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Abstract

The paper investigates a new scheme for generating lifetime probability distributions. The
scheme is called Exponential- H family of distribution. The paper presents an application of
this family by using the Weibull distribution, the new distribution is then called New Flexible
Exponential distribution or in short NFE. Various statistical properties are derived, such as
quantile function, order statistics, moments, etc. Two real-life data sets and a simulation
study have been performed so that to assure the flexibility of the proposed model. It has
been declared that the proposed distribution offers nice results than Exponential, Weibull
Exponential, and Exponentiated Exponential distribution.

Introduction

Probability distribution plays a vital role in modeling lifetime data that arise in different fields
of science such as in Survival analysis, Economics, Biology, Engineering, and in some other
applied field of sciences. There are many lifetime probability distributions that can be used to
model the data, for example, Exponential, Weibull, and Weibull Exponential distribution are
among others. All these distributions have desirable properties and real applications. However,
these distributions fail to model the data following a non-monotonic hazard rate function, for
example, Exponential distribution can only model the constant hazard rate and the Weibull
distribution can only model a monotonic hazard rate function. In this paper, we have present
a new distribution that can model both the monotonically and non-monotonically hazard rate
functions. But in practice, we have real data sets which follow a non-monotonic hazard rate
function, for example, the infant mortality rate, or the lifetime of an electronic device follows a
non-monotonic hazard rate functions.

To overcome the above limitations found in the existing probability distributions, research-
ers are working to modify these distributions. It is usual practice to modify the current distri-
butions by generating a generator and then applied to the existing distributions so as to derive
anew probability model. For example, Aldeni et. al [1] produced a new family of distributions
arising from the quantile of generalized lambda distribution, Cordeiro et. al [2] worked on the
generalized odd half-Cauchy family of distributions, Alzaatreh et. al [3] presented a general-
ized Cauchy family of distributions, Alzaatreh et. al [4] introduced T-normal family of
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distributions, Nasir et. al [5] investigated the generalized Burr family of distributions based on
quantile function, Mudholkar et. al [6] worked on the Exponentiated Weibull family of
distribution.

This paper contributes a new scheme for generating probability distributions to the existing
literature of probability theory. In this paper, a new scheme is investigated and applied to the
existing probability distributions so as to derive a new probability distribution. The main
objective of the paper is to achieve maximum flexibility while modeling the lifetime data with
both the monotonically and non-monotonically hazard rate functions.

Let X be a continuous random variable follows the Exponential distribution then the cumu-
lative distribution function (Cdf) is given by

F(x) =1—exp(—ax), x>0,a>0 (1.1)

The Exponential distribution is modified by many researchers, for example, Gupta and
Kundu [7] presented the generalized distribution which is also known as Exponentiated Expo-
nential distribution. The Cdf is given by

F(x) = (1 —exp(—/x))", x,4,0>0 (1.2)

Barreto, and Cribari [8] introduced a generalization of the Exponential-Poisson distribu-
tion with the following Cdf

(1 — exp(—/ + Zexp(—fx)))
1 —exp(—4)

F(x) = , x>0 (1.3)

Barreto et. al [9] introduced the Beta Generalized Exponential distribution. El-Bassiouny
[10] introduced the Exponential Lomax distribution. Mudholkar and Srivastava, (1993)
defined the Exponentiated Weibull family of distribution [6]. Nadarajah and Kotz [11] present
the Beta Exponential distribution.

In this paper, a novel family is produced called Exponential- H family of distribution. We
discussed one special case of this family and call it New Flexible Exponential distribution
(NFE) by employing the Weibull distribution as a baseline. The detailed discussion is as fol-
lows

Exponential- H family (Ex-H) of distributions

The Exponential- H family (Ex-H) is mostly related to the Weibull-G family of distributions
investigated by Marcelo et. al [12]. The cumulative distribution function (CDF) of the Expo-
nential- H family (Ex-H) takes the following form

G(x,a,0) =1 —exp(—aL(x;{)), x,a>0 (2.1)

where L(x;() = H(x;{)exp(x), and H(x;{) is the non-decreasing function hazard rate function
depending on the parameter vector {. The corresponding probability density function (PDF)
is given by

g(x,a,() = aexp(—aL(x; O))l(x;{), x,a>0 (2.2)
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New Flexible Exponential distribution (NFE)

This section illustrates the special case of the Ex-H family by considering the hazard function
of the Weibull distribution. The hazard function of the Weibull distribution is defined by

H(x;{) = ax""

