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SUMMARY
Odor perception in non-humans is poorly understood. Here, we generated the most comprehensive mouse
olfactory ethological atlas to date, consisting of behavioral responses to a diverse panel of 73 odorants,
including 12 at multiple concentrations. These data revealed that mouse behavior is incredibly diverse
and changes in response to odorant identity and concentration. Using only behavioral responses observed
in other mice, we could predict which of two odorants was presented to a held-out mouse 82% of the time.
Considering all 73 possible odorants, we could uniquely identify the target odorant from behavior on the
first try 20% of the time and 46% within five attempts. Although mouse behavior is difficult to predict
from human perception, they share three fundamental properties: first, odor valence parameters explained
the highest variance of olfactory perception. Second, physicochemical properties of odorants can be used
to predict the olfactory percept. Third, odorant concentration quantitatively and qualitatively impacts olfac-
tory perception. These results increase our understanding of mouse olfactory behavior and how it
compares to human odor perception and provide a template for future comparative studies of olfactory per-
cepts among species.
INTRODUCTION

How sensory cues translate into perceptual objects or complex

behaviors remains a major unanswered question in neurosci-

ence. Odor transduction in the nose leads to odor perception

and to changes in behavior or physiology (e.g., aggression and

feeding) that are key for survival and reproduction, making the ol-

factory system an attractive model to address this question.1,2

Many studies have used mice to elucidate molecular, cellular,

and neural processes underlyingmammalian olfaction.1 The pro-

liferation of annotated genomes and high-throughput

sequencing technologies have yielded new clues into the func-

tional logic and the evolutionary dynamics of mammalian olfac-

tion more broadly.3–5 However, our understanding of olfactory

perception derives from large psychophysical datasets in hu-

mans combined with chemoinformatic, statistical, and ma-

chine-learning tools.6–11 These studies have yielded three key

findings regarding human olfactory perception. First, the first

principal component of human olfactory perception is highly

associated (r = 0.79) with a single dimension—odor valence.6,7,12

Second, the human olfactory perceptual ratings for most

odorous molecules can be predicted from chemical structure

with surprising accuracy (r = 0.3–0.7), a value limited primarily
Current Biology 31, 2809–2818, J
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by rater reliability.8 Third, odorant concentration can qualitatively

alter perceived odor intensity and character.9,13 Do these princi-

ples also apply to olfactory perception in non-humans?

Characterizing olfactory perception in an animal relies on

accurately quantifying multiple behaviors in response to large

numbers of odorants, ideally at various concentrations. This as-

sumes that visible mouse behaviors either encode for mouse

perception or at least report something informative about the

meaning of the stimulus. For example, micemay exhibit differen-

tial behavioral responses depending on odor valence (attractive

versus aversive), odor novelty, or implications of the presence of

an odor for a broader behavioral strategy (e.g., exploration of

surroundings). They may also use behavior to communicate

odor information to conspecifics. Despite recent efforts,14–25 a

systematic characterization of various mouse behaviors in

response to a large panel of diverse odorants and several con-

centrations is still lacking. This prevents a systematic under-

standing of mouse olfactory behavior and how it relates to

perception in humans and other species and limits our ability

to study the neural computations underlying the transformation

of odor stimuli at the nose to odor objects in the brain.

Here, we generated and investigated a mouse atlas of odor-

guided behaviors in response to a diverse panel of odorants, at
uly 12, 2021 ª 2021 The Author(s). Published by Elsevier Inc. 2809
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Figure 1. An olfactory-ethological atlas and the primary axis of olfactory perception in mouse

(A–D) Videos (A) were scored for 18 behavioral parameters, grouped in three broad categories: (B) valence, (C) stress, and (D) exploration.

(E) A graphical display summarizing the combinatorial behavioral patterns for the 73 odorants tested. Behaviors showing significant (one-way ANOVA; BKY

multiple comparisons correction; n = 5–10 per odorant) increases, decreases, and non-significant responses compared to H2O are indicated in green, magenta,

and gray squares, respectively.

(F) Correlation across odorants between each of the 18 behaviors (n = 3–7 per odorant).

(G) Correlation across behaviors between each of the 73 odorants and H2O (n = 3–7 per odorant).

In both (F) and (G), odorants and behaviors are ordered to illustrate clustering. Two major clusters of odorants stand out.

(H) Principal-component analysis of the 18 behaviors for H2O and the 73 tested odorants (n = 3–7 per odorant). Circles are colored to indicate avoidance

(magenta), neutral (gray), or approach (green) odorants.

See also Figure S1 and Data S1.
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different concentrations, to deconstruct olfactory behavior in

mice and compare it to human perception.

RESULTS

The olfactory-ethological atlas
We recently generated a mouse behavioral video library and

quantified the cumulative duration of olfactory investigation

over a 3-min-long assay (30dOI) to a panel of 73 odorants at
2810 Current Biology 31, 2809–2818, July 12, 2021
85 mM and the odorless control water (H2O).25 These stimuli

include 61 general odorants, seven pheromones (IPT, IAA,

BFA, 2HO, TMA, AST, and FAR), and five kairomones (TMT,

PEA, 2PT, BZL, andQUI).2,26–30 Odorants were classified as elic-

iting avoidance or approach if the 30dOI was significantly lower or

higher than H2O, respectively.25 Here, we enhance the utility of

this video library by scoring 17 additional behavioral parameters

from 410 mice exposed to 73 odorants and H2O (STAR

Methods; Figures 1A–1D). Each mouse was exposed to only
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one odorant (n = 5–10 per odorant) and scored on 18 distinct

behavioral parameters, chosen for discernibility, quantifiability,

and reliability and as surrogate measures of odor ‘‘valence,’’

exploration, or stress.14,15,20,23,25,31–34

From this new dataset totaling 7,606 individual data points

(Figure S1A; Data S1), corresponding to individual-odorant-

behavior triads, we calculated the across-individual average

value for each of 1,314 odorant-behavior pairs: 470 (35.8%)

are significantly different (p < 0.05; one-way ANOVA; BKY multi-

ple-comparisons correction) from H2O, with 293 decreases and

177 increases of a behavioral parameter (Figure 1E; Data S1). Of

the 72 odorants eliciting at least one significant behavioral

change, 57 (78%) exhibited unique patterns of significant in-

creases and decreases among the 18 behaviors, indicating

that odor-guided behavioral patterns are incredibly diverse.

