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A 3D transcriptomics atlas of the mouse nose sheds
light on the anatomical logic of smell
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SUMMARY

The sense of smell helps us navigate the environment, but its molecular architecture and underlying logic
remain understudied. The spatial location of odorant receptor genes (Olfrs) in the nose is thought to be inde-
pendent of the structural diversity of the odorants they detect. Using spatial transcriptomics, we create a
genome-wide 3D atlas of the mouse olfactory mucosa (OM). Topographic maps of genes differentially ex-
pressed in space reveal that both Olfrs and non-Olfrs are distributed in a continuous and overlapping fashion
over at least five broad zones in the OM. The spatial locations of Olfrs correlate with the mucus solubility of the
odorants they recognize, providing direct evidence for the chromatographic theory of olfaction. This resource
resolves the molecular architecture of the mouse OM and will inform future studies on mechanisms underly-
ing Olfr gene choice, axonal pathfinding, patterning of the nervous system, and basic logic for the peripheral

representation of smell.

INTRODUCTION

The functional logic underlying the topographic organization of
primary receptor neurons and their receptive fields is well known
for all sensory systems but olfaction (Kandel et al., 2013). The
mammalian nose is constantly flooded with odorant cocktails.
Powered by a sniff, air enters the nasal cavity until it reaches
the olfactory mucosa (OM). There, myriad odorants activate
odorant receptors (Olfrs) present in the cilia of olfactory sensory
neurons (OSNs), triggering a cascade of events that culminate in
the brain and result in odor perception (Buck and Axel, 1991;
Kandel et al., 2013). Most mouse mature OSNs express a single
allele of one out of ~1,100 Olfr genes (Olfrs) (Chess et al., 1994;
Hanchate et al., 2015; Malnic et al., 1999; Saraiva et al., 2015b).
Olfrs employ a combinatorial strategy to detect odorants, which
maximizes their detection capacity (Malnic et al., 1999; Nara
et al., 2011). OSNs expressing the same Olfr share similar
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odorant response profiles (Malnic et al., 1999; Nara et al.,
2011) and drive their axons to the same glomeruli in the olfactory
bulb (Mombaerts et al., 1996; Ressler et al., 1994; Vassar et al.,
1994). Thus, Olfrs define functional units in the olfactory system
and function as genetic markers to discriminate between
different mature OSN subtypes (Ibarra-Soria et al., 2017; Saraiva
et al., 2015b).

Another remarkable feature of the OSN subtypes is their
spatial distribution in the OM. Early studies postulated that
OSNs expressing different Olfrs are spatially segregated into
four broad areas within the OM, called “zones,” and which
define hemicylindrical rings with different radii (Ressler et al.,
1993; Vassar et al., 1993). Subsequent studies identified Olfrs
expressed across multiple zones, making clear that a division
in four discrete zones might not accurately reflect the system,
and a continuous numerical index representing the pattern of
expression of each Olfr along the zones was implemented
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Figure 1. Application of TOMO-seq to mouse OM

(A) Experimental design. TOMO-seq was performed on nine tissue samples, from which three were sliced along the dorsal-ventral axis (DV), three along the
anterior-posterior axis (AP), and three along the lateral-medial-lateral axis (LML).

(B) Boxplots showing the distributions of Spearman’s correlation coefficients (rho) between replicates in each axis.

(C) Heatmaps showing Spearman’s correlation between gene expression patterns at different positions along the three axes.

(D) Number of detected genes along each axis separately or across the whole dataset. Genes were considered as detected when they had at least one normalized
count in at least 10% of the samples from one axis.

(E) Heatmaps of log1o normalized expression (after combining the three replicates per axis) of OM canonical markers along the three axes (GBCs, globose basal
cells; HBCs, horizontal basal cells; iOSNs, immature olfactory sensory neurons; mOSNs, mature olfactory sensory neurons; RESs, respiratory epithelium cells;

RPM, reads per million; SUSs, sustentacular cells).

(F) Normalized expression of canonical OM spatial marker genes along the three axes. Red line shows fits with local polynomial models.

(Miyamichi et al., 2005; Strotmann et al., 1992). More recently, a
study reconstructed Olfr expression patterns in three dimen-
sions (3D) and qualitatively classified the expression areas of
68 Olfrs in nine overlapping zones (Zapiec and Mombaerts,
2020). However, all these studies sampled a fraction (~10%) of
the total intact olfactory receptor gene repertoire and, most
importantly, lack a quantitative and unbiased definition of zones
or indices. We do not currently understand the full complexity of
the OM and lack an unbiased and quantitative definition of
zones. In effect, the exact number of zones, their anatomical
boundaries, molecular identity, and functional relevance are
yet to be determined.

One hypothesis is that the topographic distribution of Olfr and
OSN subtypes evolved because it plays a key role in the process
of Olfr choice in mature OSNs and/or in OSN axon guidance (Bash-
kirova et al., 2020; Coppola et al., 2013). An alternative hypothesis
is that the spatial organization of Olfr/OSN subtypes is tuned to
maximize the detection and discrimination of odorants in the pe-
ripheral olfactory system (Ressler et al., 1993). Interestingly, the
receptive fields of mouse OSNs vary with their spatial location
(Ma and Shepherd, 2000), which in some cases correlates with
the patterns of odorant sorption in the mouse OM—this associa-
tion was proposed as the “chromatographic hypothesis” decades
before the discovery of the Olfrs (Mozell, 1966) and later rebranded
as the “sorption hypothesis” in olfaction (Schoenfeld and Cleland,
2006; Scott et al., 2014). While some studies lend support to these
hypotheses (reviewed in Secundo et al. 2014), others question
their validity (Abaffy and Defazio, 2011; Coppola et al., 2019).
Thus, the logic underlying the representation of smell in the periph-
eral olfactory system still remains unknown, and it is subject of
great controversy (Kurian et al., 2021; Secundo et al., 2014).
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Spatial transcriptomics, which combines spatial information
with high-throughput gene expression profiling, expanded our
knowledge of complex tissues, organs, or even entire organisms
(Achim et al., 2015; Asp et al., 2019, 2020; Junker et al., 2014;
Peng et al., 2016). In this study, we employed a spatial transcrip-
tomics approach to create a 3D map of gene expression of the
mouse nose, and we combined it with single-cell RNA
sequencing (RNA-seq), machine learning, and chemoinfor-
matics to resolve its molecular architecture and shed light onto
the anatomical logic of smell.

RESULTS

A high-resolution spatial transcriptomic map of the
mouse olfactory mucosa

We adapted the RNA-seq tomography (Tomo-seq) method
(Junker et al., 2014) to create a spatially resolved genome-wide
transcriptional atlas of the mouse nose. We obtained cryosec-
tions (35 um) collected along the dorsal-ventral (DV), anterior-
posterior (AP), and lateral-medial-lateral (LML) axes (n = 3 per
axis) of the OM (Figure 1A) and performed RNA-seq on individual
cryosections (see STAR Methods). After quality control (Figures
S1A-S1D; Table S1; STAR Methods), we computationally refined
the alignment of the cryosection along each axis, and we
observed a high correlation between biological replicates (Fig-
ure 1B). Hence, we combined the three replicates into a single se-
ries of spatial data, including 54, 60, and 56 positions along the
DV, AP, and LML axis, respectively (Figure 1C; STAR Methods).
On average, we detected >18,000 genes per axis, representing
a total of 19,249 genes for all axes combined (Figure 1D). Molec-
ular markers for all canonical cell types known to populate the
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mouse OM were detected in all axes (Figure 1E) and expressed at
the expected levels (Saraiva et al., 2015b).

Next, we verified the presence of a spatial signal with the Mor-
an’s | (Schmal et al., 2017; Figure S1E), whose value is signifi-
cantly higher than 0 for the data along all axes (p < 2 x 107'®
for all axes), indicating that nearby sections have more similar
patterns of gene expression than expected by chance. Given
the left/right symmetry along the LML axis (Figure 1C), the data
were centered and averaged on the two sides—henceforth, the
LML axis will be presented and referred to as the lateral-medial
(LM) axis (see STAR Methods). We could reproduce the expres-
sion patterns for known OM spatial markers, including the dorso-
medial markers Acsm4 and Nqo1 (Gussing and Bohm, 2004; Oka
et al., 2003) and the ventrolateral markers Ncam2 and Reg3g
(Alenius and Bohm, 1997; Yu et al., 2005; Figures 1F and S1F).

Together, these results show that RNA tomography is a sensi-
tive and reliable method to examine gene expression patterns in
the mouse OM.

Spatial differential gene expression analysis identifies
cell-type-specific expression patterns and functional
hotspots in the OM

In the last 3 decades, multiple genes with spatially segregated
expression patterns across the OM have been identified. Most
of these genes are expressed in mature OSNs and encode che-
mosensory receptors, transcription factors, adhesion mole-
cules, and many molecules involved in the downstream signaling
cascade of receptor activation (Cho et al., 2007; Cloutier et al.,
2002; Fulle et al., 1995; Greer et al., 2016; Gussing and Bohm,
2004; Juilfs et al., 1997; Liberles and Buck, 2006; Miyamichi
et al., 2005; Norlin et al., 2001; Oka et al., 2003; Pacifico et al.,
2012; Saraiva et al., 2015b; Tietjen et al., 2003, 2005; Vassar
et al., 1993; Wang et al., 2004; Yoshihara et al., 1997; Yu et al.,
2005; Zapiec and Mombaerts, 2020). A smaller number of
zonally expressed genes (e.g., metabolizing enzymes, chemo-
kines, and transcription factors) were found to be expressed in
sustentacular cells, globose basal cells, olfactory ensheathing
cells, Bowman’s gland cells, and respiratory epithelial cells
(Cloutier et al., 2002; Duggan et al., 2008; Heron et al., 2013;
Juilfs et al., 1997; Miyawaki et al., 1996; Norlin et al., 2001; Pe-
luso et al., 2012; Whitby-Logan et al., 2004; Yu et al., 2005).
Despite this progress, our knowledge on what genes display
true zonal expression patterns and what cell types they are pri-
marily expressed in is still very limited.

To identify axis-specific differentially expressed genes (DEGs)
(hereafter referred to as spatial DEGs), we first filtered out lowly
expressed genes, then binarized the expression levels at each
position according to whether they were higher or lower than
their median expression, and applied the Ljung-Box test to the
autocorrelation function calculated on the binarized expression
values (Figure S2A; STAR Methods). After correcting for multiple
testing, we obtained a total of 12,303 spatial DEGs for the three
axes combined (false discovery rate [FDR] < 0.01; Figure 2A)—
the AP axis showed the highest number of spatial DEGs
(10,855), followed by the DV axis (3,658) and the LM (1,318).

