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Abstract Paget’s disease of bone (PDB) is characterized by focal increases in disorganized bone

remodeling. This study aims to characterize PDB-associated changes in DNA methylation profiles in

patients’ blood. Meta-analysis of data from the discovery and cross-validation set, each comprising

116 PDB cases and 130 controls, revealed significant differences in DNA methylation at 14 CpG

sites, 4 CpG islands, and 6 gene-body regions. These loci, including two characterized as functional

through expression quantitative trait-methylation analysis, were associated with functions related

to osteoclast differentiation, mechanical loading, immune function, and viral infection. A

multivariate classifier based on discovery samples was found to discriminate PDB cases and

controls from the cross-validation with a sensitivity of 0.84, specificity of 0.81, and an area under

curve of 92.8%. In conclusion, this study has shown for the first time that epigenetic factors

contribute to the pathogenesis of PDB and may offer diagnostic markers for prediction of the

disease.

Introduction
Paget’s disease of bone (PDB) is characterized by increased but disorganized bone remodeling,

which causes affected bones to enlarge, become weak, and deform. The axial skeleton is predomi-

nantly involved and commonly affected sites include the skull, spine, and pelvis. Paget’s disease is

clinically silent until it has reached an advanced stage at which point irreversible damage to the skel-

eton has occurred (Tan and Ralston, 2014). Bisphosphonates are an effective treatment

(Ralston et al., 2019) and can often improve bone pain but have a limited impact on other clinical

outcomes in patients with advanced disease (Langston et al., 2010; Reid et al., 2011). On a cellular

level, PDB is characterized by increased osteoclast activity and biopsies from affected bone lesions

exhibit increase in the number and size of osteoclasts.

Genetic factors play an important role in classical PDB and in monogenic PDB-like syndromes

(Gennari et al., 2019; Ralston and Albagha, 2014). Mutations in SQSTM1 are the most common

cause of PDB, but other susceptibility genes and loci have been identified through genome-wide

association studies (Vallet et al., 2015; Albagha et al., 2011; Albagha et al., 2010). These include

genes that play an important role in osteoclast differentiation such as CSF1, TNFRSF11A, and

DCSTAMP. Additionally, an expression quantitative trait locus (eQTL) in OPTN is associated with

increased susceptibility to PDB (Obaid et al., 2015). Functional analysis using mouse models showed

that OPTN is a negative regulator of osteoclast differentiation and mice with loss of OPTN function

develop PDB-like bone lesions with increasing age (Obaid et al., 2015; Wong et al., 2020).

Environmental factors also play a role, as evidenced by the fact that the disease is focal in nature

and its incidence and severity has diminished in recent years (Corral-Gudino et al., 2013). Several
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environmental triggers have been suggested including persistent viral infection, repetitive mechani-

cal loading of the skeleton, low dietary calcium intake, environment pollutants, and vitamin D defi-

ciency (Ralston and Albagha, 2014).

The possible role of persistent viral infection with measles and distemper has been studied exper-

imentally. For example, expression of the measles virus nucleocapsid protein in osteoclasts was

found to trigger PDB-like phenotype in mice (Kurihara et al., 2011; Kurihara et al., 2006). How-

ever, clinical studies that have sought to detect evidence of viral proteins and nucleic acids in

humans with PDB have yielded conflicting results (Ralston et al., 2019).

Accumulating evidence suggests that environmental and lifestyle factors can influence gene

expression and clinical phenotype in various diseases through epigenetic mechanisms such as

changes in DNA methylation. To gain insights into the role of epigenetic DNA methylation in PDB,

we have conducted genome-wide profiling of DNA methylation in a cohort of 253 PDB patients and

280 controls and evaluated the predictive role of epigenetic markers in differentiating patients with

PDB from controls.

Results

Characteristics of study cohort
Table 1 shows descriptive statistics for the study cohort. PDB cases in the discovery set were slightly

older and included more males compared to controls, but no difference in age or gender distribu-

tion was found in the cross-validation set. The number of patients with SQSTM1 mutations was simi-

lar in the discovery and cross-validation set and accounts for approximately 14% of PDB cases. All

controls were negative for SQSTM1 mutations as shown in Table 1.

Differentially methylated sites
Figure 1 shows the study design and summary of differential methylation results. After adjusting for

all confounders, differential methylation analysis of the discovery set revealed 419 differentially

methylated sites (DMS) with false discovery rate (FDR) < 0.05, of which 57 reached statistical

eLife digest Our skeleton stays healthy through an endless regeneration process, with

specialized cells constantly absorbing and creating new bone tissue. Illnesses emerge when this

breaking down and rebuilding cycle becomes imbalanced. For instance, in Paget’s disease of bone

(PDB for short) the skeleton becomes misshapen and fragile, with complications including pain,

fractures, neurological problems, hearing loss and even cancer. For most patients however,

symptoms are only present at an advanced stage, when irreversible damage to the skeleton has

already occurred.