Valence is the primary axis of olfactory perception in
mouse
Pleasantness, a surrogate for odor valence, is the primary axis of

human olfactory perception.7,12,35 However, whether this is

conserved in mouse remains unknown. We examined the struc-

ture of the behavioral response matrix (behaviors3 odorants) to

address this question. From this matrix, we computed two cor-

relation matrices (between behaviors [Figure 1F] and between

odorants [Figure 1G]) and ordered each to match a hierarchical

clustering. We identified two self-similar groups (upper left and

lower right patches in Figures 1F and 1G). Principal-component

analysis (PCA) showed that principal component 1 (PC1) ex-

plains 30.4% of the data variance (Figures 1H and S1B). We

observed only a weak relationship between molecular structure

and PC1 or PC2 (Figure S1C), suggesting that odor valence is not

a trivial consequence of molecular structure. Nevertheless, PC1

cleanly separates approached from avoided odorants, which we

interpret as a valence axis (Figure 1H). This result is robust to

alternative subsamples of behaviors in which valence, explora-

tion, and stress have equal representation; valence-related be-

haviors always comprise the top 5 highest weighted behaviors

in PC1.

Discriminability of odorants using behaviors
Odorants appear to lie in stereotypical locations in a behavioral

space defined by PC1 and PC2 of the response matrix (Fig-

ure 1H). We next asked how well odorants can be distinguished

using the original 18-dimensional space. We computed D’, a

measure of discriminability between two signals, for all odorant

pairs. Higher D’ values indicate that behavior more easily dis-

criminates between two odorants; a value of 1.0 occurs when

the mean behavioral difference between odorants equals the

behavioral variability across mice exposed to the same odorant;

it is thus also a measure of effect size.

D’ for each behavior (across odorant pairs) ranged between

0.6 and 1.0; by contrast, shuffling odorant labels between mice

resulted in lower D’ values (0.5–0.6; Figure 2A). Every single

behavior exhibited higher D’ in the original than in the shuffled

data (Figure 2B).

Because the behavioral code may be combinatorial, we also

computed a multivariate D’, which uses all behaviors simulta-

neously. If most behavioral variability is mouse specific and not

odorant specific, D’ would be much less than 1. However, we
found that multivariate D’—although heterogeneous across

odorant pairs (Figure 2C)—was on average 43 larger for the

real data (mean D’ = 0.8) than for shuffled data (Figure 2D).

Thus, this behavioral ensemble can represent an odorant-spe-

cific behavioral code. D’ can alternatively be expressed in terms

of the area under the receiver-operator characteristic (ROC)

curve (AUC) quantifying a sensitivity versus specificity tradeoff;

under a Gaussian assumption, a D’ = 0.8 corresponds to an

AUC = 0.66 for a typical pair of odorants.

D’ can overestimate discriminability when the number of rep-

licates (individuals) per stimulus is small (so D’ for shuffled data

remains >0). Instead, we can ask how accurately a predictive

model can select the correct odorant from out-of-sample obser-

vations of behavior, i.e., a mouse the model has not observed.

We trained a linear discriminant classifier on all odorants but

withheld one mouse per odorant for cross-validation testing.

We asked the classifier to perform two tasks: first, to predict

the correct odorant (out of 74 possibilities) given a new observa-

tion of behavior and, second, to predict the correct odorant (out

of two choices: the correct odorant and one other chosen at

random). In the first task, most odorants could be predicted at

above chance (1/74) levels (Figures 2E and 2F). Some could

even be predicted correctly >30% of the time (IND, IBT, and

AST). In the second task, 67/74 odorants could be identified

from behavior at above chance (½) levels, and 32/74 could be

identified >95% of the time in the same comparison (Figures

2G and 2H). If we gave the classifier additional ‘‘shots on goal’’

in the first task, allowing 5 shots made 46% of odorants identifi-

able from the ensemble (Figure 2I). Thus, odor-evoked behavior

for most odorants was stereotypical enough to help identify

which odorant was presented to a novel mouse.

Reconstructing a low-dimensional space of mouse
olfactory behavior
We recorded 18 distinct behaviors, but many of these behaviors

are correlated (Figure 1F). Thus, the underlying dimensionality of

the olfactory behavioral space may be <<18. PCA indicated that

90% of the variance was explained by ten dimensions (Fig-

ure S1B). However, this is likely to be an overestimate for two

reasons: first, at least some of this variance is noise, driven by

within-odorant, across-mouse behavioral variability and, sec-

ond, PCA does not produce a natural decomposition of data in

many applications.36 A particular concern here is that PCAmight

represent valence as a single dimension, although the underlying

concepts ‘‘aversive’’ and ‘‘approach’’ could be distinct percep-

tual categories that just happen to produce behaviors of oppo-

site sign. To overcome the first concern, we asked how many

dimensions are required to optimally represent each odorant’s

behavioral phenotype. To address the second, we used non-

negative matrix factorization (NMF),36 a decomposition tech-

nique known for producing compact, intuitive, parts-based

representations in diverse domains, including olfactory percep-

tion.37 Specifically, we computed an NMF decomposition of

behavior and asked for what number of factors the intraclass

correlation coefficient (ICC) was maximized when projecting

data from novel mice onto these factors. Here, the ICCmeasures

the fraction of behavioral variance explained by odorant identity.

