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Figure S1. Applying the HR sleep algorithm on a shift worker. The free-living trace shows the subtle changes for day of
the week picked up by the algorithm (inference showcased as sleep window, in blue), with 2 sleep windows detected on
Saturday, when they were not at work during the night. HR: Heart Rate; Sed: Sedentary; LPA: Light Physical Activity; ACC:
Acceleration.

Details on the Data Sources

The UK Biobank Validation Study (BBVS)

Participants of the BBVS study were recruited from the Fenland study@]. In brief, 193 participants were recruited between the
ages of 40 and 70, with a BMI between 20 and 50kg - m~2. Recruitment aimed to balance age, sex, and BMI distributions.
Participants were invited to attend an assessment centre on two separate occasions, separated by a free-living period of 9 to 14
days during which they wore three waveform triaxial accelerometers (dominant and non-dominant wrists and thigh) as well as a
combined movement and heart rate sensor. During the free-living period, participants were asked to keep a detailed log of their
sleep, by recording the time they fell asleep and woke up on a daily basis. Ethical approval for the study was obtained from
Cambridge University Human Biology Research Ethics Committee (Ref: HBREC/2015.16). All participants provided written
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Table S1. Prevalence of sleep disorders in the subset of MESA dataset used in this work (n=1,154) against the reported
prevalence in the general population.

Sleep Disease ‘ Participants in Mesa (%) ‘ Prevalence in the population
Restless Legs Syndrome | 59 (5.11%) 1.9 - 4.6%"

Insomnia 67 (5.81%) 6%*

Sleep Apnea 95 (8.23%) 3-7%"

Any of the above 189 (16.38%) -

informed consent. Full details of the BBVS study are described elsewhere”.

Participants were fitted with a combined heart rate and movement sensor (Actiheart, CamNtech, Cambridgeshire, UK),
measuring heart rate and uniaxial acceleration of the trunk every 15 seconds®. In addition, participants were fitted with three
waterproof triaxial accelerometers (AX3, Axivity, Newcastle upon Tyne, UK); one device was attached to each wrist with a
standard wristband, and one to the anterior midline of the right thigh using a medical-grade adhesive dressing. These devices
were set up to record raw, triaxial acceleration at 100Hz with a dynamic range of +8g. BBVS participants were asked to wear
all four devices continuously for the following 8 days and nights while continuing with their usual activities. In addition, they
were asked to complete a diary of their sleep onset and wake times daily. This ensured that any small changes in onset and
offset of sleep were captured during the recording period.

Following the download of the devices, the combined sensor heart rate data was cleaned and non-wear periods identified
by the combination of non-physiological heart rate and prolonged periods of no movement”. All signals from the triaxial
accelerometers were re-sampled to a uniform 100Hz signal by linear interpolation, and then calibrated to local gravity using
a well-established technique®?. Periods of non-wear were classified on the basis of windows comprising an hour or more
wherein the device was inferred to be completely stationary, where stationary is defined as standard deviation in each axis
not exceeding the approximate baseline noise of the device itself (13-milli-g). All non-wear periods were removed from the
analysis. Additionally, pitch, roll and z-angles for all three accelerometry devices were calculated enabling angular postural
assessments and direct comparisons to previously established approaches which only rely on acceleration data!*! The residual
acceleration signal can be interpreted as a measurement of the rotated gravitational field vector which can then be used to
determine the accelerometer’s orientation angles (the conventional pitch and roll and z-angle, defined as the dorsal-ventral
direction! %' Angles for each device were derived according to these formulae:
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The accelerometry and heart rate signals were summarized to a common time resolution of one observation per 30 seconds
and the time-series were aligned. Participants were excluded from the final analysis if they had less than 72 hours of concurrent
wear data (three full days of recording from all four devices). Participants with less than 3 nights of concurrent wear and
diary data were excluded from the final analysis. After these pre-processing steps, the resulting analytical sample was of 158
participants. Three of these participants were on cardioreactive medication and two were taking betablockers.