Certain inherited genetic changes play a role in the development of PDB, but lifestyle and

environmental factors are also thought to contribute. Indeed, accumulating evidence suggests that

diet, pollution and infection may influence how genes involved in bone metabolism are activated. In

this process, the environment may trigger chemical marks to be added onto DNA sequences, which

ultimately switches specific genes on and off.

To investigate whether the pattern of chemical marks in individuals with PDB may be

characteristic, Diboun et al. scanned the genetic information of over 200 PDB patients, and

compared it to healthy counterparts. Combining genomic analysis and machine learning revealed

several chemical signatures that were remarkably different in the DNA of PDB individuals. These

signatures affected sites close to genes involved in bone development, as well as response to

mechanical loading and infection. This provides strong evidence that PDB could be, in part,

triggered by the environment, as the placement of these marks is highly influenced by external

factors.

This research sheds light onto the underlying changes that trigger PDB. Future experiments

should explore whether it may be possible to use these genetic changes to identify patients before

the onset of irreversible and debilitating damage.
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significance (FDR < 0.05) in the cross-validation set (Supplementary file 1). Meta-analysis of the

DMS from discovery and cross-validation revealed 14 Bonferroni significant DMS out of a total of

429,156 tested CpG sites (p<1.17�10�7; Table 2). The direction of effect for all replicated DMS was

identical in the discovery and cross-validation set and shows hypermethylation in PDB cases com-

pared to controls. A Manhattan plot of the results is shown in Figure 2A, and a quantile–quantile

(Q–Q) plot is presented in Figure 2—figure supplement 1.

Differentially methylated regions
Besides analyzing individual sites, our region-based analysis was intended to uncover densely hyper/

hypo-methylated regions with unique effects across the genome in PDB as well as identifying instan-

ces where the effect from individual sites is moderate, yet accumulatively significant. We tested natu-

ral concentrations of sites with independent effects within CpG islands but also gene bodies and

promoter regions, justified by the fact that promoter methylation often suppresses transcription

whilst that from the gene body often stimulates gene expression (Figure 1).

Evaluation of the 25,773 CpG islands on the array revealed 978 differentially methylated

regions (DMR) that were significantly differentially methylated (FDR < 0.05) in the discovery set, of

which 111 replicated at the same significance level in the cross-validation set (Supplementary file

2). Stringent Bonferroni multiple testing correction revealed four islands that remained significant

in the discovery and cross-validation, and these were located near LTB, SKIV2L, EBF3, and CCND1

(Table 3).

Gene body analysis revealed 258 (FDR < 0.05) replicated DMR out of a total of 947 differentially

methylated genes initially identified in the discovery set (Supplementary file 3). Six gene body DMR

reached significance after Bonferroni correction in both the discovery and cross-validation set

(Table 3). In the context of promoter regions, evidence for FDR significant association with the dis-

ease was equally observed in the discovery and cross-validation set for 27 promoters DMR

(Supplementary file 4), but none reached significance after Bonferroni correction. Figure 2B and C

show a regional plot for DMR within LTB and HSPA13 from island and gene body analysis respec-

tively, highlighting the co-occurrence of multiple, yet independent, differentially methylated sites

along each region.

Mapping common regulatory patterns of DNA methylation into
functional networks
To gain further insight into the pathology of PDB, we explored common methylation patterns

amongst functional keywords identified as significantly over-represented amongst the Pooled sites

(a unified list of 2847 candidate CpGs identified from the DMS and DMR analysis, refer to

Materials and methods). Figure 3 shows a graphical representation of these functional keywords. In

addition to bone-related cells, there is a strong presence of immune cells linked to key biological

processes including proliferation, differentiation, autophagy, and cell death. Furthermore, virus,

cytokines, and interferon-gamma were among the over-represented keywords. The process of ubiq-

uitination lies at the center of the graph with the largest number of links in the network.

Table 1. Descriptive statistics of the study cohort.

Discovery Cross-validation

PDB case Control PDB case Control

Number 116 130 116 130

Age (years), mean ± SD 72.1 ± 7.5* 70.0 ± 7.4* 72.5 ± 8.7 72.3 ± 8.2

Male, n (%) 65 (56.0)* 48 (36.9)* 59 (50.9) 53 (40.8)

Female, n (%) 51 (44.0)* 82 (63.1)* 57 (49.1) 77 (59.2)

SQSTM1 mutation, n (%) 16 (13.8) 0 (0) 17 (14.6) 0 (0)

*P<0.05 comparing Paget’s disease (PDB) cases to controls.
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Figure 1. Study design and analysis workflow. Differentially methylated sites (DMS) and differentially methylated

regions (DMR) were analyzed using, the general/generalized linear model, respectively, in the discovery set. Those

reaching FDR < 0.05 were tested in the cross-validation set to identify DMS/DMR that replicate at the same

significance level. The DMS and the important sites within DMR were pooled together giving rise to the Pooled

sites (refer to Materials and methods), of these a best PDB discriminatory subset was obtained using the Lasso and

Elastic-Net regression. A multivariate classifier based on the discovery measurement of the Pooled/Best subset

sites yielded an AUC value of 92.8% and 82.5%, respectively, when tested in the cross-validation.
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Diagnostic capacity of differentially methylated markers
In order to determine whether differentially methylated markers might be of diagnostic value, we

performed orthogonal partial least squares-discriminant analysis (OPLS-DA) in the discovery and

cross-validation cohorts (refer to Materials and methods). The results are summarized in Figure 4.