Theory suggests that a low-factor NMF decomposition might

denoise behavioral data by identifying and discarding noisy,
Current Biology 31, 2809–2818, July 12, 2021 2811
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Figure 2. Discriminability of odorants using behaviors and out-of-

sample prediction of odor identity

(A) D’, a measure of discriminability between two odorants, is greater for the

data than for a shuffling (across mice) of the data.

(B) Same data as in (A), except shown for each behavior (circle) versus its

corresponding shuffle. Error bars (inside circles) represent SEM taken over all

odorant pairs.

(C) Using all behaviors simultaneously, the multivariate measure D’ is

computed.

(D) Multivariate D’ is �43 larger for the real data than for shuffled data.

(E–H) A linear discriminant analysis classifier was trained on all odorants, using

all but one mouse for each odorant. Predictive performance was evaluated for

the remaining mice (one odorant each).

(E) A histogram of the probability that the correct odorant (out of 74 possibil-

ities) is identified from a new mouse’s behavior. The dashed red line reflects

chance performance.

(F) Mean performance for each odorant; higher values mean the odorant is

easier to uniquely identify from behavior.

(G) Similar to (E) but for classification of the true odorant against a random

alternative odorant. Chance is now 50%, as reflected by the dashed red line.

(H) Mean performance for each odorant in (G). 1.0 means that behavior was

always sufficient to identify the odorant versus any specific alternative

odorant.

(I) Number of shots (guesses) that the classifier needs to determine the correct

odorant (out of 74 possibilities) from novel mouse behavior. This value (solid

blue line) is shown for all 74 odorants, ranked from fewest to greatest number

of shots required. The orange dashed line represents chance performance.

See also Figures S2 and S3.
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irrelevant dimensions, thus increasing ICC. However, with too

few factors, odorant-associated structure could be lost,

reducing ICC. The number of factors that maximizes ICC thus re-

flects the most efficient decomposition of olfactory behavior.

We found that ICC was greatest for a 2-factor space (ICC =

0.57; Figure 3A), substantially higher than for the original 18-fac-

tor space (ICC = 0.34) or a 1-factor space (ICC = 0.35). A 2-factor

space was thus optimal for explaining mouse behavioral vari-

ance in terms of odorant identity. By contrast, shuffling odorant

labels across mice produced a consistently low value (ICC = 0.2)

for all choices of factor number. To interpret these two factors,

we examined the factor weights for each behavior (Figure 3B).

The highest weighted factors corresponded to valence-related

behaviors (handling and catching [H/C], olfactory investigation

[OI], and zone assays [Z1/Z3]), followed by the exploratory (rear-

ing [REA], digging [DIG], and distance covered [DIT]) and stress-

related behaviors (risk assessment [RAS] and escape [ESC]).

The weights for each factor were mostly orthogonal (Figure S2A;

r = �0.24; p = 0.35; Fisher Z transformation test), but the posi-

tions of odorants along each factor were anti-correlated (Fig-

ure S2B; r =�0.79; p < 0.0001), indicating that these two factors

are still largely capturing a single behavioral category and its

opposite (i.e., approach and aversion). This is consistent with

PCA—the valence axis is primary—but goes a step further by

separating out an attractive from an aversive factor and showing

that these factors (but no others) are shared identifiably in cross-

animal comparisons. This provides a parts-based understanding

of the fundamental units of olfactory behavior in mice.
Mouse versus human
Comparative studies of odor valence in mice and humans are

scarce and have yielded conflicting results.17,38 Indeed, whether

mice and humans share a common olfactory perceptual space is
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Figure 3. Optimal reconstruction of mouse behavior and the align-

ment between mouse and human behavioral spaces

(A and B) The optimal reconstruction of mouse behavior requires few di-

mensions.

(A) Non-negative matrix factorization (NMF) is used to learn a low-dimensional

(£the number of measured behaviors) representation of the behavioral data.

The intra-class correlation coefficient (ICC), reflecting the behavioral agree-

ment within (versus across) odorants, is shown as a function of the number of

factors used. Lower numbers of factors effectively denoise the data. Results

for the data are shown in blue; results for the data with shuffled odorant labels

are shown in orange. Eighteen factors would reflect independent contributions

of each behavior. ICC is maximized for a 2-factor representation of behavior.

(B) Contributions of behaviors to the resulting 2 factors.

(C) Alignment of mouse and human behavioral spaces. Canonical correlation

analysis co-aligns mouse behavioral features and human-provided de-

scriptors for the same odorants. Canonical dimensions were computed using

all but one odorant, and the remaining odorant was used to evaluate the

correlation (Pearson) between mouse behavior and human percepts. Error

bars represent standard deviation across held-out odorants. p values were

computed by comparing to shuffled data.

(D) Comparing mouse behaviors and human percepts. Correlation matrix

heatmap comparing the 18 mouse behavioral parameters with 21 human odor

descriptors for all 73 odorants tested here (odor descriptors for 22 odorants

taken from Keller and Vosshall9 and 51 predicted using the DREAM model8).

Rows and columns are sorted tomaximize clustering in the heatmap, revealing

�2 major clusters of perception and behavior.

See also Figures S2 and S3 and Table S1.
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still unknown. To answer this question, we first compared our

mouse behavioral dataset to the human-rated intensity and

pleasantness reported in a previous study.9 For the 23 overlap-

ping odorants between both studies, we found no significant

correlation among the mouse- and human-rated parameters

(Figure S3A), consistent with our previous study.38 We then

extended this analysis to include 19 additional human semantic

descriptors (e.g., fishy and sweet)9 but found only seven signifi-

cant correlations (out of a possible 475) encompassing five

mouse behaviors and four human semantic descriptors

(Figure S3A).