Multi-Ethnic Study of Atherosclerosis (MESA)

The Multi-Ethnic Study of Atherosclerosis (MESA) is a multi-site prospective study that includes 6,814 men and women who
identify as White, Black/African American, Hispanic, or Chinese, and are between the ages of 45-8412!13 Participants in this
study were followed prospectively to evaluate risk factors for cardiovascular disease. 2,237 MESA participants are enrolled
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in a sleep exam (MESA Sleep Ancillary Study'#), which includes seven days of wrist-worn actigraphy, one full overnight
unattended polysomnography (wrist-worn actigraphy collected concurrently), and a sleep questionnaire. MESA participants
who reported regular nighttime use of nocturnal oxygen or positive airway pressure devices were excluded from participation.

The MESA Sleep Study was conducted using a Compumedics Somte System for PSG, which includes the ECG signals
here used to derive HR and HRV and their associated features, alongside an Actiwatch Spectrum from Philips Respiron-
ics (Pennsylvania, USA) to record actigraphy data. This device captures measurements of movement defined as “activity
counts” (https://www.salusa.se/Filer/Produktinfo/Aktivitet/TheActiwatchUserManualV7.2.pdf) and aggre-
gates them into 30 second epochs. The Actiwatch was securely fastened to participant’s non-dominant wrist. These actigraphy
signals and their associated features can be derived in most research-grade wearable devices. The sensors for the Compumedics
PSG comprised: cortical EEG, bilateral EOG, chin EMG, abdominal and thoracic respiratory inductance plethysmography,
airflow, ECG, leg movement sensor and finger pulse oximetry. These sensors collected three types of signals: bioelectrical
potentials (EEG, EOG, EMG, ECG), waveforms received from transducers (thermistors on the airflow devices, inductance
respiratory bands, piezo leg sensors and position sensors from the leg device) and auxiliary devices (oximetry measures of
oxyhemoglobin saturation and nasal pressure records). Full details of the setup, protocol and sampling rates are available else-
where (https://sleepdata.org/datasets/mesa/pages/equipment /montage-and-sampling-rate-information.
md and https://sleepdata.org/datasets/mesa/files/documentation). All participants included in our study had at
least one full night of PSG recording with concurrent actigraphy and ECG. All nocturnal recordings were transmitted to a
centralized reading center at the Brigham and Women’s Hospital (Boston, MA, USA) and data was scored by trained technicians
using AASM guidelines.

For this study, we synchronized PSG, ECG and actigraphy records into 30-second sleep epochs for a subset of 1,743 out
of the 2,237 participants included in the original study. A total of 494 participants were excluded on the basis of: (1) lack of
concurrent PSG, ECG and actigraphy data; (2) lack of sufficient quality standard data (<3h of usable data from the concurrent
three sensing methods); or (3) lack of data integrity or misalignment of data, removing the resulting actigraphy outlier epochs
based on human expert annotations. These outliers resulted from either non-wearing periods or equipment failure periods. For
actigraphy epochs labeled as outliers, their corresponding HR/HRV epochs were also removed!>. Further, given that some
participants records comprised almost no PSG-labelled wake, which is unrealistic for free-living recordings and far removed
from the general 24-hour HR quantile assumption of the algorithm, we only included participants who had at least 30 minutes
of wake time prior to sleep onset and a maximum of 240 minutes after sleep offset, resulting in a total of 1,154 participants.

To obtain HR information, we used the QRS complexes (R-points) detected using Compumedics Somte (Abbotsford, VIC,
Australia) software Version 2.10 (Builds 99 to 101). The R-points were classified as normal sinus, supraventricular premature
complex or ventricular premature complex. For the data cleaning, filtering and noise removal, we used the Python package
HRV-analysis (https://pypi.org/project/hrv-analysis/). First, RR interval outlier data was filtered using a threshold
method, with a range between 300 to 2000 ms, based on the approach previously described by Tanaka et al'1 then ectopic
beats were removed by through the methods described in Malik et allZ. After this step was completed, we linearly interpolated
the removed R-points and we grouped the RR intervals into 30 seconds epochs.

All data used from the MESA Sleep Ancillary study used in this work is publicly available from the National Sleep Research
Resource repository (https://sleepdata.org/datasets/mesa). Institutional Review Board approval was obtained at each
MESA study site (Wake Forest University School of Medicine, Northwestern University, University of Minnesota, Columbia
University, University of California Los Angeles and the Johns Hopkins University). All participants provided written informed
consent.

