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SUMMARY

Odor perception in non-humans is poorly understood. Here, we generated the most comprehensive mouse
olfactory ethological atlas to date, consisting of behavioral responses to a diverse panel of 73 odorants,
including 12 at multiple concentrations. These data revealed that mouse behavior is incredibly diverse
and changes in response to odorant identity and concentration. Using only behavioral responses observed
in other mice, we could predict which of two odorants was presented to a held-out mouse 82% of the time.
Considering all 73 possible odorants, we could uniquely identify the target odorant from behavior on the
first try 20% of the time and 46% within five attempts. Although mouse behavior is difficult to predict
from human perception, they share three fundamental properties: first, odor valence parameters explained
the highest variance of olfactory perception. Second, physicochemical properties of odorants can be used
to predict the olfactory percept. Third, odorant concentration quantitatively and qualitatively impacts olfac-
tory perception. These results increase our understanding of mouse olfactory behavior and how it
compares to human odor perception and provide a template for future comparative studies of olfactory per-

cepts among species.

INTRODUCTION

How sensory cues translate into perceptual objects or complex
behaviors remains a major unanswered question in neurosci-
ence. Odor transduction in the nose leads to odor perception
and to changes in behavior or physiology (e.g., aggression and
feeding) that are key for survival and reproduction, making the ol-
factory system an attractive model to address this question.'
Many studies have used mice to elucidate molecular, cellular,
and neural processes underlying mammalian olfaction." The pro-
liferation of annotated genomes and high-throughput
sequencing technologies have yielded new clues into the func-
tional logic and the evolutionary dynamics of mammalian olfac-
tion more broadly.>® However, our understanding of olfactory
perception derives from large psychophysical datasets in hu-
mans combined with chemoinformatic, statistical, and ma-
chine-learning tools.®'" These studies have yielded three key
findings regarding human olfactory perception. First, the first
principal component of human olfactory perception is highly
associated (r = 0.79) with a single dimension—odor valence.®" "2
Second, the human olfactory perceptual ratings for most
odorous molecules can be predicted from chemical structure
with surprising accuracy (r = 0.3-0.7), a value limited primarily

L))

by rater reliability.® Third, odorant concentration can qualitatively
alter perceived odor intensity and character.® ' Do these princi-
ples also apply to olfactory perception in non-humans?

Characterizing olfactory perception in an animal relies on
accurately quantifying multiple behaviors in response to large
numbers of odorants, ideally at various concentrations. This as-
sumes that visible mouse behaviors either encode for mouse
perception or at least report something informative about the
meaning of the stimulus. For example, mice may exhibit differen-
tial behavioral responses depending on odor valence (attractive
versus aversive), odor novelty, or implications of the presence of
an odor for a broader behavioral strategy (e.g., exploration of
surroundings). They may also use behavior to communicate
odor information to conspecifics. Despite recent efforts,'*2° a
systematic characterization of various mouse behaviors in
response to a large panel of diverse odorants and several con-
centrations is still lacking. This prevents a systematic under-
standing of mouse olfactory behavior and how it relates to
perception in humans and other species and limits our ability
to study the neural computations underlying the transformation
of odor stimuli at the nose to odor objects in the brain.

Here, we generated and investigated a mouse atlas of odor-
guided behaviors in response to a diverse panel of odorants, at
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Figure 1. An olfactory-ethological atlas and the primary axis of olfactory perception in mouse

(A-D) Videos (A) were scored for 18 behavioral parameters, grouped in three broad categories: (B) valence, (C) stress, and (D) exploration.

(E) A graphical display summarizing the combinatorial behavioral patterns for the 73 odorants tested. Behaviors showing significant (one-way ANOVA; BKY
multiple comparisons correction; n = 5-10 per odorant) increases, decreases, and non-significant responses compared to H20 are indicated in green, magenta,

and gray squares, respectively.

(F) Correlation across odorants between each of the 18 behaviors (n = 3-7 per odorant).

(G) Correlation across behaviors between each of the 73 odorants and H20 (n = 3-7 per odorant).

In both (F) and (G), odorants and behaviors are ordered to illustrate clustering. Two major clusters of odorants stand out.

(H) Principal-component analysis of the 18 behaviors for H20 and the 73 tested odorants (n = 3-7 per odorant). Circles are colored to indicate avoidance

(magenta), neutral (gray), or approach (green) odorants.
See also Figure S1 and Data S1.

different concentrations, to deconstruct olfactory behavior in
mice and compare it to human perception.

RESULTS

The olfactory-ethological atlas

We recently generated a mouse behavioral video library and
quantified the cumulative duration of olfactory investigation
over a 3-min-long assay (3'dOl) to a panel of 73 odorants at
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85 mM and the odorless control water (H20).>> These stimuli
include 61 general odorants, seven pheromones (IPT, IAA,
BFA, 2HO, TMA, AST, and FAR), and five kairomones (TMT,
PEA, 2PT, BZL, and QUI).>*5=%° Odorants were classified as elic-
iting avoidance or approach if the 3'dOI was significantly lower or
higher than H20, respectively.?° Here, we enhance the utility of
this video library by scoring 17 additional behavioral parameters
from 410 mice exposed to 73 odorants and H20 (STAR
Methods; Figures 1A-1D). Each mouse was exposed to only
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one odorant (n = 5-10 per odorant) and scored on 18 distinct
behavioral parameters, chosen for discernibility, quantifiability,
and reliability and as surrogate measures of odor “valence,”
exploration, or stress,'*15:20:23,25:31-34

From this new dataset totaling 7,606 individual data points
(Figure S1A; Data S1), corresponding to individual-odorant-
behavior triads, we calculated the across-individual average
value for each of 1,314 odorant-behavior pairs: 470 (35.8%)
are significantly different (p < 0.05; one-way ANOVA; BKY multi-
ple-comparisons correction) from H20, with 293 decreases and
177 increases of a behavioral parameter (Figure 1E; Data S1). Of
the 72 odorants eliciting at least one significant behavioral
change, 57 (78%) exhibited unique patterns of significant in-
creases and decreases among the 18 behaviors, indicating
that odor-guided behavioral patterns are incredibly diverse.