To identify shared structure between mouse olfactory

behavior and human olfactory perception, 23 odorants may be

insufficient. To make use of a larger sample, we used the data

and machine-learning algorithms from the DREAM Olfaction

Prediction Challenge8 to obtain predictions of human-rated in-

tensity, pleasantness, and 19 semantic descriptors for the re-

maining 51 odorants tested in our mouse experiments (STAR

Methods). Rather than identify simple correlations, we asked

whether mouse behavioral space and human perceptual space

could be projected onto a common basis. If so, theymight simply

be two views of a common mammalian olfactory perceptual

space. We used canonical correlation analysis (CCA) to obtain

this basis using all but one odorant and then asked whether

this basis could identify shared inter-species structure using

the remaining (out-of-sample) odorant. Our results (Figure 3C)

identified a single dimension for this hypothesized shared struc-

ture (Pearson’s r = 0.50; p = 0.02; shuffle test), with additional di-

mensions failing to capture any additional shared structure. This

means that a one-standard-deviation change in the optimal

linear combination of mouse behaviors is associated with a ½

standard deviation change in an optimal linear combination of

human percepts for novel odorants. What human percepts

comprise this shared dimension? The factor weights are shown

in Table S1. No single human percept dominates this dimension,

and individually, each of them is not statistically significant (p >

0.1). Similarly, all human percepts have a Pearson correlation

r < 0.5 versus either of the first two principal components of

mouse behavioral space in Figure 1 (Figure S3B) or the first

two NMF factors obtained from the same space in Figure 3 (Fig-

ure S3C). The correlation between specific human percepts and

mouse behaviors is shown in Figures 3D and S3A. We conclude

that the shared dimension is multifactorial: it cannot be easily

reduced to a single percept or behavior.

Predicting behavior from chemical structure
Prior studies identified relationships between hydrocarbon chain

length or chemical functional group of aliphatic odorants and

their induced neural responses or perceptual similarity.39–41

For the twelve aliphatic odorants in our dataset, we found no

apparent association between chemical functional groups and

valence (Figure 4A) but observed a strong rank correlation be-

tween hydrocarbon chain length and 30dOI (rs = 0.795; p =

0.0034; Figure 4B; Data S2). We observed similar significant re-

lationships for three additional valence-related olfactory investi-

gation parameters (10dOI, 10fOI, and 30fOI), but not for other

behavioral parameters. However, a broader understanding of

odor perception requires a more complete description of the

stimulus.7,42 Indeed, robust correlations have been identified
Current Biology 31, 2809–2818, July 12, 2021 2813
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Figure 4. Predicting mouse olfactory-driven behaviors

(A) Twelve n-aliphatic odorants in our dataset include molecules with varying

lengths and different functional groups: amyl acetate (AAC), hexanethiol (HXT),

hexylamine (HXA), hexanol (HXO), heptanol (HPO), heptanal (HPN), heptyl-

amine (HEP), octanoic acid (OCA), octanol (OCO), octanal (OCN), octylamine

(OCT), and octanethiol (OTT). Circles are colored to indicate aversive

(magenta), neutral (gray), or approached (green) odorants.

(B) Correlation plot between the numbers of carbon atoms and the total

duration of olfactory investigation (30dOI), for the 12 odorants displayed in (A)

(n = 5–9 mice per odorant). The R2 value for the linear regression, Spearman’s

correlation coefficient (rs), and associated p values are indicated in the top left

corner of the graph.

(C) Heatmap depicting the rs between 1,536 physicochemical descriptors and

the 18 mouse behavioral parameters. The physicochemical descriptors are

sorted in descending order of the rs for 3
0dOI.

(D) Performance of the support vector regression model on the 18 behavioral

parameters. Blue bars are for models trained on all but one mouse and tested

on that mouse. Orange bars are for models trained on all but one odorant and

tested on novel mice for that odorant. Black borders around the bars indicate

significant associations (p < 0.01).

See also Figure S3 and Data S2.
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between large sets of physicochemical descriptors and multiple

olfactory perceptual qualities in human, as well as simple mouse

behavioral measures, like investigation time.8,9,17,43

To test whether mouse behaviors are related to distinct phys-

icochemical descriptors, we retrieved 4,870 physicochemical

Dragon descriptors for all odorants. After removing descriptors

with near-zero variance or missing data, we calculated the

correlations between the remaining subset of 1,536 physico-

chemical descriptors and the 18 behavioral parameters for all

410 individual mice (Figure 4C; Data S2). Of the possible

27,648 interactions, 29.5% (or 8,141) resulted in significant

(p < 0.05) interactions, with the durations of self-grooming

(dSGR) and handling and catching (dH/C) eliciting the minimum

(16) and maximum (968) significant interactions, respectively.
2814 Current Biology 31, 2809–2818, July 12, 2021
Physicochemical descriptors can be used to reverse-engi-

neer perceptual descriptors of odorants in humans.8,43,44

Can mouse olfactory-driven behaviors also be predicted by

the chemical structure of odorants? To answer this question,

we used an unsupervised machine-learning approach (STAR

Methods) evaluated on either held-out mice or held-out odor-

ants. 17/18 behaviors could be predicted above chance (p <

0.01) using physicochemical features on held-out mice, with

predictive accuracy varying greatly from 10dOI (r = 0.59; p <

1e�40) to dSGR (r = 0.02; p = 0.31). Because within-odorant

behavior across mice is highly correlated, a stricter test is to

predict behavior for all mice on a held-out odorant. There, 7/

18 behaviors could be predicted (p < 0.01; or 9/18, p <

0.05) from physicochemical descriptors, with the four zone

parameters (indicating approach versus avoidance) having

the strongest predictability (r = 0.38–0.50; p < 0.001;

Figure 4D).