A number of common sleep disorders were identified and logged for the MESA sleep study, representing numbers that are
close to their real prevalence in similar populations. A breakdown of those diseases is presented in Supplementary Table [ST]

PhysioNet Apple Watch Polysomnography Study
Data for this study was collected at the University of Michigan between 2017 and 2019. The study consisted of 39 healthy
subjects with no prior diagnosis of sleep-related breathing disorders, parasomnias, restless leg syndrome, central disorders of
hypersomnolence, peripheral vascular disease, cardiovascular disease, vision impairments not correctable by glasses or contact
lenses or other disorders that could cause neurological or psychiatric impairment. The study also excluded on the basis of shift
work and recent transmeridian travel. Furthermore, participants were ruled out on the basis of excessive daytime sleepiness
according to the Epworth Sleepiness Scale, and after the PSG visit, participants which showed symptoms of either obstructive
sleep apnoea or REM sleep behaviours were also excluded. A total of 31 subjects met the required criteria. Data for the study
can be obtained through Physionet!® and a detailed description of this dataset is available elsewhere!.

Participants in this study wore an Apple Watch to collect their activity patterns for 7 to 14 days before spending one night in
a sleep lab. During the final night, participants underwent a PSG study while wearing the Apple Watch device (which collected
HR and triaxial acceleration). The study was approved by the University of Michigan Review Board and all participants
provided written informed consent.
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For the PhysioNet Apple Watch study, Apple Watch raw triaxial acceleration data (X, y, z axis measured in g) at a SOHz
resolution was converted into angular postural based metrics like the ones described on BBVS. The Apple Watch measures HR
in beats per minute, sampling every several seconds through its PPG sensor. For our analysis, we down-sampled HR by taking
the mean of all samples within 15-second windows. For the PhysioNet Apple Watch study, the laboratory technicians started a
“recording” period for the watch before the PSG recording started. For our final analysis, we only included participants whose
sleep onset and offset were greater than 10 minutes from the start and end of the recording period, respectively. Through this
process we intended to introduce a more realistic setting for our model. Details on the laboratory PSG settings can be found
elsewhere!®. The final cohort consisted of 22 participants.

The Multilevel Monitoring of Activity and Sleep in Healthy people (MMASH)

Data for the MMASH study was collected by BioBeats in collaboration with researchers from the University of Pisa and
was obtained through Physionet!®20, The study collected data from 22 healthy young adult male participants comprising
continuous heart rate and triaxial accelerometry monitoring as well as a variety of questionnaires to assess their physical
activity, psychological and sleep characteristics as well as a detailed sleep diary. Participants also recorded their perceived
mood (Positive and negative Affect Schedule-PANAS), Daily Stress Inventory (DSI) during the free-living protocol and
completed a Morningness-Eveningness Questionnaire (MEQ), State-Trait Anxiety Inventory (STAI-Y), Pittsburgh Sleep
Quality Questionnaire Index (PSQI) and Behavioural avoidance/inhibition (BIS/BAS) during their clinic visit. Further,
anthropomorphic characteristics were recorded. All data was processed and recorded by sport and health scientists with the
objective of assessing psychophysiological response to stress stimuli and sleep.

The 22 MMASH participants were fitted with two devices for continuous recording during 2 days: a heart rate monitor
(Polar H7, Polar Electro Inc., Bethpage, NY, USA) which recorded beat-to-beat intervals and was used to obtain HR data and a
triaxial accelerometer (ActiGraph wGT3X-BT - ActiGraph LLC, Pensacola, FL, USA) was worn on the wrist. Participants
were asked to wear the devices continuously during the duration of the protocol and to complete a diary of their sleep onset
and wake up times during the recording period. For MMASH we followed the same pre-processing, data quality and noise
removal protocols that we described in BBVS for both the triaxial accelerometry signal and the HR signal. Two participants
were removed from analysis on the basis of missing diary entries.

All participants provided written informed consent. Information was provided to them regarding the research protocol in
accordance with General Data Protection Regulation: Regulation - EU 2016/679 of the European Parliament and of the Council
27/04/2016. Further, all experiments conducted were in accordance with the Helsinki Declaration as revised in 2013, the study
was approved by the Ethical Committee of the University of Pisa (#0077455/2018).

