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Abstract

Background: A key question for any psychopathological diagnosis is whether the
condition is continuous or discontinuous with typical variation. The primary
objective of this study was to use a multi-method approach to examine the broad
latent categorical versus dimensional structure of autism spectrum disorder (ASD).
Method: Data were aggregated across seven independent samples of participants
with ASD, other neurodevelopmental disorders (NDD), and non-ASD/NDD controls
(aggregate Ns = 512-16,755; ages 1.5-22). Scores from four distinct phenotype
measures formed composite “indicators” of the latent ASD construct. The primary
indicator set included eye gaze metrics from seven distinct social stimulus para-
digms. Logistic regressions were used to combine gaze metrics within/across par-
adigms, and derived predicted probabilities served as indicator values. Secondary
indicator sets were constructed from clinical observation and parent-report mea-
sures of ASD symptoms. Indicator sets were submitted to taxometric- and latent
class analyses.

Results: Across all indicator sets and analytic methods, there was strong support for
categorical structure corresponding closely to ASD diagnosis. Consistent with no-
tions of substantial phenotypic heterogeneity, the ASD category had a wide range of
symptom severity. Despite the examination of a large sample with a wide range of
IQs in both genders, males and children with lower 1Q were over-represented in the
ASD category, similar to observations in diagnosed cases.

Conclusions: Our findings provide strong support for categorical structure corre-
sponding closely to ASD diagnosis. The present results bolster the use of well-
diagnosed and representative ASD groups within etiologic and clinical research,
motivating the ongoing search for major drivers of the ASD phenotype. Despite the
categorical structure of ASD, quantitative symptom measurements appear more

useful for examining relationships with other factors.
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INTRODUCTION

A fundamental question for any neuropsychiatric diagnosis concerns
whether the condition is best represented using a categorical or
dimensional framework. A recent meta-analysis (Haslam et al., 2020)
suggested that, although most psychiatric disorders and constructs
are best represented as dimensional, autism spectrum disorder (ASD)
is among several possible exceptions (Frazier et al., 2010, 2012;
James et al,, 2016). However, exclusive focus on subjective measures
could have biased ASD findings toward categorical conclusions
(Beauchaine & Waters, 2003; Ruscio, 2007). Therefore, there is a
need for large sample, multi-modal investigations spanning eye-
tracking, clinical observations, and questionnaires.

The question of categorical versus dimensional structure has
substantial implications for conceptual models and assessment
(Ruscio & Ruscio, 2002). Under a dimensional model, neurobiological
research would emphasize quantitative structural and functional
changes, while clinical assessment would focus on obtaining a precise
symptom severity estimate and linking this estimate with relevant
phenotypic features such as functional capacity (Ruscio & Rus-
cio, 2002). A categorical model would instead support the search for
qualitatively distinct structural and functional imaging indicators and
focus on optimizing instruments to generate a post-test probability of
ASD diagnosis (Frazier, Coury, et al., 2021).

Converging evidence suggests that individuals with ASD form a
distinct latent subpopulation with social communication/interaction
(SCI) and restricted/repetitive behavior (RRB) core features that
are qualitatively different from the remainder of the population.
For example, ASD diagnosis has high inter-rater reliability (Regier
et al,, 2013) and temporal stability (Pierce et al., 2019) from early life.
Moreover, SCI and RRB co-occur more than would be expected by
chance in subsets of cases with pathogenic mutations (Morris
et al., 2016). Twin studies further support a strong genetic component
to ASD (Sandin et al., 2017), yet with nonshared environmental factors
responsible for variation in severity of symptomatology above the
diagnostic threshold (Castelbaum et al., 2020). At the same time,
several pieces of data support a dimensional model. For example, there
is considerable heterogeneity of severity and expression within the
ASD phenotype (Lord et al., 2020). There is also evidence of a sub-
threshold or broad autism phenotype (BAP) across the general popu-
lation (Piven et al., 1997; Sucksmith et al., 2011) with twin research
designs suggesting similar etiology between typical and extreme
symptom levels (Lundstrom et al., 2012) and partially distinct etiology
for symptom domains (Ronald et al., 2006). Furthermore, a small subset
of ASD cases no longer meet diagnostic criteria as they progress
through development (Fein et al., 2013). The present study aimed to
shed light on these seemingly conflicting observations by utilizing
datasets an order of magnitude larger than previous investigations that
span ASD, non-ASD neurodevelopmental disorder (NDD) and non-
ASD/NDD controls.

