the study was approved by the ethics committees from
Lille, France.

2.3. Metabolite measurements
Metabolomic measurements were performed in fasting plasma sam-
ples from D.E.S.I.R. participants and in fasting serum samples from
those included in the validation population. All fasting plasma and
serum samples were processed by the Metabolon (Durham, NC)
platform using GC/MS and LC/MS/MS as previously described [27,28].
Since the analysis spanned a number of days, a data normalization
step was applied to correct inter-day variations. Each compound was
therefore corrected in run-day blocks, medians were equated to one
(1.00), and each data point was normalized. We analyzed 293 me-
tabolites (intersection between 491 detected in plasma and 625
detected in serum) that were detected (missing value rate <20%) in
both plasma and serum samples. Metabolites were divided into two
categories according to their missing value rate. The first category
involved 255 metabolites with missing value rate <5% in either
plasma or serum samples. For these metabolites, missing values were
imputed with the smallest detected value. The second category
involved 38 metabolites, for which the missing value rate ranged from
5% to 80%. These metabolites were analyzed as binary exposures
(presence vs absence) and observed values were coded “1” and
missing values “0”.

2.4. Clinical and biological risk factors
We used several clinical and biological type 2 diabetes risk factors to
compare the discriminative performances of metabolomic markers
with established predictors. We restricted the set of clinical and bio-
logical risk factors assessed in this study to risk factors available in
both training and validation populations. Listed below, the latter risk
factors were dichotomized so as to define a stratum at higher risk vs a
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stratum at lower risk: sex (men vs women), age (�45 vs <45 years),
body mass index (BMI: �25 vs <25 kg/m2), fasting glucose (FG �5.6
vs <5.6 mmol/L), blood pressure (BP: diagnosed hypertension or
systolic BP� 130 or diastolic BP� 85 mm Hg vs no hypertension and
systolic BP < 130 and diastolic BP < 85 mm Hg), triglycerides (TG:
TG � 1.7 vs < 1.7 mmol/L), high density lipoprotein (HDL) cholesterol
(�1.03 in men or �1.29 mmol/L in women vs >1.03 in men and
>1.29 mmol/L in women), smoking status (current smoker vs current
non-smoker), waist circumference (WC: WC� 94 in men and�80 cm
in women vs <94 in men and <80 cm in women). The thresholds
used to dichotomize continuous risk factors were chosen from the
harmonized definition of the metabolic syndrome [29].

2.5. Statistical analyses
The characteristics of participants are described by mean (SD) and n
(%) in Supplementary Table 1. Two strategies for predicting incident
type 2 diabetes were implemented. The first one relies on multivariable
logistic regression only modeling the probability of developing type 2
diabetes, while the second, based on multivariable Cox regression with
age as the time scale, tries to simultaneously identify those with an

early age at diagnosis. These two models used 293 metabolites as
explanatory variables and the Least Absolute Shrinkage and Selection
Operator (LASSO) regularization was applied [30] to select the most
relevant metabolites. We used 3-fold cross-validation to select the
number of metabolites to include in the logistic regression (strategy 1)
and Cox regression (strategy 2) models. The number of metabolites in
each model was selected to maximize the averaged AROC for logistic
regression, and the averaged integrated AROC [18] (iAROC) for Cox
regression, over 10,000 replications (Supplementary Figures 2 and 3).
For any given number of metabolites, 95% confidence intervals for
averaged AROC and iAROC were calculated as the intervals centered
on the averaged values and containing 95% of the generated AROC
values over the 10,000 replications. All models were fitted using two
thirds of the training population only.
To assess the stability of metabolites between baseline and year nine,
we compared the average values between these two time points
using paired t-tests as well as the correlation between these two
measurements. This comparison was performed for each of the
identified metabolites in the 778 D.E.S.I.R participants included in the
random sample cohort and who remained non-diabetic during the

Table 1 e Metabolites contributing to MRS1 and MRS2. The first nine metabolites contribute to both scores and the 15 others are specific to each score.
Relative contributions�1/16¼ 6.25% for MRS1 and�1/17z 5.88% for MRS2 are highlighted in bold font. Relative contribution ratios for the two scores that
are above 2 are also highlighted in bold font. References are given for metabolites reported in the literature for associations with insulin resistance or prevalent
and incident type 2 diabetes.