Behavioral effects of odorant concentration
In humans, the quality, valence, and intensity of odorants can

change with concentration.11,13,45 For example, humans

perceive (R)-1-p-menthen-8-thiol as a pleasant grapefruit odor

at low concentrations but as an unpleasant sulfur odor at high

concentrations. In mouse, the valence25,31 and intensity46 of

odorants can also be concentration dependent, but whether

concentration affects other odor-guided behaviors remains

largely unexplored. To address this question, we scored 123

videos from mice exposed to a subset of 12 odorants at two

additional descending concentrations (850 mM and 8.5 mM; Fig-

ure S4A; Data S3). At the highest concentration tested (85 mM),

odorants have diverse valence, with some eliciting avoidance

(IBT, IAA, and TMT), no change (PEA, 2HO, DMP, VAN, SKA,

and AMB), or approach (IND, TMA, and PUT; Figure 5A). Howev-

er, at lower concentrations, all odorants were neutral or elicited

approach (Figure 5A).25 Scoring the 17 other behaviors for

each concentration yielded 3,474 individual data points (Data

S3). Of the 12 3 3 3 18 = 648 odorant-concentration-behavior

pairwise comparisons, 117 (18.1%) significantly differed from

H2O (Figures 5A and S4A; Data S3). 30dOI elicited the highest

(23) and dSGR the lowest (1) number of significant behavioral

changes (Figure 5A; Data S3), consistent with odor valence

driving the largest fraction of behavioral variation. Of the 12 odor-

ants tested, 10 elicited significant behavioral changes for all con-

centrations tested, although the remaining 2 (DMP and PEA) did

so for only 2 out of 3 concentrations. Across all odorants, 85 mM

elicited the highest number of combined significant behavioral

changes (60), followed by 8.5 mM (30) and 850 mM (27). We iden-

tified 28/36 unique combinations of significant behavioral

changes: 12 for 85 mM; 8 for 850 mM; and 8 for 8.5 mM

(Figure 5A).

We next estimated the role of concentration and odorant-con-

centration interactions in generating behavioral responses.

ANOVA showed a main effect of either concentration or an inter-

action between odorant and concentration for nearly all behav-

ioral parameters (p < 0.005 for 16/18; p < 10�8 for 13/18). The

effect size for odorant identity (h2 = 0.27 ± 0.05) was slightly

greater than for odorant concentration (h2 = 0.18 ± 0.04), but

the interaction between odorant identity and concentration

was stronger than either one alone (h2 = 0.43 ± 0.04).
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Figure 5. The effect of odorant concentra-

tion on behavior

(A) A graphical display summarizing the behavioral

codes for the 12 odorants tested at three different

concentrations. Behaviors showing significant

(one-way ANOVA; BKY multiple comparisons

correction; n = 5–9 mice per odorant) increases,

decreases, and non-significant responses

compared to H2O are indicated in green,

magenta, and gray squares, respectively.

(B)Thebehavioral profiles (radarplotsandZscores)

for H2O (top center) and the 12 odorants tested at

three concentrations (85 mM, 850 mM, and 8.5 mM)

are shown. The behavioral profiles for the odorants

classified at 85 mM as aversive, neutral, and ap-

proached are shown in different shades of

magenta, gray or black, and green, respectively.

The corresponding descending concentrations are

depicted in lighter hues of the same color, irre-

spective of their valence at 850 mM and 8.5 mM.

(C) Hierarchical clustering analysis of thebehavioral

profiles for the 12 odorants tested at the three

different concentrations supported the existence of

2 clusters. Bootstrap values47 are shown only for

strongly supported nodes, i.e., nodes displaying

bootstrap values >70 (total 100 replications).

(D) Plot comparing the Euclidean distances calcu-

lated for all pairwise inter-concentration compari-

sons (restricted to different concentrations within

each odorant), inter-odorant comparisons

(restricted to different odorants at the same con-

centration), and subsets of inter-odorant compari-

sons for each concentration separately (85 mM,

850 mM, and 8.5 mM). Asterisks indicate significant

differences (one-way ANOVA; BKY multiple com-

parisons correction): ns, non-significant; *p < 0.05;

***p < 0.001.

See also Figure S4 and Data S3.
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Thus, even at low concentrations, odorants impact mouse

behavior and produce diverse behavioral responses. But how

does mouse olfactory behavior change with concentration and

how is odor identity preserved across concentrations?

To answer these questions, we compared the behavioral

profiles across odorants and concentrations. The highest con-

centration (85 mM) yielded the most distinguishable behavioral

profiles across odorants, and some of these profiles were

conserved for the same odorants at 850 mM and 8.5 mM (Fig-

ure 5B). As concentration decreased, the scores for some be-

haviors associated with stress (RAS and ESC) and negative

odor valence (30Z1) typically decreased, although the ones asso-

ciated with positive odor valence (e.g., dH/C, 10dOI, 30dOI, and

30Z3) increased.
Next, we performed a hierarchical clustering of odorants-con-

centrations pairs using the behavioral data. This analysis yielded

two clusters (Figure 5C). Cluster 1 is composed mostly (7/8) of

odorants presented at 85 mM (five neutral and three elicit avoid-

ance), which elicit on average 7.00 ± 0.85 (SEM) significant

behavioral changes. By contrast, cluster 2 includes H2O, eight

neutral, and 20 approached odorants. These odorants elicit on

average only 2.18 ± 0.28 (SEM) significant behavioral changes.

Moreover, in cluster 2, five odorants (TMA, DMP, PUT, TMT,

and VAN) produce behaviors which, although diverse across

odorants, were quite similar across the two lowest
concentrations of the same odorant. However, all other odorants

are not tightly clustered across their 3 concentrations, suggest-

ing that the behavioral profile changes with concentration. PCA

further supported these results (Figure S4B).

Finally, to compare the magnitude of changes in odorant iden-

tity versus changes in odorant concentration, we calculated the

Euclidean distances between all possible odorant-concentration

pairs. The average distances for different odorant pairs of equal

concentrations (i.e., inter-odorant) and for different concentra-

tion pairs of the same odorant (i.e., inter-concentration) are not

significantly different (Figure 5D). However, the average inter-

odorant distances were significantly higher for odorant pairs at

the highest concentration (85 mM) compared to pairs at the

two lower concentrations (850 mM and 8.5 mM). Odorant identity

and concentration thus had a similar quantitative impact on

mouse olfactory behavior, with higher odorant concentrations

producing greater behavioral diversity.