The OPLS-DA procedure was first performed using the combined set of significant DMS and DMR

identified from the discovery set (Pooled sites; n = 2847, refer to Materials and methods for further

details) and when the classifier was tested on the cross-validation set, it yielded an area under

curve (AUC) of 92.8%. To identify sites with the highest predictive ability, we applied the net regular-

ization extension of the generalized linear model approach on the Pooled sites, which resulted in the

identification of 95 sites (which we also refer to as ‘Best subset’ sites; Supplementary file 5), of the

2847 initial Pooled sites, as best discriminatory of PDB cases and controls (Figure 1). The OPLS-DA

procedure performed on this Best subset resulted in an AUC of 82.5%. A rather superior perfor-

mance in comparison to similarly trained classifiers based on the DMS (AUC = 67%), islands DMR

(AUC = 76%), or promoter DMR (AUC = 79%) analyses. On the other hand, the AUC from a classifier

restricted to the DMR gene bodies was 92%, which is similar to that obtained from the whole Pooled

sites (AUC = 92.8, Figure 3).

Functional enrichment analysis of the 95 Best subset sites was consistent between Ingenuity Path-

way Analysis (IPA) and Gene Ontology (GO) with many genes annotated to the following broad func-

tional terms: immune function, bone lesions and bone homeostasis, and viral processes. Several

identified genes fell into more than one category. Overlaying the IPA knowledge-based repository

of molecular interactions identified a handful of functional links between the genes located in the

Best subset sites, highlighting important functional subnetworks (Figure 5A). Additionally, we found

that the effect size (absolute difference in DNA methylation between controls and PDB cases) was

significantly higher for sites from the Best subset (mean ± SD; 0.011 ± 0.019) compared to the rest

of those in the Pooled sites (0.007 ± 0.01; p-value=1.9�10�3). The magnitude of effect from each

site in the Best subset, as calculated by the elastic-net regularization extension of the generalized lin-

ear model, is color-coded in Figure 5B.

Table 2. Differentially methylated CpG sites (DMS) in Paget’s disease of bone.

CpG Site Discovery Cross-validation Meta-analysis Annotations

Probe ID Chr Position D Beta* p-value D Beta* p-value D Beta* p-value Nearest gene

cg10290814 17 7284330 �0.018 1.2 � 10�6
�0.015 1.4 � 10�4

�0.017 2.3 � 10�10 TNK1

cg19361865 1 220922163 �0.014 5.4 � 10�6
�0.012 9.7 � 10�5

�0.013 7.6 � 10�10 MOSC2

cg09152582 1 88928362 �0.021 2.1 � 10�5
�0.018 3.5 � 10�5

�0.019 1.1 � 10�9 PKN2-AS1

cg09260089 10 134599860 �0.024 4.6 � 10�5
�0.024 1.2 � 10�4

�0.024 9.5 � 10�9 NKX6-2

cg24879273 10 102989645 �0.026 4.9 � 10�5
�0.016 1.7 � 10�4

�0.021 1.4 � 10�8 LBX1

cg03839709 13 96743492 �0.014 2.7 � 10�4
�0.014 3.4 � 10�5

�0.014 1.8 � 10�8 HS6ST3

cg16419235 8 57360613 �0.036 1.9 � 10�4
�0.029 8.3 � 10�5

�0.032 3.1 � 10�8 PENK

cg04317962 16 79623625 �0.017 1.4 � 10�6
�0.019 2.9 � 10�3

�0.018 3.1 � 10�8 MAF

cg01429039 4 52918065 �0.023 1.8 � 10�4
�0.020 1.1 � 10�4

�0.021 3.5 � 10�8 SPATA18

cg03885399 1 47691550 �0.020 4.4 � 10�6
�0.014 3.6 � 10�3

�0.017 4.7 � 10�8 TAL1

cg04738965 3 147127662 �0.037 4.0 � 10�5
�0.028 7.1 � 10�4

�0.033 6.2 � 10�8 ZIC1

cg10954182 12 104532377 �0.016 1.9 � 10�4
�0.009 2.1 � 10�4

�0.013 7.8 � 10�8 NFYB

cg10964367 8 1771973 �0.025 1.3 � 10�4
�0.019 3.8 � 10�4

�0.022 9.4 � 10�8 ARHGEF10

cg12739454 1 164290833 �0.018 2.4 � 10�4
�0.012 2.4 � 10�4

�0.015 1.1 � 10�7 -

*D Beta represents the difference in DNA methylation in cases as compared to controls (Beta Control-Beta PDB). Position in base pairs in reference to

human genome build 37 (GRCh37). Chr, chromosome; CpG, cytosine-phosphate-guanine. All p-values are genome-wide significant based on Bonferroni

corrected p-value < 0.05.
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Figure 2. Differential methylation analysis comparing controls to PDB patients (n = 246). (A) Site analysis, a Manhattan plot showing the chromosomal

positions (x-axis) versus the �log10 (p) of significant DMS and adjacent sites. For the Bonferroni significant sites however, the meta-analysis p-values are

shown instead and highlighted in color. The horizontal dashed line indicates the Bonferroni corrected significance threshold (p<1.17�10�7). (B, C)