Evaluation Details

Evaluation with sleep diary and angle change: BBVS

In the BBVS study, participants wore a variety of wearable devices and recorded the time they went to bed and woke up on a
daily basis, providing detailed sleep diaries. As such, we conducted two types of evaluations on this cohort.

Evaluation with sleep diary. First, we compared the performance of our method against those sleep diaries. For our
evaluation, we only included participants who had filled out those diaries and had more than three days of concurrent sensing
and diary data. We evaluated our model against the diaries in terms of total sleep time, sleep onset and offset.

Evaluation with angle change algorithm. We assessed the performance of our approach versus an angular change
algorithm inspired by previous work!>'l. The angular change approach started with calculating the pitch, roll and z-angle
using triaxial acceleration for the device being evaluated. To isolate the gravitational acceleration for each axis, we applied a
low-pass filter (0.2 Hertz) to each of the three axes (X, Y and Z) of every recording being evaluated.

Pitch, roll and z-angles were then calculated and the difference between successive epoch values was then smoothed using a
5 minute median rolling window. A threshold method (< 107" percentile of values in that given day - 15) was applied to both
columns, dividing the time series into initial sleep and wake blocks.

Of these blocks, only those larger than 30 minutes were kept. Blocks separated by less than 60 minutes were then merged
and the largest block was deemed as the main sleep block within the day'!.

Two different angular change evaluations were performed, first, the intersection of the epochs when both pitch and roll
calculations agreed on a sleep label created a voting system for a more reliable final sleep window. Alternatively, z-angle
only measures were used to generate those sleep metrics as previously described!!. No significant difference was found when
comparing the performance of these two different approaches, so we only report the values obtained from the z-angle measures.
All the previous steps were done separately for each limb (dominant and non-dominant wrists, and thigh) on which BBVS
participants wore a device.

In BBVS, HR is recorded continuously across the 24-hr period. Thus, the threshold quantile is expected to be lower the
longer the sampling interval for the ECDF given that sleep occupies a smaller proportion of the total interval being evaluated.
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To evaluate the effect of the chosen ECDF, we analyzed the optimal thresholds and their associated results to better understand
how parameter choice may affect the performance of our approach.

Evaluation with polysomnography and sleep diary: MESA.
Evaluation with polysomnography. The recording time for PSG started when the subject’s setup was complete, yielding
a period of sedentary wakefulness prior to sleep onset. While in an ideal scenario the participant would have been subject
to ground truth recording also during the day, this is not a possibility given the nature of PSG. However, this limitation was
addressed by evaluating PSG against sleep diary on the same dataset and evaluating our approach against both PSG and diary
data. For this evaluation we compared the resulting sleep blocks from PSG, defined as epochs where the participant was in
either NREM (N1, N2, N3) or REM sleep, to the sleeping window obtained through our HR algorithm.

Further, in MESA, we explored how our algorithm performed in healthy participants versus participants with sleep disorders.
To do so, we first evaluated in the full cohort (n=1,154) and then on the subset of participants with (n=189, 16.4%) and without
(n=965, 83.6%) any sleep disorders. The goal of this analysis was to caution and inform about potential limitations that our
method may have when evaluating in diseased participants.

Evaluation with sleep diary. PSG derived sleeping windows were compared to sleep diary records in the MESA cohort.
This comparison allowed us to further understand the deviations of habitual self-reported sleep to objectively monitored,
ground-truth through PSG. For the evaluation we use the same metrics as previously explored in the evaluation against PSG.

Evaluation with polysomnography and angle change: PhysioNet Apple Watch Polysomnography Study.
Evaluation with polysomnography. The PhysioNet Apple Watch study provided a unique opportunity to test our method in
a commercial-grade wrist-worn wearable sensor that was concurrently worn during PSG. For this study, we used the same
evaluation method explored in MESA, exploring our method based on the night-time concurrent recordings of wearable HR
and PSG.

Evaluation with angle change algorithm. Given the multimodal nature of the study, we evaluated both the HR based
algorithm and the angular change based algorithm on this population. For this evaluation we followed the same procedure as
previously described on BBVS.