By employing the above result in Eq (2.1) and (2.2), we obtained the CDF and PDF of the
NEE distribution respectively

F(x,a,b) = 1 — exp(—a’bx*Vexp(x)), x>0,b>1,a>0 (3.1)

fx) = a®bx" P (x + b — 1)exp(x — a’bx"'exp(x)), x>0 (3.2)
The survival and hazard rate function of NFE is defined by

S(x) = exp(—a’bx"'exp(x)) (3.3)

h(x) = a®bx"*(x + b — 1)exp(x) (3.4)

Fig 1 shows the graphical representation of the probability density function and cumulative
distribution function, with different parameter values.
Theorem 1. The behavior of the hazard rate h(x) function of NFE (a,b) is defined by

a. Increasing when a>0,b>1,
b. Decreasing when a>0,b<1.
Proof. The derivative of Eq (3.4) is given by
H(x) = a’bx"*(b* + b(2x — 3) + x* — 2x + 2)exp(x)

(=]
— a=1b=7 { < | — a=1b=7 T
--- a=14b=T --- a=14b=T
------ a=0.5b=7 ! a=0.5b=7
a=0.3b=T a=0.3b=7
(1]
0 o
w
e
= Y7 =
< |
o
o~
o
o - - —_— == g - -
T T T T T T T T 1 T
00 05 10 15 0.0 0.5 1.0 15 20 25
probability density function Distribution function

Fig 1. The Pdf and Cdf of NFE.
https://doi.org/10.1371/journal.pone.0238746.9001
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For a>0,b<1,h'(x). Then the function h(x) is decreasing and for a>0,b>1. For a>0,b>1, I’

(x) = 0 implies that the h(x) has a maximum at
x=1-bxtvb-1

and, the function h(x) is increasing for a>0,b>1,

Hence, the hazard rate function has the ability to model both monotonically and non-

monotonically hazard rate functions.

Fig 2 shows the plot for the hazard function of the New Flexible Exponential distribution

with different values of a parameter.

Quantile function and median

The quantile function Q(gg)(x) of the NFE(a,b) is the real solution of the following equation

Fx)=u

1 — exp(—a*bx*"exp(x)) = u (4.1)
where u~Uniform (0,1).
Solving (4.1) for x, we have
(—loggl—u))l/@*l)
x=0b-1)W|[— L 4.2
(b= W | (42)
— a=2b=3 J
——- a=15b= fe
g a=0.5b=7 !
& a=0.3b=7 iy
.‘
o
o -
(&)
(=]
X 27
=
o
D p—
o
L'y
o =
I I I I
0.0 0.5 1.0 1.5
hazard function
Fig 2. Hazard function of NFE.
https://doi.org/10.1371/journal.pone.0238746.9002
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where W (Z) is the Lambert W function and is defined as

For the median, put u = 0.5 in Eq (4.2).

R moments

Theorem 2: If a random variable X has NFE distribution with parameters a,b then the r™
moments (about the origin) of X is defined by

z"’: bt
kl

k=0

T'(r + b + bk—k)
W

T(r+b+bk—k—1)

+ (b - 1) (k + 1)r+b+bk—k7]

Proof. We know that

00

u =EX) = /x’f(x)dx

0

Putting (3.2) in the above expression, we obtained the following form

u = /(x’abew_Q) (x + b — 1)exp(x — a’bx"'exp(x)) ) dx
0

o0 00

- /(x’”’laQbexp(x— a’bx"'exp(x)))dx + b — 1/( 202 bexp(x aszhflexp(x)))dx(&l)

0 0

Solving the first part in the above expression (5.1), we have

oo

= / (x " 'a*bexp (x — a’bx"exp(x)))dx

0

o0

= / (x "' a?bexp(x)exp(—a*bx""exp(x)) ) dx

_ Z k' Zb k+l/ r+b+bk-+k— 1exp (k + 1)x))dx

i k+1F(r+b+bk k)

TR (52)
k=0
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Now solving the second part of (5.1), we have
=b- 1/ (x " 2a*bexp (x — a’bx"'exp(x)) ) dx
0
N G R I'r+b+bk—k—1)
——(’)" (b— 53
kzzo: k! ) (k + 1)r+b+hk—k—1 ( )

By combining (5.2) and (5.3) the result has obtained

< ( »e et |T(r +b + bk — k) C(r+b+bk—k—1)
;T b (k+ 1)r+b+bk—k ( - 1) (k+ 1)r+h+bk—k—1