Valence is the primary axis of olfactory perception in
mouse

Pleasantness, a surrogate for odor valence, is the primary axis of
human olfactory perception.”'>*> However, whether this is
conserved in mouse remains unknown. We examined the struc-
ture of the behavioral response matrix (behaviors x odorants) to
address this question. From this matrix, we computed two cor-
relation matrices (between behaviors [Figure 1F] and between
odorants [Figure 1G]) and ordered each to match a hierarchical
clustering. We identified two self-similar groups (upper left and
lower right patches in Figures 1F and 1G). Principal-component
analysis (PCA) showed that principal component 1 (PC1) ex-
plains 30.4% of the data variance (Figures 1H and S1B). We
observed only a weak relationship between molecular structure
and PC1 or PC2 (Figure S1C), suggesting that odor valence is not
a trivial consequence of molecular structure. Nevertheless, PC1
cleanly separates approached from avoided odorants, which we
interpret as a valence axis (Figure 1H). This result is robust to
alternative subsamples of behaviors in which valence, explora-
tion, and stress have equal representation; valence-related be-
haviors always comprise the top 5 highest weighted behaviors
in PC1.

Discriminability of odorants using behaviors

Odorants appear to lie in stereotypical locations in a behavioral
space defined by PC1 and PC2 of the response matrix (Fig-
ure 1H). We next asked how well odorants can be distinguished
using the original 18-dimensional space. We computed D’, a
measure of discriminability between two signals, for all odorant
pairs. Higher D’ values indicate that behavior more easily dis-
criminates between two odorants; a value of 1.0 occurs when
the mean behavioral difference between odorants equals the
behavioral variability across mice exposed to the same odorant;
it is thus also a measure of effect size.

D’ for each behavior (across odorant pairs) ranged between
0.6 and 1.0; by contrast, shuffling odorant labels between mice
resulted in lower D’ values (0.5-0.6; Figure 2A). Every single
behavior exhibited higher D’ in the original than in the shuffled
data (Figure 2B).

Because the behavioral code may be combinatorial, we also
computed a multivariate D’, which uses all behaviors simulta-
neously. If most behavioral variability is mouse specific and not
odorant specific, D’ would be much less than 1. However, we
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found that multivariate D’—although heterogeneous across
odorant pairs (Figure 2C)—was on average 4x larger for the
real data (mean D’ = 0.8) than for shuffled data (Figure 2D).
Thus, this behavioral ensemble can represent an odorant-spe-
cific behavioral code. D’ can alternatively be expressed in terms
of the area under the receiver-operator characteristic (ROC)
curve (AUC) quantifying a sensitivity versus specificity tradeoff;
under a Gaussian assumption, a D’ = 0.8 corresponds to an
AUC = 0.66 for a typical pair of odorants.

D’ can overestimate discriminability when the number of rep-
licates (individuals) per stimulus is small (so D’ for shuffled data
remains >0). Instead, we can ask how accurately a predictive
model can select the correct odorant from out-of-sample obser-
vations of behavior, i.e., a mouse the model has not observed.
We trained a linear discriminant classifier on all odorants but
withheld one mouse per odorant for cross-validation testing.
We asked the classifier to perform two tasks: first, to predict
the correct odorant (out of 74 possibilities) given a new observa-
tion of behavior and, second, to predict the correct odorant (out
of two choices: the correct odorant and one other chosen at
random). In the first task, most odorants could be predicted at
above chance (1/74) levels (Figures 2E and 2F). Some could
even be predicted correctly >30% of the time (IND, IBT, and
AST). In the second task, 67/74 odorants could be identified
from behavior at above chance (¥2) levels, and 32/74 could be
identified >95% of the time in the same comparison (Figures
2G and 2H). If we gave the classifier additional “shots on goal”
in the first task, allowing 5 shots made 46% of odorants identifi-
able from the ensemble (Figure 21). Thus, odor-evoked behavior
for most odorants was stereotypical enough to help identify
which odorant was presented to a novel mouse.

Reconstructing a low-dimensional space of mouse
olfactory behavior

We recorded 18 distinct behaviors, but many of these behaviors
are correlated (Figure 1F). Thus, the underlying dimensionality of
the olfactory behavioral space may be <<18. PCA indicated that
90% of the variance was explained by ten dimensions (Fig-
ure S1B). However, this is likely to be an overestimate for two
reasons: first, at least some of this variance is noise, driven by
within-odorant, across-mouse behavioral variability and, sec-
ond, PCA does not produce a natural decomposition of data in
many applications.*® A particular concern here is that PCA might
represent valence as a single dimension, although the underlying
concepts “aversive” and “approach” could be distinct percep-
tual categories that just happen to produce behaviors of oppo-
site sign. To overcome the first concern, we asked how many
dimensions are required to optimally represent each odorant’s
behavioral phenotype. To address the second, we used non-
negative matrix factorization (NMF),*® a decomposition tech-
niqgue known for producing compact, intuitive, parts-based
representations in diverse domains, including olfactory percep-
tion.>” Specifically, we computed an NMF decomposition of
behavior and asked for what number of factors the intraclass
correlation coefficient (ICC) was maximized when projecting
data from novel mice onto these factors. Here, the ICC measures
the fraction of behavioral variance explained by odorant identity.
Theory suggests that a low-factor NMF decomposition might
denoise behavioral data by identifying and discarding noisy,
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Figure 2. Discriminability of odorants using behaviors and out-of-
sample prediction of odor identity

(A) D, a measure of discriminability between two odorants, is greater for the
data than for a shuffling (across mice) of the data.