Evaluation with sleep diary and angle change: MMASH.
In the MMASH study, participants wore an HR strap and triaxial wrist accelerometer and recorded detailed sleep diaries
including the time they fell asleep and woke up, which was filled on a daily basis. For this cohort, we also conducted two types
of evaluation following the procedures used during the BBVS evaluation.

Evaluation with sleep diary. First, we compared the performance of our method against the sleep diaries of each participant.
We evaluated our approach against the sleep diaries in terms of total sleep time, sleep onset and offset.

Evaluation with angle change algorithm. Similar to our second evaluation in BBVS, we also assessed the performance of
our approach against the angular change approach previously described.

Additional Evaluations

Evaluation of traditional algorithms on MMASH

One of the main virtues of the HR algorithm is its ability to detect sleep without requiring sleep diaries while using full-day
signals. Traditional methods like the Cole-Kripke®!, Oakley?Z, or Scripps Clinic*? algorithms were not designed to be applied
during a full day period and thus perform poorly when applied under those conditions, as observed in Supplementary Table 2. In
this table, we observe that the HR method outperforms all algorithms. Upon further evaluation, we found that adding a window
to these methods (available in our HypnosPy Python library on GitHub (https://github.com/HypnosPy/HypnosPy))
significantly improved their results against their “normal” implementation, although they still fall short when comparing their
performance to the HR algorithm in full-day settings.


https://github.com/HypnosPy/HypnosPy
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Algorithm 1 — Method to estimate sleep periods based on Heart Rate.

A full implementation of this algorithm and a plethora of others is available on the open source Python library HypnosPy at

https://github.com/HypnosPy/HypnosPy/

Input: W - Wearable Data with Heart Rate Data
QO - Quantile Value (Default: 0.35)
L - Minimal window length (Default: 30)
G - Maximal gap interval in minutes to merge sleep windows (Default: 120)

Output: Sleep window inferences

Function HR_Algorithm:

/* Split data into “experiment days” from 3pm-to-3pm.

Wp = split_days(W, time=15)

for dc Ddo

/* Extract HR data from wearable device

HR = get HR(W,)

/* Calculate quantiles for day

HR? = calculate_quantile(HR, Q)

/% Get sequences that HR < HRZ

SleepArrays = get_sleep_sequences(HR, HR?)

/* Keep only sequences larger than W.

for sleepArray € len(SleepArrays) do

if lengthInMinutes(sleepArray) < L then
L remove(sleepArray)

* Merge Sequences if gap between them is smaller than G
or i € len(SleepArrays) do
if get_gap(SleepArray;, SleepArray;+1) < G then

L merge(SleepArray;, SleepArray; 1)

|~ BN

* Select Limits of merged Sleep Window
or limit € (onset;of fset) do
Select searchWindow = (limit — 240epochs; limit 4+ 60epochs)
HR Vol = get_rolling_std_dev(searchWindow, window = 10 epochs)
From searchWindow select epochs where HRVol > 6 beats per min and add to highVolatilityList

[ ~HN

/* Define final Sleep Window
if onset select last epoch from highVolatilityList then
L Overwrite 1imit as last epoch

if offset select first epoch from highVolatilityList then
L Overwrite 1imit as first epoch
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Figure S2. Details of the hyper-parameter search procedure for the full-day HR algorithm on the BBVS dataset.
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Figure S3. Details of the hyper-parameter search procedure for the night-only HR algorithm on the BBVS dataset.
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Details of the hyper-parameter search procedure for the full-day HR algorithm on the MMASH dataset.



References

1.

Ohayon, M. M., O’Hara, R. & Vitiello, M. V. Epidemiology of restless legs syndrome: a synthesis of the literature. Sleep
medicine reviews 16, 283-295 (2012).

2. Roth, T. Insomnia: definition, prevalence, etiology, and consequences. J. clinical sleep medicine 3, ST-S10 (2007).

3. Punjabi, N. M. The epidemiology of adult obstructive sleep apnea. Proc. Am. Thorac. Soc. 5, 136—143 (2008).

4. O’Connor, L., Brage, S., Griffin, S. J., Wareham, N. J. & Forouhi, N. G. The cross-sectional association between snacking

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

behaviour and measures of adiposity: the Fenland Study, UK. Br. journal nutrition 114, 1286-1293 (2015).