This is the first study to date to combine a multi-measurement
approach—spanning eye-tracking, clinical observation scales, and
informant-reported ASD measures—and to include NDD and non-
ASD/NDD controls for a strong test of categorical structure. The
inclusion of multi-assessment modalities is crucial for ensuring an

unbiased evaluation of latent structure. Subjective report measures

Key points

o Although several studies have addressed the question of
whether autism spectrum disorder (ASD) is best repre-
sented as a category or continuum, results have been
inconsistent.

e This was the first study to implement a multi-method
approach, using datasets an order of magnitude larger
than prior analyses.

e Results were consistent across multiple different types of
measures. The inclusion of non-ASD neurodevelopmental
disorder (NDD) and non-ASD/NDD controls provided a
strong test of categorical structure.

e Our findings provide strong support for the categorical
structure of ASD, with the category corresponding closely
to clinical diagnoses. Consistent with notions of substan-
tial phenotypic heterogeneity, the ASD category had a

wide range of symptom severity.

can be biased toward categorical or dimensional structure, depending
on whether they were designed as screening or quantitative as-
sessments (Baron-Cohen et al., 2001; Beauchaine & Waters, 2003;
Constantino & Gruber, 2012), and clinical observation measures may
be biased toward categorical structure because clinicians are often
implicitly comparing to a diagnostic prototype (Beauchaine & Wa-
ters, 2003). Gaze measures are objective and a substantial body of
evidence has found consistent differences in social attention between
ASD and non-ASD cases (Frazier et al., 2017), with powerful differ-
entiation when combining gaze measures across multiple distinct
stimuli (Frazier et al., 2018).

The primary aim of the present study was to examine whether
ASD is best represented as a distinct category or as part of a con-
tinuum that includes neurotypical behavior (Figure 1). Based on
previous evidence, ASD was expected to show categorical structure,
with a wide severity range, across all samples and measures. While
different measurement modalities were anticipated to converge on
categorical structure, subjective reports might overestimate the ASD
category base rate due to high sensitivity but low specificity (Moody
et al,, 2017), while observational measures might slightly underesti-
mate the ASD category base rate due to moderate-to-good sensi-
tivity and specificity (Hus & Lord, 2014). Should an ASD category be
identified, the study aimed to compare the category base rate across
statistical procedures and with clinical ASD diagnoses and charac-
terize demographic and clinical correlates. Assignment to the puta-
tive ASD category identified from taxometric procedures was
expected to correspond with high sensitivity and specificity to clinical
ASD diagnosis, which have been shown to have good test-retest and
inter-rater reliability (Lord, Petkova, et al., 2012; Regier et al., 2013).
Latent category classifications were also expected to associate
strongly with symptom severity measures, show substantial male
bias, and yield significant associations with measures of 1Q (Charman
et al., 2011) and psychopathology due to diagnostic comorbidity
(Hawks & Constantino, 2019; Simonoff et al., 2008).
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FIGURE 1 Dimensional (A) versus categorical (B) models of autism.

