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Microalgae have emerged as a promising feedstock for the poultry feed industry due to their high nutritional
potential, containing essential polyunsaturated fatty acids, essential amino acids, vitamins, and other high-value
products compared to conventional poultry feed supplements. Microalgae-based feed can enhance broilers' body
weight, feed intake, and, more interestingly, improve the nutritional quality of poultry-sourced food products
with omega-3 fatty acids and carotenoids. This study aims to review all available metabolic quality-enhancement

strategies, including conventional approaches dealing with physicochemical parameters of the cultivation con-
dition and unconventional approaches dealing with advanced molecular biology techniques. These strategies are
considered promising for enriching microalgae biomass with valuable metabolites for high-quality feed pro-
duction, consequently enhancing the nutritional value of poultry meat and specialty eggs. Finally, techno-
economic challenges were discussed, and recommendations were delivered.

1. Introduction

The global population increases with a significant escalation rate and
is expected to reach more than 9700 million in 2050, which has
increased the food demand, and is expected to exceed 60 % (Yarnold
et al., 2019). For human food consumption, the main animal sources of
protein and fat include livestock, poultry, and fish (Mancinelli et al.,
2022) . Therefore, the reliability of production in the poultry and
aquaculture industries is of prime importance. However, poultry feed is
primarily derived from plant sources that are high in protein and lipids
such as corn and soybean (Madeira et al., 2017). This potentially leads to
competition in the allocation of these edible crops between human
consumption and animal feed (Kpomasse et al., 2021). Therefore, the
utilization of edible plant sources for animal feed is unsustainable with
the ever-increasing human population. Furthermore agricultural activ-
ities are responsible for 70 % freshwater volume withdrawal thereby
being the most water intensive sector (Aivazidou et al., 2016). And the
unsustainable use of groundwater extraction for over 40 % of the agri-
cultural needs has created an urgent need for more sustainable agri-
cultural systems (Levintal et al., 2022). According to Ingrao et al., 2023
modified cultivation and agricultural strategies need to implemented for
water and food security. Thus, finding a sustainable feed replacement for

poultry plays a greater role in the future of food security globally. In
addition to sustainability, the demand for healthier food production has
also become a greater quest with such increasing food requirements
(Santo et al., 2020).

Although various fatty acids are synthesized by humans, there are
certain essential fatty acids (EFAs) that need to be supplemented
through food. It is well known that regular intake of n-3 polyunsaturated
fatty acids (PUFAs) can improve lipid metabolism and reduce the risk of
cardiovascular and metabolic disease (Jump et al., 2012). In addition,
PUFAs are also known to have significant potency in enhancing immu-
nity and anti-inflammation properties (Gholamhosseinian et al., 2020).
Although fish is considered the conventional source of these PUFAs,
depletion of marine sources, lower proportions of PUFA, and the asso-
ciated risk of heavy metal accumulation in fish have shifted the focus
towards other potential sources of PUFAs (Wang et al., 2018b).

Among other potential sources, enriching poultry feed with essential
fatty acids is increasingly attractive and practiced. The available po-
tential strategy is to add marine PUFAs or flaxseeds to poultry feed,
which results in PUFA enrichment in poultry meat and products (Mog-
hadam and Cherian, 2017). However, microalgal supplements as a
source of PUFAs for enrichment in poultry meat and eggs have been
grabbing attention for the past few years because of their potential
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advantages, such as high productivity, higher sustainability, and lesser
anti-nutritional properties (Neijat et al., 2017; Yonke and Cherian,
2019). According to the National Academy of Medicine the recom-
mended intake of essential omega-3 fatty acids for an adult to maintain a
healthy lifestyle is between 1.6 g and 1.1 g for males and females
respectively (Office of Dietary Supplements, 2018). Additionally,
through enrichment, concentrations of omega-3 fatty acids can reach up
to 200 mg per egg (Bruneel et al., 2013). In this context, omega-3 fatty
acid-enriched eggs are increasingly appealing, accounting for about 10
% of total egg consumption in the United States. Similarly, worldwide
interest in omega-3 eggs is growing, as getting the recommended
amount of omega-3 fatty acids from eggs would be an added benefit.
Even though hens have an innate ability to synthesize omega-3 PUFAs,
significant deposition of such fatty acids on eggs and tissues is primarily
determined by the rate of intake of the various omega-3 PUFAs (Ehr
et al., 2017).

Microalgae are typically unicellular eukaryotic microorganisms and
are globally known as one of the leading producers of PUFAs (Dubey
et al., 2023). They are to grow in various different environments, and
produce multiple high value products currently applied in various sec-
tors such as food, feed, energy, cosmetics and pharmaceuticals (Patel
et al., 2020). Although microalgae produced different classes of lipids
such as PUFAs, monounsaturated fatty acids and saturated fatty acids, it
is PUFAs which are deemed of great importance (Vadrale et al., 2023).
These fatty acids are known to have many health benefits such as
lowering inflammation, reducing blood cholesterol, and even as pre-
cursors for antihyperglycemic and antiviral activities (Ardiles et al.,
2020). Furthermore, these beneficial properties and metabolites found
in microalgae also make them a great candidate for feed supplement in
poultry industry (Ritu et al., 2022).

Although flaxseed, hempseed, and fish oil were reported to be
excellent dietary omega-3 sources for poultry, microalgae possess
inherent advantages such as no extensive land requirements, very high
productivity, environmental benefits, and biorefinery potential (Chaves
et al, 2021). Microalgal species such as Nannochloropsis oculata,
Phaeodactylum tricornutum, Isochrysis galbana, and Chlorella fusca have
previously been used as a dietary supplement in poultry feed to improve
the omega-3 fatty acids concentration in eggs (Lemahieu et al., 2013).
Although the strategy of supplementing microalgae as a feed ingredient
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for poultry has been widely reported, there is a lack of comprehensive
accounts about development of the field, and approaches for enhancing
the PUFAs in microalgal biomass. Moreover challenges for sustainable
omega egg production through microalgal supplementation in poultry
feed are not reviewed extensively. Hence, the present review aims to
shed light on a holistic way of analyzing the various strategies of sup-
plementing microalgae as a poultry feed ingredient to produce omega-3
eggs while considering the challenges as well.