(B) Same data as in (A), except shown for each behavior (circle) versus its
corresponding shuffle. Error bars (inside circles) represent SEM taken over all
odorant pairs.

(C) Using all behaviors simultaneously, the multivariate measure D’ is
computed.

(D) Multivariate D’ is ~4 x larger for the real data than for shuffled data.

(E-H) Alinear discriminant analysis classifier was trained on all odorants, using
all but one mouse for each odorant. Predictive performance was evaluated for
the remaining mice (one odorant each).

(E) A histogram of the probability that the correct odorant (out of 74 possibil-
ities) is identified from a new mouse’s behavior. The dashed red line reflects
chance performance.

(F) Mean performance for each odorant; higher values mean the odorant is
easier to uniquely identify from behavior.

(G) Similar to (E) but for classification of the true odorant against a random
alternative odorant. Chance is now 50%, as reflected by the dashed red line.
(H) Mean performance for each odorant in (G). 1.0 means that behavior was
always sufficient to identify the odorant versus any specific alternative
odorant.

(I) Number of shots (guesses) that the classifier needs to determine the correct
odorant (out of 74 possibilities) from novel mouse behavior. This value (solid
blue line) is shown for all 74 odorants, ranked from fewest to greatest number
of shots required. The orange dashed line represents chance performance.
See also Figures S2 and S3.

irrelevant dimensions, thus increasing ICC. However, with too
few factors, odorant-associated structure could be lost,
reducing ICC. The number of factors that maximizes ICC thus re-
flects the most efficient decomposition of olfactory behavior.

We found that ICC was greatest for a 2-factor space (ICC =
0.57; Figure 3A), substantially higher than for the original 18-fac-
tor space (ICC = 0.34) or a 1-factor space (ICC = 0.35). A 2-factor
space was thus optimal for explaining mouse behavioral vari-
ance in terms of odorant identity. By contrast, shuffling odorant
labels across mice produced a consistently low value (ICC = 0.2)
for all choices of factor number. To interpret these two factors,
we examined the factor weights for each behavior (Figure 3B).
The highest weighted factors corresponded to valence-related
behaviors (handling and catching [H/C], olfactory investigation
[Ol], and zone assays [Z1/Z3]), followed by the exploratory (rear-
ing [REA], digging [DIG], and distance covered [DIT]) and stress-
related behaviors (risk assessment [RAS] and escape [ESC]).
The weights for each factor were mostly orthogonal (Figure S2A;
r = —0.24; p = 0.35; Fisher Z transformation test), but the posi-
tions of odorants along each factor were anti-correlated (Fig-
ure S2B; r = —0.79; p < 0.0001), indicating that these two factors
are still largely capturing a single behavioral category and its
opposite (i.e., approach and aversion). This is consistent with
PCA—the valence axis is primary—but goes a step further by
separating out an attractive from an aversive factor and showing
that these factors (but no others) are shared identifiably in cross-
animal comparisons. This provides a parts-based understanding
of the fundamental units of olfactory behavior in mice.

Mouse versus human

Comparative studies of odor valence in mice and humans are
scarce and have yielded conflicting results.’”*® Indeed, whether
mice and humans share a common olfactory perceptual space is
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Figure 3. Optimal reconstruction of mouse behavior and the align-
ment between mouse and human behavioral spaces

(A and B) The optimal reconstruction of mouse behavior requires few di-
mensions.

(A) Non-negative matrix factorization (NMF) is used to learn a low-dimensional
(£the number of measured behaviors) representation of the behavioral data.
The intra-class correlation coefficient (ICC), reflecting the behavioral agree-
ment within (versus across) odorants, is shown as a function of the number of
factors used. Lower numbers of factors effectively denoise the data. Results
for the data are shown in blue; results for the data with shuffled odorant labels
are shown in orange. Eighteen factors would reflect independent contributions
of each behavior. ICC is maximized for a 2-factor representation of behavior.
(B) Contributions of behaviors to the resulting 2 factors.

(C) Alignment of mouse and human behavioral spaces. Canonical correlation
analysis co-aligns mouse behavioral features and human-provided de-
scriptors for the same odorants. Canonical dimensions were computed using
all but one odorant, and the remaining odorant was used to evaluate the
correlation (Pearson) between mouse behavior and human percepts. Error
bars represent standard deviation across held-out odorants. p values were
computed by comparing to shuffled data.

(D) Comparing mouse behaviors and human percepts. Correlation matrix
heatmap comparing the 18 mouse behavioral parameters with 21 human odor
descriptors for all 73 odorants tested here (odor descriptors for 22 odorants
taken from Keller and Vosshall® and 51 predicted using the DREAM model®).
Rows and columns are sorted to maximize clustering in the heatmap, revealing
~2 major clusters of perception and behavior.

See also Figures S2 and S3 and Table S1.
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still unknown. To answer this question, we first compared our
mouse behavioral dataset to the human-rated intensity and
pleasantness reported in a previous study.’ For the 23 overlap-
ping odorants between both studies, we found no significant
correlation among the mouse- and human-rated parameters
(Figure S3A), consistent with our previous study.*® We then
extended this analysis to include 19 additional human semantic
descriptors (e.g., fishy and sweet)® but found only seven signifi-
cant correlations (out of a possible 475) encompassing five
mouse behaviors and four human semantic descriptors
(Figure S3A).