Metabolites Associated pathways MRS1 MRS2 References

Regression
coefficient

Relative contribution to
the score

Regression
coefficient

Relative contribution to
the score

1,5-Anhydroglucitol Glycolysis, gluconeogenesis, Pyruvate
Metabolism

�0.50 9.77% �0.26 7.13% [13,14]

1-Linoleoyl-GPC Lysolipid �0.31 5.97% �0.07 1.92% [12]
1-Palmitoylglycerol Monoacylglycerol 0.16 3.10% 0.25 6.96% [29]
Cotinine Tobacco Metabolite 0.33 6.34% 0.32 8.68% [3]
g-Glutamylphenylalanine Gamma-glutamyl Amino Acid 0.17 3.34% 0.09 2.61% [15]
Glucose Glycolysis, Gluconeogenesis, Pyruvate

Metabolism
1.03 20.0% 0.51 13.8% [13,14]

Isoleucine Leucine, Isoleucine, Valine
Metabolism

0.28 5.39% 0.27 7.33% [13,14]

Mannose Fructose, Mannose, Galactose
Metabolism

0.37 7.26% 0.13 3.48% [13,14]

Pro-hydroxy-pro Urea cycle; Arginine, Proline
Metabolism

�0.30 5.85% �0.16 4.40%

Fructose Fructose, Mannose, Galactose
Metabolism

0.27 5.21% [14]

g-Glutamyltyrosine Gamma-glutamyl Amino Acid 0.29 5.59% [15]
Isovalerylcarnitine Leucine, Isoleucine, Valine

Metabolism
0.19 3.73%

Phenylalanine Phenylalanine, Tyrosine Metabolism 0.28 5.48% [10,13]
Piperine Food Component/Plant 0.30 5.91%
Serine Glycine, Serine, Threonine

Metabolism
�0.31 6.08% [15]

Tyrosine Phenylalanine, Tyrosine Metabolism �0.05 0.97% [10]

1-Stearoyl-GPI Lysolipid �0.26 7.11%
3-Hydroxyisobutyrate Leucine, Isoleucine, Valine

Metabolism
0.15 4.03% [13]

Dehydroisoandrosterone
sulfate

Steroid 0.30 8.27%

g-Glutamylvaline Gamma-glutamyl Amino Acid 0.12 3.35% [15]
Glycine Glycine, Serine, Threonine

Metabolism
�0.13 3.45% [8,17]

Palmitoyl sphingomyelin Sphingolipid Metabolism �0.14 3.93% [14]
Stearoylcarnitine Fatty Acid Metabolism (Acyl Carnitine) �0.19 5.12%
Urea Urea cycle; Arginine, Proline

Metabolism
�0.31 8.40% [14,15]
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follow-up. The statistical significance for this analysis was set at
p < 0.05.
Statistical analyses used R version 3.1.0 (http://www.r-project.org/)
with the R packages survival, pROC and glmnet.

3. RESULTS

3.1. Strategy 1: Predicting the incidence of type 2 diabetes
regardless of the age at diagnosis
Using 3-fold cross-validation in D.E.S.I.R. samples, we identified 16
metabolites which produced a combined score that best discriminated
type 2 diabetes cases from controls (Supplementary Figure 2; Table 1),
regardless of age at diagnosis. This score subsequently referred to as
Metabolomic Risk Score 1 (MRS1) includes six amino acids or de-
rivatives (isoleucine, isovalerylcarnitine, phenylalanine, pro-hydroxy-
pro, serine, tyrosine), four carbohydrates (fructose, mannose,
glucose and 1,5-anhydroglucitol), two lipids (L-GPC and 1-
palmitoylglycerol), two peptides (g-glutamylphenylalanine and g-glu-
tamyltyrosine), and two xenobiotics (cotinine and piperine) (Table 1).
Cotinine was analyzed as a binary exposure (presence versus absence)
since it was undetected in >50% of the study participants. Impor-
tantly, we found a concordance of 96% (Fisher’s exact test p< 10�10)
between dichotomized cotinine that is a biomarker of exposure to
tobacco smoke and self-reported smoking habits.
MRS1 was successful at discriminating incident cases from controls
with high accuracy (mean cross-validated AROC among D.E.S.I.R
participants: 86.0% [84.8%�87.2%]95%CI; mean cross-validated
AROC in the validation population: 71.2% [70.2%�72.2%]95%CI).
Moreover, we found that in D.E.S.I.R. participants, the proportion of
incident cases above the second tertile of MRS1 was 21.5-fold larger
than below the first tertile. This finding was confirmed in the validation
population although with a smaller proportion (HR ¼ 3.39,
p ¼ 4 � 10�3; Table 2). Finally, we did not find any significant as-
sociation between MRS1 and the age at diagnosis of type 2 diabetes in
D.E.S.I.R. participants or in the validation population (D.E.S.I.R par-
ticipants: b ¼ 0.08 year per MRS1 SD; p ¼ 0.91; Validation popula-
tion: b ¼ 0.99 years per MRS1 SD of MRS1; p ¼ 0.58 Table 2).