2. Potentiality of microalgae as functional feed supplement in
the poultry industry

Microalgae have an exceptional nutrient profile with carbohydrates,
lipids, proteins and fiber that are beneficial for nutritive addition to
human diets, animal and poultry feeds, and fish feeds. A detailed ac-
count of the notional properties of various microalgae can be accessed in
the study of Saadaoui et al. (2021). Moreover, significant proportions of
phenolic content and flavonoids are also present in microalgal species
(Tibbetts et al., 2014). These microcellular factories of nutrient reser-
voirs as feed ingredients tend to positively impact the physicochemical
characteristics of hen such as body weight gain, meat carcass, nutrient
quality of the meat, lipid profile, production performance, egg yolk
pigmentation, etc. (Khan et al., 2021a). The main benefits of microalgal
supplementation to poultry feed is summarized in Fig. 1.

Several studies analyzed the influence of microalgae as a feed
ingredient on broiler meat qualities. For example, doses of up to 1.5 %
Arthrospira platensis increased the body weight gain by 8 % (Park et al.,
2015), whereas another study by Perdana et al. (2021) showed that
weight was reduced (18 %) at higher doses of up to 15 %. This can be
attributed to the fact that lower dosages have relatively higher di-
gestibility and lower digesta viscosity than higher doses (Venkataraman
etal., 1994). Similar observations were made using Chlorella vulgaris as a
feed ingredient, where lower dosages were found to be effective in
increasing the body weight gain and amino acid profile of the meat (El-
Bahr et al., 2020). In addition to the poultry weight, the color of the meat
was found to be a major influencing factor under the supplementation of
microalgae as a feed ingredient. The presence of iron and pigments
(B-carotene) in microalgal biomass increased the redness and yellowness
of meat respectively (Toyomizu et al., 2001). Moreover, microalgal

\Enhances Body weight gain,
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\

Fig. 1. Prospective benefits of using microalgae for poultry feed supplementation.
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supplementation as a feed ingredient also influences the other features
of meat such as tenderness, chewiness, pH, and water holding capacity.
These changes are due to microalgaes' influence on enzymes such as
enolases (o and p), kinases (pyruvate and creatinine), and calpain
(Huang et al., 2020). Lipid peroxidation of the meat was also decreased
by the supplementation of Hematoccoccus pluvialis, which was mainly
attributed to the presence of higher levels of antioxidants (-carotene,
astaxanthin and vitamin E) (Sun et al., 2018) . Moreover, in recent time,
steroids have also become a trending supplement for broilers. In a study
investigating dexamethasone which is a growth promoter, it was found
that, not only was the feed intake and efficiency decreased, the total
weight gain decreased as well (Islam et al., 2022). On the other hand,
supplementation of 20 ppm astaxanthin, produced in algae was sup-
plemented to broilers and an increase of 5.7 % was noted for body
weight gain (Ritu et al., 2022).

Apart from the meat quality, microalgal supplementation as a feed
ingredient significantly influences the egg quality of laying hens. For
instance, 0.5 % of Chlorella vulgaris increases the eggshell thickness and
weight by 4 ym and 0.5 g, respectively (Kim et al., 2023). Similarly, the
color of egg yolk was significantly influenced by the supplementation of
a lower dosage of Spirulina which resulted in increased red color and
reduced yellowness in the yolk (Omri et al., 2019). It was stated that the
presence of pigments, including xanthophylls and carotenoids, would be
the major reason for increasing the color of the yolk (Khan et al., 2021b).
Moreover, it has been found that using microalgae as feed also pro-
foundly enhances the production rate of eggs. For example, supple-
mentation of doses of up to 1 %, 2.5 %, and 7.5 % of different microalgal
species such as Schizochytrium sp., Arthrospira platensis, and Chlorella
vulgaris significantly increased egg production by 6 % (Kalia and Lei,
2022). Although in some other studies, varying results were found
where supplementation of around 12 % (Nanochloropsis oceanica) and
15 % (Staurosira sp.) did not have any effects on the egg production
(Ekmay et al., 2015; Manor et al., 2019). Such results display the need
for insights about dosages, biochemical composition, and species-
specific influences in laying hens. Similarly, the nutrient profile of
eggs is magnificently influenced by the incorporation of microalgae as a
feed ingredient, as proven by multiple reports. For example,

Functional poultry products
Omega 3 eggs and high quality meat
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Schizochytrium sp. was fed at low dose (0.2-1 %) to laying hens, which
resulted in considerable enrichment of EPA and DHA in eggs (Park et al.,
2015). In another study, Aurantiochytrium limacinum up to 2.5 % of the
dosage increased the DHA in eggs from 0.6 to 4 mg g~! (Moran et al.,
2020). These omega-3 fatty acid-enriched eggs are considered omega-3
eggs, and they are also more flavorful and appealing to people than
those enriched with fish oil (Feng et al., 2020). This deems microalgal
nutritive profile highly beneficial as the ratio (1:1) of omega 6 and
omega 3 is preferred for inclusion in a healthy diet for humans
(Michalak et al., 2020) While in supplementation of 0.008 % astax-
anthin from Haematococcus pluvialis enriched the yolks with astaxanthin
(not detected-36.2 mg/kg), carotenoids (13.8-86.1 mg/kg) and DHA
(not detected- 6.35 mg/egg) (Magnuson et al., 2018). Hence, from the
reports so far, doses vary based on species and chemical composition.
Conversion of microalgal biomass to poultry feed is also summarized in
Fig. 2.

