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SUMMARY
The sense of smell helps us navigate the environment, but its molecular architecture and underlying logic
remain understudied. The spatial location of odorant receptor genes (Olfrs) in the nose is thought to be inde-
pendent of the structural diversity of the odorants they detect. Using spatial transcriptomics, we create a
genome-wide 3D atlas of the mouse olfactory mucosa (OM). Topographic maps of genes differentially ex-
pressed in space reveal that bothOlfrs and non-Olfrs are distributed in a continuous and overlapping fashion
over at least five broad zones in theOM. The spatial locations ofOlfrs correlatewith themucus solubility of the
odorants they recognize, providing direct evidence for the chromatographic theory of olfaction. This resource
resolves the molecular architecture of the mouse OM and will inform future studies on mechanisms underly-
ing Olfr gene choice, axonal pathfinding, patterning of the nervous system, and basic logic for the peripheral
representation of smell.
INTRODUCTION

The functional logic underlying the topographic organization of

primary receptor neurons and their receptive fields is well known

for all sensory systems but olfaction (Kandel et al., 2013). The

mammalian nose is constantly flooded with odorant cocktails.

Powered by a sniff, air enters the nasal cavity until it reaches

the olfactory mucosa (OM). There, myriad odorants activate

odorant receptors (Olfrs) present in the cilia of olfactory sensory

neurons (OSNs), triggering a cascade of events that culminate in

the brain and result in odor perception (Buck and Axel, 1991;

Kandel et al., 2013). Most mouse mature OSNs express a single

allele of one out of �1,100 Olfr genes (Olfrs) (Chess et al., 1994;

Hanchate et al., 2015; Malnic et al., 1999; Saraiva et al., 2015b).

Olfrs employ a combinatorial strategy to detect odorants, which

maximizes their detection capacity (Malnic et al., 1999; Nara

et al., 2011). OSNs expressing the same Olfr share similar
This is an open access article under the CC BY-N
odorant response profiles (Malnic et al., 1999; Nara et al.,

2011) and drive their axons to the same glomeruli in the olfactory

bulb (Mombaerts et al., 1996; Ressler et al., 1994; Vassar et al.,

1994). Thus, Olfrs define functional units in the olfactory system

and function as genetic markers to discriminate between

different mature OSN subtypes (Ibarra-Soria et al., 2017; Saraiva

et al., 2015b).

Another remarkable feature of the OSN subtypes is their

spatial distribution in the OM. Early studies postulated that

OSNs expressing different Olfrs are spatially segregated into

four broad areas within the OM, called ‘‘zones,’’ and which

define hemicylindrical rings with different radii (Ressler et al.,

1993; Vassar et al., 1993). Subsequent studies identified Olfrs

expressed across multiple zones, making clear that a division

in four discrete zones might not accurately reflect the system,

and a continuous numerical index representing the pattern of

expression of each Olfr along the zones was implemented
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Figure 1. Application of TOMO-seq to mouse OM

(A) Experimental design. TOMO-seq was performed on nine tissue samples, from which three were sliced along the dorsal-ventral axis (DV), three along the

anterior-posterior axis (AP), and three along the lateral-medial-lateral axis (LML).

(B) Boxplots showing the distributions of Spearman’s correlation coefficients (rho) between replicates in each axis.

(C) Heatmaps showing Spearman’s correlation between gene expression patterns at different positions along the three axes.

(D) Number of detected genes along each axis separately or across thewhole dataset. Geneswere considered as detected when they had at least one normalized

count in at least 10% of the samples from one axis.

(E) Heatmaps of log10 normalized expression (after combining the three replicates per axis) of OM canonical markers along the three axes (GBCs, globose basal

cells; HBCs, horizontal basal cells; iOSNs, immature olfactory sensory neurons; mOSNs, mature olfactory sensory neurons; RESs, respiratory epithelium cells;

RPM, reads per million; SUSs, sustentacular cells).