. White, T. et al. Estimating energy expenditure from wrist and thigh accelerometry in free-living adults: a doubly labelled

water study. Int. J. Obes. 43, 2333-2342 (2019).

. Brage, S., Brage, N., Franks, P. W., Ekelund, U. & Wareham, N. J. Reliability and validity of the combined heart rate and

movement sensor actiheart. Eur. journal clinical nutrition 59, 561-570 (2005).

. Stegle, O., Fallert, S. V., MacKay, D. J. & Brage, S. Gaussian process robust regression for noisy heart rate data. /[EEE

Transactions on Biomed. Eng. 55, 2143-2151 (2008).

. Van Hees, V. T. ef al. Autocalibration of accelerometer data for free-living physical activity assessment using local gravity

and temperature: an evaluation on four continents. J. Appl. Physiol. 117, 738-744 (2014).

. Lukowicz, P., Junker, H. & Troster, G. Automatic calibration of body worn acceleration sensors. In International

Conference on Pervasive Computing, 176181 (Springer, 2004).

Perez-Pozuelo, 1. et al. Diurnal profiles of physical activity and postures derived from wrist-worn accelerometry in UK
adults. J. for Meas. Phys. Behav. 1, 1-11 (2019).

van Hees, V. T. et al. Estimating sleep parameters using an accelerometer without sleep diary. Sci. reports 8, 1-11 (2018).

Dean, D. A. et al. Scaling Up Scientific Discovery in Sleep Medicine: The National Sleep Research Resource. Sleep 39,
1151-1164, DOI:|10.5665/sleep.5774/(2016).

Zhang, G.-Q. et al. The National Sleep Research Resource: towards a sleep data commons. J. Am. Med. Informatics Assoc.
25, 1351-1358, DOI: |10.1093/jamia/ocy064| (2018).

Chen, X. et al. Racial/ethnic differences in sleep disturbances: the multi-ethnic study of atherosclerosis (mesa). Sleep 38,
877-888 (2015).

Varri, A., Kemp, B., Penzel, T. & Schlogl, A. Standards for biomedical signal databases. IEEE Eng. Medicine Biol. Mag.
20, 33-37 (2001).

Tanaka, H., Monahan, K. D. & Seals, D. R. Age-predicted maximal heart rate revisited. J. Am. Coll. Cardiol. 37, 153-156,
DOI: 10.1016/S0735-1097(00)01054-8| (2001).

Malik, M. Heart Rate Variability. Annals Noninvasive Electrocardiol. 1, 151-181, DOI: 10.1111/j.1542-474X.1996|
tb00275.x (1996).

Goldberger, A. L. et al. Physiobank, physiotoolkit, and physionet: components of a new research resource for complex
physiologic signals. circulation 101, e215-e220 (2000).

Walch, O., Huang, Y., Forger, D. & Goldstein, C. Sleep stage prediction with raw acceleration and photoplethysmography
heart rate data derived from a consumer wearable device. Sleep 42, zsz180 (2019).

Rossi, A. et al. Multilevel monitoring of activity and sleep in healthy people (version 1.0.0). PhysioNet (2020).

Cole, R. J., Kripke, D. F., Gruen, W., Mullaney, D. J. & Gillin, J. C. Automatic sleep/wake identification from wrist activity.
Sleep 15, 461-469 (1992).

Oakley, N. Validation with polysomnography of the sleepwatch sleep/wake scoring algorithm used by the actiwatch activity
monitoring system. Bend: Mini Mitter; Camb. Neurotechnology (1997).

Kripke, D. F. ef al. Wrist actigraphic scoring for sleep laboratory patients: algorithm development. J. sleep research 19,
612-619 (2010).

Kripke, D. F. et al. Wrist actigraphic scoring for sleep laboratory patients: algorithm development. J. sleep research 19,
612-619 (2010).


10.5665/sleep.5774
10.1093/jamia/ocy064
10.1016/S0735-1097(00)01054-8
10.1111/j.1542-474X.1996.tb00275.x
10.1111/j.1542-474X.1996.tb00275.x

	References