Also, it's noteworthy that supplementing microalgae as a potential
feed ingredient shows an array of positive influences on quantitative
features of meat, physical features, muscle quality, egg production
pattern, color of yolk, flavor, and nutritive value of eggs especially
enrichment of omega fatty acids (Saadaoui et al., 2021). However, the
exact mechanism of these beneficial changes, in meat and eggs, by
microalgal supplementation has not yet been investigated to its full
extent. Although some justifications have been discussed such as
enhancement of essential fatty acids being mainly due to the upregula-
tion of mRNA levels of genes encoding FADS desaturases, malic en-
zymes, elongases which are all involved in synthesis of these essential
fatty acids. Moreover, microalgal supplementation was also identified to
decrease the mRNA expression of genes encoding cytochrome P450
whereas mRNA expression of fatty acid synthases was increased signif-
icantly (Tao et al., 2018). Moreover, plasma amino acid proportions in
hen were altered under the supplementation of microalgae. Hence, these
are the predicted mechanisms of microalgal supplementation as a feed
ingredient in hens, and undoubtedly, it induces vital gene expression
that is beneficial for producing eggs with higher nutritive value. Overall,
the species-specific response, dosage variation, and biochemical
composition of microalgae show potential for further exploration of

Algae biomass production

Growth of microalgae at large scale,
assessment of the algae growth and
metabolic characterization

T8 Algae biomass preparation

, i Algae harvesting, dewatering, downstream 02

processing and biorefinery

Mixture preparation
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conventional poultry feed with specific %
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Fig. 2. Process chart of producing functional poultry feed enhanced with microalgal biomass.
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tailoring microalgal biomass to be enriched with specific components
that need to be supplemented in poultry. In addition, microalgal tech-
nology is yet to be fully cost-effective, hence the targeted high value
products needs to be produced efficiently. This leads to an analysis of the
existing technologies and strategies for enhancing the essential fatty
acids in microalgae in the following sections. The list of methods
enhancing the fatty acid profile in previous studies is also summarized in
Table 1.

3. Enhancing essential fatty acid production in microalgae:
Conventional approaches

3.1. Chemical-based approaches

As a natural adaptation and for survival, microalgae produce a va-
riety of high value metabolites, including fatty acids at different con-
centrations based on the adaptive requirements. The major role of fatty
acids in microalgae is related to growth function and energy reservation
for stress management. Usually, microalgae accumulate lipid content
between 10 % to 70 % under different environmental conditions (Mo-
rales et al., 2021). Among fatty acids, omega fatty acids are accumulated
in microalgal cells for their high energy content and flow properties,
which are required for their cellular functions. Ample proportions of
omega fatty acids were noted in several microalgal species such as 29 %
and 25 % EPA of total fatty acid content in Nannochloropsis and Phaeo-
dactylum tricornutum respectively (Alves et al., 2018), whereas, up to 40
% of DHA was achieved in Schizochytrium limacinum under heterotrophic
conditions (Sahin et al., 2018) . Thus, selecting strains with a higher
proportion of omega-3 fatty acids or enriching fast-growing microalgae
with engineering (culture/molecular) strategies could be a preferred
method for supplementing laying hens in order to produce omega-3
eggs.

The most practiced and proven strategy of improving microalgal
biomass and lipid production which is enormously exploited is the basic
growth-lipid trade off principle which states that microalgae accumulate
lipids by diverting metabolism. The most observed lipid induction
strategy includes variation, limitation, and starvation of nutrients such
as nitrogen and phosphorus, variation of iron, carbon, calcium, mag-
nesium, etc. Even though these lipid induction strategies are necessarily
not reflected in omega fatty acid enhancement as triacylglycerol (TAG)
is the post profound effect, certain reports show the profound
enhancement of omega fatty acids (Zhang et al., 2022).

Bioresource Technology Reports 25 (2024) 101746

3.1.1. Nitrogen

Nitrogen starvation leads to diversion of most of the metabolic flux
for lipid biosynthesis, which is one of the earlier strategized techniques
for lipid induction. Usually, the assimilation of nitrogen happens
through glutamine synthetase, and glutamate synthase pathways, fol-
lowed by the redistribution to other amino acid molecules through
aminotransferases (Sanz-Luque et al., 2015). On the other hand, nitro-
gen starvation significantly influences the arginio-succinate pathway,
which results in enhancement of lipids, and in turn shows vitality of the
arginine pathway for lipid enhancement. Hence, the metabolic flux
generated by nutrient deprivation are usually cascading, however, the
nitrogen assimilation towards nucleic acid metabolism does not inter-
fere with lipid enhancement. Such a mode of lipid enhancement is also
reflected in omega-3 fatty acid enrichment. Previous reports have shown
that although nitrogen deprivation increased total PUFA, particularly
a-linolenic acid, the EPA fatty acid was significantly reduced (Chen
et al., 2011).

Similarly, Cointet et al. (2019) combined high light stress with ni-
trogen limitation (10 % nitrogen), which resulted in enhanced neutral
lipid productivity, but was not reflected in the PUFA content. On the
other hand, there are reports supporting that the type of nitrogen
sources used can influence the omega fatty acids profile. The omega-3
fatty acids were significantly doubled by using urea, whereas other ni-
trogen sources (nitrate/nitrite) decreased the PUFAs along with the
enhancement of saturated fatty acids. By inducing nitrogen deprivation
(starting concentration of 100 mg/L NaNOs) and varying inorganic
carbon availability, Guihéneuf and Stengel (2013) demonstrated the
changes in n-3 long-chain PUFAs. About 70 % of TAG was accumulated
with 55 % and 67 % of EPA and DHA, respectively. This was accom-
plished by the ability of microalgae to use inorganic carbon through the
Calvin-Benson cycle using carboxylases and carboxykinase enzymes,
where bicarbonate is fixed into glyceraldehyde-3-phosphate which are
then converted to lipids and carbohydrates (Guihéneuf et al., 2011). In
addition, bicarbonate to carbon dioxide conversion could also be
possible through carbonic anhydrase, which is accomplished by a few of
the microalgal species (Reinfelder, 2011). While in another study,
Nannochloropsis oceanica showed a decrease in DHA and EPA under ni-
trogen depletion with increased TAG accumulation, whereas EPA and
DHA were enriched under increased nitrogen supply (concentration of
medium kept at 12.4 mg/L NaNOs) especially in structural lipids
(phospholipids and glycolipids) (Meng et al., 2015). However, an
intriguing carbon labeling study in Nannochloropsis graditana by Janssen