Next, we added cell-type resolution to the spatial axes by
combining our data with a single-cell RNA-seq (scRNA-seq) da-
taset from 13 cell types present in the mouse OM (Fletcher et al.,
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2017). We cataloged spatial DEGs based on their expression in
mature OSNs (mMOSNSs) versus the 12 other cell types (non-
mOSNSs; Figures 2B and 2C; Table S2). This led to the identifica-
tion of 456 spatial DEGs expressed exclusively in non-mOSNs,
which are associated with gene ontology (GO) terms, such as
transcription factors, norepinephrine metabolism, toxin meta-
bolism, bone development, regulation of cell migration, T cell
activation, and others (Table S2). Some genes are expressed
across many cell types, but others are specific to one cell type
(Figure 2C; Table S2). As expected, some of these genes are
cell-specific markers with known spatial expression patterns,
such as the sustentacular cells and Bowman’s glands markers
Cyp2g1 and Gstm2 (Yu et al., 2005), the neural progenitor cell
markers Eya2 and Hes6 (Tietjen et al., 2003), and the basal lam-
ina and olfactory ensheathing cell markers Aldh71a7 and Aldh3a1
(Norlin et al., 2001; Table S2). We also identified spatial DEGs
along a single axis or multiple axes and specific to one or few
cell types (Figures S2B and S2C). For example, the ribosomal
protein Rps21 plays a key role in ribosome biogenesis, cell
growth, and death (Wang et al., 2020) and is primarily expressed
in horizontal basal cells (HBCs), consistent with their role in the
maintenance and regeneration of the OM (Leung et al., 2007).
Another example is the extracellular proteinase inhibitor
Wfdc18, which induces the immune system and apoptosis
(Jung et al., 2004) and is expressed in microvillous cells type 1
(MVC1s), consistent with their role in immune responses to viral
infection (Baxter et al., 2020). Two more examples are the fibro-
blast growth factor Fgf20 in immature sustentacular cells (iSCs)
and the adapter protein Dab2 in mature sustentacular cells
(mSCs) (Figures S2B and S2C). Fgf20 is expressed in several
cell types, regulates the horizontal growth of the olfactory turbi-
nates, and is preferentially expressed in the lateral OM (Yang
et al., 2018), consistent with our data. Dab2 regulates mecha-
nisms of tissue formation, modulates immune responses, and
participates in the absorption of proteins (Finkielstein and Capel-
luto, 2016; Park et al., 2019), consistent with the known mainte-
nance and support roles of mSCs in the OM (Brann et al., 2020).

A GO enrichment analysis on the axis-specific DEGs for non-
mOSNSs genes revealed a very wide variety of biological pro-
cesses and molecular functions. Some of the notable terms
identified were water and fluid transport (e.g., Ctfr and Agp3),
transcription factors (e.g., Hes1 and DIx5), oxidation-reduction
processes (e.g., Scd2 and Cyp2f2), microtubule cytoskeleton or-
ganization involved in mitosis (e.g., Stil and Aurkb), cell cycle
(e.g., Mcm3 and Mcm4), cell division (e.g., Kif11 and Cdca3),
negative regulation of apoptosis (e.g., Dab2 and Scg2), sensory
perception of chemical stimulus (e.g., OIfr870 and Gnas), and
cellular processes (e.g., Mal and Pthlh), among many others (Ta-
ble S2).

The identification of thousands of spatial DEGs prompted us
to examine their distribution patterns along each axis and the pu-
tative functions associated with such spatial clusters of gene
expression. We started by using uniform manifold approximation
and projection (UMAP) (Becht et al., 2018) and hierarchical clus-
tering to visualize and cluster all spatial DEGs along the three
axes. This analysis uncovered nine patterns of expression in
the DV and AP axes each and five patterns in the LM axis (Figures
2D and 2E). These patterns include variations of four major
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Figure 2. Genes with non-random spatial
4 patterns across different cell types in the
OM
(A) Venn diagram showing the numbers of spatial
differentially expressed genes (DEGs) along each
axis.
(B) Bar plot showing the logio number of spatial
DEGs that are mOSN specific (“mOSNs”) or that
are detected only in cell types other than mOSNs
(“other”).
(C) Heatmap of log1o mean expression per cell type
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of genes that are not expressed in mOSNs but only
in other OM cell types (INPs, immediate neuronal
precursors; iSCs, immature sustentacular cells;
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villous cells; mSCs, mature sustentacular cells).

(D) UMAP plots of spatial DEGs along the three
axes (n = 3 per axis). Each gene is colored ac-
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shapes: monotonically increasing (/), monotonically decreasing
(\), U-shape (U), and inverted U-shape (N) (Figure 2E). The latter
two patterns present clear maximum and minimum at different
positions along the axis—for example, the brown, green, pink,
magenta, and black AP clusters show a similar inverted U-shape
pattern, but their maximum moves along the axis (Figure 2E). As
expected, the dorsomedial markers Acsm4 and Ngo1 belong to
the turquoise clusters in both the DV and LM axes, while the
ventrolateral marker Reg3g belongs to the blue cluster from
the DV axis (Figure 1F; Table S3), mimicking their respective
expression pattern in the mouse OM.

The total number of genes per cluster had a median value of
236 but varied greatly between clusters—ranging from 57 in the
green LM cluster to 8,551 in the turquoise AP cluster (Figure 2D;
Table S3). GO enrichment analyses on the spatial DEGs yielded
enriched terms for 14 of the 23 spatial clusters (Table S3). For
example, the turquoise AP cluster displaying a monotonically
increasing pattern (Figure 2E) yielded GO terms associated with
the molecular machinery of mMOSNs—such as axonal transporta-
tion, RNA processing, ribosomal regulation, and regulation of his-
tone deacetylation (Table S3). Interestingly, the brown DV cluster,
which displays a monotonically decreasing expression pattern
(Figure 2E), had similar GO term enrichment (Table S3). In agree-
ment with these results, we found that most known OSN activity-
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dependent markers (Wang et al., 2017) are
spatial DEGs belonging to the AP tur-
quoise and brown clusters, which contain
genes with expression peaks in the poste-
rior region (Figure S2E; Table S3). We also
observed a similar trend in the DV axis,
with many of these markers being more
highly expressed in the dorsal region
(Figure S2E).

The results above show that OSN activity is enriched in the dor-
soposterior region of the OM, which could be due to an enrich-
ment of OSNs in that region. To test this hypothesis, we estimated
the abundance and spatial variability of OSNs and five additional
major cell types (HBCs, globose basal cells [GBCs], SCs, MVCs,
and immediate neuronal precursors [INPs]) in each section
through a cell deconvolution analysis (see STAR Methods). We
observed statistically significant changes in the abundance of
OSNs, which is predicted to be higher in the dorsoposterior region
of the OM, as previously suggested (Nickell et al., 2012; Vedin
et al., 2009). Conversely, other cell types like HBCs are predicted
to have an opposite pattern, as they tend to be more abundant in
the anteroventral region (Figure S2F; Table S2).

Next, we extended our GO analysis to the remaining spatial
clusters and found additional terms enriched or shared between
several clusters among the three axes. For example, GO terms
enriched in the dorsomedial region (turquoise DV, pink AP, and
LM green clusters) include detoxification of several metabolites
and multiple metabolic and catabolic processes, suggesting
that this region is involved in the OM detoxification (Table S3).
Another example is the enrichment in terms related to the im-
mune system—such as defense response and humoral immune
response—in the anteromedial section along the AP axis (yellow,
black, and magenta AP and turquoise LM clusters), which

DV axis
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strongly hints at a role of this area in defending OM from patho-
genic invaders (Table S3). The anteroventral and posteroventral
regions (blue DV and blue AP clusters) are enriched in terms
related to the cellular and anatomical organization (e.g., extracel-
lular matrix organization and regulation of cell communication)
and bone and cartilage development (e.g., ossification and bio-
mineral tissue development), suggesting these locations are hot-
spots for the development and regulation of the OM structure.
Finally, the ventral portion of the DV (red DV cluster) is associated
with terms related to cilia movement and function (e.g., regula-
tion of cilium movement and microtubule-based movement),
consistent with both the location and functions of the respiratory
epithelium (Yu et al., 2005).

Next, we further explored the relationships between the genes
populating each cluster. We found that ventral genes (blue DV
cluster) tend to reach a peak in expression in the anterior area
of the OM (yellow AP cluster) more often than expected by
chance (Figure 2F). We also observed that medial genes (tur-
quoise LM cluster) are more highly expressed in the dorsal
(magenta DV cluster) and anterior regions (black, yellow, and
magenta AP cluster), while genes peaking in the lateral region
(brown LM cluster) tend to be ventral (red DV cluster; Figure 2F).
These conclusions hold, even when we exclude Olfrs from the
analysis (Figure S2D).

These associations between the clusters of spatial DEGs
along different axes suggest that the presence of complex 3D
expression patterns in OM is not restricted to either Olfrs or
OSNs. Moreover, our results show that our experimental
approach can uncover spatially restricted functional hotspots
within the OM.

A 3D transcriptomic atlas of the mouse OM

Since the OR discovery 3 decades ago (Buck and Axel, 1991), in
situ hybridization (ISH) has been the method of choice to study
spatial gene expression patterns across the OM. This method
is technically challenging and inherently a very low-throughput
experimental approach.