(F) Normalized expression of canonical OM spatial marker genes along the three axes. Red line shows fits with local polynomial models.
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(Miyamichi et al., 2005; Strotmann et al., 1992). More recently, a

study reconstructed Olfr expression patterns in three dimen-

sions (3D) and qualitatively classified the expression areas of

68 Olfrs in nine overlapping zones (Zapiec and Mombaerts,

2020). However, all these studies sampled a fraction (�10%) of

the total intact olfactory receptor gene repertoire and, most

importantly, lack a quantitative and unbiased definition of zones

or indices. We do not currently understand the full complexity of

the OM and lack an unbiased and quantitative definition of

zones. In effect, the exact number of zones, their anatomical

boundaries, molecular identity, and functional relevance are

yet to be determined.

One hypothesis is that the topographic distribution of Olfr and

OSN subtypes evolved because it plays a key role in the process

ofOlfrchoice inmatureOSNsand/or inOSNaxonguidance (Bash-

kirova et al., 2020; Coppola et al., 2013). An alternative hypothesis

is that the spatial organization of Olfr/OSN subtypes is tuned to

maximize the detection and discrimination of odorants in the pe-

ripheral olfactory system (Ressler et al., 1993). Interestingly, the

receptive fields of mouse OSNs vary with their spatial location

(Ma and Shepherd, 2000), which in some cases correlates with

the patterns of odorant sorption in the mouse OM—this associa-

tionwasproposedas the ‘‘chromatographichypothesis’’ decades

before thediscovery of theOlfrs (Mozell, 1966) and later rebranded

as the ‘‘sorption hypothesis’’ in olfaction (Schoenfeld andCleland,

2006; Scott et al., 2014).While some studies lend support to these

hypotheses (reviewed in Secundo et al. 2014), others question

their validity (Abaffy and Defazio, 2011; Coppola et al., 2019).

Thus, the logic underlying the representationof smell in theperiph-

eral olfactory system still remains unknown, and it is subject of

great controversy (Kurian et al., 2021; Secundo et al., 2014).
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Spatial transcriptomics, which combines spatial information

with high-throughput gene expression profiling, expanded our

knowledge of complex tissues, organs, or even entire organisms

(Achim et al., 2015; Asp et al., 2019, 2020; Junker et al., 2014;

Peng et al., 2016). In this study, we employed a spatial transcrip-

tomics approach to create a 3D map of gene expression of the

mouse nose, and we combined it with single-cell RNA

sequencing (RNA-seq), machine learning, and chemoinfor-

matics to resolve its molecular architecture and shed light onto

the anatomical logic of smell.

RESULTS

A high-resolution spatial transcriptomic map of the
mouse olfactory mucosa
We adapted the RNA-seq tomography (Tomo-seq) method

(Junker et al., 2014) to create a spatially resolved genome-wide

transcriptional atlas of the mouse nose. We obtained cryosec-

tions (35 mm) collected along the dorsal-ventral (DV), anterior-

posterior (AP), and lateral-medial-lateral (LML) axes (n = 3 per

axis) of the OM (Figure 1A) and performed RNA-seq on individual

cryosections (see STAR Methods). After quality control (Figures

S1A–S1D; Table S1; STARMethods), we computationally refined

the alignment of the cryosection along each axis, and we

observed a high correlation between biological replicates (Fig-

ure 1B). Hence,wecombined the three replicates into a single se-

ries of spatial data, including 54, 60, and 56 positions along the

DV, AP, and LML axis, respectively (Figure 1C; STAR Methods).

On average, we detected >18,000 genes per axis, representing

a total of 19,249 genes for all axes combined (Figure 1D). Molec-

ular markers for all canonical cell types known to populate the
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mouseOMwere detected in all axes (Figure 1E) and expressed at

the expected levels (Saraiva et al., 2015b).

Next, we verified the presence of a spatial signal with the Mor-

an’s I (Schmal et al., 2017; Figure S1E), whose value is signifi-

cantly higher than 0 for the data along all axes (p < 2 3 10�16

for all axes), indicating that nearby sections have more similar

patterns of gene expression than expected by chance. Given

the left/right symmetry along the LML axis (Figure 1C), the data

were centered and averaged on the two sides—henceforth, the

LML axis will be presented and referred to as the lateral-medial

(LM) axis (see STAR Methods). We could reproduce the expres-

sion patterns for knownOMspatial markers, including the dorso-

medialmarkersAcsm4 andNqo1 (Gussing andBohm, 2004;Oka

et al., 2003) and the ventrolateral markers Ncam2 and Reg3g

(Alenius and Bohm, 1997; Yu et al., 2005; Figures 1F and S1F).