To identify shared structure between mouse olfactory
behavior and human olfactory perception, 23 odorants may be
insufficient. To make use of a larger sample, we used the data
and machine-learning algorithms from the DREAM Olfaction
Prediction Challenge® to obtain predictions of human-rated in-
tensity, pleasantness, and 19 semantic descriptors for the re-
maining 51 odorants tested in our mouse experiments (STAR
Methods). Rather than identify simple correlations, we asked
whether mouse behavioral space and human perceptual space
could be projected onto a common basis. If so, they might simply
be two views of a common mammalian olfactory perceptual
space. We used canonical correlation analysis (CCA) to obtain
this basis using all but one odorant and then asked whether
this basis could identify shared inter-species structure using
the remaining (out-of-sample) odorant. Our results (Figure 3C)
identified a single dimension for this hypothesized shared struc-
ture (Pearson’s r = 0.50; p = 0.02; shuffle test), with additional di-
mensions failing to capture any additional shared structure. This
means that a one-standard-deviation change in the optimal
linear combination of mouse behaviors is associated with a 2
standard deviation change in an optimal linear combination of
human percepts for novel odorants. What human percepts
comprise this shared dimension? The factor weights are shown
in Table S1. No single human percept dominates this dimension,
and individually, each of them is not statistically significant (p >
0.1). Similarly, all human percepts have a Pearson correlation
r < 0.5 versus either of the first two principal components of
mouse behavioral space in Figure 1 (Figure S3B) or the first
two NMF factors obtained from the same space in Figure 3 (Fig-
ure S3C). The correlation between specific human percepts and
mouse behaviors is shown in Figures 3D and S3A. We conclude
that the shared dimension is multifactorial: it cannot be easily
reduced to a single percept or behavior.

Predicting behavior from chemical structure

Prior studies identified relationships between hydrocarbon chain
length or chemical functional group of aliphatic odorants and
their induced neural responses or perceptual similarity.®**
For the twelve aliphatic odorants in our dataset, we found no
apparent association between chemical functional groups and
valence (Figure 4A) but observed a strong rank correlation be-
tween hydrocarbon chain length and 3'dOI (rs = 0.795; p =
0.0034; Figure 4B; Data S2). We observed similar significant re-
lationships for three additional valence-related olfactory investi-
gation parameters (1'dOl, 1/fOl, and 3'fOl), but not for other
behavioral parameters. However, a broader understanding of
odor perception requires a more complete description of the
stimulus.”“? Indeed, robust correlations have been identified

Current Biology 37, 2809-2818, July 12, 2021 2813
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Figure 4. Predicting mouse olfactory-driven behaviors

(A) Twelve n-aliphatic odorants in our dataset include molecules with varying
lengths and different functional groups: amyl acetate (AAC), hexanethiol (HXT),
hexylamine (HXA), hexanol (HXO), heptanol (HPO), heptanal (HPN), heptyl-
amine (HEP), octanoic acid (OCA), octanol (OCO), octanal (OCN), octylamine
(OCT), and octanethiol (OTT). Circles are colored to indicate aversive
(magenta), neutral (gray), or approached (green) odorants.

(B) Correlation plot between the numbers of carbon atoms and the total
duration of olfactory investigation (3'dOl), for the 12 odorants displayed in (A)
(n = 5-9 mice per odorant). The R? value for the linear regression, Spearman’s
correlation coefficient (rs), and associated p values are indicated in the top left
corner of the graph.

(C) Heatmap depicting the rs between 1,536 physicochemical descriptors and
the 18 mouse behavioral parameters. The physicochemical descriptors are
sorted in descending order of the rs for 3'dOI.

(D) Performance of the support vector regression model on the 18 behavioral
parameters. Blue bars are for models trained on all but one mouse and tested
on that mouse. Orange bars are for models trained on all but one odorant and
tested on novel mice for that odorant. Black borders around the bars indicate
significant associations (p < 0.01).

See also Figure S3 and Data S2.

between large sets of physicochemical descriptors and multiple
olfactory perceptual qualities in human, as well as simple mouse
behavioral measures, like investigation time. 1743

To test whether mouse behaviors are related to distinct phys-
icochemical descriptors, we retrieved 4,870 physicochemical
Dragon descriptors for all odorants. After removing descriptors
with near-zero variance or missing data, we calculated the
correlations between the remaining subset of 1,536 physico-
chemical descriptors and the 18 behavioral parameters for all
410 individual mice (Figure 4C; Data S2). Of the possible
27,648 interactions, 29.5% (or 8,141) resulted in significant
(p < 0.05) interactions, with the durations of self-grooming
(dSGR) and handling and catching (dH/C) eliciting the minimum
(16) and maximum (968) significant interactions, respectively.
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Physicochemical descriptors can be used to reverse-engi-
neer perceptual descriptors of odorants in humans.®*34
Can mouse olfactory-driven behaviors also be predicted by
the chemical structure of odorants? To answer this question,
we used an unsupervised machine-learning approach (STAR
Methods) evaluated on either held-out mice or held-out odor-
ants. 17/18 behaviors could be predicted above chance (p <
0.01) using physicochemical features on held-out mice, with
predictive accuracy varying greatly from 1’dOI (r = 0.59; p <
1e—40) to dSGR (r = 0.02; p = 0.31). Because within-odorant
behavior across mice is highly correlated, a stricter test is to
predict behavior for all mice on a held-out odorant. There, 7/
18 behaviors could be predicted (p < 0.01; or 9/18, p <
0.05) from physicochemical descriptors, with the four zone
parameters (indicating approach versus avoidance) having
the strongest predictability (r = 0.38-0.50; p < 0.001;
Figure 4D).