Table 1
Summary of the various methods adopted in studies for Omega-3 fatty acid enhancement in microalgae.
Method Experiment Microalgae Efficiency Reference
Nutrient Nitrogen Phaeodactylum increase in DHA (61 %) and EPA (75 %) when Nitrogen (Qiao et al., 2016)
variation tricornutum concentration increased (1.24 to 49.40 mg/L)
Carbon Aurantiochytrium sp. DHA concentration was higher in glycerol (9 g/L) compared to (Chang et al., 2013)
glucose (8 g/L) as carbon source.
Physical pH Pinguiococcus EPA concentration tested in pH 5-9, showed optimum production (Sang et al., 2012)
pyrenoidosus (23.13 % of total fatty acids) at pH 6
Light Phaeodactylum relatively constant concentration of DHA and EPA with increase in (Qiao et al., 2016)
tricornutum light irradiance (50 to 150 pmol m — 2's — 1)
Temperature Phaeodactylum decrease in DHA (37 %) and EPA (15 %) when temperature increased (Qiao et al., 2016)
tricornutum (15 to 25 °C)
Salinity Phaeodactylum highest concentration of DHA (1.08 mg/L) and EPA (32.18 mg/L) (Qiao et al., 2016)
tricornutum was achieved at 15 and 28 ppt respectively
Molecular overexpression of malonyl-CoA: ACP  Schizochytrium Increase in DHA (81.5 %) and EPA (172.5 %) (Li et al., 2018)
methods transacylase
overexpression of long chain fatty Thalassiosira Increase in DHA by 4.5 fold and EPA by 1.4 fold (Cook and
acid elongase genes pseudonana Hildebrand, 2015)
TAG pathways- overexpression of Phaeodactylum increase in DHA (1.5 fold) and EPA (1.55 fold) (Balamurugan et al.,
AGPAT1 tricornutum 2017)
targeted knockdown of lipid Thalassiosira increase in DHA and EPA (Trentacoste et al.,
catabolic pathway genes pseudonana 2013)
Overexpression of transcriptional Chlorella ellipsoidea increase in overall lipid content of cells (Liu et al., 2021)

factors
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et al. (Janssen et al., 2019) found that under nitrogen starvation, EPA
was translocated from phospholipid to neutral lipid, implying that car-
bon reshuffling within the cell occurred and fatty acid translocating
enzymes had a higher specificity towards EPA. Regardless of the con-
tradictory results, these studies have demonstrated that the metabolic
flux dynamics induced by nitrogen limitation have a significant impact
on EPA production and its allocation between polar and neutral lipids.

3.1.2. Carbon

Carbon assimilation in microalgae is widely utilized to adjust the
lipid and metabolite accumulation behaviors of microalgae. Glucose and
glycerol are commonly preferred as external carbon sources and are
assimilated by microalgae through glycolysis initially and then con-
verted to acetyl CoA through the citric acid cycle which in turn is finally
utilized for lipids (Winwood, 2013). Under heterotrophic cultivation,
microalgae typically incorporate carbon directly for cell energy expen-
diture, and chlorophylls are less synthesized and downregulated with
the relative energy expended for lipid biosynthesis. Chlorella in a het-
erotrophic condition, with carbon source as 10 g/L glucose and 0.1 g/L
glycine, produces lipids and carbohydrates about 2.8 and 0.45 times
higher than the autotrophic culture, respectively (Miao and Wu, 2006).
A pretreated lignocellulosic biomass (78 % polydextrose, 19 % poly-
xylose) was used as medium for heterotrophic cultivation of Chlorella
pyrenoidosa, where the shortest generation time as compared to glucose
medium (10 g/L glucose, 2.5 g/L xylose) was observed along with a
tremendous increase in PUFAs of about 66 % of total fatty acids (Zhang
et al., 2019). Although heterotrophic mode produces more biomass and
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PUFAs, it has drawbacks such as contamination risks, limited metabolite
production, not all species respond well to heterotrophic cultivation,
and cost of the carbon source (Lee, 2001). Contamination risks on a large
scale are usually due to lower carbon supply, a continuous feeding
strategy and competition from other microorganisms, such as bacteria
which don't need light to grow (Perez-Garcia et al., 2011).

Though there are reports that support heterotrophic mode for
enhancing PUFAs and omega-3 fatty acid production, predominantly,
autotrophic mode has better production of omega-3 fatty acids. For
instance, ALA was relatively higher under autotrophic mode than under
the supplementation of glucose (Cho et al., 2011). Similarly, EPA was
relatively improved in Nannochloropsis in the autotrophic culture as
compared to mixotrophic culture (Hoffmann et al., 2010).

3.2. Physical factors

3.2.1. Temperature

Among physical factors, temperature is one of the key factors
involved in influencing the fatty acid profile of microalgae. Usually,
lower temperatures promote the desaturation of fatty acids. For
instance, omega-3 fatty acids such as DHA and EPA were higher at 15 °C
and lower at 26 °C (Aussant et al., 2018). Similarly, at 17 °C, EPA and
total fatty acid content were significantly increased. This is because
microalgae produce higher levels of polyunsaturated fatty acids under
higher or lower temperature stress conditions for the purpose of altering
membrane fluidity (Hoffmann et al., 2010). During temperature stress,
this membrane fluidity protects not only the cellular membrane but also
optimal (6.5-8.5)
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the thylakoid membranes, thereby protecting photosynthesis from
damage caused by extreme temperatures (Refsgaard et al., 2000).
Microalgae release enzymes such as catalase, glutathione reductase, and
superoxide dismutase in response to high levels of reactive oxygen
species (ROS) which in turn cause damage to photosynthetic membranes
(Mallick and Mohn, 2000). Hence, this temperature stress induces the
expression of the pyruvate dehydrogenase complex, which results in the
enhancement of acetyl coA production. Summary of physical factors and
the pathways in which they influence the fatty acid production is shown
in Fig. 3.