Together, these results show that RNA tomography is a sensi-

tive and reliable method to examine gene expression patterns in

the mouse OM.

Spatial differential gene expression analysis identifies
cell-type-specific expression patterns and functional
hotspots in the OM
In the last 3 decades, multiple genes with spatially segregated

expression patterns across the OM have been identified. Most

of these genes are expressed in mature OSNs and encode che-

mosensory receptors, transcription factors, adhesion mole-

cules, andmanymolecules involved in the downstream signaling

cascade of receptor activation (Cho et al., 2007; Cloutier et al.,

2002; Fulle et al., 1995; Greer et al., 2016; Gussing and Bohm,

2004; Juilfs et al., 1997; Liberles and Buck, 2006; Miyamichi

et al., 2005; Norlin et al., 2001; Oka et al., 2003; Pacifico et al.,

2012; Saraiva et al., 2015b; Tietjen et al., 2003, 2005; Vassar

et al., 1993; Wang et al., 2004; Yoshihara et al., 1997; Yu et al.,

2005; Zapiec and Mombaerts, 2020). A smaller number of

zonally expressed genes (e.g., metabolizing enzymes, chemo-

kines, and transcription factors) were found to be expressed in

sustentacular cells, globose basal cells, olfactory ensheathing

cells, Bowman’s gland cells, and respiratory epithelial cells

(Cloutier et al., 2002; Duggan et al., 2008; Heron et al., 2013;

Juilfs et al., 1997; Miyawaki et al., 1996; Norlin et al., 2001; Pe-

luso et al., 2012; Whitby-Logan et al., 2004; Yu et al., 2005).

Despite this progress, our knowledge on what genes display

true zonal expression patterns and what cell types they are pri-

marily expressed in is still very limited.

To identify axis-specific differentially expressed genes (DEGs)

(hereafter referred to as spatial DEGs), we first filtered out lowly

expressed genes, then binarized the expression levels at each

position according to whether they were higher or lower than

their median expression, and applied the Ljung-Box test to the

autocorrelation function calculated on the binarized expression

values (Figure S2A; STARMethods). After correcting for multiple

testing, we obtained a total of 12,303 spatial DEGs for the three

axes combined (false discovery rate [FDR] < 0.01; Figure 2A)—

the AP axis showed the highest number of spatial DEGs

(10,855), followed by the DV axis (3,658) and the LM (1,318).

Next, we added cell-type resolution to the spatial axes by

combining our data with a single-cell RNA-seq (scRNA-seq) da-

taset from 13 cell types present in the mouse OM (Fletcher et al.,
2017). We cataloged spatial DEGs based on their expression in

mature OSNs (mOSNs) versus the 12 other cell types (non-

mOSNs; Figures 2B and 2C; Table S2). This led to the identifica-

tion of 456 spatial DEGs expressed exclusively in non-mOSNs,

which are associated with gene ontology (GO) terms, such as

transcription factors, norepinephrine metabolism, toxin meta-

bolism, bone development, regulation of cell migration, T cell

activation, and others (Table S2). Some genes are expressed

across many cell types, but others are specific to one cell type

(Figure 2C; Table S2). As expected, some of these genes are

cell-specific markers with known spatial expression patterns,

such as the sustentacular cells and Bowman’s glands markers

Cyp2g1 and Gstm2 (Yu et al., 2005), the neural progenitor cell

markers Eya2 and Hes6 (Tietjen et al., 2003), and the basal lam-

ina and olfactory ensheathing cell markers Aldh1a7 and Aldh3a1

(Norlin et al., 2001; Table S2). We also identified spatial DEGs

along a single axis or multiple axes and specific to one or few

cell types (Figures S2B and S2C). For example, the ribosomal

protein Rps21 plays a key role in ribosome biogenesis, cell

growth, and death (Wang et al., 2020) and is primarily expressed

in horizontal basal cells (HBCs), consistent with their role in the

maintenance and regeneration of the OM (Leung et al., 2007).