Behavioral effects of odorant concentration

In humans, the quality, valence, and intensity of odorants can
change with concentration.”’"'>*® For example, humans
perceive (R)-1-p-menthen-8-thiol as a pleasant grapefruit odor
at low concentrations but as an unpleasant sulfur odor at high
concentrations. In mouse, the valence®>*' and intensity*® of
odorants can also be concentration dependent, but whether
concentration affects other odor-guided behaviors remains
largely unexplored. To address this question, we scored 123
videos from mice exposed to a subset of 12 odorants at two
additional descending concentrations (850 uM and 8.5 puM; Fig-
ure S4A; Data S3). At the highest concentration tested (85 mM),
odorants have diverse valence, with some eliciting avoidance
(IBT, IAA, and TMT), no change (PEA, 2HO, DMP, VAN, SKA,
and AMB), or approach (IND, TMA, and PUT; Figure 5A). Howev-
er, at lower concentrations, all odorants were neutral or elicited
approach (Figure 5A).?° Scoring the 17 other behaviors for
each concentration yielded 3,474 individual data points (Data
S3). Of the 12 x 3 x 18 = 648 odorant-concentration-behavior
pairwise comparisons, 117 (18.1%) significantly differed from
H20 (Figures 5A and S4A; Data S3). 3'dOl elicited the highest
(23) and dSGR the lowest (1) number of significant behavioral
changes (Figure 5A; Data S3), consistent with odor valence
driving the largest fraction of behavioral variation. Of the 12 odor-
ants tested, 10 elicited significant behavioral changes for all con-
centrations tested, although the remaining 2 (DMP and PEA) did
so for only 2 out of 3 concentrations. Across all odorants, 85 mM
elicited the highest number of combined significant behavioral
changes (60), followed by 8.5 uM (30) and 850 uM (27). We iden-
tified 28/36 unique combinations of significant behavioral
changes: 12 for 85 mM; 8 for 850 uM; and 8 for 8.5 uM
(Figure 5A).

We next estimated the role of concentration and odorant-con-
centration interactions in generating behavioral responses.
ANOVA showed a main effect of either concentration or an inter-
action between odorant and concentration for nearly all behav-
ioral parameters (p < 0.005 for 16/18; p < 1078 for 13/18). The
effect size for odorant identity (n? = 0.27 + 0.05) was slightly
greater than for odorant concentration (n? = 0.18 + 0.04), but
the interaction between odorant identity and concentration
was stronger than either one alone (n? = 0.43 + 0.04).
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Figure 5. The effect of odorant concentra-
tion on behavior

(A) A graphical display summarizing the behavioral
codes for the 12 odorants tested at three different
concentrations. Behaviors showing significant
(one-way ANOVA; BKY multiple comparisons
correction; n = 5-9 mice per odorant) increases,
decreases, and non-significant responses
compared to H20 are indicated in green,
magenta, and gray squares, respectively.

(B) The behavioral profiles (radar plots and Z scores)
for H20 (top center) and the 12 odorants tested at
three concentrations (85 mM, 850 pM, and 8.5 uM)
are shown. The behavioral profiles for the odorants
classified at 85 mM as aversive, neutral, and ap-
proached are shown in different shades of
magenta, gray or black, and green, respectively.
The corresponding descending concentrations are
depicted in lighter hues of the same color, irre-
spective of their valence at 850 uM and 8.5 uM.
(C) Hierarchical clustering analysis of the behavioral
profiles for the 12 odorants tested at the three
different concentrations supported the existence of

Cluster 1

100

Cluster 2

Neutral

% H £ § eoNREREY % E % g8 8 M — — 2 clusters. Bootstrap values®’ are shown only for
i.s. Odorant vs H20: 1 \ e/ s 75 strongly supported nodes, i.e., nodes displaying
B9 doceasoEtonsgnfeent 1l nroae; Distance bootstrap values >70 (total 100 replications).
D (D) Plot comparing the Euclidean distances calcu-
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Inter-odorant [all]  m U ee deseBhav aneee s ore © }s sons (restricted to different concentrations within
[85 mM]— R R LR ZL P TV T }s each odorant), inter-odorant comparisons
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8.5 pM]— X N U Y VEEO ” centration), and subsets of inter-odorant compari-

0 Euclidean distance

Thus, even at low concentrations, odorants impact mouse
behavior and produce diverse behavioral responses. But how
does mouse olfactory behavior change with concentration and
how is odor identity preserved across concentrations?

To answer these questions, we compared the behavioral
profiles across odorants and concentrations. The highest con-
centration (85 mM) yielded the most distinguishable behavioral
profiles across odorants, and some of these profiles were
conserved for the same odorants at 850 uM and 8.5 uM (Fig-
ure 5B). As concentration decreased, the scores for some be-
haviors associated with stress (RAS and ESC) and negative
odor valence (3'Z1) typically decreased, although the ones asso-
ciated with positive odor valence (e.g., dH/C, 1’dOlI, 3'dOlI, and
3'Z3) increased.

Next, we performed a hierarchical clustering of odorants-con-
centrations pairs using the behavioral data. This analysis yielded
two clusters (Figure 5C). Cluster 1 is composed mostly (7/8) of
odorants presented at 85 mM (five neutral and three elicit avoid-
ance), which elicit on average 7.00 + 0.85 (SEM) significant
behavioral changes. By contrast, cluster 2 includes H20, eight
neutral, and 20 approached odorants. These odorants elicit on
average only 2.18 + 0.28 (SEM) significant behavioral changes.
Moreover, in cluster 2, five odorants (TMA, DMP, PUT, TMT,
and VAN) produce behaviors which, although diverse across
odorants, were quite similar across the two lowest

sons for each concentration separately (85 mM,
850 uM, and 8.5 puM). Asterisks indicate significant
differences (one-way ANOVA; BKY multiple com-
parisons correction): ns, non-significant; *p < 0.05;
**p < 0.001.

See also Figure S4 and Data S3.

concentrations of the same odorant. However, all other odorants
are not tightly clustered across their 3 concentrations, suggest-
ing that the behavioral profile changes with concentration. PCA
further supported these results (Figure S4B).

Finally, to compare the magnitude of changes in odorant iden-
tity versus changes in odorant concentration, we calculated the
Euclidean distances between all possible odorant-concentration
pairs. The average distances for different odorant pairs of equal
concentrations (i.e., inter-odorant) and for different concentra-
tion pairs of the same odorant (i.e., inter-concentration) are not
significantly different (Figure 5D). However, the average inter-
odorant distances were significantly higher for odorant pairs at
the highest concentration (85 mM) compared to pairs at the
two lower concentrations (850 M and 8.5 uM). Odorant identity
and concentration thus had a similar quantitative impact on
mouse olfactory behavior, with higher odorant concentrations
producing greater behavioral diversity.