Integrated analyses of the transcriptome, proteome, and fatty acid
profiling of the oleaginous microalga Auxenochlorella protothecoides
UTEX 2341 under low temperatures demonstrated that Fatty Acyl Syn-
thase (FAS) and Fatty Acyl Desaturase (FAD) are upregulated to enhance
the synthesis of omega-3 fatty acids in the chloroplast (Xing et al., 2018).
Therefore, FAS performs Acyl-CoA synthesis, which is ultimately con-
verted into C18:2 prior being desaturated into omega-3 fatty acids
(C18:3) via FAD (Xing et al., 2018).

An adaptive laboratory technique was studied in Schizochytrium
species with increasing temperature, and the microalgal species adapted
up to 34 °C with increased (4 %) DHA production and reduced ROS (Hu
et al., 2021). Similarly, eight microalgal species were investigated under
temperature variation stress, where Nannochloropsis oculata Isochrysis
galbana showed the highest EPA and DHA production under 14-20 °C
temperature (Aussant et al., 2018).

3.2.2. pH
The pH of microalgal growth medium could significantly affect
cellular growth as well as microalgal metabolism and relevant
biochemical proportions. The pH of medium mainly influences the
nutrient uptake through altering membrane permeability, influencing
H™ and electron transports (Lavoie et al., 2012). As a result, changing
the pH can have a significant impact on cellular intake of nutrients and
molecules, which can then be used to manipulate lipid accumulation
(Fig. 3). The usual pH range of marine and freshwater microalgae is
between 5 and 11 (Moheimani, 2012; Qiu et al., 2017). Generally,
freshwater microalgae acclimatize under a wider range of pH, whereas
marine microalgae are confined to shorter ranges due to their exposure
levels (Perdana et al., 2021). For instance, a maximum EPA content of
about 23 % and a maximum PUFA content of about 38 % was observed
under a pH of 7 in Pinguiococcus pyrenoidosus (Sang et al., 2012). While
in Nannochlorpsis salina, maximum growth and lipid contents were
observed at pH 8, whereas no considerable changes were noted in the
PUFA or overall fatty acid profile (Bartley et al., 2013). It is noted even
in other studies, pH is rarely found to be the direct influence on PUFA
production, except for the few reports as mentioned above.

3.2.3. Salinity

Salinity induces osmotic stress and triggers changes such as the ionic
ratio within the cell through selective ion permeability in the membrane
(Fal et al., 2022). However, the salinity induced stress conditions are not
uniform for all the microalgal species, as freshwater species are less
exposed to salt conditions, whereas marine species are halotolerant. A
few examples of halotolerant species include Dunaliella salina in 150 ppt
of salinity (Oren, 2014) although it is widely known that microalgal
growth is not optimum above 35 ppt. Salinity stress causes a series of
changes within microalgal physiology, such as carbohydrate content
reduction and lipid enhancement, which influence lipid homeostasis by
controlling phosphatidic acid. Glycolysis process was increased, and
lipid accumulation was triggered with less carbohydrate production. In
addition, salinity stress could potentially induce ROS mediated signaling
and thereby facilitate the conversion of carbohydrates to lipids (Wang
et al., 2018a). Induction of salinity stress also increases the levels of
proteins like acetyl CoA carboxylase and ketoacyl-CoA synthase, which
are involved in crucial steps of fatty acid synthesis (Chen et al., 2017;
Singh et al., 2019). Since these initial steps of fatty acid synthesis are
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significantly induced by salinity stress, the chances of unsaturated
d fatty acids are reduced. However, because of increased membrane
permeability and to maintain fluidity, unsaturated fatty acid levels were
increased under salinity stress induction. This can be exemplified by a
few reports and described in Fig. 3. EPA was magnificently improved in
Chlorella minutissima under high salinity conditions (Seto et al., 1984).
Similarly, DHA and ALA were potentially increased in Dunaliella salina
and Chlorella vulgaris under high supplementation of NaCl (Rismani and
Shariati, 2017). Adaptive laboratory evolution was performed in
Phaeodactylum tricornutum in which 70 % of salinity improved the PUFA
production followed by light, temperature, and fulvic acid treatments
that resulted in the enrichment of EPA (Wang et al., 2019). It was
identified that hypo salinity along with fulvic acid significantly
improved the lipogenic genes expression and this was attributed to
essential fatty acid enrichment. Apart from these reports, salinity did not
appear to have a significant impact on the fatty acid profile, implying
that the response is species-specific.

3.2.4. Light

Light was identified as one of the important factors that influences
the fatty acid formation in microalgae. Like plants, microalgae require a
considerable level of photons for photosynthesizing, and the required
wavelength ranges between 400 nm to 700 nm (Katam et al., 2022).
Because of the vitality of photosynthesis, light could potentially control
the growth and anabolic behavior of microalgae. So far, the different
wavelengths of light are known to specifically induce different changes
in the biochemical composition of microalgae. Blue light is known to
induce a higher level of omega-3 fatty acid accumulation in green algae
(Helamieh et al.,, 2021) (Fig. 3). Furthermore, DHA fatty acid is
increased by varying the wavelength of the light between 440 and 660
nm at an intensity of 150 mol m 257! (Maltsev et al., 2021). The light
intensity also plays a key role in altering the fatty acid profile. A light
intensity of 150 mol photons m 2 s~ ! irradiance, for example, resulted in
a 4-fold increase in chlorophyll and carotenoids production, as well as a
16.5 % increase in PUFA and a 5.7 % increase in EPA, whereas a light
intensity of 750 mol photons m~2 s~! significantly reduced the PUFA
content of the microalgae. Blue light, on the other hand, is known to
influence a higher level of lipid accumulation at the 12:12 h light/dark
cycle (Da Conceicao et al., 2020). The main mechanism underlying blue
light-induced accumulation of omega-3 fatty acids and lipids is the
generation of ROS, and cell division is slowed under blue light while it is
accelerated under other lights, including red light. Blue light was also
found to negatively influence carbohydrate formation and increase lipid
accumulation, along with influencing the expression of various genes
involved in the metabolic pathways of microalgae (Patelou et al., 2020).