Region analysis, showing the multitude of significantly hyper-methylated (red) and hypo-methylated (blue) sites from LTB (Bonferroni replicated from

Figure 2 continued on next page
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Correlation of methylation profiles between blood and bone tissue
DNA methylation profiles are known to be tissue specific, and our DMS and DMR analyses were per-

formed on blood, but the primary relevant tissue in PDB is bone. Therefore, we assessed if the meth-

ylation profiles for the DMS and DMR identified from this study are correlated between blood and

bone tissue using previously published data by Ebrahimi et al., 2021. In their study, Ebrahimi et al.

focused the correlation analysis on 64,349 CpG probes that fit their analysis criteria to define the

most highly correlated positions, of which 28,549 CpG sites showed significant (FDR < 0.05) high

correlation (r2 > 0.74) between bone and blood. We assessed if CpG sites annotated to genes iden-

tified from our DMS and DMR analyses (Tables 2 and 3) showed high correlation between bone and

blood as reported by Ebrahimi et al., 2021. Results showed that CpGs annotated to 8 of the 14

genes from our DMS analysis were among the highly correlated sites between blood and bone

(r2 > 0.74; FDR < 0.05); Supplementary file 6. For DMRs, of the 10 genes reported in our study

(Table 3), 6 had at least one CpG with high correlation between blood and bone

(Supplementary file 6).

Expression quantitative trait-methylation (eQTM) analysis
eQTM analysis, based on the BIOS QTL (Bonder et al., 2017; Bios QTL, 2021), showed that

the Bonferroni significant DMS cg10964367 was associated with the expression level of ARHGEF10

(p=3.9�10�9). Additionally, cg26724726 from gene body analysis was associated with the expression

of LTB (p=1.10�10�5), and eight of the Best subset sites were associated with the expression of

nearby genes (Supplementary file 7).

Discussion
The present study is the first to investigate DNA methylation profiles in PDB. DNA methylation pro-

files from PDB patients were compared to controls, and meta-analysis of discovery and cross-valida-

tion revealed 14 genome-wide significant DMS. Many were located within or near genes with

functional relevance to the pathogenesis of PDB including bone-related functions, such as osteoclast

differentiation, or functions related to environmental triggers associated with PDB such as viral infec-

tion and mechanical loading. TNK1 is a tyrosine kinase that has a pivotal role in innate immune

responses by regulating the Interferon-stimulated genes downstream of the JAK-STAT pathway

Figure 2 continued

island analysis) and HSPA13 (Bonferroni replicated from gene body analysis). The dashed lines represent the FDR < 0.05 threshold for each region,

which depends on the number of sites within the region (refer to Materials and methods).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. QQ plots of expected versus observed –log10 p-values from site differential methylation analysis.

Table 3. Differentially methylated regions (DMR) in Paget’s disease of bone.

Region Chr Number of sites Discovery p-value* Cross-validation p-value* Gene

Island 6 53 1.40 � 10�2 3.25 � 10�4 LTB

Island 6 59 4.11 � 10�3 2.47 � 10�3 SKIV2L;RDBP

Island 10 49 2.65 � 10�3 4.72 � 10�3 EBF3

Island 11 49 3.57 � 10�3 9.52 � 10�3 CCND1

Gene Body 1 52 2.01 � 10�5 3.14 � 10�5 SDCCAG8

Gene Body 9 36 6.09 � 10�3 1.20 � 10�2 CACNA1B

Gene Body 8 51 2.49 � 10�2 4.39 � 10�3 RBPMS

Gene Body 21 5 3.19 � 10�2 2.88 � 10�3 HSPA13

Gene Body 2 52 3.80 � 10�2 2.39 � 10�3 PARD3B

Gene Body 22 34 4.49 � 10�2 7.10 � 10�3 BRD1

*P-values are adjusted for multiple testing using the Bonferroni method.
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(Ooi et al., 2014). It has previously been associated with frontotemporal dementia (Gijselinck et al.,

2015), which can co-exist with Paget’s disease (Watts et al., 2004). MOSC2 is a member of the

membrane-bound E3 ubiquitin ligase family that regulates endosome trafficking (Zhang et al.,

2018). Less is known about the specific functions of transcription factors NKX6-2 and LBX1 in bone

metabolism, but mutations in the latter are associated with Scoliosis. HS6ST3 plays a key role in the

synthesis of heparan sulfate that potentiates key growth factors including the bone morphogenic

protein BMP and Wnt (Kuo et al., 2010). PENK encodes for proenkephalin, the precursor of a range

of effector molecules including pain-associated pentapeptide opioids as well as modulators of osteo-

blast differentiation (Seitz et al., 2010). Interestingly, PENK knockout mice have abnormal bone

structure and mineralization (Dickinson et al., 2016). MAF was found to promote osteoblast differ-

entiation, and heterozygous deletion of MAF in mice results in age-related bone loss associated with

accelerated formation of fatty marrow (Nishikawa et al., 2010). SPATA18 is expressed in a variety

of cancers including osteosarcoma, and its transcription is induced by p53 (Bornstein et al., 2011).