DISCUSSION

Studies from the last 30 years have contributed to quantification,
characterization, and prediction of human olfactory perception.
This was enabled by physicochemical descriptions of odorants,
novel statistical methods, and machine-learning algorithms
applied to large human olfactory psychophysical datasets.®""
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In comparison, mouse olfactory perception is still poorly under-
stood, mainly due to the lack of a large odor-guided behavioral
dataset. Here, we conducted a large-scale study of olfactory-
driven mouse behavior by generating the most comprehensive
mouse olfactory ethological atlas to date. We scored 18 behav-
iors in 525 mice across 98 odorant conditions, generating 9,765
data points encompassing 1,764 odorant-behavior interactions.

In humans, odor character is quantified using behavioral
methods, such as free labeling, odor profiling, or pairwise simi-
larity.*® These methods show that, despite interindividual varia-
tion, humans have shared and reproducible olfactory percepts
for most odorants. Similarly, we find that mouse olfactory
perception can be quantified by measuring several behaviors
and that such behaviors demonstrate shared and reproducible
olfactory perception across individuals. Many odorants were
distinguishable from each other or from the ensemble using
such quantified behaviors as observed in a novel mouse.
Behavior in novel mice was best reconstructed using a low-
dimensional space built from the behavior of other mice. Further-
more, a single dimension showed a modest correlation (r = 0.5)
between mouse behavior and human perception. Lastly, some
mouse behaviors were at least partly predictable from chemical
structure alone. Together, these data indicate that there is
indeed a rich, canonical set of odor-evoked behaviors in mouse,
and this analysis begins to provide insight into mouse olfactory
perception.

We found unique behavioral patterns for most odorants and
for different concentrations of the same odorant, highlighting
the diversity of odor-guided behavioral responses. The olfactory
system employs a combinatorial strategy to maximize the dis-
criminability of distinct odorants at different concentrations.>°°
This strategy involves hundreds to thousands of OSN/OR sub-
types, present in the olfactory mucosa at different abundances.®
Despite this peripheral diversity, it is hypothesized that behav-
ioral and perceptual dimensionality is lower than it first appears.®
Our data were consistent with a low-dimensional space for
behavior. Approach-avoid behaviors, surrogate for mouse odor
valence, were the most important behavioral dimension across
our analyses. Analogously, rated pleasantness, a surrogate for
odor valence, is the principal perceptual dimension in human
odor descriptions.” > Odor valence may thus play a central
role in olfactory perception in mammals more generally. Howev-
er, we offer only a lower bound on odor-evoked behavioral diver-
sity, complexity, and dimensionality; alternative future
techniques could capture additional information spanning addi-
tional dimensions. Furthermore, olfactory perception, resulting
from a combinatorial code of peripheral neural activity, could
be higher dimensional still. The transformation from perception
to behavior may consist of a projection to lower dimension, a
computational transformation consistent with olfactory
circuitry.*®

Valence is the principal axis for both mouse behavior and
human perception,*® and indeed, olfactory receptor responses
in both mice and humans predict human-rated valence.'”
However, this does not imply that specific valence percepts
for odorants are shared across species. Indeed, the shared
factor that we identified using CCA did not have a strong
loading for human-rated pleasantness or any other specific hu-
man percept, suggesting that (at least for this molecular panel)
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any shared perceptual and behavioral representation of spe-
cific odorants across species may have a more multifactorial
origin.

In humans, the same odorant can be perceived as pleasant or
unpleasant, depending on its concentration. We and others have
shown that odorant concentration also impacts mouse olfactory
preferences.’*?>°1°9°1 Here, we extended the publicly avail-
able data on this topic significantly (18 behaviors, 12 odorants,
and 3 concentrations). We found that behavior within odorant
was not fixed across concentrations and that higher concentra-
tions elicited more diverse behavior across odorants. This is
consistent with numerically greater OR and glomerular activation
by higher odorant concentrations,*®*">? thus increasing poten-
tial combinatorial complexity and facilitating downstream
pattern separation. Similar to our findings, human studies also
show that similarities in odor quality between distinct molecules
are inversely related to concentration.*® Odor character is not
consistent across concentrations and so it is not an intrinsic
property of the molecule. Indeed, our analysis suggests that
mouse behavior is a consequence of an interaction between mo-
lecular structure and concentration.

Although we cannot exclude the possibility that lower con-
centrations are undetectably weak for some odorants, we
observed significant (versus odorless H20 control) behavioral
changes for all odorants except PEA at the lowest concentra-
tion (and PEA activates OSNs at concentrations much lower
than that).*®

Molecular features of odorants are closely linked to psycho-
physical and behavioral measures of odor valence in human
and mouse, respectively.”'"*®> Predictive models based on
such features can now accurately predict the human olfactory
percept of many odorants.®°*°° We employed similar strategies
and found that some mouse odor-guided behaviors can also be
partly predicted by the physicochemical properties of odorants.
The observation that specific physicochemical properties of
odorants can predict some behavioral outputs in mice also sug-
gests new possibilities for studying the functional organization of
the mouse olfactory system. Subsets of physicochemical prop-
erties predictive of odor-guided behaviors could potentially be
linked to the spatial organization of ORs/OSN subtypes in the
nasal epithelium. Future large-scale experiments focused on
connecting the zonal expression patterns for all mouse ORs to
the physicochemical descriptors of their respective agonists
will be critical to test this hypothesis.

Future studies using recently developed and fully automated
techniques, such as MoSeq and DeepLabCut,”**° in combina-
tion with behavioral recordings meeting or exceeding the volume
and diversity of odorants and mice used here, have the potential
to further elucidate the structure of mouse behavioral space and
how it relates to odorant identity, valence, and character. We
hope that the results presented here will motivate such future
work, as we have shown the link between odorant and behavior
is strong and shared across individuals.