3.2.5. Other factors

Aside from the common factors, other effective exogenous factors are
used concurrently to induce omega-3 fatty acids. For instance, applica-
tion of UV radiation to microalgal culture can enhance growth as well as
produce mutants through random mutagenesis. EPA was profoundly
increased under UV irradiance in Phaeodactylum tricornutum (Liang
et al., 2006) Similarly, exposure to UV-A radiation increased the PUFA
content in Nannochloropsis oculate (Maltsev et al., 2021) while the PUFA
content of Pavlova lutheri was significantly reduced despite significant
improvements in storage lipids. Another widely used strategy is sup-
plementing the microalgal growth medium with substances that could
elicit PUFA or fatty acid accumulation. Among supplements, phyto-
hormones are incredible elicitors as they are the stress responders in
plants which could profoundly impact the growth and metabolic
behavior of microalgae. Phytohormones such as auxin has proven to
enhance PUFA content of microalgae when exogenously supplied to the
microalgal medium. On the other hand, Cytokinin is not recommended
for increasing PUFA content because studies show that it decreases
PUFA content (Sivaramakrishnan and Incharoensakdi, 2020). Esakki-
muthu et al. (2020) identified p-coumaric acid as a potential enhancer of
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microalgal biomass and fatty acid accumulation on par with jasmonic
acid and salicylic acid. Coumaric acid and jasmonic acid showed
considerable increments of PUFA from 12.5 to 15.5 % and 21.5 %,
respectively along with total lipid and biomass enhancement. Similarly,
polysorbates were also found to influence the biomass and fatty acid
production in microalgae. Supplementing the microalgal growth me-
dium with Polysorbate 60 enhanced the PUFA from 12.5 % to 27 % in
high lipid production conditions (Esakkimuthu et al., 2019). The major
mechanism causing such increase in lipids was due to the increase in
membrane permeability and fast uptake of nutrients, which might also
eventually lead to an increase in PUFA content.

Vitamins are another crucial compound that are widely supple-
mented to microalgae for stimulating the growth and biomass. Vitamins
such as B1, B7 and B11 are essential vitamins required by microalgae.
Vitamins like thiamine is needed for synthesizing a variety of enzymes
involved in carbon metabolism, whereas vitamin B7 acts as a cofactor
for acetyl CoA carboxylase, which is found to be involved in the first-rate
limiting step of lipid biosynthesis (Tandon et al., 2017). Although only a
few reports exist, these vitamins have a critical functional role in carbon
metabolism and lipid biosynthesis and can potentially be used for
omega-3 fatty acid enhancement in microalgae.

4. Essential fatty acid enhancement in microalgae through
advanced molecular approaches

Next to conventional approaches, genetic and metabolic manipula-
tion of microalgae for the benefits of accumulating value-added prod-
ucts in microalgae is becoming increasingly attractive. With concurrent
advancements and development of techniques in relevant fields, engi-
neering the targeted genes as well as manipulating the metabolic path-
ways has become feasible in recent years. Overexpression knockdown
and heterologous expression of genes that regulate fatty acid synthesis
are the most well-known and successful techniques (Santin et al., 2021).
There have been potential attempts to carry out multigene transgenic
expression and blocking of competing pathways for the enrichment of
PUFA (Gongalves et al., 2016). Selecting approaches or engineering
techniques have been discovered to be critical in transforming and
mutating genes in the microalgal system. Like other forms of microbial
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genetic engineering, techniques such as electroporation, particle
bombardment, agrobacterium mediated transformation, and episome
introduction through bacterial conjugation (Karas et al., 2015), are
attractively employed to achieve nuclear transformation in microalgae.
Mutagenesis is achieved with the help of chemical and physical muta-
gens where the genetic transformation is less feasible. Owing to incon-
sistent results, random mutagenesis is less preferred nowadays to enrich
microalgal PUFAs. On the other hand, the genetic understanding of
microalgae is growing rapidly, encompassing information about various
genomic sequences and relative advancements in nuclear trans-
formation techniques that grab the attention of random mutagenesis
(Arora et al., 2020). Overexpression is carried out through constructs
containing respective regulatory sequences, whereas RNAi is commonly
used to downregulate the genes. Recently, genome editing techniques
have been trending to knock down genes using nuclease proteins which
are achieved by cutting the genome at a specific region. TALEN and
CRISPR/cas9 systems are the most reliable techniques followed to cut
down specific genes. CRISPRi, which works at the transcriptional level,
is also commonly used to manipulate genetic expression (Fajardo et al.,
2019). The genetic engineering approaches dealing with genes involved
in fatty acid synthesis genes and, triglycerides synthesis, blocking
competing pathways and RNAi for silencing transcription factors are
summarized in the Fig. 4.

4.1. Manipulating lipid biosynthetic genes

Genes involved in the lipid biosynthetic pathway are targeted and
overexpressed. For instance, about a 80 % increase in DHA, a 170 %
increase in EPA, and around a 70 % increase in DPA were observed by
overexpressing Malonyl CoA-ACP transacylase in Schizochytrium sp. (Li
et al., 2018). Similarly, when genes like Malonyl CoA-ACP transacylase,
Ketoacyl-Acyl-Carrier-Protein Synthase, acyl-ACP thioesterase, and fatty
acid synthase were overexpressed in Haematococcus pluvialis, DHA and
EPA levels increased 4-fold and 2-fold, respectively. It is worth noting
that acyl-ACP thioesterase oversees the initial condensing reactions in
fatty acid synthesis. The results were not always consistent; for example,
overexpression of thioesterase resulted in a slight increase in EPA but
not in other PUFAs (Lei et al., 2012). In general, the genes encoding the
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i RNA
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Fig. 4. Genetic engineering approaches to enhance EPA and DHA. Figure created with BioRender.com.
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final step of fatty acid biosynthesis are preferred as they can increase the
desired product, whereas major positive results for enhancing PUFAs as
well as fatty acid biosynthesis were achieved with overexpressing the
enzymes that are involved in the initial fatty acid synthesis steps.