TAL1 has been found to regulate osteoclast differentiation through suppression of their fusion medi-

ator DCSTAMP (Courtial et al., 2012). The zinc finger protein ZIC1 has a role in shear flow mecha-

notransduction in osteocytes (Kalogeropoulos et al., 2010). Expression of ZIC1 in human was found

to be increased in loaded compared to unloaded bone, and the increased expression in loaded

bone is associated with reduced methylation in several CpGs in ZIC1 (Varanasi et al., 2010). NFYB

confers chromatin access to other transcriptional regulators and is known to be involved in transition

through cell cycle (Ly et al., 2013). Finally, the centrosomal ARHGEF10 has a role in the formation

of mitotic spindle during mitosis (Shibata et al., 2019).

Our analysis was extended to identify regions with frequent but independent methylation

changes in PDB amongst sites that are adjacent to each other. Genomic regions have traditionally

been evaluated in epigenetics studies based on linear combinations of methylation data from resid-

ing sites or through meta-analysis of effects/p-values from an initial site-level differential methylation

analysis. The novel approach presented in this study differs from the traditional methods in that

enrichment of a region does not stem from frequent occurrences of correlated DMS within the

Figure 3. Translating the methylation data into functional networks. Nodes are functional, cellular, molecular, and sub-cellular keywords from GO

annotations enriched amongst the Pooled sites. An edge between two nodes indicates that differentially methylated genes associated with the

keyword in node one are significantly partially correlated with their counterparts from node 2 more often than can be accounted for by chance.
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region but rather the accumulation of independent effects from residing sites. In other words,

regions with the most, but unique site-level effects are prioritized. By doing so, our approach is

advantageous in two ways: First, it allows for sites to be hyper- or hypo-methylated along the same

region unlike the linear combination approach where opposing effects could neutralize one another.

Second, it draws strength from the collective effects of neighboring sites whilst avoiding the redun-

dancy of information from site-level analysis.

Four Bonferroni significant DMR were identified in islands, which were located near the following

genes: LTB, a cytokine shown to stimulate osteoclast activity; SKIV2L, with an RNA helicase activity,

Figure 4. The orthogonal partial least squares-discriminant analysis (OPLS-DA) was performed using the Pooled

sites identified from the discovery set (n = 246). (A) Classifier trained on all 2847 pooled sites with FDR < 0.05

(Pooled sites) from the discovery set. (B) Testing the classifier on the replication (or cross-validation) set. (C) ROC

curve analysis yielded an overall sensitivity of 0.84, specificity of 0.81, and AUC of 0.928. (D) Classifier trained on

the Best subset sites from Glmnet analysis (n = 95) using the discovery set. (E) Testing the classifier on the

replication (or cross-validation) set. (F) ROC curve analysis showed an overall sensitivity of 0.77, specificity of 0.74,

and AUC of 0.825. The Scatter plots show the predictive component that discriminates PDB cases from controls (x-

axis) versus the orthogonal component representing a multivariate confounding effect that is independent of PDB

(y-axis).
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thought to be involved in blocking translation of viral mRNA and has been implicated in regulating

host responses to viral infections (Eckard et al., 2014); EBF3, which is involved in bone development

and B cell differentiation (Seike et al., 2018); and CCND1, a Wnt target that was reported to be

upregulated in response to mechanical loading of bone (Holguin et al., 2016).

A 

B 

Figure 5. Functions of genes mapped near the Best subset of differentially methylated sites identified through the elastic-net regularization extension

of the generalized linear model. (A) An IPA-based network showing a subset of these genes with functional interactions (edges) or mapping to one of

three functional classes: immune, viral, and bone homeostasis. (B) An overview of GO biological processes significantly enriched amongst the Best

subset together with their beta values from the Glmnet R package implementing the extended generalized linear model in question.
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Additionally, six Bonferroni significant DMR in gene bodies were identified. These were located

within genes with functions related to mitosis and ciliogenesis (SDCCAG8) (Insolera et al., 2014):

TGFB1-mediated signaling (RBPMS) (Shanmugaapriya et al., 2016); calcium signaling (CACNA1B)

(Blair et al., 2007); protein ubiquitination (HSPA13) (Kaye et al., 2000); cytoskeletal organization

(PARD3B) (Kohjima et al., 2002); and histone acetylation (BRD1) (Mishima et al., 2014).