Order statistics

Let X;,X5,X5,. . .X,, be ordered random variables, then the Pdf of the i order statistics is given
by,

n! (=1 _ (n—i)
o = (= D= PG L~ F) (61)
The 1% and n™ order probability density function of NFE can be obtained by putting (3.1)
and (3.2) in (6.1), and is given by respectively

n—1)

fom () = n(a®bx"V(x + b — 1)exp(x — a’bx"'exp(x))) (exp(—aszb’lexp(x)))( (6.2)

o (%) = n(a’bx" (x + b — 1)exp(x — a’bx""exp(x))) (1 — exp(—anvcb’lexp(x)))’171 (6.3)

Parameter estimation

In this section, the maximum likelihood method is used to find out the estimates of the
unknown parameters of NEF (a, b) based on a complete data set information. Let us assume
that we have a sample X;,X,,X;. . .X,, from NEF (a,b). The Likelihood function is given by

L= fo a,b), wherea,b > 0 (7.1)

Substituting (3.2) in (7.1), we get

L= ﬁ(asz(b’2) (x 4+ b — 1)exp(x — a’bx"'exp(x))) (7.2)

i=1

By applying the natural log to (7.2), the log-likelihood function is defined by

= nlog(a’b) + (b — 2) Zlogx + Z log(x, +b—1) Z(xi —a’bx"exp(x)) (7.3)
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To find the estimates of the unknown parameters, we have to compute the partial deriva-
tives of (7.3) with respect to parameters and equate the results to zero

2abz “lexp(x,)) =0 (7.4)

+Zlogx +Z +b_1 +Z 2xlexp(x,) (logx, + 1)) = 0 (7.5)

The above two Eq (7.4) and (7.5) are not in closed form. Thus, it is difficult to estimate the
unknown parameters and hence we refer to use the numerical technique that is the Newton
Raphson or Bisection method to get the MLE.

Asymptotic confidence bounds

Since, the MLE of the unknown parameters is not closed in form and thus the exact distribu-
tion of MLE cannot be derived. However, one can find the asymptotic confidence bounds for
the unknown parameters of NEF(a,b) based on the asymptotic distribution of MLE which is as
follows

The second time partial derivatives of Eq from (7.4) and (7.5) is respectively given by

0

Y o7 = anZ “lexp(x,)(blogx, + 1)) (8.2)

d noog
b I, = —25 - Z((b D) ) +a Z “lexp(x;)logx,)(blogx, + 2)  (8.3)

The observed information matrix is defined by

= (Ill IlQ)
121 122

Hence, the variance-covariance matrix is approximated as

-1
V= <V11 V12> _ (Iu Ilz)
V21 V22 121 122
To obtain the estimate of V, we have to replace the parameters by the corresponding MLE,
which is defined as
A Ay L

Ill 112

A A

(8.4)

=>
I
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By using the above variance-covariance matrix, we can derive the (1 - ) 100% confidence
intervals for the parameters a and b in the following form

a+ Zg\/var(a), b+ Zy\/var(b),
2 2

B

h . o
2), percentile of the standard normal distribution.

where Z; is the upper (
2

Renyi entropy
Theorem 3: If a random variable X has NFE(a,b) then the Renyi entropy Ry(x) is defined by

R, (x) = - iplog (aQb)‘Hji i(i) (_1)](b . 1)p—k IFpb—2)+k+bj—j+1)

(_j . 1)(p(b—2)+k+bj—j+1)

Proof. The general form of the Renyi entropy is given by

1
L—p

R, (x) = log/f"(x)dx

By employing (3.2) in the above expression, we have

00

P

log/ (@®bx" 2 (x + b — 1)exp(x — a*bx""exp(x))) dx

0

L—p

log [(qu)P/ (D (x 4+ b — 1) exp(x — a2bxb_1exp(x)))de] (9.1)

0

using the following Binomial and exponential expansion

and

exp(x — a’bx""exp(x))) = 200: (_1) (a’bx"exp(x,))

After a few steps, we get

Fpb—2)+k+bj—j+1)
(_]. _ 1)(p(b—2)+k+bj—j+1)

Ry(x) = © iplog l(azb)pﬂ,i i(i) (—’1)1(1, — 1yt (9.2)
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Applications

This section illustrates the usefulness of NFE(a,b) distribution by using two real data sets. The
comparison with other distributions (Exponential, Weibull Exponential and Exponentiated
Exponential distributions) have been studied by using different criteria including Akaike
information criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian
information criterion (BIC), and Hannan Quinn information criterion (HQIC). For a more
detailed discussion on these criteria and their applications to various fields, we refer to see
[13-20]. The mathematical form of these criteria are given by

2p(p+1)

AIC=-2L+2p, AlGe=AIC+ EE-—, CAIC=-2L+ P{log(n) + 1}

BIC = Plog(n) — 2L, HQIC = —2L + 2Plog{log(n)}.

where, L = L(; ,) is the maximized likelihood function and y, is the given random sample, |/
is the maximum likelihood estimator and p is the number of parameters in the model.