As we showed above, our Tomo-seq data enable a systematic
and quantitative estimation of gene expression levels along the
three axes of the OM. Here, we take this analysis one step further
and generate a fully browsable tridimensional (3D) gene expres-
sion atlas of the mouse OM. First, we reconstructed the 3D shape
of OM based on publicly available images of OM sections (STAR
Methods). We then fed the shape information combined with the
gene expression data along the three axes into the iterative pro-
portional fitting (IPF) algorithm (Fienberg, 1970; Junker et al.,
2014; Figure 3A). The 3D atlas of the OM faithfully reproduced
the known 3D pattern of the dorsomedial marker Acsm4 (Oka
et al., 2003; Figure 3B). To further validate our 3D gene expres-
sion atlas of the OM, we compared the 3D reconstructed patterns
with conventional ISH patterns for five spatial DEGs identified in
this study. The first gene validated was Cytl7, which we
confirmed to be expressed along the septum throughout the
OM (Figures 3C and 3D), consistent with the role Cyt/1 plays in
osteogenesis, chondrogenesis, and bone and cartilage homeo-
stasis (Shin et al., 2019; Zhu et al., 2019). The four additional
genes (OIfr309, OIfr618, Olfr727, and Moxd2) validated via ISH
are presented elsewhere in this manuscript (Figures 4, 5, and S4).
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To make this 3D gene expression atlas of the mouse OM avail-
able to the scientific community, we created a web portal (available
at http://atlas3dnose.helmholtz-muenchen.de:3838/atlas3Dnose)
providing access to the spatial transcriptomic data described here
in a browsable and user-friendly format. This portal contains
search functionalities allowing the users to perform pattern search
by gene, which returns (1) the normalized counts along each of the
three axes, (2) the predicted expression pattern in 3D with a zoom
function, (3) visualization of the expression patterns in virtual cryo-
sections along the OM by selecting any possible pairwise intersec-
tion between two given axes (i.e., DVXAP, DVXLM, and APxLM), (4)
the degrees of belonging for each “zone” (see results section
below), and (5) single-cell expression data across 14 different
cell types.

In sum, here, we generated and made publicly available a
highly detailed and fully browsable 3D gene expression atlas of
the mouse OM, which allows the exploration of the expression
patterns for ~20,000 genes.

Topographical expression patterns of Olfrs

In our combined dataset, we detected a total of 959 Olfrs (Fig-
ure 4A), of which we confidently reconstructed the spatial
expression patterns for 689 differentially expressed in space
(FDR < 0.01; Figure 4B)—a number six times larger than the com-
bined 112 Olfrs characterized by previous ISH studies (Miyami-
chi et al., 2005; Ressler et al., 1993; Vassar et al., 1994; Zapiec
and Mombaerts, 2020). To define Olfr expression in 3D space
in a rigorous, unbiased, and quantitative way, we ran a latent
Dirichlet allocation (LDA) algorithm (STAR Methods; Liu et al.,
2016) on the 689 spatially differentially expressed Olfrs. LDA is
a generative statistical model that can infer the topics of a collec-
tion of documents based on the variability and frequency of spe-
cific words. In the context of this study, if the spatial expression
data of Olfrs are considered equivalent to “documents,” the in-
ferred topics correspond to “zones” (STAR Methods). We ran
LDA for different numbers of zones, and the trend of the log likeli-
hood function suggested that the minimal number of topics
required to represent the diversity of patterns is five (Figure S3A;
STAR Methods). Next, we visualized the spatial distribution of
these five zones in our 3D OM model, with colors representing
the probability that a given spatial position belongs to each
zone. These five zones extend from the dorsomedial-posterior
to the lateroventral-anterior region (Figure 4C), consistent with
the previously described zones (Miyamichi et al., 2005; Ressler
et al., 1993; Vassar et al., 1993).

The majority of Olfrs with known spatial patterns are restricted
to a single zone, but a small number of Olfrs are expressed
across multiple zones in a continuous or non-continuous fashion
(Miyamichi et al., 2005; Strotmann et al., 1992; Zapiec and Mom-
baerts, 2020). Under this logic, each Olfr has a different probabil-
ity of belonging to the five topics and zones we identified. To test
this assumption, we used the same mathematical framework as
above to compute the probabilities that the expression pattern of
each Olfr belongs to a given zone, i.e., the “degree of belonging”
(DOB) (Table S4). The DOBs represent a decomposition of the
expression patterns in terms of the five zones (Figure 4C) and
quantitatively describe the changes in patterns of genes with
overlapping areas of expression (e.g., see Figure S3B). The width
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Figure 3. The 3D reconstruction of the OM

In-situ hybridization

(A) Schematic of 3D shape reconstruction strategy. Images of 2D slices along the AP axis of the OM were piled together to build an in silico 3D model of OM, which
can also be used to visualize in silico sections. This 3D model, together with the gene expression data along each axis, was the input of the iterative proportional
fitting algorithm, which allowed us to estimate a 3D expression pattern for any gene.

(B and C) Reconstruction of the 3D expression patterns of the Acsm4 (B) and Cyt/7 (C) in the OM, visualized in 3D and in OM coronal sections taken along the AP

axis.

(D) ISH experiment validating Cyt/1 spatial expression pattern reconstructed in (C); note that Cyt/1 is expressed in the septal region all along the OM. Purple
arrowheads indicate the location of labeled cells. The dotted outline marks the borders of the OM dissected and used in the RNA-seq experiments and for the

construction of the 3D model.

of the distribution of DOBs across the five zones, which can be
measured with entropy, can distinguish genes whose patterns
mostly fit in a single zone from those spanning multiple zones
(Figure S3C; STAR Methods).

To visualize the global distribution of the 689 Olfrs, we applied
the diffusion map algorithm (Haghverdi et al., 2015) to their
DOBs. This showed that the genes are approximately distributed
along a continuous line spanning the five zones and without clear
borders between zones (Figure 4D), consistent with previous
studies (Miyamichi et al., 2005; Strotmann et al., 1992; Zapiec
and Mombaerts, 2020). With the diffusion pseudo-time algorithm
(Haghverdi et al., 2016), we calculated an index (hereafter
referred to as “3D index”) that tracks the position of each Olfr
gene along the 1D curve in the diffusion map and represents
its expression pattern (Figure 4E).

While our approach yielded an index for the 689 spatially
differentially expressed Olfr genes used to build the diffusion
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map, there were 697 Olfrs that could not be analyzed, either
because they were too lowly expressed or not detected at
all in our dataset (Figure 4A). Since the spatial expression pat-
terns for some Olfrs are partly associated with their chromo-
somal and genomic coordinates (Sullivan et al., 1996; Tan
and Xie, 2018; Zhang et al., 2004), we hypothesized that we
could use a machine-learning algorithm to predict the 3D
indices for the 697 Olfrs missing from our dataset. Thus, we
trained a random forest algorithm on the 3D indices of the
spatially differentially expressed Olfrs in our dataset using
nine genomic features as predictors, such as the chromosomal
position, number of Olfrs in cluster, and distance to nearest
known enhancer (Figure 4F; STAR Methods). The algorithm
performance was confirmed by over 100 cross-validation iter-
ations, which revealed a low root-mean-square error (<10%)
on the mean 3D index (Figure S4A; STAR Methods). The five
most important predictors were features associated with
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Figure 4. Zonal organization of Olfrs in the OM

(A) Number of Olfrs detected in our data and in an OM bulk RNA-seq data (Saraiva et al., 2015b).

(B) Venn diagram of spatially differentially expressed Olfrs per axis (n = 3 per axis).

(C) Visualization of the five zones across the OM (coronal sections) estimated with a latent Dirichlet allocation algorithm. The colors indicate the probability (scaled
by its maximum value) that a position belongs to a given zone.

(D) Diffusion map of Olfrs. Genes are colored based on the zone they fit in the most. DC, diffusion component.

(E) Same as (D), with Olfrs colored by their 3D index.

(F) We fitted a random forest algorithm to the 3D indices of 681 spatial Olfrs using nine genomic features as predictors. After training, the random forest was used
to predict the 3D indices of 697 Olfrs that have too low levels in our data.

(G) 3D indices versus the indices of 80 Olfrs estimated in Miyamichi et al. (2005) from ISH data. Black circles indicate Olfrs detected in our dataset; green circles
are Olfrs whose indices were predicted with random forest. The correlation coefficients computed separately on these two sets of Olfrs are, respectively, rho =
0.92 (p <2 x 107" and rho = 0.69 (p = 0.009).

(H-P) Predicted expression patterns (H, K, and N), degrees of belonging (I, L, and O), and ISH (J, M, and P) for OIfr309, Olfr727, and OIfr618, respectively. Purple
arrowheads indicate the location of labeled cells. The dotted outline marks the borders of the OM dissected and used in the RNA-seq experiments and for the
construction of the 3D model.
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chromosomal position, distance to the closest Olfr enhancer
(Monahan et al., 2017), length of the Olfr cluster, position in
the Olfr cluster, and phylogenetic Olfr class (Figure 4F). Using
this machine-learning algorithm, we predicted the 3D indices
for the 697 Olfrs missing reliable expression estimates in our
dataset (Table S4).

Overall, through multiple unsupervised and supervised
computational methods, we have quantitatively defined five
spatial expression domains in the OM (called zones) and have
provided accurate 3D spatial indices for 1,386 Olfrs, which rep-
resents ~98% of the annotated Olfrs.

Importantly, we found strong correlations between the “Miya-
michi indices” inferred using ISH in Miyamichi et al. (2005) and
our 3D indices (tho = 0.88; p < 2 x 10~ '%; Figure 4G). This corre-
lation remains significant when we separately analyze the 3D
indices computed by diffusion pseudo-time (rho = 0.92; p <
2 x 107'®) or predicted by random forest (rho = 0.69; p =
0.009). In addition, our indices also correlated with the “Zolfr
indices” (Zapiec and Mombaerts, 2020; rho = 0.88; p < 2 X
107'8; Figure S4B), and with the “Tan indices” (Tan and Xie,
2018; rho = 0.89; p < 2 x 107'®; Figure S4C), inferred by ISH
and RNA-seq, respectively.

To confirm our predictions, we performed ISH for three Olfrs
that have not been characterized before—two detected in our
dataset and for which the 3D index was calculated via diffusion
pseudo-time (DPT) (OIfr309 and Olfr727) and one not detected
in our dataset and for which the 3D index was predicted with
the random forest algorithm (O/fr 618). Notably, all three Olfrs
were expressed primarily within the zones they were predicted
to be expressed in: zone 2 for OIfr309 (3D index = 30.76),
zones 4 and 5 for Olfr727 (3D index = 75.14), and zone 1 for
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randomly dissected OM pieces along

the DV axis and identified ~700 non-Olfr

genes with putatively spatial patterns

(Tan and Xie, 2018), including many genes
with zonal expression patterns identified previously (Duggan
et al.,, 2008; Gussing and Bohm, 2004; Liberles and Buck,
2006; Ling et al., 2004; Norlin et al., 2001; Oka et al., 2003; Tietjen
etal., 2003; Whitby-Logan et al., 2004; Yoshihara et al., 1997). By
identifying 11,538 non-Olfr spatial DEGs (Figures 2 and 3; Table
S5), we increased the list of non-Olfr genes with spatial zonation
in the OM by 16-fold.