3.2. Strategy 2: Predicting the incidence of type 2 diabetes
accounting for the age at diagnosis
Using 3-fold cross-validation in D.E.S.I.R samples, we found that 17
metabolites could discriminate incident cases from controls while
simultaneously accounting for the age of onset (Table 1). Including
more metabolites led to over-fitting and, consequently, to reduced out-
of-sample discriminative performances (Supplementary Figure 3).
Among these 17 metabolites we found six lipids (L-GPC, 1-
palmitoylglycerol, 1-stearol-GPI, dehydroisoandrosterone sulfate
(DHEA-S), palmitoyl sphingomyelin, and stearoylcarnitine), five BCAA
derivatives (3-hydroxyisobutyrate, glycine, isoleucine, pro-hydroxy-
pro, and urea), three carbohydrates (mannose, glucose, and 1,5-
anhydroglucitol), one peptide (g-glutamylphenylalanine), and one
xenobiotic (cotinine) (Table 1).
These 17 metabolites (Table 1) were combined into a Metabolomic
Risk Score 2 (MRS2) that was highly discriminant between incident
cases and controls (mean cross-validated iAROC among D.E.S.I.R
participants: 83% [82%�84%]95%CI; mean cross-validated iAROC in
the validation population: 67.2% [66.5%�67.8%]95%CI) and was also
significantly associated with a younger onset of type 2 diabetes
(among D.E.S.I.R participants: b ¼ �3.44 years per MRS2 SD,
p ¼ 2 � 10�7; in the validation population: b ¼ �4.73 years per
MRS2 SD, p¼ 4 � 10�3; Table 2). On average, D.E.S.I.R. participants
above the second MRS2 tertile developed type 2 diabetes at 56 years
while diabetes occurred at 62 years in the first tertile group
(b ¼ �6.06, p ¼ 0.01; Table 2). We confirmed this significant dif-
ference in the validation population, in which type 2 diabetes occurred
11 years earlier (p ¼ 5 � 10�3; Table 2) in the third compared to the
first tertile group.

3.3. Comparison of MRS1 and MRS2
Strategies 1 and 2 led to different sets of metabolites to be included in
MRS1 and MRS2. Nonetheless, nine metabolites were common to both
strategies: 1,5-anhydroglucitol, L-GPC, 1-palmitoylglycerol, cotinine,
g-glutamylphenylalanine, glucose, isoleucine, mannose and pro-
hydroxy-pro (Table 1). The regression coefficients associated with
these metabolites were sign consistent in each risk score (Table 1).

Table 2 e Association between MRS1/MRS2 (continuous score or categorized score) with incidence of type 2 diabetes measured with hazard and odds ratios;
and with age at diagnosis.

Training population
(D.E.S.I.R. participants)

Validation population

Hazard Ratio
(p-value)

Odds Ratio
(p-value)

Regression coefficient for
association with
at diagnosis
(p-value)

Hazard Ratio
(p-value)

Odds Ratio
(p-value)

Regression coefficient for
association with
at diagnosis
(p-value)

Continuous MRS1
(unit: per standard

deviation of MRS1)

2.88 (2 � 10�16) 8.44
(6 � 10�47)

0.08 year
(0.91)

1.49
(8 � 10�4)

3.3
(5 � 10�5)

1 year
(0.57)

Categorized MRS1
1st tertile groups vs
2nd tertile group

1st tertile groups vs
3rd tertile group

4.13 (6 � 10�4)
21.5 (2 � 10�15)

1.78 (2 � 10�5)
4.02 (3 � 10�24)

7.16 years (0.06)
5.43 years (0.14)

1.52 (0.30)
3.39 (3 � 10�3)

1.95 (0.17)
8.46 (2 � 10�4)

4.08 years (0.38)
0.80 year (0.86)

Continuous MRS2
(unit: per standard

deviation of MRS2)