METHOD
Participants

Indicator sets submitted to taxometric and latent structure analyses
were derived from seven independent samples: Qatar Foundation and
US-Cleveland Clinic (Autism EYES; Frazier, Uljarevic, et al., 2021), Si-
mons Simplex Collection (SSC; Fischbach & Lord, 2010), the Autism
Genetic Resource Exchange (AGRE; Geschwind et al., 2001), National
Database for Autism Research (NDAR; Hall et al., 2012), Social
Responsiveness Scale normative data (SRS Norm; Constantino &
Gruber, 2012), and Healthy Brain Network (HBN; Alexander
et al., 2017). Each sample is characterized in Table S1. Samples were
combined to create aggregate datasets. Combined samples included
ASD and NDD clinical cases and non-clinical (non-ASD/NDD) controls,
making it unlikely categorical structure would result simply from

combining different samples.

Diagnostic procedures

Each dataset included information on the presence/absence of ASD,
other NDD diagnoses, or whether the participant was a non-ASD/
NDD control. ASD diagnoses were informant-reported or based on
best estimate clinical or research diagnoses, and informed by validated
and gold-standard assessment instruments including the Autism
Diagnostic Interview-Revised (ADI-R; Lord et al., 1994) and/or Autism
Diagnostic Observation Schedule (ADOS; Lord, Rutter, et al., 2012;

Neurotypical
behavior

Broad Autism

Phenotype Autism

Table S2). The NDD group comprised cases with any other neuro-
developmental condition besides ASD, ascertained from informant-
reported clinical diagnosis or clinical/research evaluation. Diagnostic
data were coded to reflect three groups (ASD, NDD, non-ASD/NDD)
and, where applicable, the NDD and non-ASD/NDD groups were
combined to generate a single control group for comparison to ASD.

Measures and indicator sets

Gaze data were obtained from the combined US and Qatar cohorts,
which have previously been shown to have minimal differences and
similar developmental patterns (Frazier, Uljarevic, et al., 2021). Fixa-
tion time percent, fixation count, and average fixation duration were
recorded in response to 44 stimuli from seven paradigms (Frazier
et al., 2018). The ADOS is a clinician-observation measure of autism
symptoms (Lord, Rutter, et al, 2012). The measure includes five
modules (toddler and modules 1-4) that are administered dependent
on age and speech/language status. Only data from modules 1-4 were
included in the present study to maximize item overlap. The SRS is
a parent-report, 65-item quantitative assessment of the severity of
autism traits (Constantino & Gruber, 2012). The lifetime version of the
Social Communication Questionnaire (SCQ) is a parent-report
dichotomously keyed (yes/no) rating scale that consists of 40 ques-
tions many of which tap DSM-IV-TR symptom domains (Rutter
et al., 2003). Lifetime ratings reference the child's behavior throughout
their developmental history, increasing diagnostic validity (Lord
etal, 1997).
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Four indicator sets were created from the gaze datasets. Lo-
gistic/linear regressions were used to predict ASD diagnosis from all
available gaze metrics for each of the seven paradigms (Gaze-7-dx)
and each gaze metric across the seven paradigms (Gaze-3-dx) and
to predict quantitative ASD trait scores (derived from the SCQ and
SRS) from the same sets of variables (Gaze-7-qt and Gaze-3-qt).
The predicted values derived from these regressions served as in-
dicator values, averaged together to derive indicator sets. This
construction strategy ensured that the indicators/sets were suffi-
ciently valid for taxometric analysis (Ruscio et al., 2006). In addition,
we have also applied taxometric procedures to gaze metrics in their
raw form.

Two indicator sets were constructed from the ADOS dataset. The
first (ADOS-Items) included eight items assessing core ASD symp-
toms that do not require speech and are common across modules 1-4
(eye contact, shared enjoyment, response to joint attention bids,
imagination, quality of social overtures, gestures, unusual sensory
interest, complex mannerisms). The second indicator set (ADOS-
Sums) reflected the average of three sum scores, derived from items
common to modules 2-4: (i) social affect items assessing non-verbal
communication (gestures, eye contact, response to joint attention
bids), (ii) items assessing reciprocal social behavior (non-echoed
speech, conversation, shared enjoyment, quality of social overtures,
quality of social response, reciprocal social interaction, quality of
rapport, imagination), and (iii) items assessing unusual repetitive and
sensory behavior (speech abnormalities, immediate echolalia, ste-
reotyped words, unusual sensory interests, and complex mannerisms).
Table S3 lists ADOS items comprising each indicator set.