Using the mathematical framework based on topic modeling
described above, we decomposed the expression patterns of
non-Olfr genes onto the five zones we identified. This allowed
us to identify genes showing zone specificity by calculating the
entropy of the DOBs distributions. Interestingly, we found
28 genes highly specific for each of the five zones (i.e., with en-
tropy <1; STAR Methods; Figure 5A; Table S5). For example,
S100a8 (zone 1) codes for a calcium-binding protein involved
in calcium signaling and inflammation (Yoshikawa et al., 2018),
Moxd2 (zone 2) is a mono-oxygenase dopamine hydroxylase-
like protein possibly involved in olfaction (Kim et al., 2014),
Lcn4 (zone 3) is a lipocalin involved in transporting odorants
and pheromones (Charkoftaki et al., 2019; Miyawaki et al.,
1994), Gucy1b2 (zone 4) is a soluble guanylyl cyclase oxygen
and nitric oxide (Bleymehl et al., 2016; Koglin et al., 2001), and
Odam (zone 5) is a secretory calcium-binding phosphoprotein
involved in cellular differentiation and matrix protein production
and with antimicrobial functions of the junctional epithelium
(Lee et al., 2012; Springer et al., 2019; Figure 5B). The high
zone specificity of the expression pattern of these genes gives
clues into possible biological processes taking place in the
zones. Indeed, Gucy1b2 is a known genetic marker for a small
OSN subpopulation localized in cul-de-sac regions in the lateral
OM, consistent with our reconstruction (Figure 5B), and it



Cell Reports

A C,. .
=2 ATSC2s log10(Kam)| !
Literature | [
review z_ 4
3 )
2 |
=}
g \ /
o @
> ® r
kel
T o
Corr. coefficient (rho)
B I D . . Zomes
[ ee—— ]
vV,
» . 2 )
&
= v
B g i Ou
£ 4 il
[m) 2 1@
g o 1
& S
o
< 0 10 - rho=0.55
p=1x107
yes no T T T T T T T

s e 10 70
SHiseharing hoands Average Olfr 3D Index

Figure 6. Physiological role of the zones

¢? CellPress

OPEN ACCESS

p<0.05 Class Il Offrs |
p<0.05 All Offrs | e

max
! ® non-significant p

s ewedw

V: 1-hexanethiol; CAS: 111-31-9

Relative
expression

i Top 5 descriptors (rho):

i ATSC2s (-0.56) ;

$10g10(Kam) (055) ! ) <
| SpMax2_Bh.s (-0.52) P 5

| SpMax1_Bh.s (-0.51) !

| ATSC6e (-0.51) ' 2 . &

L

1IV: (methylthio)methanethiol; CAS: 29414-47-9

e W 0O T e

L

h &8

i OV: 1-hexanethiol
H S |

©

| @IV: (methylthio)
methanethiol ) |

Ss7sH H

'

I: (+)-B-citronellol; CAS: 1117-61-9
‘ @ll: (+)-B-citronellol |
P S ;

- w9
E @ II: heliotropine :
boey ] II: heliotropine; CAS: 120-57-0

T X XV
t

s
' )

L
"L

H o

1 @1: 8-bromooctanoic !

acid ° !
B~~~ Hon

Solublity in mucus

I: 8-bromooctanoic acid; CAS: 17696-11-6

(A) Circular network illustrating the pairs of Olfrs and ligands that we found in the literature.

(B) Boxplots showing the distributions of the absolute value of 3D index differences between pairs of Olfrs sharing at least one ligand versus pairs of Olfrs without
cognate ligands in common. The difference between the two distributions is statistically significant (p < 2 x 10~"¢; Wilcoxon rank-sum test).

(C) Scatterplot showing the Spearman correlation coefficients between the ligands’ mean 3D indices and molecular descriptors and the corresponding
—log1o(adjusted p value). Turquoise circles indicate the descriptors having a significant correlation only when both class | and Il Olfrs are considered; red circles
mark the descriptors with a significant correlation also when class | Olfrs are removed.

(D) Scatterplot illustrating the correlation between air/mucus partition coefficients of the odorants and the average 3D indices of their cognate Olfrs. Only odorants
for which we know at least two cognate Olfrs (110) were used here. Odorants are colored according to the zone they belong to (defined as the zone with the
highest average degree of belonging computed over all cognate receptors). The five odorants highlighted in the plot by larger circles are indicated on the right-

hand side, along with their molecular structure and common name.

(E) Average expression pattern of the cognate Olfrs recognizing each of the five odorants highlighted in (D), including their respective CAS numbers.

regulates the sensing of environmental oxygen levels through the
nose (Omura and Mombaerts, 2015; Saraiva et al., 2015b). In
addition, our ISH experiments revealed that Moxd?2 is expressed
in a small ventrolateral patch of the OM (Figure 5D), validating its
predicted 3D spatial pattern (Figures 5B and 5C) and highlighting
a potential highly localized role of this protein in neurotransmitter
metabolism (Goh et al., 2016) in the mouse OM.

A recent study showed that the transcription factors Nfia, Nfib,
and Nfix regulate the zonal expression of Olfrs (Bashkirova et al.,
2020). To get some insights into the signaling pathways involved
in this process, we mined our dataset for genes encoding ligands
and receptors (Efremova et al., 2020) correlated with the expres-
sion patterns of the Nfis (STAR Methods). This analysis returned
476 genes involved in biological processes associated with the
regulation of neurogenesis, regulation of cell development,
anatomical structure development, cellular component organi-
zation or biogenesis, and regulation of neuron differentiation (Ta-
ble S5). As expected, some of these genes have known functions
in the OM, such as segregating different cell lineages for Notch1-
3 (Carson et al., 2006), genes associated with the development
of the nervous system (e.g., Erbb2 and Lrp2; Britsch et al,,
1998; Spuch et al., 2012), and many others associated with
the semaphorin-plexin, ephrin-Eph, and Slit-Robo signaling
complexes—which regulate OSN axon guidance and spatial
patterning of the OM (Cloutier et al., 2002; Cutforth et al., 2003;
Huber et al., 2003; Kania and Klein, 2016). Excitingly, the majority

of these 476 genes still have unknown functions in the OM, thus
highlighting the potential of our approach to discover genes and
pathways involved in the regulation of zonal expression in the
OM.

The anatomical logic of smell

For most sensory systems, the functional logic underlying the
topographic organization of primary receptor neurons and their
receptive fields is well known (Kandel et al., 2013). In contrast,
the anatomic logic of smell still remains unknown, and it is sub-
ject of great controversy and debate (Kurian et al., 2021; Se-
cundo et al., 2014).

To explore the underlying logic linked to the zonal distribution
of Olfrs, we investigated possible biases between their expres-
sion patterns and the physicochemical properties of their
cognate ligands. First, we compiled a list of known 738 Olfr-
ligand pairs, representing 153 Olfrs and 221 odorants (Figure 6A;
Table S6). Interestingly, Olfr pairs sharing at least one common
ligand have more similar expression patterns (i.e., more similar
3D indices) than Olfrs detecting different sets of odorants (Wil-
coxon rank-sum test; p <2 x 10~ '%; Figure 6B). This observation
is consistent with the hypothesis that the Olfr zonal distribution
depends, at least partially, on the properties of the odorants
they bind to.

Next, we considered a set of 1,210 physicochemical descrip-
tors, including the molecular weight, the number of atoms,
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aromaticity index, lipophilicity, and the air/mucus partition coef-
ficient (K,m), which quantifies the mucus solubility of each ligand
(Rygg et al., 2017; Scott et al., 2014; STAR Methods). We then
computed the Spearman’s correlation of each of these descrip-
tors of the ligands with the average 3D indices of the Olfrs detect-
ing them. We found a statistically significant correlation for 744
descriptors (FDR < 0.05; Figure 6C; Table S6). The top five high-
est correlations were with the air/mucus partition coefficient K,
(rho = 0.55; adjusted p = 1 x 1077), ATSC2S (tho = —0.56;
adjusted p = 2 x 1077), SPmax2_Bh.s (tho = —0.52; adjusted
p =2 x 1079, SPmax1_Bh.s (tho = —0.51; adjusted p = 3 x
107%), and ATSC6e (rho = —0.51; adjusted p = 3 x 107%; Fig-
ure 6C; Table S6). Interestingly, ATSC2S, SPmax1_Bh.s, and
SPmax2_Bh.s are also related to solubility (Consonni and Tode-
schini, 2008; Devillers and Domine, 1997; Hollas, 2003). Notably,
the association between K, and the mean 3D indices does not
depend on the number of zones defined with LDA (STAR
Methods). Furthermore, it remains robust to changes in the set
of ligands and/or Olfrs used for the analysis, namely, when we
excluded Olfrs for which the 3D indices were predicted with
the random forest model (rho = 0.48; p = 2 x 1075; Figure S5B)
or when only 3D indices from class Il Olfrs were included in the
analysis (tho = 0.5; p =1 x 1077; Figure S5C).

In particular, the positive correlation of the 3D indices with K,
(Figure 6D) indicates that the most soluble odorants (lower) pref-
erentially activate Olfrs located in the most antero-dorsomedial
region (zone 1) of the OM, while the least soluble odorants (higher
Kam) activate Olfrs in the postero-ventrolateral region (zones 4 to
5). In other words, gradients of odorants sorption (as defined by
their K,,) correlate with the gradients of Olfr expression from
zone 1 to zone 5, consistent with the chromatographic/sorption
hypothesis in olfaction (Mozell, 1966; Scott et al., 2014). This is
exemplified by the plots in Figure 6E, illustrating the predicted
average expression levels across OM sections of the Olfrs bind-
ing to five odorants with different values of K,,,. These results
show a direct association between Olfr spatial patterns and the
calculated sorption patterns of their cognate ligands in the OM,
providing a potential explanation for the physiological function
of the zones in the OM.