The Pooled sites identified from the discovery set were able to discriminate cases and controls

with a considerable accuracy when tested on the cross-validation set. The Best subset analysis

allowed the identification of a smaller subset of sites trading off the classification accuracy with the

number of explanatory sites. The AUC of 82.5%, based on the 95 discriminatory sites from the best

subset analysis, is promising, and future experiments are warranted to study its clinical applicability.

In terms of disease pathology, the DNA methylation data reflected many environmental triggers

thought to be involved in PDB. Some of the genes amongst the DMS and the 95 Best subset were

associated with immune antiviral responses (Figure 5, Supplementary file 5). This is of interest since

a previous study in the PRISM cohort showed that levels of antibodies to Mumps virus were signifi-

cantly higher in PDB cases compared to controls (Visconti et al., 2017). Although we and others

have failed to detect evidence of ongoing virus infection in PDB, the above data is consistent with

the hypothesis that host immune responses to infection may be altered in PDB.

Differential methylation of ZIC1 and CCND1 indicates possible differences between cases and

controls in these genes, which are involved in mechanotransduction, a process that has been impli-

cated in localization of bone lesions in PDB (Gasper, 1979). Our study also highlighted genes that

regulate the cell cycle, vesicular transport, and cytoskeletal reorganization as being potentially

involved in PDB. Other genes were identified that play a role in immune cell function, and these

were strongly represented in the best subset of differentially methylated sites. This lends support to

the hypothesis that PDB may be a disorder with an osteoimmunological basis (Numan et al., 2015)

and should prompt further work to investigate host–environment interactions including studies of

the microbiome in this complex but fascinating disease (Ohlsson and Sjögren, 2018).

Apart from providing new insights into the potential links between genes and environment in reg-

ulating susceptibility to PDB, this study has revealed the potential role of methylation signals as a

biomarker for disease susceptibility. Potent bisphosphonates such as zoledronic acid can return the

abnormalities of bone remodeling to normal in a large proportion of patients with PDB (Reid et al.,

2011; Reid et al., 2005; Tan et al., 2017). Unfortunately, PDB often remains clinically silent until it

has reached an advanced stage by which point irreversible skeletal damage may already have

occurred (Gennari et al., 2019). This study raises the possibility that epigenetic markers, possibly

when combined with genetic profiling, would be worth exploring as means of assessing the risk of

developing PDB in people with a family history of the disorder so that early intervention can be con-

sidered where clinically appropriate.

One limitation of the study is the fact that the identified methylation changes were not shown to

occur in the osteoclasts, which are the cells of main interest in PDB pathogenesis. This is primarily

justified by the difficulty to collect bone tissue from PDB patients in a similarly sized cohort. Never-

theless, on comparison of our Bonferroni significant DMS and DMR (Tables 2 and 3), with a pub-

lished list of highly concordant CpG sites between blood and femur bone tissue collected during hip

replacement surgery (Ebrahimi et al., 2021), we noted considerable overlap. We found that CpGs

annotated to 8 of the 14 genes from our DMS analysis were among the highly correlated sites

between blood and bone (Supplementary file 6). For DMRs, of the 10 genes reported in our study

(Table 3), 6 had at least one CpG with high correlation between blood and bone

(Supplementary file 6). However, showing an epigenetic signature to PDB in the blood adds to the

increasing evidence in the literature pointing to the possibility of pathogenic immune processes lying

at the heart of PDB. More importantly, a predictive epigenetic signature in a readily accessible tissue

such as the blood has clinical implication, also considering the silent nature of PDB and the possibil-

ity of avoiding much of the adverse symptoms of the disease with early diagnosis. Moreover, one

needs to consider that blood also contains progenitors of bone cells and that white blood cells share

a similar ancestry with osteoclasts.

Although the split-sample approach was meant to allow for validation of the results for increased

statistical rigor, our cross-validation dataset is not totally independent from its discovery counterpart

in that similar sources of noise and counfounding effects are present in both. However, the total

cohort was obtained from a large number of centers across the UK representing most major cities,
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which adds to the validity of our overall results. Another limiting aspect of our study was drawing

functional relevance of our DMS and DMR by reference to tissue specific eQTMs from the BIOS QTL

database, which were originally derived from blood. Therefore, the effects of the differential methyl-

ation from our candidates DMS and DMR on gene expression under PDB remain to be investigated.