4.2. Engineering the elongation and desaturation process

Elongation and desaturation processes are carried out after the fatty
acids are synthesized by de novo process, either in the endoplasmic
reticulum or on plastids, by elongases and desaturases. These enzymes
are ideally suited for modifying the fatty acid profile of microalgae, as
unsaturation can be influenced at this stage. For example, Stearoyl-ACP
desaturase was overexpressed in Nannochloropsis oceanica which resul-
ted in the increased production of linoleic acid by more than 15 % along
with triglyceride accumulation (Fofana et al., 2006). Similarly, plas-
tidial acyl carrier protein A9-desaturase was overexpressed which
resulted in a magnificent alteration of the fatty acid profile by increasing
the EPA up to 58 % along with a more than 60 % increase in triglycerides
of P. tricornutum (Smith et al., 2021). Similarly, to desaturases, over-
expression of fatty acid elongase in Thalassiosira pseudonana increased
DHA and EPA by 4 and 1 fold, respectively (Cook and Hildebrand,
2015). In another report, elongase from Ostreococcus tauri was subjected
to heterologous expression in P. tricornutum and this led to substantially
enhanced DHA levels by 8 times as compared to the wild strain (Ham-
ilton et al., 2014). It was also identified that the co-expression of the
same elongase along with acyl-CoA-dependent desaturase further
improved the DHA yield. For microalgal species like P. tricornutum,
where the actual content of DHA is low, such heterologous expression
becomes an essential tool. Hence, engineering the desaturation and
elongation pathways were found to be critical in increasing the PUFA
content. Interestingly, these genes controlling the elongation and desa-
turation of microalgae are heterologous expressed in other organisms
and have successfully elevated the levels of DHA and EPA. For example,
the desaturase gene of Micromonas pusilla was overexpressed, resulting
in a higher level of EPA in plant triglycerides (Petrie et al., 2010). Such
results of expressing microalgal genes in other organisms and the rele-
vant elevation of PUFAs reinforce its vitality as a PUFA producer.

4.3. Engineering the triacylglycerol synthesis pathways

The triacylglycerol (TAG) synthesis pathways are localized in
endoplasmic reticulum and plastids, which are controlled by a cascade
of enzyme reactions. Altering these genes is also reflected in the PUFA
content of microalgae, as the acyl transferases show substrate speci-
ficity, whose alteration could alter the saturation process and length of
the fatty acids. Enzymes such as glycerol-sn-3-phosphate acyltransferase
(GPAT) and diacylglycerol acyltransferase (DGAT) which catalyze the
initial and final steps of TAG synthesis are mainly targeted in this
pathway for enriching the unsaturated fatty acids. The enzyme GPAT
was overexpressed in P. tricornutum, resulting in 40 % more EPA accu-
mulation and a significant reduction in saturated fatty acids (Niu et al.,
2016). Similarly, overexpression of the AGPAT1 enzyme in
P. tricornutum resulted in increased EPA and DHA levels (Balamurugan
et al.,, 2017). On the other hand, DGAT was overexpressed in
P. tricornutum resulting in more than 70 % of the EPA content (Haslam
et al., 2020). The heterologous expression of DGAT2 from Brassica napus
in Chlamydomonas reinhardtii increased the unsaturated fatty acid con-
tent significantly (Ahmad et al., 2014). From various reports, it can be
emphasized that the alteration of genes encoding LPAT and DGAT will
be a highly effective strategy for enhancing fatty acids, especially
omega-3 fatty acids.

4.4. Blocking competing pathways

This approach, which primarily involves blocking starch synthesis,
has been devised to reduce the carbon footprint and flood the single
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pathway with a large amount of energy. To create starchless mutants,
physical mutagenesis or molecular tools have been widely used to
inactivate the ADP-glucose pyrophosphorylase. A starchless
C. reinhardtii mutant was created using X-rays as mutagens, which
resulted in higher triglyceride accumulation of up to 4-fold due to the
consolidation of metabolic flux diverted for lipid biosynthesis (Li et al.,
2010). Phosphoenolpyruvate carboxylase (PEPC), which converts
phosphoenolpyruvate to oxaloacetate, is one of the essential enzymes for
amino acid metabolic pathway that is blocked. Knockdown of PEPC
could potentially enhance more pyruvate and eventually lead to higher
acetyl CoA pool. Similar knockdown strategy was carried out in
C. reinhardtii which elevated the lipid content above 70 % (Johnson and
Alric, 2013). Recently, suppressing lipid catabolism by knocking down
the lipases was identified as effective in two ways such as increasing the
lipid content without affecting growth, as other blocking pathway
strategies are at the expense of growth. An antisense RNA approach was
carried out to knockdown the lipases, which was effective in
T. pseudonana where the lipid content was elevated along with enrich-
ment of DHA and EPA (Trentacoste et al., 2013). It is noteworthy that
blocking competing pathway strategies are effective in inducing the
lipid enhancement but do not harbor any control over altering the fatty
acids except in a few studies.

4.5. Engineering the transcriptional factor

Transcriptional factors (TF) control and regulate gene expression by
binding to the cis-acting element of the promoter which can also be
engineered to regulate the expression of vital enzymes involved in lipid
biosynthesis. Chlorella ellipsoidea was subjected to heterologous
expression of the DNA-binding one finger TF (Dof TF), which resulted in
elevated lipid accumulation along with a high growth rate, and it was
observed that several genes were upregulated (Lei et al.,, 2012). A
simultaneous induction of growth and lipid production under nitrogen
and salinity stresses was observed in N. salina when it was subjected to
overexpression of transcription factor with the leucine zipper domain,
which was identified as a stress regulator in plants (Kwon et al., 2017).
Similarly, heterologous expression of transcription factor NF-Y in plants
from Chlorella ellipsoidea significantly improved the production of
biomass in the Arabidopsis thaliana. Thus, this transcriptional engineer-
ing was found to be the most reliable and efficient technique, as it could
simultaneously influence several genes along the same pathways (Liu
et al., 2021). Although several reports dealt with improving the biomass
and lipid accumulation of microalgae through TF engineering, reports
on altering the fatty acid profile, especially through unsaturated fatty
acid enrichments, are hard to find. However, the quality of regulating
multiple genes along the same pathways could serve as a better tool to
increase unsaturated fatty acids too. With extensive results, the under-
lying mechanism of regulating the metabolic pathways through tran-
scription engineering needs to be thoroughly studied.