DISCUSSION

Past studies yielded inconclusive and sometimes contradictory
views on the basic logic underlying the peripheral representation
of smell, partly because the topographic distribution of OSN sub-
types and their receptive fields still remained vastly uncharted,
data on Olfr-ligand pairs were scarce, and there were pitfalls
associated with electro-olfactogram recordings used to study
spatial patterns of odor recognition in the nose (Kurian et al.,
2021; Scott and Scott-Johnson, 2002; Secundo et al., 2015).
Here, we combined RNA-seq and computational approaches
that utilize unsupervised and supervised machine learning
methods to discover and quantitatively characterize spatial
expression patterns in the OM. We created a 3D transcriptional
map of the mouse OM, which allowed us to spatially characterize
17,628 genes, including ~98% of the annotated Olfrs. We iden-
tified and validated by ISH several spatial marker genes, and a
clustering analysis pinpointed the OM locations where specific
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functions related to, e.g., the immune response might be carried
out. We also mathematically defined Olfr expression zones in the
OM with an unsupervised machine-learning method based on
topic modeling. We estimated that the OM includes at least
five zones, which can be used to decompose the expression pat-
terns of all genes. However, our analysis showed that there is a
continuous distribution of Olfrs patterns in the OM. Thus, while
a discrete number of zones might be convenient to provide a first
classification of Olfrs, these might obscure the complexity of the
OM spatial patterns. To account for this, we adopted a mathe-
matical framework that can rigorously define zones while
capturing finer structures in the data, via the degrees of
belonging and the 3D index, which are more suitable to describe
Olfrs patterns crossing multiple zones.

The global transcriptomic landscape of the vertebrate OM is
similar between individuals and broadly conserved among
different vertebrate species, ranging from zebrafish to human
(Bear et al., 2016; Saraiva et al., 2015a, 2019). Similarly, the
spatial segregation of Olfrs into partially overlapping rings of
expression, centered around the midline structure of the OM,
is also conserved among vertebrates (Freitag et al., 1995; Horo-
witz et al., 2014; Marchand et al., 2004; Miyamichi et al., 2005;
Octura et al., 2018; Ressler et al., 1993; Strotmann et al., 1992;
Vassar et al., 1993; Weth et al., 1996). While the number of Olfr
zones in zebrafish, frog, and salamander still remain unknown
(Freitag et al., 1995; Marchand et al., 2004; Weth et al., 1996),
ISH studies suggested that the total number of Olfr expression
zones can vary between mammals—ranging from two in ma-
caque (Horowitz et al., 2014) to four in rat (Vassar et al., 1993)
and goat (Octura et al.,, 2018), and between four and nine in
mouse (Miyamichi et al., 2005; Ressler et al., 1993; Zapiec and
Mombaerts, 2020). While the exact number of Olfr expression
zones in OM still remains under debate, our results are consis-
tent with both another recent RNA-seq study (Tan and Xie,
2018) and the largest Olfr ISH study in the mouse OM (Miyamichi
et al., 2005), thus supporting the existence of at least five over-
lapping Olfr expression zones in the mouse nose.

Taking into account how conserved the molecular organiza-
tion of the OM is in vertebrates, the 2-fold reduction in the num-
ber of Olfr expression zones in macaque compared with rodents
and goat (an ungulate) is puzzling. While we cannot exclude the
presence of confounding factors (e.g., limited Olfr sampling and/
or inconsistent definitions of “zones”), it is interesting that the 2-
fold reduction in number of zones is associated with a 2-fold
reduction in the number of annotated intact Olfrs in macaque
(and other higher primates, including human) compared with
other rodents and ungulates (Horowitz et al., 2014; Niimura
et al., 2014; Saraiva et al., 2019). Since the accelerated loss of
Olfr genes during primate evolution has been linked to the acqui-
sition of trichromatic acute vision and dietary changes (Niimura
et al., 2018), it is plausible that these evolutionary pressures
also helped shape the spatial distribution of Olfrs in macaques
and other primates, including human.

The quantitative framework we built for this dataset will facili-
tate the interrogation of gene expression patterns via an online
tool we provide and help answer important questions on the
physiology of the nose. Our approach could be easily applied
to spatial transcriptomic data collected from other tissues to
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perform comparisons across tissues from different species or
the same tissue across multiple developmental stages. More-
over, the results from this study serve as a template to start
answering other important questions about olfaction, such as
whether Olfr spatial expression maps can encode maps of
odor perception. Because the general molecular mechanisms
of olfaction, zonal organization of Olfrs, conservation of ligands
among Olfr orthologs, and components of olfactory perception
are conserved in mammals (Adipietro et al., 2012; Bear et al.,
2016; Freitag et al., 1995; Horowitz et al., 2014; Kurian et al.,
2021; Manoel et al., 2021; Octura et al., 2018; Saraiva et al.,
2019; Weth et al., 1996), the association we uncovered here be-
tween Olfr zones and the solubility of odorants they detect can
likely be extrapolated to other mammals, including humans.
Finally, the functional logic underlying the mammalian topo-
graphic organization of primary receptor neurons and their
receptive fields in smell is now starting to be exposed.

Limitations of the study

This study enabled us to answer fundamental and long-standing
questions about the rationale behind the spatial organization of
the peripheral olfactory system. Specifically, we provide evidence
to the hypothesis that the spatial zones increase the discrimina-
tory power of the olfactory system by distributing Olfrs in the areas
of the OM more likely to be reached by their cognate ligands,
based on their solubility in mucus. A caveat of this approach is
that the Olfr-ligand list we compiled from the literature includes
odorant libraries of different size and composition and tested us-
ing different experimental approaches. Moreover, highly abun-
dant Olfrs have a higher probability of being deorphanized than
lowly abundant Olfrs, and ecologically relevant odorants are
more likely to activate Olfrs when compared with other odorants
(Dunkel et al., 2014; Saraiva et al., 2019; Trimmer and Mainland,
2017). Despite having compiled and performed our analysis on
the largest set of Olfr-ligand pairs assembled to date and carrying
out multiple robustness checks, we cannot rule out that ascertain-
ment bias might contribute to the associations we found between
the Olfr spatial location and the properties of their respective li-
gands. Future studies investigating the activation profiles for all
mouse Olfrs and/or mapping the in vivo activation patterns of
mouse Olfrs in the olfactory mucosa will be key to stress test
the conclusions of our study.
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SOURCE

IDENTIFIER

Antibodies

Anti-Digoxigenin-AP, Fab fragments

Merck (Roche)

Cat# 11093274910, RRID:AB_514497

Biological samples

Olfactory mucosae from C57BI/6J mice The Jackson Laboratory Stock # 00664
(adult males)

Chemicals, peptides, and recombinant proteins

30% Hydrogen Proxyde Solution Merck (Sigma-Aldrich Cat. # H1009

Triethanolamine

Acetic anhydride

Deoinized formamide

Yeast tRNA

Denhardt’s solution (50x)
Dextran sulfate solution (50%)
20x SSC

Tween-20

TSA Blocking Reagent
NBT/BCIP Stock Solution

)
Merck (Sigma-Aldrich)
Merck (Sigma-Aldrich)
Merck (Sigma-Aldrich)
Merck (Roche)

Merck (Sigma-Aldrich)
Merck (Chemicon)
Merck (Calbiochem)
Merck (Sigma-Aldrich)
Perkin-Elmer

Merck (Roche)

Cat. # T58300

Cat. # 320102

Cat. # F9037

Cat. # 10109495001
Cat. # D9905

Cat. # S4030

Cat. # 8310-OP
Cat. # 822184

Cat. # FP1020

Cat. # 11681451001

Critical commercial assays

SMART-Seq v4 Ultra Low Input RNA Kit for
Sequencing

Bioanalyzer DNA High-Sensitivity kit
Nextera XT DNA Library Preparation Kit (96
samples)

Nextera XT Index Kit v2 Set A (96 indexes,
384 samples)

pPGEM®-T Easy Vector Systems
DIG RNA Labeling Kit (SP6/T7)
ProbeQuant G-50 Micro Columns

Clontech (Takara Bio)

Agilent Technologies
lllumina

lllumina

Promega
Merck (Roche)
Cytiva Biosciences

Cat. # 634892

Cat. # 5067-4626
Cat. # FC-131-1096

Cat. # FC-131-2001

Cat. # A1360
Cat. # 11175025910
Cat. # 28903408

Deposited data

TOMO-seq Olfactory Mucosa dataset

Single cell RNA-seq data from the Olfactory
Mucosa

Dragon database of molecular descriptors

CellphoneDB ligands and receptors
database

This study

Fletcher et al., 2017

Talete S.R.L.
Efremova et al., 2020

https://www.ebi.ac.uk/arrayexpress/
E-MTAB-10211

https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE95601

http://www.talete.mi.it
https://github.com/ventolab/CellphoneDB

Experimental models: Organisms/strains

Adult male C57BI/6J mice The Jackson Laboratory Stock # 00664

Oligonucleotides

See “method details” section for This study N/A

oligonucleotides

Software and algorithms

samtools version 0.1.19-44428cd Li et al., 2009 http://samtools.sourceforge.net/

htseqg-count version 0.11.2
R4.1.2
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Anders et al., 2014
The R Foundation

https://github.com/htseq/htseq/
https://www.r-project.org/
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REAGENT or RESOURCE SOURCE IDENTIFIER

Python 3.9.6 Python Software Foundation https://www.python.org/

Scripts for TOMO-seq data analysis This study https://doi.org/10.5281/zenodo.6036047

https://zenodo.org/badge/DOI/10.5281/
zenodo.6045897.svg

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and data should be directed to and will be fulfilled by the Lead Contact Luis R. Saraiva
(saraivalmr@gmail.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
RNA-seq raw data have been deposited and are publicly available as of the date of publication at ArrayExpress: E-MTAB-10211. All
original code and scripts for the 3D nose atlas shiny app has been deposited at Github and can be found at the Github Repository:
https://doi.org/10.5281/zenodo.6036047https://zenodo.org/badge/DOI/10.5281/zenodo.6045897.svg. The 3D nose atlas pro-
cessed data can be browsed and visualized here: http://atlas3dnose.helmholtz-muenchen.de:3838/atlas3Dnose.

Any additional information required to reanalyze the data reported in this paper is available from the lead contacts upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
The animals used in this study were adult male C57BI/6J mice (aged 8-14 weeks, The Jackson Laboratory, Stock # 00664) main-
tained in group-housed conditions on a 12:12 h light:dark schedule (lights on at 0700 hours). Each mouse was randomly assigned
for cryosectioning along one of the three cartesian axes.

The use and care of animals used in this study was approved by the Internal Animal Care and Use Committee (IACUC) of Monell
Chemical Senses Center, by the IACUC of the University of Sao Paulo, and by the Wellcome Trust Sanger Institute Animal Welfare
and Ethics Review Board in accordance with UK Home Office regulations, the UK Animals (Scientific Procedures) Act of 1986.