DISCUSSION

Studies from the last 30 years have contributed to quantification,

characterization, and prediction of human olfactory perception.

This was enabled by physicochemical descriptions of odorants,

novel statistical methods, and machine-learning algorithms

applied to large human olfactory psychophysical datasets.6–11
Current Biology 31, 2809–2818, July 12, 2021 2815
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In comparison, mouse olfactory perception is still poorly under-

stood, mainly due to the lack of a large odor-guided behavioral

dataset. Here, we conducted a large-scale study of olfactory-

driven mouse behavior by generating the most comprehensive

mouse olfactory ethological atlas to date. We scored 18 behav-

iors in 525 mice across 98 odorant conditions, generating 9,765

data points encompassing 1,764 odorant-behavior interactions.

In humans, odor character is quantified using behavioral

methods, such as free labeling, odor profiling, or pairwise simi-

larity.48 These methods show that, despite interindividual varia-

tion, humans have shared and reproducible olfactory percepts

for most odorants. Similarly, we find that mouse olfactory

perception can be quantified by measuring several behaviors

and that such behaviors demonstrate shared and reproducible

olfactory perception across individuals. Many odorants were

distinguishable from each other or from the ensemble using

such quantified behaviors as observed in a novel mouse.

Behavior in novel mice was best reconstructed using a low-

dimensional space built from the behavior of other mice. Further-

more, a single dimension showed a modest correlation (r = 0.5)

between mouse behavior and human perception. Lastly, some

mouse behaviors were at least partly predictable from chemical

structure alone. Together, these data indicate that there is

indeed a rich, canonical set of odor-evoked behaviors in mouse,

and this analysis begins to provide insight into mouse olfactory

perception.

We found unique behavioral patterns for most odorants and

for different concentrations of the same odorant, highlighting

the diversity of odor-guided behavioral responses. The olfactory

system employs a combinatorial strategy to maximize the dis-

criminability of distinct odorants at different concentrations.39,40

This strategy involves hundreds to thousands of OSN/OR sub-

types, present in the olfactory mucosa at different abundances.3

Despite this peripheral diversity, it is hypothesized that behav-

ioral and perceptual dimensionality is lower than it first appears.6

Our data were consistent with a low-dimensional space for

behavior. Approach-avoid behaviors, surrogate for mouse odor

valence, were the most important behavioral dimension across

our analyses. Analogously, rated pleasantness, a surrogate for

odor valence, is the principal perceptual dimension in human

odor descriptions.7,12,35 Odor valence may thus play a central

role in olfactory perception in mammals more generally. Howev-

er, we offer only a lower bound on odor-evoked behavioral diver-

sity, complexity, and dimensionality; alternative future

techniques could capture additional information spanning addi-

tional dimensions. Furthermore, olfactory perception, resulting

from a combinatorial code of peripheral neural activity, could

be higher dimensional still. The transformation from perception

to behavior may consist of a projection to lower dimension, a

computational transformation consistent with olfactory

circuitry.49

Valence is the principal axis for both mouse behavior and

human perception,43 and indeed, olfactory receptor responses

in both mice and humans predict human-rated valence.12

However, this does not imply that specific valence percepts

for odorants are shared across species. Indeed, the shared

factor that we identified using CCA did not have a strong

loading for human-rated pleasantness or any other specific hu-

man percept, suggesting that (at least for this molecular panel)
2816 Current Biology 31, 2809–2818, July 12, 2021
any shared perceptual and behavioral representation of spe-

cific odorants across species may have a more multifactorial

origin.

In humans, the same odorant can be perceived as pleasant or

unpleasant, depending on its concentration. We and others have

shown that odorant concentration also impacts mouse olfactory

preferences.14,25,31,50,51 Here, we extended the publicly avail-

able data on this topic significantly (18 behaviors, 12 odorants,

and 3 concentrations). We found that behavior within odorant

was not fixed across concentrations and that higher concentra-

tions elicited more diverse behavior across odorants. This is

consistent with numerically greater OR and glomerular activation

by higher odorant concentrations,39,41,52 thus increasing poten-

tial combinatorial complexity and facilitating downstream

pattern separation. Similar to our findings, human studies also

show that similarities in odor quality between distinct molecules

are inversely related to concentration.45 Odor character is not

consistent across concentrations and so it is not an intrinsic

property of the molecule. Indeed, our analysis suggests that

mouse behavior is a consequence of an interaction betweenmo-

lecular structure and concentration.

Although we cannot exclude the possibility that lower con-

centrations are undetectably weak for some odorants, we

observed significant (versus odorless H2O control) behavioral

changes for all odorants except PEA at the lowest concentra-

tion (and PEA activates OSNs at concentrations much lower

than that).53

Molecular features of odorants are closely linked to psycho-

physical and behavioral measures of odor valence in human

and mouse, respectively.7,17,43 Predictive models based on

such features can now accurately predict the human olfactory

percept of many odorants.8,54,55 We employed similar strategies

and found that some mouse odor-guided behaviors can also be

partly predicted by the physicochemical properties of odorants.

The observation that specific physicochemical properties of

odorants can predict some behavioral outputs in mice also sug-

gests new possibilities for studying the functional organization of

the mouse olfactory system. Subsets of physicochemical prop-

erties predictive of odor-guided behaviors could potentially be

linked to the spatial organization of ORs/OSN subtypes in the

nasal epithelium. Future large-scale experiments focused on

connecting the zonal expression patterns for all mouse ORs to

the physicochemical descriptors of their respective agonists

will be critical to test this hypothesis.