Finally, it is possible that the observed methylation changes reported in this study exist as a conse-

quence of the disease; therefore, further prospective studies assessing their true potential as predic-

tor biomarkers are warranted. Such studies could revolve around recruiting individuals with a genetic

predisposition and/or family history of PDB for which the level of methylation of our 95 best subset

sites can be routinely assessed. Such epigenetic measurements can then be linked to future disease

onset if any, in the presence of appropriate controls.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Other Infinium Human
Methylation450 BeadChip

Illumina, USA DNA
Methylation array

Software, algorithm RnBeads R Version 1.10.8

Software, algorithm SIMCA Umetrics, Sweden Version 15

Software, algorithm IPA Qiagen, Germany

Software, algorithm GGM R Version 2.4

Software, algorithm topGO R Version 2.4

Study subjects
The DNA samples were derived from UK-based PDB patients and controls who took part in the

PRISM trial (Paget’s Disease: Randomized Trial of Intensive versus Symptomatic Management)

(ISRCTN12989577) (Tan et al., 2017). The PRISM trial is a multi-center study in which participants

were recruited from 27 different clinical centers across the United Kingdom. The epigenetic analysis

was conducted in 253 cases with clinical and radiological evidence of PDB and 280 controls who

were spouses of PDB cases (n = 135) or subjects who had been referred for investigation of osteopo-

rosis but had normal bone density upon examination by dual-energy X-ray absorptiometry (n = 131).

The cohort was randomly divided into a discovery and cross-validation set comprising of comparable

numbers of cases and controls (Figure 1). According to the study by Tsai and Bell, a 10% difference

in the mean of CpG methylation level between cases and controls at genome-wide significance level

of 10�6 requires 112 individuals in each group to achieve 80% EWAS power (Tsai and Bell, 2015).

On this basis, our discovery set comprising of 116 cases and 130 controls is adequately powered,

and the results are further validated in an equally sized cross-validation set.

DNA methylation profiling
Genomic DNA was extracted from peripheral blood using standard protocols. Bisulfite conversion

was performed on 500 mg of DNA using Zymo EZ-96 DNA methylation Kit (RRID:SCR_008968, Zymo

Research, USA). DNA methylation profiling was performed using the Illumina Infinium HumanMethy-

lation 450K array (Illumina, USA) by following the manufacturer’s protocol. The R package RnBeads

version 1.10.8 (RRID:SCR_010958) was used for quality control (Müller et al., 2019). Samples with

low methylated or unmethylated median intensity (<11.0) were excluded (n = 35), along with sam-

ples with sex mismatch between reported and predicted sex (n = 0). Probes with the following crite-

ria were excluded: detection p-value > 0.05, cross-reactive probes, containing a SNP within 3 bp of

nucleotide extension site, or those located on sex chromosomes. Additionally, 723 sites were further

excluded from the dataset for previously established association with smoking (Ambatipudi et al.,

2016). A total of 56,356 probes were excluded from the initial 485,512 leaving 429,156 CpGs for

analysis (Figure 1). The final dataset used for analysis comprised of 232 PDB cases and 260 controls.

The Enmix method (Pidsley et al., 2013) was used for background correction, whilst SWAN was
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used to achieve between and within array normalization. For all downstream analysis, the M-values,

derived using the formulae log2((methylated signal +1)/(unmethylated signal +1)), were used.

Statistics
An overview of the analysis performed in this study is shown in Figure 1, in what follows we provide

details of each analysis step:

Differential methylation analysis of sites
In order to account for the heterogenous cellular composition of the measured samples, the counts

of the following cell types CD14 monocytes, CD19 B-cells, CD4 T-cells, CD56 NK cells, CD8 T-cells,

eosinophils, granulocytes, and neutrophils were estimated using the Houseman reference method

(Houseman et al., 2012), part of the RnBeads pipeline. The reference methylome was obtained

from previously published methylation data measured from sorted blood cells comprising 47 sam-

ples (Reinius et al., 2012). These reference samples were normalized together with our data to

make sure that extrapolation of cell type information was unaffected by differences between the two

datasets.

We performed surrogate variable analysis (SVA) that captures additional unknown sources of vari-

ation based on joint methylation patterns amongst the different sites that do not correlate with the

disease. The top 10 significant SVA components were extracted from the data using the SVA func-

tionality in RnBeads (Müller et al., 2019).

In all statistical models described below, the term confounders refers to the following covariates:

age, sex, array, bisulfite conversion batch, array scan batch, blood cell composition from the House-

man method (Houseman et al., 2012), and the top 10 SVA components. The term phenotype

denotes the control/PDB state of each sample. The term region is used to describe clusters of sites

along the genome including CpG islands, gene bodies, and promoters. CpG islands were delineated

in the illumina array manifest file as well as RnBeads annotation libraries. Gene bodies and pro-

moters were manually assigned. More specifically, sites mapping to the transcription start site (TSS)

according to the manifest were attributed to a promoter region, whilst those falling at the 50 untrans-

lated region or gene body were assigned to a gene body region.

A general linear model based on the limma moderated standard error was used to assess differ-

entially methylated sites (DMS) between cases and controls using the model: CpG

site ~phenotype + confounders. The model was first run on all sites in the discovery set and all DMS

with a significant FDR (<0.05) in the discovery set were assessed in the cross-validation set. Meta-

analysis looking at the combined effect from both discovery and cross-validation was performed on

the totality of probes using the R package Metafor (RRID:SCR_003450) (Wolfgang, 2010). The Bon-

ferroni adjusted genome-wide significance threshold of p=1.17�10�7 (0.05/429,156) was used to

identify Bonferroni significant DMS based on the meta-analysis p-values.