METHOD DETAILS

Dissection of the olfactory mucosa, cryosections, and RNA-sequencing

The olfactory mucosa (OM) of 9 mice was carefully dissected, and all the surrounding tissue (including glands and bone) removed - this
was necessary to ensure that the transcripts present in the surrounding tissue do not contaminate the RNA isolated from the OM. The
OMs were then embedded in OCT (Tissue Tek), immediately frozen in dry-ice and kept at —80°C. Each OM was then cryosectioned
along each of the 3 cartesian axes: dorsal-ventral (DV, n = 3), anterior-posterior (AP, n = 3), or lateral-medial-lateral (LML, N = 3). Every
second cryosections (35 pm thick) was collected into 1.5 mL eppendorf tubes containing 350 pL RLT Plus Buffer (Qiagen) supple-
mented with 1% 2-mercaptoethanol, immediately frozen in dry-ice and kept at —80°C until extraction. RNA was extracted using
the RNeasy Plus Micro Kit (Qiagen), together with a genomic DNA eliminator column and a 30-minute incubation with DNAse | (Qiagen).
Reverse transcription and cDNA pre-amplification were performed using the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing
(Clontech/Takara). cDNA was harvested and quantified with the Bioanalyzer DNA High-Sensitivity kit (Agilent Technologies). Libraries
were prepared using the Nextera XT DNA Sample Preparation Kit and the Nextera Index Kit (lllumina). Multiplexed libraries were
pooled and paired-end 150-bp sequencing was performed on the lllumina HiSeq 4000 platform at Sidra Medicine, except for one li-
brary (DV-I) for which 125-bp paired-end sequencing was performed on the lllumina HiSeq 2500 platform at the Wellcome Sanger
Institute. The raw data are available through ArrayExpress under accession number E-MTAB-10211.

RNA-seq data mapping and gene counting

Reads were aligned to the mm10 mouse genome (release 99). The sequences of the genes “Xntrpc” and “Capn5” were removed from
the genome files as in Saraiva et al. (2015b). The alignment was performed with the software STAR version 2.7.3a (Dobin et al., 2013).
Genome indexes were generated using STAR —runMode genomeGenerate with default parameters. Then, alignment of reads was per-
formed with the following options: —runThreadN 48 —outSAMunmapped Within —outFilterMultimapNmax 1000 —outFilterMismatchN-
max 4 —outFilterMatchNmin 100 —alignintronMax 50000 —alignMatesGapMax 50500 —outSAMstrandField intronMotif —outFilterType
BySJout. The resulting SAM files were converted to bam format and sorted using samtools (version 0.1.19-44428cd) (Li et al.,
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2009). The multi mapping reads were eliminated using the same software (samtools view -q 255). Finally, the reads for each gene were
counted using htseq-count (version 0.11.2) with the options -m intersection-nonempty -s no -i gene_name -r pos (Anders et al., 2014).

Quality control

We excluded all the samples that fulfilled any of these criteria: they had less than 50% mapped reads, less than 4,000 detected
genes, more than 20% mitochondrial reads, less than 10,000 total number of reads, or did not express any of the 3 canonical
OSN markers Omp, Cnga and Gnal. This resulted in ~51 good-quality sections along the DV axis (~84% out of the collected sec-
tions), ~76 (~91% of total) along the AP axis and ~59 (~93% of total) along the LML axis, as averaged across the three replicates
per axis.

Data normalization

Gene expression counts were normalized by reads-per-million (RPM), then genes detected in only one replicate and genes that were
detected in less than 10% of all samples along one axis were eliminated. To check the similarity between replicates, we calculated
Spearman correlations between the transcriptional profiles of sections along each axis (using the top 1000 Highly Variable Genes per
axis). Close positions had the most similar transcriptional profiles (Figure 1C). Afterward, the 3 replicates for each axis were aligned as
follows: the top 3,000 highly variable genes (HVGs) from each replicate were identified using the method implemented in the scran
library in R (Lun et al., 2016) and the intersection of these 3 groups was used in the next steps. For the replicates’ alignment, we took
as reference the replicate with the smallest number of slices. We used a sliding window approach that identified the range of consec-
utive positions on each replicate along which the average value of the Spearman’s correlation coefficient computed with the refer-
ence replicate over the HVG was maximum (mean Spearman’s Rho = 0.80, p < 0.05). To mitigate batch effects, the level of every gene
was scaled in such a way that their average value in each replicate was equal to the average calculated across all replicates. After this
scaling transformation, the data was then averaged between replicates. Once the 3 biological replicates were combined, we had 54
sections along the DV axis, 60 along the AP and 56 along the LML. Along the LML axis a symmetric pattern of expression is expected
around the central position, where the septal bone is located. To confirm this in our data, first we identified the central position by
analyzing the expression pattern of neuronal markers like Cnga2, Omp and Gnal, whose expression is lowest in the area around
the septal bone. Indeed, all three marker genes reach a minimum at the same position along the LML axis (slice 28), which we consid-
ered to be the center. The expression patterns of ~90% of genes on either side of the central position show a positive correlation, and
~70% reach statistical significance (Spearman’s correlation computed on the highly variable genes having more than 50 normalized
counts in at least 3 slices), further supporting the hypothesis of the bilateral symmetry. Hence, after replicates were averaged, LML
axis was made symmetric averaging positions 1:28 and 56:29. Moreover, Olfrs were normalized by the geometric mean of neuronal
markers Omp, Gnal and Cnga2, as done previously (Ibarra-Soria et al., 2017).

To verify the presence of a spatial signal, we calculated the Moran’s | and the associated p-values for the top 100 Highly Variable
genes along each axis using the “Moran.l” function from the “ape” library in R with default parameters (Paradis et al., 2004). The
p-values of the genes along each axis were combined with the Simes’ method (Simes, 1986) using the function combinePValues
from the scran R library (Figure S1E).

Identification of differentially expressed genes and gene clustering

Before testing for differential expression along a given axis, we filtered out genes whose expression levels had low variability. To this
aim, for each gene we estimated their highest and lowest expression by taking the average of its three highest and three lowest values
respectively. Then, we considered for downstream analyses only the genes that meet either of these two criteria: the highest expres-
sion value is greater than or equal to 5 normalized counts and the fold-change between the highest and lowest value is greater than 2;
or the difference between the highest and the lowest value is greater than or equal to 4 normalized counts. The expression levels of
the genes were binarized according to whether their value was higher or lower than their median expression along the axis. Finally, we
used the “ts” function in R to transform the binarized expression values into time series objects, and we applied on them the Ljung-
Box test (Box.test function in R with lag = (axis length)-10) which identifies genes with statistically significant autocorrelations, i.e.,
with non-random expression patterns along an axis. The resulting p-values were adjusted using the FDR method and genes with
an FDR <0.01 were considered as differentially expressed. For the next steps, the logio normalized expression of differentially ex-
pressed genes along each axis was fitted with a local regression using the locfit function in the R library locfit (Loader, 2007). Smooth-
ing was defined in the local polynomial model term of the locfit model using the function “Ip” from the same library with the following
parameters: nn = 1 (Nearest neighbor component of the smoothing parameter) and deg = 2 (degree of polynomial). The fitted expres-
sion values of these genes along each axis were normalized between 0 and 1. Clustering was performed separately for each axis on
the fitted and normalized patterns of the differentially expressed genes. We used the R function “hclust” to perform hierarchical clus-
tering on the gene expression patterns, with a Spearman’s correlation-based distance (defined as /0.5 (1 — p)) and the "average"
aggregation method. The number of clusters were defined with the cutreeDynamic function from the dynamicTreeCut R library, with
the parameters minClusterSize = 50, method = “hybrid” and deepSplit = 0. To visualize the data in two dimensions, we applied the
UMAP dimensionality reduction algorithm (umap function in the R library umap with default options; see Figure 2D) (Becht et al., 2018;
Mclnnes et al., 2018). To analyze the relationship between the expression patterns of genes along different axes, we computed the
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intersections of the gene clusters between any pair of axes. The expected number of elements in each intersection under the
assumption of independent sets is given by:

AllB|
IANBe,, = JAUB|

where A and B indicate the sets of genes in two clusters identified along two different axes and | - | indicates the cardinality of a set (i.e., the
number of its elements). The ratio between the observed and the expected number of elements in the intersection |ANB| s / [ANB| gy,
quantifies the enrichment/depletion of genes having a given pair of patterns across two axes with respect to the random case. The log,
values of (1 +|ANB|yys / |[ANBle,) are shown in Figure 2F.

Combining Tomo-seq with single-cell RNA-seq data

The TPM (transcripts per million)-normalized single cell RNA-seq (scRNA-seq) data collected from mouse olfactory epithelium avail-
able from Fletcher et al. (2017) was used to identify cell-type specific genes. To this aim, we computed the average expression level
for each cell type in the scRNA-seq dataset for all the differentially expressed genes that we identified in our TOMO-seq data. The
genes with an average expression above 100 TPM in mOSNs and below 10 TPM in all other cell types were considered mOSN-spe-
cific. Conversely, genes with an average expression above 100 TPM in any of the non-mOSN cell types and below 10 in mMOSNs were
considered to be specific for non-mOSN cells.

Gene ontology (GO) enrichment analysis
GO Enrichment analyses were performed using the GOrilla online tool (http://cbl-gorilla.cs.technion.ac.il) with the option “Two un-
ranked lists of genes (target and background lists)”. For each axis, we used as background list the list of the genes we tested.

Cell type deconvolution analysis

To perform cell type deconvolution analysis, we used a previously published single-cell RNA-seq (scRNA-seq) data from the mouse
OM (Fletcher et al., 2017). First, the cells included in unclassified clusters were removed and the data was rescaled using the function
“pp.log1p” from the scanpy library (Wolf et al., 2018). Then, we obtained 2000 highly variable genes using the function “pp.highly_
variable_genes” (scanpy library). In the following analysis, we merged clusters of similar cell populations and considered the
following 6 cell types: 1-HBC = HBC1+HBC2+HBCS3; 2-INP = INP1+INP2+INP3; 3-GBC = GBC, 4-SC = mSC + iSC, 5-OSN =
iOSN + mOSN, 6-MVC = MVC1+MVC2.