Future studies using recently developed and fully automated

techniques, such as MoSeq and DeepLabCut,24,56 in combina-

tion with behavioral recordings meeting or exceeding the volume

and diversity of odorants and mice used here, have the potential

to further elucidate the structure of mouse behavioral space and

how it relates to odorant identity, valence, and character. We

hope that the results presented here will motivate such future

work, as we have shown the link between odorant and behavior

is strong and shared across individuals.

In conclusion, our study provides a foundational quantitative

database of odor-guided behaviors in the mouse that can be ex-

ploited in future studies to further deconstruct many aspects of

mouse olfactory behavior and putative perception and facilitate

future comparative studies of olfactory percepts among different

species.
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able at https://github.com/rgerkin/manoel-2021.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
The animals used in the video library from our previous study25 were adult male C57BL/6J mice (aged 8-14 weeks, The Jackson Lab-

oratory). Each mouse was randomly assigned and exposed to only a single odorant, and thus the data for each odorant consisted of

5-10mice each scored on 18 behaviors. The experiments performed in Saraiva et al.25 were approved by the FredHutchinsonCancer

Research Center Institutional Animal Care and Use Committee.

METHOD DETAILS

Behavioral scoring
We retrieved a video library from our previous study,25 in which we subjected adult male mice to the olfactory preference test for a

total duration of 3 minutes. In this study we analyzed 410 videos frommice exposed to an odorless control (i.e., water, or H2O) or one

of the 73 odorants at a single concentration (at 85 mM), and 123 additional videos from mice exposed to two other descending con-

centrations (850 mM and 8.5 mM) for a subset of 12 odorants. The odorants tested in the videos include 61 general odorants and 12
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ethologically relevant odorants (7 mouse pheromones, and 5 kairomones). All these compounds were chemically diverse and belong

to multiple chemical structural classes (underlined, for more details see Saraiva et al.25) as shown below, followed by their 3-letter

abbreviation in parentheses: Alcohols: 2-phenylethanol (2PE); geraniol (GER); heptanol (HPO); hexanol (HXO); linalool (LIN); octanol

(OCO); cis-3-hexenol (C3H). Aldehydes: benzaldehyde (BZL); citral (CIT); citronellal (CTN); heptanal (HPN); octanal (OCN); trans-2-

hexenal (T2H). Amines: 2-methylbutylamine (2MB); 1-(2-aminoethyl)piperidine (AEP); aniline (ANI); 3-amino-s-triazole (AST);

cadaverine (CAD); N,N-dimethylbutylamine (DMB); N,N-dimethylethylamine (DME); N,N-dimethyloctylamine (DMO); N,N-dimethyl-

cyclohexylamine (DMC); heptylamine (HEP); hexylamine (HXA); isoamylamine (IAA); 2-methyl-1-pyrroline (M1P); N-methylpiperidine

(NMP); octylamine (OCT); 2-phenylethylamine (PEA); trimethylamine (TMA); putrescine (PUT); pyrrolidine (PYR); spermidine (SPD);

spermine (SPN); o-toluidine (TOL). Azines: 2,5-dimethylpirazine (DMP); 2-ethyl-3,5(6)-dimethylpirazine (EDM); indole (IND); quinoline

(QUI); skatole (SKA).Camphors: (+/�)-camphor (CAM); (-)-fenchone (-FCH); (+)-fenchone (+FCH); eucalyptol (EUC).Carboxylic acids:

2-methylbutyric acid (MBA); octanoic acid (OCA); propionic acid (PPA). Esters: amyl acetate (AAC); ethyl butyrate (EBT). Ketones: 2-

heptanone (2HO); alpha-ionone (ION).Musks: ambrettolide (AMB); civettone (CIV); muscone (MUS). Terpenes: beta-farnesene (BFA);

(-)-carvone (-CVN); (+)-carvone (+CVN); farnesene mixed isomers (alpha+beta) (FAR); (-)-limonene (-LIM); (+)-limonene (+LIM);

(+)-menthol (+MEN); (-)-menthone (-MNT); (+)-menthone (+MNT); alpha-pinene (PIN); rose oxide (ROX). Thiazoles: 2-isobutylthiazole

(IBT); 2-isopropyl-4-5-dihydrothiazole (IPT); 2,5-dihydro-2,4,5-trimethylthiazoline (TMT). Thiols: 2-propylthietane (2PT); hexanethiol

(HXT); octanethiol (OTT). Vanillin-like compounds: eugenol (EUG); vanillin (VAN).

For each video, in addition to the cumulative duration of olfactory investigation (30dOI) reported in Saraiva et al.25 for the 3minutes-

long assay, we scored 17 new behavioral parameters indicative of either valence, stress, and exploration. The videos were random-

ized and scored blind (to the odorant) using the following criteria:

Olfactory investigation (OI) parameters

1’dOI, 1’fOI, and 30fOI represent the cumulative duration (d) or frequency (f) of olfactory investigation during the 1st minute (10) or the
full 3 minutes (30) of the assay.We considered OI only if the nose of themousewas overlapping, or in very close proximity (�0.5 cm) of

the stimulus. For these parameters, the videos were randomized and scored by the experimenter.

Zone (Z) parameters

1’Z1, 1’Z3, 30Z1, and 30Z3 represent the cumulative time mice spent in either Zone 1 (Z1) or Zone 3 (Z3) of the cage during the 1st

minute (10) or the full 3 minutes (30) of the assay. Here, the test cage was divided into three equal-sized zones, with Z1 representing

the zone furthest away from the odor stimulus and Z3 the zone containing the stimulus. Time spent inside each zone (head of the

animal had to be within the zone) was scored using the Ethovision XT software (version 11, Noldus Information Technology), and

videos in which the mouse transported the piece of filter paper outside Z3 were not included. For these parameters, the videos

were scored by a non-experimenter.

Handling (H) or catching (C) parameters

dH/C and fH/C represent the cumulative duration (d) or frequency (f) where mice handled and/or caught the stimulus with its front

paws during the 3 minutes of the assay. For these parameters, the videos were scored by a non-experimenter.