Three indicator sets were created from the SRS dataset. The first
included all of the original SRS subscale scores (SRS-Original; Con-
stantino & Gruber, 2012). The second included subscales derived
from a prior factor analysis of population data (SRS-Factors; Frazier
et al, 2014). The third consisted of subscales derived from recent
analyses focused on mapping items to National Institute of Mental
Health Research Domain Criteria (RDoC; Insel et al., 2010; Uljarevic
et al, 2019) or identifying specific RRB groupings (SRS-RDoC;
Uljarevic et al., 2021). Indicators in the SCQ set were based on recent
factor analyses (Uljarevic et al., 2020; Uljarevi¢ et al., 2021).

Gaze-7-dx was considered the primary indicator set for the
present study given high reliability and expected desirable properties
(indicator validity, minimal skew, and low nuisance correlations).
However, interpretation of taxometric results relied on convergence

across indicator sets, samples, and procedures (Ruscio et al., 2006).

Data analysis

Three taxometric procedures were implemented in R using default
values from the RTaxometrics package (Ruscio & Wang, 2020): mean
above minus below a cut (MAMBAC) (Meehl & Yonce, 1994) cal-
culates the mean difference on one indicator set for cases falling
above and below a sliding cut-off score on another indicator set in
search of an optimal cutting score to separate groups (should they
exist); maximum eigenvalue (MAXEIG; Meehl & Yonce, 1996) orga-
nizes one input indicator set sequentially into overlapping windows

and, at each window, calculates the first eigenvalue of a modified

covariance matrix for all remaining indicators; latent mode (L-Mode;
Waller & Meehl, 1998) graphs the distribution of scores on the first
principal factor of the full set of indicators. Each procedure was
repeated using all possible indicator set combinations yielding indi-
vidual and averaged graphical output, with categorical structure
evidenced by peaked MAMBAC and MAXEIG curves and bi-modal
L-mode distribution. Each procedure further provided an estimate
of the base rate (or prevalence) of membership in the putative ASD
category.

Comparison curves were generated for dimensional and cate-
gorical samples that reproduced the characteristics of the empirical
data. Simulated curves were compared to empirical data curves using
the comparison curve fit index (CCFI; Ruscio et al., 2018), derived
from the root-mean-square residual estimates of each model. CCFI
values discriminate dimensional and categorical structure with high
accuracy under a wide range of data conditions (Ruscio et al., 2018).
The CCFls for each procedure were averaged to produce a mean
CCFI. CCFI values < 0.50 support dimensional structure and >0.50
support categorical structure. Values between 0.45 and 0.55 were
considered weak support, while values <0.45 and >0.55 were
considered strong support for dimensional and categorical structure,
respectively (Ruscio et al., 2018). Convergence of taxometric results
across the different indicator sets and procedures further indicated
robustness of the structural solution (Ruscio et al., 2006). Taxometric
analyses were supplemented with latent class analyses (LCA),
computed for each indicator set using maximum likelihood estima-
tion with robust standard errors (see Supplemental Methods in
Supporting Information S1). This permitted evaluation of whether
LCA classifications overlap with diagnostic classifications (kappa, %
accuracy, sensitivity, and specificity). Considering taxometric pro-
cedures are unable to detect the existence of more than two latent
distributions, LCA further permitted evaluation of structures with up
to five latent categories.