In conclusion, our study provides a foundational quantitative
database of odor-guided behaviors in the mouse that can be ex-
ploited in future studies to further deconstruct many aspects of
mouse olfactory behavior and putative perception and facilitate
future comparative studies of olfactory percepts among different
species.
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Further information and requests for resources and data should be directed to and will be fulfilled by the Lead Contacts, Luis R. Sar-
aiva (saraivalmr@gmail.com) or Richard C. Gerkin (email: rgerkin@asu.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability
The published article includes all datasets generated or analyzed during this study, and the code generated during this study is avail-
able at https://github.com/rgerkin/manoel-2021.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals

The animals used in the video library from our previous study®® were adult male C57BL/6J mice (aged 8-14 weeks, The Jackson Lab-
oratory). Each mouse was randomly assigned and exposed to only a single odorant, and thus the data for each odorant consisted of
5-10 mice each scored on 18 behaviors. The experiments performed in Saraiva et al.?° were approved by the Fred Hutchinson Cancer
Research Center Institutional Animal Care and Use Committee.

METHOD DETAILS

Behavioral scoring

We retrieved a video library from our previous study,>® in which we subjected adult male mice to the olfactory preference test for a
total duration of 3 minutes. In this study we analyzed 410 videos from mice exposed to an odorless control (i.e., water, or H20) or one
of the 73 odorants at a single concentration (at 85 mM), and 123 additional videos from mice exposed to two other descending con-
centrations (850 uM and 8.5 uM) for a subset of 12 odorants. The odorants tested in the videos include 61 general odorants and 12
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ethologically relevant odorants (7 mouse pheromones, and 5 kairomones). All these compounds were chemically diverse and belong
to multiple chemical structural classes (underlined, for more details see Saraiva et al.?°) as shown below, followed by their 3-letter
abbreviation in parentheses: Alcohols: 2-phenylethanol (2PE); geraniol (GER); heptanol (HPO); hexanol (HXO); linalool (LIN); octanol
(OCO); cis-3-hexenol (C3H). Aldehydes: benzaldehyde (BZL); citral (CIT); citronellal (CTN); heptanal (HPN); octanal (OCN); trans-2-
hexenal (T2H). Amines: 2-methylbutylamine (2MB); 1-(2-aminoethyl)piperidine (AEP); aniline (ANI); 3-amino-s-triazole (AST);
cadaverine (CAD); N,N-dimethylbutylamine (DMB); N,N-dimethylethylamine (DME); N,N-dimethyloctylamine (DMO); N,N-dimethyl-
cyclohexylamine (DMC); heptylamine (HEP); hexylamine (HXA); isoamylamine (IAA); 2-methyl-1-pyrroline (M1P); N-methylpiperidine
(NMP); octylamine (OCT); 2-phenylethylamine (PEA); trimethylamine (TMA); putrescine (PUT); pyrrolidine (PYR); spermidine (SPD);
spermine (SPN); o-toluidine (TOL). Azines: 2,5-dimethylpirazine (DMP); 2-ethyl-3,5(6)-dimethylpirazine (EDM); indole (IND); quinoline
(QUI); skatole (SKA). Camphors: (+/—)-camphor (CAM); (-)-fenchone (-FCH); (+)-fenchone (+FCH); eucalyptol (EUC). Carboxylic acids:
2-methylbutyric acid (MBA); octanoic acid (OCA); propionic acid (PPA). Esters: amyl acetate (AAC); ethyl butyrate (EBT). Ketones: 2-
heptanone (2HO); alpha-ionone (ION). Musks: ambrettolide (AMB); civettone (CIV); muscone (MUS). Terpenes: beta-farnesene (BFA);
(-)-carvone (-CVN); (+)-carvone (+CVN); farnesene mixed isomers (alpha+beta) (FAR); (-)-limonene (-LIM); (+)-limonene (+LIM);
(+)-menthol (+MEN); (-)-menthone (-MNT); (+)-menthone (+MNT); alpha-pinene (PIN); rose oxide (ROX). Thiazoles: 2-isobutylthiazole
(IBT); 2-isopropyl-4-5-dihydrothiazole (IPT); 2,5-dihydro-2,4,5-trimethylthiazoline (TMT). Thiols: 2-propylthietane (2PT); hexanethiol
(HXT); octanethiol (OTT). Vanillin-like compounds: eugenol (EUG); vanillin (VAN).

For each video, in addition to the cumulative duration of olfactory investigation (3'dOl) reported in Saraiva et al.?® for the 3 minutes-
long assay, we scored 17 new behavioral parameters indicative of either valence, stress, and exploration. The videos were random-
ized and scored blind (to the odorant) using the following criteria:

Olfactory investigation (Ol) parameters

1°dOlI, 1°fOl, and 3'fOl represent the cumulative duration (d) or frequency (f) of olfactory investigation during the 15 minute (1) or the
full 3 minutes (3') of the assay. We considered Ol only if the nose of the mouse was overlapping, or in very close proximity (~0.5 cm) of
the stimulus. For these parameters, the videos were randomized and scored by the experimenter.

Zone (2) parameters

1'Z1, 1°Z8, 371, and 3'Z3 represent the cumulative time mice spent in either Zone 1 (Z1) or Zone 3 (Z3) of the cage during the 15
minute (1) or the full 3 minutes (3') of the assay. Here, the test cage was divided into three equal-sized zones, with Z1 representing
the zone furthest away from the odor stimulus and Z3 the zone containing the stimulus. Time spent inside each zone (head of the
animal had to be within the zone) was scored using the Ethovision XT software (version 11, Noldus Information Technology), and
videos in which the mouse transported the piece of filter paper outside Z3 were not included. For these parameters, the videos
were scored by a non-experimenter.