2.72
(2 � 10�16)

3.63
(6 � 10�43)

�2.7 years
(2 � 10�7)

1.63
(1 � 10�7)

1.78
(9 � 10�4)

�3.75 years
(4 � 10�3)

Categorized MRS2
1st tertile groups vs
2nd tertile group

1st tertile groups vs
3rd tertile group

3.35 (6 � 10�4)
15.2 (2 � 10�15)

3.04 (2 � 10�4)
18.0 (1 � 10�26)

�1.12 years (0.67)
�6.06 years (0.01)

1.97 (0.06)
5.85 (2 � 10�6)

2.01 (0.13)
4.71 (1 � 10�3)

�0.81 year (0.83)
�10.9 years (5 � 10�3)
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However, the relative contributions of lipids were different in MRS2 and
MRS1. Indeed, the contribution of 1-palmitoylglycerol was 2.2-fold
(2.2 z 6.96/3.1; Table 1) larger than other metabolites in MRS2,
while the contribution of L-GPC was 3.1-fold larger in MRS1
(3.1 z 5.97/1.92; Table 1).
Similarly, mannose had 2.1-times more weight in MRS1 than in MRS2
(2.1 z 7.26/3.48; Table 1). In addition, we found fructose, g-gluta-
myltyrosine, isovalerylcarnitine, phenylalanine, piperine, serine, and
tyrosine to be specific for MRS1; while 1-stearoyl-GPI, 3-
hydroxyisobutyrate, DHEA-S, g-glutamylvaline, glycine, palmitoyl
sphingomyelin, stearoylcarnitine, and urea were only contributing to
MRS2.
Moreover, we assessed the value of combining both MRS1 and MRS2
to stratify individuals at higher risk to develop T2D at an earlier age
(Supplementary Figure 4). We observed that participants with both
MRS1 and MRS2 scores above the 2nd tertile of each score not only
had a higher risk to develop type 2 diabetes (61.5% of all incident
cases) but also developed type 2 diabetes at 56 years, on average, 4
years before the average age at diagnosis in the training and the
validation populations (p ¼ 3.4 � 10�4; data not shown).

3.4. MRS1/MRS2 versus clinical and biological risk factors of
glucose intolerance
For each clinical and biological risk factor, we defined a stratum at
higher risk versus a stratum at lower risk according to the dichoto-
mization proposed in the Clinical and biological risk factors section.
When assessing the predictive power of MRS1 and MRS2 in each

stratum, we found that the discrimination accuracy of MRS2 was larger
in younger individuals (iAROC in individuals <45 years: 86.5% vs
iAROC in individuals �45 years: 72.5%; p ¼ 1.26 � 10�6;
Supplementary Table 2), and in individuals with mild impaired fasting
glucose (iAROC in individuals with FG < 5.6 mmol/L: 74.4% vs iAROC
in individuals with FG� 5.6 mmol/L: 82.2%, p¼ 0.03; Supplementary
Table 2). This finding was only statistically significant in the training
population. In addition, the performances of MRS1 were not different in
strata at lower risk compared to strata at higher risk (Supplementary
Table 2).
To assess the relative predictive performances of MRS1 and MRS2 in
comparison with classic clinical and biological risk factors, we
considered three predictive models: Model 1 included all clinical and
biological risk factors listed in the Clinical and biological risk factors
section; Model 2 included only MRS1 when the metrics used for
comparison is AROC; or only MRS2 when the metrics used for com-
parison is iAROC; and Model 3 included all predictors in Model 1 plus
MRS1 or MRS 2. The ROC curves for all models are shown in Figure 1.
In D.E.S.I.R. participants, Model 1 yielded an AROC and an iAROC of
83.7% and 60.5%, respectively. In the validation population, however,
the performances of these models were lower: AROC ¼ 61.2% and
iAROC¼ 52.5% (Table 3). MRS1 and MRS2 alone (Model 2) had better
performances than Model 1 in D.E.S.I.R. participants, both in terms of
AROC and iAROC (p < 5 � 10�8; Table 3). In the validation population
however, only MRS2 yielded a statistically better iAROC than Model 1
(þ15.4%; p ¼ 9 � 10�3; Table 3). Finally, the most comprehensive
model, namely Model 3, had significantly better predictive

Figure 1: ROC Receiver operating characteristic (ROC) curves and area under these curves (AROC) statistics for three predictive models: Model 1 with clinical and
biological risk factors only, Model 2 with MRS1 only, and Model 3 including clinical and biological risk factors þ MRS1.