Differential methylation analysis of regions
DMR were analyzed using binomial regression, member of the family of the generalized linear mod-

els (equivalent to logistic regression), in two steps:

First, the parameters of the null model, excluding the sites, were estimated as follows:

phenotype~confounders (1)

Next, all n sites within a given region (island/gene body/promoter) were incorporated into the

model as follows:

phenotype~confoundersþCpGsite1 þCpGsite2þ ::::þCpGsiten (2)

The difference in the deviance (equivalent to the residuals in the linear model) between the null

model [1] and the full model [2] follows a c

2 distribution with n degrees of freedom. A p-value for

the effect of the region given n sites was calculated accordingly. The analysis effectively tests for the

significance of improvement in the model fit with the addition of the methylation data from the

region of interest. The generalized linear model outlined above was run initially on the discovery set.

The model was then repeated on the cross-validation set on regions that were significant in the

Diboun et al. eLife 2021;10:e65715. DOI: https://doi.org/10.7554/eLife.65715 13 of 19

Research article Chromosomes and Gene Expression Genetics and Genomics

https://scicrunch.org/resolver/SCR_003450
https://doi.org/10.7554/eLife.65715


discovery set at FDR < 0.05. A similar approach was used to derive the Bonferroni significant

regions. In other words, the Bonferroni adjustment of regions in the cross-validation was based on

the subset of regions found Bonferroni significant in the discovery set. Visualization of the effect of

individual sites from selected DMR was conducted using R package coMET (Martin et al., 2015).

Consolidating the DMS and DMR
In the generalized linear model for region effect outlined in model formulae [2], the beta values from

the individual sites are indicative of the sites’ level of association with the phenotype. This is effec-

tively similar to the general linear model used for site-level analysis but with the important discrep-

ancy that each site is being assessed while accounting for possible contributions of neighboring sites

to the global effect of the region. We therefore extracted all the beta values form the full model in

[2] from all the DMR. We then applied FDR-based multiple testing correction on the p-values corre-

sponding to these beta values from fitting the model in [2] for each selected DMR separately. Sites

with FDR < 0.05 were pooled with the DMRs to create a unified list of significantly methylated sites

or Pooled sites (Figure 1).

Discriminant analysis
Discriminant analysis was performed to assess the ability of the Pooled sites to tell apart cases from

controls. We also used the elastic-net regularization extension of the generalized linear model, pro-

vided by the R package Glmnet (RRID:SCR_015505) (Friedman et al., 2010), to identify the best

subset of discriminatory sites (designated Best subset) of the list of Pooled sites. We trained an

orthogonal projection to latent structure discriminant analysis (OPLS-DA) classifier (Boccard and Rut-

ledge, 2013), implemented in the software SIMCA ver. 15 (RRID:SCR_014688, Umetrics, Sweden),

on the discovery data from Pooled and Best subset sites separately. Each model was then tested on

the cross-validation set, and its performance was further assessed based on the value from receiver

operating characteristic curve analysis. The sensitivity and specificity measures of the test were esti-

mated based on a classification threshold equal to the median of the predicted scores by the OPLS-

DA classifier. The Best subset sites were analyzed further to reveal enrichment in biological func-

tions. This was conducted using IPA (RRID:SCR_008653, Qiagen, Germany) as well as the GO R

package topGO (RRID:SCR_014798) (Alexa, 2020) based on the Fisher’s exact test statistics.

Partial correlation analysis of Pooled sites
Correlations in methylation patterns between CpG sites hold valuable information about how differ-

ent biological functions are linked together in PDB. To this end, partial correlations between the

Pooled sites were derived using the R package ggm (Giovanni Maria, 2006). The ggm partial corre-

lations, based on the pooled sites, were used for drawing associations between GO biological pro-

cess terms found enriched in the same set as follows: First, the extensive GO functional annotations

enriched amongst the genes associated with the Pooled sites were manually reduced to a manage-

able, yet representative, set of keywords: For instance, GO categories ‘regulation of proliferation’,

‘positive regulation of proliferation’, and ‘negative regulation of proliferation’ were all reduced to

‘proliferation’. The Fisher’s exact test statistics was then used to assess whether the Pooled sites

associated with a given keyword were correlated (based on the ggms) with their counterparts from

another functional keyword more often than can be accounted for by chance alone. More specifi-

cally, for any two GO terms, we considered the significantly differentially methylated sites from

genes associated with either terms. We then tested for enrichments of pairs of sites with significant

ggms out of all possible pairs of sites across the two terms. Likewise, Fisher’s test p-values<0.05

after FDR multiple testing correction were used to create pairs of functionally related keywords. The

software Cytoscape (RRID:SCR_003032) (Shannon et al., 2003) was used to visualize these

associations.

eQTM analysis
To assess the effect of DNA methylation at CpG sites on the expression of nearby genes, we used

data from the BIOS QTL browser (Bonder et al., 2017; Bios QTL, 2021).
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