RESULTS

Indicator set characteristics

Combined samples for each indicator set had a diverse set of char-
acteristics and were well-above the recommended minimum size
(N = 300; Table 1). Average indicator validity was highly variable,
with lower than desired levels (d > 1.25) for Gaze-7-dx, Gaze-7-qt,
and SCQ. Average indicator skew was within the desired range (skew
<1.0) for all indicator sets. Average nuisance correlations tended to
be higher than the optimal upper bound (r < 0.30), especially for
Gaze-3-dx, Gaze-3-qt, and SRS-Original. These deviations from
desired indicator set characteristics would be expected to decrease
the likelihood of identifying categorical structure (Ruscio et al., 2010).

Score distributions were highly variable; some showed relatively
normal distribution (Gaze), others significant positive skew (SCQ),
and some bimodal distributions (ADOS, SRS). Score distributions are
not strong indicators of latent distributions (Ruscio et al., 2006), but
the presence of different types of observed distributions ensures that
the full pattern of results is not driven by peculiarities of the

observed scores (see Figure 2).
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TABLE 1

Set
Gaze-7-dx
Gaze-3-dx
Gaze-7-qt
Gaze-3-qt
ADOS-Items
ADOS-Sums
SRS-original
SRS-factors
SRS-RDoC
SCQ

Indicator set characteristics.

Total

# of indicators N

o N Ut W oW N W N

512
512
512
512
12,705
8144
16,755
16,755
16,755
6040

Non-ASD/NDD NDD

N
145
145
145
145
864
392
4961
4961
4961
1320

N
122
122
122
122
1606
1255
1672
1672
1672
2004

ASD
N

245
245
245
245
10,235
6497
10,122
10,122
10,122
2716

Validity (d)?
M (range)

0.85 (0.58 to 1.28)
1.29 (1.15 to 1.43)
0.57 (0.24 to 0.96)
1.30 (1.16 to 1.44)
1.25 (0.99 to 2.11)
1.78 (1.63 to 1.98)
1.84 (1.55 to 2.01)
1.32 (0.24 to 1.91)
1.31 (0.71 to 1.69)
0.68 (0.58 to 1.01)

Skew
M (range)

0.26 (-0.12 to 0.56)
0.23 (0.15 to 0.33)
0.48 (-0.01 to 1.67)
0.23 (0.15 to 0.33)
0.31 (-0.97 to 0.85)
0.30 (-0.12 to 0.56)
0.19 (0.04 to 0.38)
0.99 (-0.04 to 2.40)
0.63 (0.14 to 1.11)
0.75 (0.28 to 0.99)

ASD r°
M

0.36
0.71
0.33
0.71
0.28
041
0.59
0.32
0.30
0.23

JCPP Advances @_lﬂ

Control r°
M

0.27
0.60
0.33
0.60
0.14
0.26
0.73
0.39
0.50
0.33

Abbreviations: ADOS, Autism Diagnostic Observation Schedule; ASD, autism spectrum disorder; dx, indicator set based on prediction of diagnosis;
NDD, neurodevelopmental disorder (non-ASD) controls; qt, indicator set based on prediction of quantitative trait/symptom measure; RDoC, Research
Domain Criteria; SCQ, Social Communication Questionnaire; SRS, Social Responsiveness Scale.

®Reflects the standardized mean difference between indicator score distributions of the non-ASD/DD and ASD groups, indexed by a Cohen's
d threshold of >1.25.

PReflects within-group (nuisance) correlations among indicators, indexed by a Pearson's r threshold of <.30.

Gaze Total (2)

SRS Total Raw

M Control
Masp

M controls
Masp

M Control
MAsD

400

ADOS-Sums Total Raw

10 20
SCQ Total

M Controls
Hasp

FIGURE 2 Stacked frequency distributions for ASD (green) and control (light blue) groups across total gaze and autism symptom

measures, separately by indicator set. ASD, autism spectrum disorder.
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FIGURE 3 Taxometric analyses of Gaze-7-dx indicators. Each row displays results for one taxometric method (MAMBAC, MAXEIG, and L-
Mode). Graph pairs show results for the empirical data (dark line) superimposed on results for comparison datasets simulated using either
categorical (left) or dimensional (right) structure; lighter lines represent minimum and maximum simulated values at each data point, and the
gray area denotes the middle 50% of simulated values. MAMBAC, mean above minus below a cut; MAXEIG, maximum eigenvalue.