This scRNA-seq data was used as input for the AutoGeneS algorithm (Aliee and Theis, 2021). The cell type assignment as well as
the list of highly variable genes were passed as input to the function “ag.init” from AutogeneS, and then we estimated the optimal
subset of genes to perform cell type deconvolution with the function “ag.optimize” (with parameters: “ngen” = 5000, “nfeatures” =
400 and “mode” = “fixed”). Finally, we deconvolved the Tomo-seq data along the three axes with the function “ag.deconvolve” using
Nu Support Vector regression models (“model” = “nusvr”). The results were normalized such that the sums of cell type proportions
per slice is equal to 1 (Figure S2F). To identify the cell types with non-random spatial distribution along the axes, we applied the Ljung-
Box test as explained above (section “identification of differentially expressed genes and gene clustering”); the p values are reported
in Table S2.

Identification of ligands and receptors associated with the NfiA, NfiB or NfiX transcription factors

The genes in the CellphoneDB ligands and receptor database (Efremova et al., 2020) that were among our spatially differentially ex-
pressed genes were selected and Spearman correlation tests between their 1D expression patterns and the 1D patterns for the Nfi
transcription factors were performed. Correlation coefficients from the three axes were averaged and FDRs from the 3 axes were
combined with the Simes’ method (Simes, 1986) using the function combinePValues from the scran R library. Combined FDR values
<0.01 were taken as significant.

3D spatial reconstruction

The olfactory mucosa shape was obtained from publicly available images of the mouse nasal cavity along the posterior to the anterior
axis published in Barrios et al. (2014). The area of the slices corresponding to the OM was manually selected and images of their sil-
houettes were made. Those images were then transformed into binary matrices having 1’s in the area occupied by the OM and 0’s in
the remaining regions. The binary matrices were rescaled to match the spatial resolution in our dataset, which is composed of 54 vox-
els along the DV axis, 56 along the LML axis and 60 along the AP axis. Finally, matrices were piled ina 3D array in R to obtain an in-silico
representation of the 3D shape of the OM, which, in total, was composed of 77,410 voxels. To perform the 3D reconstruction of the
expression pattern for a given gene, first we normalized its expression levels by the volume of the slice at each corresponding position
along the three axes, which was estimated using our 3D in silico representation of the OM. Then, we rescaled the data in such a way
that the sum of the expression levels along each axis was equal to the average expression computed across the whole dataset. This
rescaled dataset together with the binary matrix representing the 3D OM shape was used as input of the Iterative Proportional Fitting
algorithm, which produced an estimation of the expression level of a gene in each voxel (Junker et al., 2014). Iterations stopped when
the differences between the true and the reconstructed 1D values summed across the three axes was smaller than 1.
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Definition of zones by topic modelling
In order to identify zones, we fitted a Latent Dirichlet Allocation (LDA) (Blei et al., 20083) algorithm to the 3D gene expression patterns
(in logo scale) of the differentially expressed Olfrs (689 Olfrs x 77,410 voxels).

The LDA algorithm was originally employed for document classification: based on the words included in each document, LDA can
identify "topics", in which the documents can then be classified. Using this linguistic analogy, in our application of LDA, we consid-
ered the genes as “documents”, and the spatial locations as “words”, with the matrix of gene expression levels being the analogous
of the "bag-of-word" matrix (Liu et al., 2016). In this representation, the zones are the equivalent of “topics”, and they are automat-
ically identified by LDA. We used the LDA implementation included in the R package “Countclust” (Dey et al., 2017), developed based
on the “maptpx” library (Taddy, 2012), which performs a maximum a posteriori estimation to for model fitting. LDA was run for all
possible numbers of topics K € [2,9]. The following parameters were chosen: convergence tolerance = 0.1; max time optimization
step = 180 seconds; n_init = 3. For each number of topics k, three independent runs were performed with different starting points,
in order to avoid biases due to the choice of the initial condition. We estimated the number of topics by computing the log likelihood
for each value of K € [2,9]. As seenin Figure S3A, while the log-likelihood is a monotonically increasing function of the number of topic
(as expected), for a number of topics around ~5 it shows a “knee” and starts to increase more slowly. This suggests that ~5 is the
minimal number of topics needed to describe the complexity of the data without overfitting. Hence, we fix a number of topics equal to
5; however, we also verified that all our conclusions remain substantially unaffected if a different number of topics is chosen.

After running LDA with K = 5, we retrieved the model output, which consists of two probability distributions: the first is P(position| k)
with k e [1,5], which is the conditional probability distribution defining the topic k; the second probability distribution is P(k | gene),
namely the probability distribution that quantifies the degrees of belonging of a given gene to the topics ke [1,5]. With these probability
distributions, we can identify the spatial positions that form each topic and how the different topics can be combined to generate the
spatial expression pattern of each gene.

Being a generative model, once trained, LDA can also decompose into topics the spatial expression patterns of genes that were not
used during the training procedure. We exploited this feature of LDA to estimate the degrees of belonging of non-olfactory receptor
genes. To this aim, we utilized an algorithm based on the python gensim library Lda.Model.inference function (Rehurek and Sojka,
2010), using as input the estimated probability distribution P(position | k) with k € [1,5]. The model fitting was performed using the
Open Computing Cluster for Advanced data Manipulation (OCCAM), the High-Performance Computer designed and managed in
collaboration between the University of Torino and the Torino division of the Istituto Nazionale di Fisica Nucleare (Aldinucciet al., 2017).

Definition of OIfr 3D indexes via diffusion pseudo-time

As explained in the section above, we can describe the spatial expression pattern of each gene through a set of five numbers, which
represent the degrees of belonging to the five topics identified by LDA. We applied a diffusion map (Haghverdi et al., 2015) to the
degrees of belonging of the Olfrs to visualize them in two dimensions by using the “DiffusionMap” function from the “destiny” R pack-
age (Angerer et al., 2016) (with distance = “rankcor” and default parameters). In this two-dimensional map, the Olfrs are approxi-
mately distributed along a curve that joins the most dorsal/medial genes (those in zones 1-2) with those that are more ventral/lateral
(zones 3-5). To track the position of the genes along this curve, we computed a diffusion pseudo-time (DPT) coordinate (Haghverdi
et al., 2016) with the “DPT” function from the “destiny” R package (taking as starting point the gene with the smallest first diffusion
component among the genes suggested by the function find_tips from the same package). In order to make the indexes go from
Dorsal to Ventral, as in previous studies (Miyamichi et al., 2005), we reversed the order of the DPT coordinates by substracting
the maximum coordinate from all coordinates and multiplying them by (—1). By doing this, we obtained for each Olfr an index, which
we called 3D index, representing its spatial expression pattern in the 3D space: more dorsal/medial genes (zones 1-2) have smaller
3D indexes than Olfrs expressed in the ventral/lateral regions (zones 3-5).

Prediction of zone index for undetected Olfrs with Random Forest

We fitted a Random Forest model to the 3D indexes of 681 of the 689 Olfrs we characterized with our dataset (i.e., those that are located
in genomic clusters). The following nine features of each Olfr were used as predictors: genomic position (i.e., gene starting position
divided by chromosome length); genomic cluster; genomic cluster length; number of Olfrs in the genomic cluster; number of en-
hancers in the genomic cluster; cluster position (i.e., starting position of the cluster divided by the chromosome length); distance to
the closest enhancer; gene position within the cluster (i.e., the distance of the gene starting position from the end of the cluster divided
by the cluster length); and phylogenetic class. These features were computed using the mm10 mouse genome in Biomart (Kinsella
et al., 2011), while the list of enhancers and the genomic clusters assigned to each Olfr were taken from Monahan et al. (2017). The
Random Forest model was fitted with the function “randomForest” (R library “randomForest” (Liaw and Wiener, 2002), with option
“na.action = na.omit”). Afterward, we performed a cross-validation test with the function “rf.crossValidation” from the “rfUtilities”
package (Rather et al., 2020) with default parameters. Over 100 cross-validation iterations, the root mean square error (RMSE)
was <10% of the mean 3D index. The feature importance was computed with the “importance” function from the randomForest li-
brary with default parameters. Finally, the Random Forest model trained on the 681 Olfrs was used to predict the 3D indexes of 697
Olfrs that were too lowly expressed or were undetected in our dataset. Overall, we were able to compute or predict with Random Forest
a 3D index for all the Olfrs annotated in the mouse genome, except for 28 of them that do not have any genomic cluster assigned. To
quantify the consistency between our Olfr 3D indexes and indexes defined previously, we calculated the Spearman’s correlation
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coefficients between our indexes and those defined in three previous studies (Miyamichi et al., 2005; Tan and Xie, 2018; Zapiec and
Mombaerts, 2020) (see Figures 4G, S4B, and S4C).

Odorant information and Olfr-ligand pairs

All odorant structures and associated CAS numbers were retrieved from either Sigma-Aldrich (www.sigmaaldrich.com) or PubChem
(https://pubchem.ncbi.nim.nih.gov). A comprehensive catalog of the cognate mouse Olfr-ligand pairs was collected (last update:
March 2021) by combining data from the ODORactor database (Liu et al., 2011) and additional literature sources (Abaffy et al.,
2006; Araneda et al., 2004; Bozza et al., 2002; Dunkel et al., 2014; Floriano et al., 2000; Gaillard et al., 2002; Godfrey et al., 2004;
Grosmaitre et al., 2006, 2009; Jiang et al., 2015; Jones et al., 2019; Kajiya et al., 2001; Malnic et al., 1999, 2004; Nara et al., 2011;
Nguyen et al., 2007; Oka et al., 2004, 2006, 2009; Pfister et al., 2020; Repicky and Luetje, 2009; Saito et al., 2004, 2017; Saraiva
et al., 2019; Shirasu et al., 2014; Shirokova et al., 2005; von der Weid et al., 2015; Yoshikawa et al., 2013; Yoshikawa and Touhara,
2009; Yu et al., 2015; Zhuang and Matsunami, 2007).

This catalog includes 738 Olfr-ligand interactions for a total of 153 Olfrs and 221 odorants. These 153 Olfrs include 100 spatial Olfrs
in our dataset and for which we have 3D indexes, and 49 additional Olfrs with predicted 3D indexes (see above). Next, we checked
whether Olfrs pairs sharing at least one cognate ligand have more similar spatial expression patterns than pairs not sharing ligands.
To do this, we computed the absolute values of the differences between the 3D indexes (A) of 1706 pairs of ORs sharing at least one
odorant and 9,922 pairs of ORs that are known to bind to different odorants (Figure 6B). The two sets of A values were significantly
different (Mann-Whitney U test, p value < 2 x 107'®). This test remained significant when excluding Olfrs for which 3D indexes were
estimated by the Random Forests model (p value < 2 x 107'%), and also when excluding class | Olfrs (p value < 2 x 107'9).