Risk assessment (RAS)

This parameter represents the number of episodes the mouse displays the flat-back/stretch-attend response, followed by a sniff in

the direction of the stimulus, during the 3 minutes of the assay. For this parameter, the videos were scored by a non-experimenter.

Escape (ESC)

This parameter represents the number of episodes the mouse displays a quick and contactless approach toward the stimulus, fol-

lowed by an even faster withdrawal/darting to the opposite end of the cage, during the 3minutes of the assay. For this parameter, the

videos were scored by a non-experimenter.

Digging (DIG) parameters

dDIG and fDIG represent the cumulative duration (d) or frequency (f) that the mouse digs into the bedding with the forelimbs, often

kicking it away with the hindlimbs, during the 3 minutes of the assay. For these parameters, the videos were scored by a non-

experimenter.

Distance (DIT)

This parameter represents the total length the mouse walked/ran through during the three minutes duration of the video. Distance

traveled was scored using the Ethovision XT software (version 11, Noldus Information Technology), and video tracking done using

the center-point of the mouse. For this parameter, the videos were scored by a non-experimenter.

Rearing (REA)

This parameter represents the number of episodes the mouse stands on its hindlegs (rearing) anywhere in the cage, including when

rearing against the walls during the 3 minutes of the assay. For this parameter, the videos were scored by a non-experimenter.

Self-grooming (SGR) parameters

dSGR and fSGR represent the cumulative duration (d) or frequency (f) where the mice are self-grooming, defined by when the mouse

was licking its fur, grooming itself with the forepaws, or scratching any part of its bodywith any limb. For these parameters, the videos

were scored by a non-experimenter.

Machine Learning
We used Python 3.8 and the Pyrfume package (version 0.15) to calculate 1826 physicochemical descriptors for 74 molecules (Mor-

dred, version 1.2). Descriptors with zero variance or > 25%missing valueswere removed leaving 1328 descriptors, and the remaining
e2 Current Biology 31, 2809–2818.e1–e3, July 12, 2021
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missing values were iteratively imputed using (scikit-learn, version 0.23.2). We also used Pyrfume to calculate the Morgan fingerprint

similarity (rdkit, version 2020.09.1) of the 74 molecules to a reference set of 9645 (mostly) odorous compounds. We used support

vector regression with leave-one-out cross-validation (scikit-learn) to train two models, one based on Mordred descriptors and

one on Morgan similarities, and their predictions were averaged before validation. We evaluated two kinds of predictions: (1) One

where the models were trained on all but a single mouse, i.e., the training set included other instances of the same odorant presented

to different mice, and (2) one where the models were trained on all but a single odorant, i.e., the training set excluded all mice pre-

sented with that odorant. For (1) evaluation was done per mouse and for (2) averaging acrossmice within odorant was performed first

and training/testing was done on these averages. We reported the Pearson correlation r between the observed (out-of-sample)

behavior and the predicted behavior; r was chosen to facilitate direct comparison to several predictive models in human olfactory

perception that also use this measure.8,54,55 Significance was assessed by converting r values to Z-scores using the Fisher trans-

formation and using the standard error for the Fisher Z of 1/sqrt(n-3) in conjunction with the cumulative normal distribution. We

did not correct our reported values for multiple comparisons, but a False Discovery Rate correction would have had minimal impact.

DREAM predictions
The DREAMmodel developed in Keller et al.8 was applied to H2O and each of the 73 odorants used in the current study to generate

predictions for each of 21 perceptual descriptors. Briefly, an isomeric, canonical SMILES stringwas generated for each odorant using

rdkit (Python) and used to generate a rdkit mol object in which 3-dimensional coordinates of each atom position were estimated. In

order to match the methods of Keller et al.,8 Dragon 6.0 was used to compute features from these 3-dimensional structures. The

DREAM model was re-trained from scratch on the 476 original molecules (from Keller et al.8) and used to predict 21 perceptual de-

scriptors from the 74 odorants used in the current study.

QUANTIFICATION AND STATISTICAL ANALYSIS

The number of mice tested for each odorant and the quantification of each behavioral measurement are described in the ‘‘Behavioral

Scoring’’ section above. The raw behavioral scores and numbers of animals used can be consulted in Data S1. One-way ANOVA

tests were performed using GraphPad Prism 8.0.0 software for each of the 18 behavioral parameters. P values for the pairwise com-

parisons between H2O control and each of the tested odorant stimuli were computed with a two-stage Benjamini, Krieger and Ye-

kutieli (BKY) multiple comparisons correction57 (Figures 1E and 5A; Data S1).

Correlation matrices generated with pandas and scikit-learn were used to compute the eigenvalues and eigenvectors in the prin-

cipal components analysis (Figures 1F and 1G). For Figure S1C, the odorant coloring was done by computing the first three principal

components of the Morgan fingerprint similarity matrix (computed using rdkit and pyrfume), projecting the odorants onto this 3d-

space, normalizing each dimension between 0 and 1, and setting the54 values of each odorant according to these normalized values.

Custom code using numpy and scipy was used to compute multivariate D’ (Figures 2A–2D) and scikit-learn was used to train the

linear classifiers (Figures 2E–2I). Scikit-learn was used to perform the NMF analysis (Figures 3A and 3B) and custom code58 was used

to implement the ridge-regularized CCA (Figure 3C).

Spearman’s correlation coefficients of the 1,536 physicochemical descriptors against the 18 behavioral parameters were

computed using Graphpad Prism 8.0.0 software (Figure 4C).

The standardized data (z-scores) in Figure S4A were further analyzed through hierarchical clustering performed with PAlaeonto-

logical STatistics (version 4.06) using Euclidean distances withWard’s method (Figure 5C). The z-score datamatrix was also used for

principal component analyses and performed using PAlaeontological STatistics (version 4.06) (Figure S4B).
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