FIGURE 4
dx indicator set; ADOS is the ADOS-Items indicator set; and SRS is the SRS-Original indictor set. Highly similar results were obtained with
other indicator sets for each measure. ADOS, Autism Diagnostic Observation Schedule; SCQ, Social Communication Questionnaire; SRS, Social
Responsiveness Scale.

30%

25%

20%

15%

% A BIC

10%

5%

0%

-5%
1vs. 2class

B Gaze ®ADOS

2 vs. 3 class

Iij I RTTTRTT

3 vs. 4class 4 vs. 5class

E SRS mSCQ

Improvement in model fit (% ABIC) across increasing classes for latent class analyses of each indicator type. Gaze is the Gaze-7-



FRAZIER ET AL

8of11 | (A0 JCPP Advances

TABLE 3 Concurrent (blue) and discriminant (purple) validity of categorical empirical classifications and continuous gaze and symptom

measures with demographic and clinical measures.

Gaze-7-dx

Taxometric classifications r

ASD diagnosis 0.46
ADOS severity 0.29
SRS total T-score 0.35
1Q -0.19
Language -0.18
Internalizing problems 0.02
Externalizing problems 0.08
ADOS-sums

LCA classifications r Total predicted gaze r

0.54 0.55
0.39 0.40
0.35 0.40
-0.25 -0.33
-0.24 -0.33
-0.04 0.01
0.06 0.05

Taxometric classifications r

ASD diagnosis 0.56

Age -0.12

Sex (male) 0.16

1Q -0.29

Internalizing problems -0.04

Externalizing problems -0.01
SRS-original

LCA classifications r Total raw score r

0.64 0.66
-0.12 -0.15
0.16 0.17
-0.23 -0.43
-0.01 -0.09
0.01 -0.02

Taxometric classifications r

ASD diagnosis 0.68
Age -0.02
Sex (male) 0.21
1Q -0.24
Internalizing problems 0.44
Externalizing problems 0.34
SCQ

LCA classifications r Total T-score r

0.67 073
-0.02 -001
0.21 0.20
-0.25 -0.32
043 0.53
0.35 0.44

Taxometric classifications r

ASD diagnosis 0.34
Age -0.22
Sex (male) 0.14
1Q -0.38
Internalizing problems 0.07
Externalizing problems 0.05

LCA classifications r Total raw score r

0.47 0.40
-0.24 -0.20
0.17 0.17
-0.37 -051
0.13 0.12
0.10 0.11

Abbreviations: ADOS, Autism Diagnostic Observation Schedule; ASD, autism spectrum disorder; LCA, latent class analysis; SCQ, Social Communication

Questionnaire; SRS, Social Responsiveness Scale.

mental health comorbidity in ASD cases (Table 3). Interestingly, total
scores showed stronger relationships with external correlates than

classifications did.

DISCUSSION

This examination, the largest and most comprehensive to date, in-
dicates that ASD might be among a small number of psychopathology
conditions with categorical structure (Haslam et al., 2020). Impor-
tantly, identification of categorical structure using objective gaze