As a general rule, a probability model with fewer values of these criteria should be consid-
ered the best-fitted model among other probability distributions.

Data set 1: Failure times of Aircraft windshield

The first data set represents the failure times of 84 Aircraft windshields recently studied by
Ramos et. al [21]. The data set values are 0.040, 1.866, 2.385, 3.443, 0.301, 1.876, 2.481, 3.467,
0.309,1.899, 2.610, 3.478, 0.557, 1.911, 2.625, 3.578, 0.943, 1.912,2.632, 3.595, 1.070, 1.914,
2.646, 3.699, 1.124, 1.981, 2.661,3.779,1.248, 2.010, 2.688, 3.924, 1.281, 2.038, 2.82,3, 4.035,
1.281, 2.085, 2.890, 4.121, 1.303, 2.089, 2.902, 4.167, 1.432,2.097, 2.934, 4.240, 1.480, 2.135,
2.962, 4.255, 1.505, 2.154,2.964, 4.278, 1.506, 2.190, 3.000, 4.305, 1.568, 2.194, 3.103,4.376,
1.615,2.223, 3.114, 4.449, 1.619, 2.224, 3.117, 4.485,1.652, 2.229, 3.166, 4.570, 1.652, 2.300,
3.344, 4.602, 1.757,2.324, 3.376, 4.663.

Fig 3 shows the empirical and theoretical Cdf and Pdf of NFE distribution while Fig 4 repre-
sents the QQ and PP plots. Table 1 represents the maximum likelihood estimates of the New
Flexible Exponential distribution for aircraft data. Table 2 represents the goodness of fit crite-
ria including AIC, CAIC, BIC, and HQIC. The numerical values in Table 2 are less for the
New Flexible Exponential distribution than others and hence we conclude that the New Flexi-
ble Exponential distribution perform better as compared to Exponential, Weibull Exponential
and the Exponentiated Exponential distribution.

Data set 2: Strengths of 1.5 cm glass bares

The second real data set represents the Strengths of 1.5 cm glass bares, measured at the
National Physical Laboratory, England. The data set is taken from the Smith and Naylor [22]
with the following values 0.55,0.93,1.25,1.36,1.49,1.52,1.58,1.61,1.64,1.68,1.73,1.81,2,0.74,
1.04,1.27,1.39,1.49,1.53,1.59,1.61,1.66,1.68,1.76,1.82,2.01,0.77,1.11,1.28,1.42,1.5,1.54,1.6,1.62-
,1.66,1.69,1.76,1.84,2.24,0.81,1.13,1.29,1.48,1.5,1.55,1.61,1.62,1.66,1.70,1.77,1.84,0.84,1.24,1.-
3,1.48,1.51,1.55,1.61,1.63,1.67,1.7,1.78,1.89.

Fig 5 shows the empirical and theoretical Cdf and Pdf of NFE distribution while Fig 6 repre-
sents the QQ and PP plots. Table 3 represents the maximum likelihood estimates of the New
Flexible Exponential distribution for aircraft data. Table 4 represents the goodness of fit crite-
ria including AIC, CAIC, BIC, and HQIC. The numerical values in Table 4 are less for the
New Flexible Exponential distribution than others and hence we conclude that the New
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Table 1. Maximum likelihood estimates for aircraft data.

Model Estimates
NFE(a,b) -0.1652185 1.2086781 _
EE(a,b) 0.7579791 3.5930709 _
E(a) 0.3902274 _ _
WE(a,b,c) 0.05827534 3.40973109 0.26963313
https://doi.org/10.1371/journal.pone.0238746.t001
Table 2. Goodness of fit criteria, AIC, CAIC, BIC, HQIC for aircraft data.
Model AIC CAIC BIC HQIC
NFE(a,b) 269.9814 270.1277 274.8667 271.9464
EE(a,b) 286.7922 286.9385 291.6775 288.7572
E(a) 331.9754 332.0236 334.418 332.9579
WE(a,b,c) 270.3205 270.6168 277.6485 273.268
https://doi.org/10.1371/journal.pone.0238746.t1002
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Fig 5. Histogram, theoretical density, empirical and theoretical CDF for NFE.
https://doi.org/10.1371/journal.pone.0238746.9005

1.5 2.0

data

Flexible Exponential distribution perform better as compared to Exponential, Weibull Expo-

nential and the Exponentiated Exponential distribution.