Original Article

922 MOLECULAR METABOLISM 5 (2016) 918e925 � 2016 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


performances than Model 1 and Model 2 in D.E.S.I.R. participants
(largest AROC ¼ 89.8%; p < 5 � 10�3; Table 3) but was less pre-
dictive than Model 2 in the validation population.

3.5. Time conservation of identified metabolites
We assessed the time conservation of the 24 metabolites (16 in MRS1,
17 in MRS2 but 9 in common) involved in MRS1 and/or MRS2 by
comparing baseline to follow-up (nine years after) levels as well as by
estimating correlation coefficients between these two measurements
in D.E.S.I.R. participants. We found that correlations between baseline
and follow-up were strongly significant (p< 5� 10�7; Supplementary
Table 3) for all metabolites, except for 1-stearol-GPI (r ¼ 0.08,
p ¼ 0.02; Supplementary Table 3) and fructose (r ¼ 0.05, p ¼ 0.15;
Supplementary Table 3). However, we observed that 12 metabolites
significantly increased and seven decreased with age during the nine
years follow up (p < 0.05; Supplementary Table 3). Two metabolites,
1,5-AG and DHEA-S, were particularly well conserved, as their
between-measurements correlation was above 0.73 (p < 10�10)
which is larger than HbA1c (r ¼ 0.63 [0.58e0.67]95%CI; data not
shown). Among the metabolites analyzed as binary predictors
(detected vs not-detected), we found that cotinine, piperine and
stearoylcarnitine were the most stable with a concordance of >79%
(data not shown) between baseline and follow-up measurements.

4. CONCLUSIONS

This study proposes two strategies for predicting incident type 2
diabetes. The first one relies on multivariable logistic regression,
modeling only the probability of developing type 2 diabetes, while the
second, based on multivariable Cox regression, tries also to identify
those with an early age at diagnosis. The performances of these two
strategies were assessed using both out-of-sample cross validation
and an actual validation sample, which emphasizes their applicability
to external populations.
This study also illustrates the complementarity of these two ap-
proaches especially since identifying early type 2 diabetes converters
has a major impact on their overall mortality risk as previously reported
[31]. We found that some metabolites only contributed to one model,
and for those shared by the two models, their relative contributions
could vary. Indeed, metabolites involved in steroid, lysolipid, and fatty
acid metabolism were specifically identified when the age at diagnosis
was accounted for in the Cox model. Moreover, when focusing on
metabolites selected in both models, we observed that relative weights
of lipids (1-palmitoylglycerol and L-GPC) differed between the two
scores. This underlines the important role of lipid metabolism in
accelerating the onset of type 2 diabetes.

The complementarity between those two modeling strategies was
emphasized by the comparison of MRS1 and MRS2 with clinical and
biological predicting risk factors. Our study strongly confirms that
metabolomic markers have a significant added-value on top of classic
type 2 diabetes predictors (including glucose) as previously reported
[6]. Importantly, in our study, the improvement in the AROC brought by
metabolomics is larger (þ4.5%) than previously reported [6] with an
AROC close to 90% when metabolomic, biological, and clinical factors
are used together. This illustrates that such a combined score could be
clinically valid to discriminate those who will and will not become
diabetic. In contrast, for the second modeling strategy taking into
analysis the age at diagnosis, the discriminative power of MRS2 alone
was better than when combined with classic predictors.
Our data may be useful to better design preventive intervention by
stratifying and further targeting individuals with both large MRS1 and
MRS2 scores as illustrated in Supplementary Figure 4. We observed
that the discriminative performances of MRS1 and MRS2 were lower in
the validation sample than in the training sample. Given that a
reduction in discriminative performances was similarly observed when
using clinical and biological risk factors only, we assume that the
reduced performances of MRS1 and MRS2 are not due to over-fitting.
Instead, the reduced performances of MRS1 and MRS2 in the vali-
dation population can be explained by marked differences regarding
clinical parameters between the two populations. Indeed, participants
in the validation population all had a family history of type 2 diabetes
and/or obesity and were themselves mostly obese (Supplementary
Table 1). Despite their reduced performances, MRS1 and MRS2
remained more predictive than known risk factors (Table 3) in this
population already at high risk for type 2 diabetes. Although MRS1 and
MRS2 also improve the specificity of type 2 diabetes prediction here,
other risk factors, possibly rare family shared mutations or other
metabolites not detected, remain to be identified.
We showed that MRS2 was simultaneously more predictive in younger
individuals and in those with very mild impaired fasting glucose
(defined by fasting glucose at baseline higher than 5.6 mmol/L which
is far lower than the alternative definition of prediabetes e 6.1 mmol/
L). This important finding reinforces the relevance of aiming for early
preventive intervention. Indeed, as previously pointed out in the
Whitehall II study [32], future incident diabetes cases often present
fasting glucose above 5.6 mmol/L up to 10 years before the onset of
type 2 diabetes. At that time the identification of people at risk of
diabetes and preventive intervention are the most useful to prevent
diabetes onset.
In contrast to genetic studies, the number and nature of the metab-
olites accurately measured by the different available technical plat-
forms and the reproducibility of the metabolomic data from these