5. Economic feasibility, challenges for sustainable microalgal
biomass as a feed ingredient

One of the challenges that comes with using microalgae as feedstock/
ingredient is the expense, owed mostly to the harvesting process.
Approximately 30 % of the microalgal biomass production cost comes
from harvesting the algae. Microalgae and cyanobacteria typically have
a cell size ranging from 1 to 30 pm in diameter, a negative surface
charge, and an insignificant level of density, hence making the har-
vesting process challenging and energy consuming. An added disad-
vantage for marine strains is the ionic strength possessed by seawater,
which also negates the harvesting of marine microalgae (Liu et al.,
2017).

Many harvesting techniques have been investigated such as centri-
fugation, filtration, and bioflocculation and each method displays its
pros and cons. For example, centrifugation may be too disruptive to
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microalgal cells and can degrade the quality of the biomass produced.
This technique also requires a high energy input, which decreases its
economic feasibility. Filtration of cells using membranes and/or filters
that separate biomass from the medium is also a widely used method,
although it works best for larger and filamentous species with a length of
approximately 200 pm (Maity and Mallick, 2022).

A recently suggested method for harvesting technology is bio-
flocculation. A variety of bioflocculation techniques are available, such
as the use of plant-based and microbial-based biopolymers and auto-
flocculation. Plant based biopolymers such as seed powder from the
clearing nut Strychnos potatorum have shown promising results of 99.7 %
settling of the microalgal species Chlorella yulgaris in a study conducted
by (Razack et al., 2015). Biopolymers from a microbial source still need
to be developed as their toxicity and safety for consumption can act as
obstacles (Ummalyma et al., 2017). Although a recent study, investi-
gated an unconventional method of bioflocculating low settling micro-
algal species Picochlorum sp. by mixing it with Tetraselmis sp., which has
a greater cell size and settling capacity. This allowed easier harvestation
of the smalled microalgal cells (Saadaoui et al., 2023). Techniques like
these can be implemented to reduce cost and energy required to floc-
culate and harvest mix cultures of microalgae.

Other cost related challenges include the high energy requirements
which come with cultivating microalgae. Large scale cultivation and
application of microalgae need high biomass in addition to low energy
and capital requirements (Saadaoui et al., 2021). Moreover many forms
of cultivation have been investigated and adopted such as open raceway
ponds, which are widely known for being cost effective in terms of en-
ergy and medium compared to closed systems such as photobioreactors.
Although the main disadvantage of open systems is contamination
which can eventually affect the quality of biomass produced (Hosseini
et al.,, 2023). When considering between the pros and cons of both
systems, closed systems are still recommended due to higher quality of
biomass. Moreover, a recent study found that opting for continuous
cultivation strategies compared to batch in photobioreactors may be
more energy efficient and sustainable. Furthermore it was also suggested
that continuous cultivation strategies can also become more economi-
cally feasible in the future (Peter et al., 2022).

The biggest challenge with using microalgae as feedstock is ensuring
its safety for human consumption. A rigorous investigation for the se-
lection of suitable strains is primarily needed. Microalgae strains should
be nonpathogenic, non-toxic, fast growing, and produce high levels of
omega-3 fatty acids (Perdana et al., 2021). The toxicity of a strain in
broilers may differ from that in humans, and this requires further
investigation. Additionally, long term studies on use of algae for food
production need to be conducted, to exclude any unknown side effects
there may be.

Advances in microalgal research have led to the provision of a va-
riety of suitable strains, the prediction of metabolic pathways, and ways
to augment metabolite production by exploiting metabolic pathways.
One challenge is enhancing the yield of lipids using external factors
without altering or compromising the growth of the strain. To fully
understand lipid production and metabolic pathways, future research
must focus on molecular changes in microalgal strains. As suggested by
Brar et al. (2021), conventional approaches in addition to next genera-
tion sequencing (NGS) techniques should be applied to recognize genetic
regions that are responsible for lipid expression and how these can be
altered for hyperproduction.

Moreover, food security is one of the most critical global challenges
of the twenty first century (Greene et al., 2016), in addition to health
issue concerns which are also on the rise. Omega-3 fatty acids are
globally known for their health benefits including reduction in inflam-
mation, cardiovascular diseases, cognitive health to name a few (Kumari
et al., 2023). The availability of such essential omega-3 fatty acids,
amino acids, proteins, n-3 PUFAs and other lipids in microalgae has
allowed for developments in algal based food alternatives (Koyande
et al., 2019). It is estimated that replacement of even 5-20 % of the
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soybean and corn meal, in poultry diets, with microalgal based feed
would save more than 2000 tons of soybean and corn meal for human
consumption per year (Bruinsma, 2017). However, research and ad-
vancements on optimizing high value metabolites from algae for poultry
will be of no use unless the digestibility of such products is verified.
Improvement of digestibility of biomass and biomass containing feeds
by broilers can be conducted by the addition of hydrolytic enzymes,
essential amino acids, and trace minerals which complete a balanced
diet (Kalia et al., 2021). Although adding these may contribute to a
commercial disadvantage, by increasing the feed production costs.

6. Conclusion

Microalgae have emerged as a promising feedstock for poultry feed
industry due to their high nutritional potential, containing essential
biomolecules such as polyunsaturated fatty acids. These are beneficial as
supplements for enhancing the quality of poultry meat and eggs. Despite
the multiple benefits of using microalgae as an alternative feed sup-
plement, the implementation is still lacking. Enhancing the production
of the metabolites produced in microalgae will make the biomass even
more attractive for use regardless of cost and energy constraints. Mul-
tiple strategies can be implemented, with the research still ongoing
based on conventional and unconventional approaches. Each of which
have its own pros and cons, considerations on the best method need to
consider. Furthermore considering stress applications and molecular
manipulation simultaneously needs to be investigated, as this may have
a higher potential than applying a single strategy alone. As the demand
for microalgae-based technologies will increase in the future, consider-
ations for the most optimized cultivation and harvesting new generation
technologies also need to be considered.
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