Simulation

To conduct a simulation study, Eq (4.2) is used to generate random data from the New Flexible
Exponential distribution. The simulation experiment is repeated for 100 times each with sam-
ple of size n = 120, 150 and 180. First, we fixed the parameter b = 0.3 and vary

a =0.008,0.009,0.01,0.02 0.3. Secondly, we fixed the variable a = 0.01 and vary

b =0.4,0.44,0.5,0.51. Table 5 demonstrates the mean Bias and Mean square error (MSE). The
result given in Table 5 has shown that both the Bias and MSE are decreasing as the sample size

n increase.
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Fig 6. Theoretical and empirical Pdf and Cdf with Q-Q plot and P-P plot for NFE.

https://doi.org/10.1371/journal.pone.0238746.9006

Table 3. Maximum likelihood estimates for glass bares data.

Model Estimates

NFE(a,b) -0.06832238 5.22227388
EE(a,b) 2.609189 31.235128
E(a) 0.6636407 _
WE(a,b,c) 0.02490157 0.87090869

https://doi.org/10.1371/journal.pone.0238746.t003

Table 4. Goodness of fit criteria: AIC, CAIC, BIC, HQIC for glass bares data.

Model AIC CAIC
NFE(a,b) 33.23809 33.43809
EE(a,b) 66.76709 66.96709
E(a) 179.6606 179.7262
WE(a,b,c) 35.32628 41.34891

https://doi.org/10.1371/journal.pone.0238746.t004

Conclusion

BIC
37.52436
71.05336
181.8038
41.34891

3.15914456

HQIC
34.9239
68.4529
180.5035
37.44822

In this paper, a new family of distribution called Exponential-H (Ex-H) family of distribution
is presented. The special case is derived by employing the Weibull distribution as a baseline
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Table 5. Mean Bias and MSE of NFE(a,b) distribution.

a
0.008
0.009
0.01
0.02
0.01

b

0.3

0.4

0.44

0.51

0.5

n
120
150
180
120
150
180
120
150
180
120
150
180
120
150
180
120
150
180
120
150
180
120
150
180

https://doi.org/10.1371/journal.pone.0238746.1005

MSE(a)
239.732
198.0171
132.6051
239.7993
166.1738
145.187
223.315
216.3098
158.3899
178.2621
147.1883
139.8459
182.2544
123.7268
119.571
134.648
121.4153
93.37407
103.7858
85.96842
77.33886
110.3115
84.10164
80.59911

MSE(b)
1.270981
1.238176
1.175595
1.295611
1.226752
1.221275
1.309414
1.307236
1.256698
1.416837
1.411141
1.402829
0.9568964
0.9089113
0.9017053
0.7971483
0.7899957
0.7614382
0.5961089
0.5823062
0.57584
0.623783
0.602161
0.6047069

Bias(a)
15.33756
14.0047
11.51539
15.46873
12.84548
12.04171
14.90223
14.66495
12.56349
13.28176
12.11266
11.81408
13.48662
11.12114
10.88265
11.59609
10.96512
9.597455
10.17505
9.225429
8.792402
10.48543
9.14759
8.976754

Bias(b)
1.127165
1.112614
1.084249
1.138219
1.107504
1.105095
1.14421
1.143251
1.120984
1.190151
1.187821
1.184358
0.9781792
0.9533604
0.9494812
0.8928112
0.8887261
0.872489
0.7720555
0.7630093
0.7588345
0.7897792
0.7759354
0.7776268

distribution and we called it New Flexible Exponential distribution (NFE). Different statistical
properties of the NFE distribution are obtained such as hazard function, Survival function,

order statistics, moments, and Renyi entropy. The parameters of the model are estimated

using the maximum likelihood method. Moreover, the simulation study is also carried out.
Two data sets were used to support the usefulness of the NFE distribution. The numerical val-
ues conclude that the NFE distribution performed better than Exponential, Weibull Exponen-

tial, and Exponentiated Exponential distribution.

Supporting information

S1 Data. Failure times of Aircraft windshield [21].

(TIF)

$2 Data. Strengths of 1.5 cm glass bares [22].

(TIF)
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