Correlation analysis of physico-chemical descriptors with 3D index

Physicochemical descriptors for ligands were obtained from the Dragon 6.0 software (http://www.talete.mi.it/). After removing the
descriptors showing 0 variance, a table of 1911 descriptors for 205 ligands was obtained. In addition to these, we estimated the
air/mucus partition coefficients (K,,) of the odorants as done previously (Rygg et al., 2017; Scott et al., 2014). Briefly, we calculated
the air/water partition coefficients (K,,,) for each odorant from the Henry’s Law constants obtained using the HENRYWIN model in the
US EPA Estimation Program Interface (EPI) Suite (version 4.11; www.epa.gov/oppt/exposure/pubs/episuite.htm). Then, we
computed the air/mucus partition coefficients (K,n) according to the formula:

Log(Kam) = 0.524+Log(Kaw) *Log(Kow)

where K,,, indicates the octanol/water partition coefficient, which were obtained using the KOWWIN model in the EPI Suite.

To increase the robustness of our correlation analysis, we removed the descriptors with 20 or more identical values across our set
of ligands, and we initially considered only the ligands having 2 or more known cognate receptors; these filters gave us 1,210 descrip-
tors (including K, for 101 ligands.

We performed Spearman’s correlation tests between the physicochemical descriptors and mean 3D index of the cognate Olfrs,
and we considered as statistically significant those correlations with FDR <0.05 (see Table S6). The descriptors with the largest
correlation coefficients were K, (tho = 0.55, p = 1 x 107) and ATSC2s (Centred Broto-Moreau Autocorrelation of lag 2 weighted
by I-state, rho = —0.56, p = 2 x 107). We obtained statistically significant correlations between K, and the mean 3D indexes
also when excluding Olfrs with 3D indexes predicted by Random Forest (Rho = 0.48, p value = 2 x 10, based on 87 ligands; Fig-
ure S5B) or excluding class | Offrs (Rho = 0.5, p value = 1 x 107, based on 101 ligands; Figure S5C).

In-situ hybridization

In-situ hybridization was basically performed as previously described (Ibarra-Soria et al., 2017). Adult 12-week-old male C57BL/6J
mice anesthetized, and then perfused with 4% paraformaldehyde. The snouts containing the OM were dissected out, decalcified in
RNase-free 0.45M EDTA solution (in 1x PBS) for two weeks — the bone and tissue encapsulating the OM are necessary to preserve
the OM tissue integrity during the ISH. Next, the decalcified snouts were cryoprotected in RNase-free 30% sucrose solution (1x
PBS), dried, embedded in OCT embedding medium, and frozen at —80°C. Sequential 16 um sections were prepared with a cryostat
and the sections were hybridized to digoxigenin-labeled cRNA probes prepared from the different genes using the following oligo-
nucleotides: Cytl (5'-AAAGACACTACCTCTGTTGCTGCTG-3' and 5-GTAAGCAGAGACCAGAAAGAAGAGTG-3'), Moxd2 (5'-TGTA
CCTTTCTCCCACTCCCTATTGTC-3' and 5'-CCCATGCAACTGGAGATGTTAATTCTG-3'), OIfr309 (5-TACAATGGCCTATGACCGC
TATGTG-3 and 5'-TCCTGACTGCATCTCTTTGTTCCTG-3'), Olfr727 (5'-CGCTATGTTGCAATATGCAAGCCTC-3' and 5'-GCTTTGA
CATTGCTGCTTTCACCTC-3'), and OIfr618 (5'-CATGAACCAATGTACCTTTTCCTCTC-3' and 5-AAACCTGTCTTGAATTTGCTTTG
TC-3'). The PCR products were cloned into pPGEM-T Easy vector and the probes were obtained by in vitro transcription of the plas-
mids, using SP6 or T7 RNA Polymerases (Roche) and DIG RNA Labeling mix (Roche).

QUANTIFICATION AND STATISTICAL ANALYSIS

Information on gene expression thresholds for spatial differential expression analysis is described in the method details section. The
presence of a spatial signal along the 3 axes was verified via the Moran’s | statistic (see relevant section above). The presence of
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spatial non-random patterns was tested using the Ljung-Box test and the resulting p values were adjusted using the FDR method (see
relevant section above). Consistency between different datasets and replicates, as well as association between independent data
were tested using Spearman correlation tests. Mann-Whitney U tests were employed to test the statistical significance of differences
between two distributions. Finally, a cross validation test was used to quantify the accuracy of our Random Forests model through
the root mean square error (RMSE). Statistical tests were performed using R (version 4.1.2). Statistical details are reported in the Main
text, Figures and Figure legends, the STAR methods section and supplementary tables. N represents the number of biological rep-
licates (animals) we analyzed. Boxplots are centered at the median of the distribution, the bottom and top of the box represent the 1st
and 3rd quartiles respectively, and the whiskers extend for an additional 1.5 times the interquartile range.
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Figure S1. TOMO-seq data QC, Related to Figure 1 and Table S1. (A) Boxplots showing the distributions of the

logio total number of reads per sample in each axis (DV = dorsal-ventral; AP = anterior — posterior; LML = lateral-

mid-lateral). (B) Boxplots of percentage of uniquely mapped reads per sample per axis. (C) Boxplots of distributions

of logio detected genes per sample per axis. (D) Boxplots of percentage of mitochondrial reads per sample per axis.

(E) Boxplots showing the distribution of the Moran’s I statistics calculated for the top 100 Highly Variable Genes

per axis. P-values are computed for each gene and then combined with the Simes’ method. The combined p-values

are < 2.2x1076 for all axes. (F) Normalized expression of canonical OM spatial marker genes along the three axes.

Red line showing fits with local polynomial models.
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Figure S2. Spatial differential expression analysis, Related to Figure 2 and Table S2. (A) Schematics of
strategy to find spatially differentially expressed genes; as an example, data for Acsm4 along the dorsal-ventral (DV)
axis is shown: Gene expression was binarized according to whether the expression per slice was higher or lower
than the median expression (red horizontal line). Then, we computed the autocorrelation function for different
values of the lags, and we applied the Ljung-Box test to verify whether the autocorrelation values are significantly
higher than zero. (B) Box plots of example genes’ expression (logio reads-per-million, RPMs) distributions in
different cell types. None of these genes is expressed in mOSNSs (INP = Immediate Neuronal Precursors; GBC =
Globose Basal Cells; mOSNs = mature Olfactory sensory neurons; iOSNs = immature Olfactory Sensory Neurons;
MVC = Microvillous Cells; iSC = Immature Sustentacular Cells; mSC = Mature Sustentacular Cells; HBCs =
Horizontal Basal Cells). (C) Spatial gene expression trends along each axis of the example genes shown in panel B.
(D) Heatmap showing the log, enrichment for the intersection between different gene clusters (indicated by colored
circles) across pairs of axes, after excluding Olfr genes. (E) Heatmaps showing normalized mean expression of the
neuronal activity marker genes listed in Table S2 from (Wang et al., 2017) along the three axes. (F) We used cell
type deconvolution analysis to estimate the cell type composition per section along the three axes. The red line

marks the fit with local polynomial models.
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Figure S3. OIfr genes 3D zones, Related to Figure 3. (A) Log-likelihood values for fits with LDA models as a
function of the number of zones. (B) Bar plot showing the degrees of belonging of Olfr genes with overlapping
spatial patterns (Miyamichi indexes of 1, 1.3 and 2 respectively). (C) Distribution of entropy values of our 689
spatially differentially expressed Olfrs. The Olfrs with entropy values less than 1 bit (vertical red line) can be

considered to fit mostly in one zone. (D) Bar plot showing the degrees of belonging of Moxd2.
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Figure S4. Olfr 3D index prediction, Related to Figure 4 and Tables S3 and S4. (A) Root mean square error
(RMSE) per iteration of the cross-validation test for the Random Forest model used to predict 3D indexes. (B)
Scatter plot illustrating the comparison of our 3D indexes versus the “Zolfr indexes” defined by (Zapiec and
Mombaerts, 2020) from ISH data. For this comparison, these zones were numbered from 1 to 9 from the most dorsal
to the most ventral. Black circles indicate Olfrs detected in our dataset; green circles are Olfrs for which indexes
were predicted with Random Forest. The correlation coefficients computed separately on these two sets of Olfrs are
respectively rho=0.92, p-value<2x10¢ and rho=0.44, p-value>0.05. (C) Scatter plot showing the correlation of our
3D indexes with the “Tan Indexes” estimated by (Tan and Xie, 2018), who performed RNA-seq on 12 samples at
different positions along the dorsal-ventral axis of the OM and estimated indexes using as reference the ~80 Olfrs
analyzed in (Miyamichi et al., 2005) via ISH. Black circles indicate Olfrs detected in our dataset; green circles are
Olfrs for which indexes were predicted with Random Forest. The correlation coefficients computed separately on
these two sets of Olfrs are respectively rho=0.95, p-value<2x10%6, and rho=0.68, p-value < 2x10¢.(D-F) In-situ
hybridization experiment validating the predicted 3D spatial expression patterns for OIfr309 (D), Olfr727 (E), and
OIfr618 (F). Note that OIfr618 is expressed in Zone 1, consistent with its predicted spatial expression pattern and
calculated 3D index of 7.42 (Figure 4 N, O). Purple arrowheads indicate the location of ISH labeled cells. The
dotted outline indicates the borders of the OM dissected and used in the RNA-seq experiments and for the

construction of the 3D model.
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Figure S5. Physiological role of the zones, Related to Figure 6 and Table S6. Scatter plot illustrating the

correlation between ATSC2s of the odorants and the average 3D indexes of their cognate Olfrs. Only odorants for

which we know at least two cognate Olfrs (110) were used here. Odorants are colored according to the zone they

belong to (defined as the zone with the highest average degree of belonging computed over all cognate receptors).

(B) Scatter plot illustrating the correlation between air/mucus partition coefficients of the odorants and the average

3D indexes of their cognate Olfrs. Only odorants which are detected by Olfrs present in our TOMO-seq dataset (87)

were used here. (C) Scatter plot illustrating the correlation between air/mucus partition coefficients of the odorants

and the average 3D indexes of their cognate Olfrs. Only odorants which are detected by Class Il Olfrs (101) were

used here.
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