Handling (H) or catching (C) parameters

dH/C and fH/C represent the cumulative duration (d) or frequency (f) where mice handled and/or caught the stimulus with its front
paws during the 3 minutes of the assay. For these parameters, the videos were scored by a non-experimenter.

Risk assessment (RAS)

This parameter represents the number of episodes the mouse displays the flat-back/stretch-attend response, followed by a sniff in
the direction of the stimulus, during the 3 minutes of the assay. For this parameter, the videos were scored by a non-experimenter.
Escape (ESC)

This parameter represents the number of episodes the mouse displays a quick and contactless approach toward the stimulus, fol-
lowed by an even faster withdrawal/darting to the opposite end of the cage, during the 3 minutes of the assay. For this parameter, the
videos were scored by a non-experimenter.

Digging (DIG) parameters

dDIG and fDIG represent the cumulative duration (d) or frequency (f) that the mouse digs into the bedding with the forelimbs, often
kicking it away with the hindlimbs, during the 3 minutes of the assay. For these parameters, the videos were scored by a non-
experimenter.

Distance (DIT)

This parameter represents the total length the mouse walked/ran through during the three minutes duration of the video. Distance
traveled was scored using the Ethovision XT software (version 11, Noldus Information Technology), and video tracking done using
the center-point of the mouse. For this parameter, the videos were scored by a non-experimenter.

Rearing (REA)

This parameter represents the number of episodes the mouse stands on its hindlegs (rearing) anywhere in the cage, including when
rearing against the walls during the 3 minutes of the assay. For this parameter, the videos were scored by a non-experimenter.
Self-grooming (SGR) parameters

dSGR and fSGR represent the cumulative duration (d) or frequency (f) where the mice are self-grooming, defined by when the mouse
was licking its fur, grooming itself with the forepaws, or scratching any part of its body with any limb. For these parameters, the videos
were scored by a non-experimenter.

Machine Learning
We used Python 3.8 and the Pyrfume package (version 0.15) to calculate 1826 physicochemical descriptors for 74 molecules (Mor-
dred, version 1.2). Descriptors with zero variance or > 25% missing values were removed leaving 1328 descriptors, and the remaining
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missing values were iteratively imputed using (scikit-learn, version 0.23.2). We also used Pyrfume to calculate the Morgan fingerprint
similarity (rdkit, version 2020.09.1) of the 74 molecules to a reference set of 9645 (mostly) odorous compounds. We used support
vector regression with leave-one-out cross-validation (scikit-learn) to train two models, one based on Mordred descriptors and
one on Morgan similarities, and their predictions were averaged before validation. We evaluated two kinds of predictions: (1) One
where the models were trained on all but a single mouse, i.e., the training set included other instances of the same odorant presented
to different mice, and (2) one where the models were trained on all but a single odorant, i.e., the training set excluded all mice pre-
sented with that odorant. For (1) evaluation was done per mouse and for (2) averaging across mice within odorant was performed first
and training/testing was done on these averages. We reported the Pearson correlation r between the observed (out-of-sample)
behavior and the predicted behavior; r was chosen to facilitate direct comparison to several predictive models in human olfactory
perception that also use this measure.®**°° Significance was assessed by converting r values to Z-scores using the Fisher trans-
formation and using the standard error for the Fisher Z of 1/sqgrt(n-3) in conjunction with the cumulative normal distribution. We
did not correct our reported values for multiple comparisons, but a False Discovery Rate correction would have had minimal impact.

DREAM predictions

The DREAM model developed in Keller et al.® was applied to H20 and each of the 73 odorants used in the current study to generate
predictions for each of 21 perceptual descriptors. Briefly, an isomeric, canonical SMILES string was generated for each odorant using
rdkit (Python) and used to generate a rdkit mol object in which 3-dimensional coordinates of each atom position were estimated. In
order to match the methods of Keller et al.,® Dragon 6.0 was used to compute features from these 3-dimensional structures. The
DREAM model was re-trained from scratch on the 476 original molecules (from Keller et al.®) and used to predict 21 perceptual de-
scriptors from the 74 odorants used in the current study.

QUANTIFICATION AND STATISTICAL ANALYSIS

The number of mice tested for each odorant and the quantification of each behavioral measurement are described in the “Behavioral
Scoring” section above. The raw behavioral scores and numbers of animals used can be consulted in Data S1. One-way ANOVA
tests were performed using GraphPad Prism 8.0.0 software for each of the 18 behavioral parameters. P values for the pairwise com-
parisons between H20 control and each of the tested odorant stimuli were computed with a two-stage Benjamini, Krieger and Ye-
kutieli (BKY) multiple comparisons correction®” (Figures 1E and 5A; Data S1).

Correlation matrices generated with pandas and scikit-learn were used to compute the eigenvalues and eigenvectors in the prin-
cipal components analysis (Figures 1F and 1G). For Figure S1C, the odorant coloring was done by computing the first three principal
components of the Morgan fingerprint similarity matrix (computed using rdkit and pyrfume), projecting the odorants onto this 3d-
space, normalizing each dimension between 0 and 1, and setting the®* values of each odorant according to these normalized values.

Custom code using numpy and scipy was used to compute multivariate D’ (Figures 2A-2D) and scikit-learn was used to train the
linear classifiers (Figures 2E-21). Scikit-learn was used to perform the NMF analysis (Figures 3A and 3B) and custom code®® was used
to implement the ridge-regularized CCA (Figure 3C).

Spearman’s correlation coefficients of the 1,536 physicochemical descriptors against the 18 behavioral parameters were
computed using Graphpad Prism 8.0.0 software (Figure 4C).

The standardized data (z-scores) in Figure S4A were further analyzed through hierarchical clustering performed with PAlaeonto-
logical STatistics (version 4.06) using Euclidean distances with Ward’s method (Figure 5C). The z-score data matrix was also used for
principal component analyses and performed using PAlaeontological STatistics (version 4.06) (Figure S4B).
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