indicators demonstrates that these results are not simply a function of
shared method variance (Podsakoff et al., 2003), rater biases or ex-
pectations (Beauchaine & Waters, 2003; McGrath et al., 2009) and
that this structure is reflected in a key cognitive phenotype of ASD
and neurodevelopment—social attention (Constantino et al., 2017;
Frazier et al., 2017). Additional studies with other biomarkers showing
good differentiation of ASD and non-ASD phenotypes are warranted.
Extending analyses to other cognitive, physiological, and neural
systems measures, such as automated facial expression analysis
(Trevisan et al., 2018) and pupillometry (de Vries et al., 2021), will
be key for improving precision of ASD classification and assessment.
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Latent categorical structure has important implications for
nosology and assessment. First, the present results support the
broad DSM-5 conceptualization, with co-occurrence of SCI and RRB
symptoms and a wide range of severity within the ASD category.
Additional research is needed to identify whether the specific
criteria and exemplars listed in DSM-5 optimally identify the ASD
category. This will be key for the revision of future diagnostic sys-
tems, as will the development and refinement of symptom measures.
While existing measures show good accuracy (Kim & Lord, 2012), the
present results suggest that, rather than simply measuring degrees
of symptom severity, measures should also provide estimates of the
post-test probability of a categorical ASD diagnosis. These values can
be used in an evidence-based medicine fashion to enhance clinical
judgment. In this framework, post-test probabilities can inform
whether additional evaluation might be needed, when less intensive
or non-specific interventions may be warranted, or—when the
probability is sufficiently high—more ASD-specific or intensive in-
terventions should be initiated (Frazier, Coury, et al., 2021).

Current findings have several implications for research design
and analysis. For example, group designs need to sample the full
range of cases within the ASD category, while quantitative trait de-
signs need to consider the underlying latent distributions and how
these might influence findings. Despite the identification of cate-
gorical structure, the use of quantitative scores is still important as
these scores often show stronger correlations with other measures.
Further investigations into the BAP in first-degree relatives are
needed. While present findings suggest that these traits are sub-
threshold, it is unclear whether BAP might itself represent a
discrete behavior pattern or the end of a neurotypical continuum.

Primary limitations include the availability of a single ASD
biomarker sample with sufficient indicator validity and the inclusion
of indicator sets with less-than-optimal characteristics. The combi-
nation of cross-cultural cohorts is unlikely to induce categorical
structure because the latent classifications were consistent with ASD
in both cohorts and prior work with this dataset found no substantial
cultural influences on social attention (Frazier, Uljarevic, et al., 2021).
Moreover, sub-optimal indicator validity and high nuisance correla-
tions should have biased results away from detecting a latent cate-
gory (Ruscio et al., 2010). Some datasets had smaller proportions of
NDD cases, which could have biased results toward the categorical
structure. However, indicator sets with a higher proportion of NDD
cases were present to offset this possibility. Confound may further be
introduced by admixing samples drawn from separate populations
who might differ on numerous characteristics other than the target
construct. Yet, the categorical structure was supported across indi-
cator sets with diverse sample compositions, including in single-
sample data and when participants with reduced cognitive and lan-
guage ability were excluded. In addition, it is important to acknowl-
edge the presence of multiple family members in the combined
dataset. This may impact MAXEIG but should not influence the re-
sults of other taxometric procedures and was explicitly accounted
for, where possible, in LCA. Finally, taxometric methods are not the
only procedures for evaluating between categorical and dimensional
models (Borsboom et al., 2016). Nevertheless, simulations have
demonstrated that the CCFI utilized here is accurate at distinguishing
dimensional and categorical structure in >99% of cases, under a wide
range of conditions (Ruscio et al., 2018). Lastly, whereas taxometric
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procedures can detect only a single boundary (between two groups)
at a time, this does not rule out the existence of additional groupings.
Testing for further boundaries or subtypes within the ASD grouping is
a potential avenue for additional investigation.

CONCLUSION

ASD appears to be a qualitatively distinct category at the levels of
behavioral symptoms and social attention, but additional replication
is warranted. These findings support the broad structure of DSM-5
ASD diagnosis and next generation diagnostic systems should main-
tain the ASD category. Future studies may consider this structure in
design and analytic methods. Clinical investigations are needed to
identify the optimal symptom measurements and evidence-
based assessment procedures for ASD identification and outcome

tracking.
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