Table 3 e Discriminative performances of different models; model 1 including only classic clinical and biological risk factors; model 2 including MRS1 (when
comparison is made using AUC) or MRS2 (when comparison is made using integrated AROC or iAROC) and model 3 including all risk factorsþ MRS1 or MRS2.
MRS1 and MRS 2 were never added simulatneously in any models. When MRS1 or MRS2 were added in a model, impaired fasting glucose and current smoking
status were not included as clinical and biological risk factors to avoid redundancy.

Predictive models Training population
(D.E.S.I.R. participants)

Validation population

AROC iAROC p-Value for AROC comparison/
p-value for iAROC comparison

AROC iAROC p-Value for AROC comparison/
p-value for iAROC comparison

Model 1: clinical and biological risk factors only 83.7% 60.5% Model 1 vs Model 2
2 � 10L9/2 � 10L8

61.2% 52.5% Model 1 vs Model 2
0.08/9 � 10L3

Model 2: MRS1/MRS2 only 88.2% 84.4% Model 2 vs Model 3
5 � 10L4/2 � 10L14

75.0% 67.9% Model 2 vs Model 3
0.41/5 � 10L3

Model 3: clinical, biological risk factors and MRS1/MRS 2 89.8% 70.0% Model 3 vs Model 1
3 � 10L3/3 � 10L3

72.9% 52.9% Model 3 vs Model 1
0.01/0.92
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platforms is still an unresolved issue. Despite that limitation, the vast
majority of the 24 metabolites highlighted in this paper had previously
been shown to be associated with type 2 diabetes or with insulin
resistance [10,12e15,17,33] (Table 1). We are therefore confident
that they are truly predictive of diabetes.
One strength of our study was the analysis of the conservation over
time of the 24 identified type 2 diabetes metabolites. The most stable
metabolites were 1,5-AG and DHEA-S. Stability over shorter spans of
time (1 and 7 years) of 1,5-AG and DHEA-S was previously reported in
the study by Yousri et al. (2014) [34]. The latter study also reported a
relatively good time conservation (0.4< r< 0.5) of glycine, isoleucine,
isovalerylcarnitine and g-glutamylvaline.1,5-AG, DHEA-S glycine,
isoleucine, isovalerylcarnitine and g-glutamylvaline. Furthermore 1,5-
AG levels in saliva were associated with type 2 diabetes risk [35]. In
addition, we also reported the stability of two xenobiotics, cotinine
(tobacco consumption) and piperine (pepper consumption), which
suggests the stability of the environment contributing to diabetes
onset. Finally, we confirmed that urea and serine, previously reported
for their association with chronological age [36], significantly varied
with age during the 9 year follow-up. Altogether, our data suggest that
these stable biomarkers can be safely used for large scale type 2
diabetes risk prediction.
In conclusion, the present study highlights that few biomarkers with an
efficient combination as risk scores can improve the identification of
incident type 2 diabetes cases, especially in those poorly recognized by
classical clinical risk factors. The clinical use of such biomarkers are
important for the development of early interventions for the prevention
of type 2 diabetes, involving changes in life style and pharmaco-
therapy. A comprehensive list of metabolomic biomarkers, as well as
an assessment of their predictive capacity, is under construction
through a number of research studies. Our study contributes to this
effort. However, to complement our findings, additional research is
needed to understand the potential causality relating metabolomic
biomarkers and other known risk factors to the onset of type 2 dia-
betes. For this, the use of statistical methodologies such as mediation
analyses [37,38] and Mendelian randomization [39] could provide
avenues for further improvement.
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