Another example is the extracellular proteinase inhibitor

Wfdc18, which induces the immune system and apoptosis

(Jung et al., 2004) and is expressed in microvillous cells type 1

(MVC1s), consistent with their role in immune responses to viral

infection (Baxter et al., 2020). Two more examples are the fibro-

blast growth factor Fgf20 in immature sustentacular cells (iSCs)

and the adapter protein Dab2 in mature sustentacular cells

(mSCs) (Figures S2B and S2C). Fgf20 is expressed in several

cell types, regulates the horizontal growth of the olfactory turbi-

nates, and is preferentially expressed in the lateral OM (Yang

et al., 2018), consistent with our data. Dab2 regulates mecha-

nisms of tissue formation, modulates immune responses, and

participates in the absorption of proteins (Finkielstein and Capel-

luto, 2016; Park et al., 2019), consistent with the known mainte-

nance and support roles of mSCs in the OM (Brann et al., 2020).

A GO enrichment analysis on the axis-specific DEGs for non-

mOSNs genes revealed a very wide variety of biological pro-

cesses and molecular functions. Some of the notable terms

identified were water and fluid transport (e.g., Ctfr and Aqp3),

transcription factors (e.g., Hes1 and Dlx5), oxidation-reduction

processes (e.g., Scd2 andCyp2f2), microtubule cytoskeleton or-

ganization involved in mitosis (e.g., Stil and Aurkb), cell cycle

(e.g., Mcm3 and Mcm4), cell division (e.g., Kif11 and Cdca3),

negative regulation of apoptosis (e.g., Dab2 and Scg2), sensory

perception of chemical stimulus (e.g., Olfr870 and Gnas), and

cellular processes (e.g.,Mal and Pthlh), among many others (Ta-

ble S2).

The identification of thousands of spatial DEGs prompted us

to examine their distribution patterns along each axis and the pu-

tative functions associated with such spatial clusters of gene

expression.We started by using uniformmanifold approximation

and projection (UMAP) (Becht et al., 2018) and hierarchical clus-

tering to visualize and cluster all spatial DEGs along the three

axes. This analysis uncovered nine patterns of expression in

theDV andAP axes each and five patterns in the LM axis (Figures

2D and 2E). These patterns include variations of four major
Cell Reports 38, 110547, March 22, 2022 3



Figure 2. Genes with non-random spatial

patterns across different cell types in the

OM

(A) Venn diagram showing the numbers of spatial

differentially expressed genes (DEGs) along each

axis.

(B) Bar plot showing the log10 number of spatial

DEGs that are mOSN specific (‘‘mOSNs’’) or that

are detected only in cell types other than mOSNs

(‘‘other’’).

(C) Heatmap of log10mean expression per cell type

of genes that are not expressed in mOSNs but only

in other OM cell types (INPs, immediate neuronal

precursors; iSCs, immature sustentacular cells;

mSCs, mature sustentacular cells; MVCs, micro-

villous cells; mSCs, mature sustentacular cells).

(D) UMAP plots of spatial DEGs along the three

axes (n = 3 per axis). Each gene is colored ac-

cording to the cluster it belongs to.

(E) Normalized average expression patterns of

spatial DEGs clusters along the three axes.

(F) Heatmap showing the log2 enrichment over the

random case for the intersection between lists of

genes belonging to different clusters (indicated by

colored circles) across pairs of axes.
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shapes: monotonically increasing (/), monotonically decreasing

(\), U-shape (W), and inverted U-shape (X) (Figure 2E). The latter

two patterns present clear maximum and minimum at different

positions along the axis—for example, the brown, green, pink,

magenta, and black AP clusters show a similar inverted U-shape

pattern, but their maximum moves along the axis (Figure 2E). As

expected, the dorsomedial markers Acsm4 and Nqo1 belong to

the turquoise clusters in both the DV and LM axes, while the

ventrolateral marker Reg3g belongs to the blue cluster from

the DV axis (Figure 1F; Table S3), mimicking their respective

expression pattern in the mouse OM.

The total number of genes per cluster had a median value of

236 but varied greatly between clusters—ranging from 57 in the

green LM cluster to 8,551 in the turquoise AP cluster (Figure 2D;

Table S3). GO enrichment analyses on the spatial DEGs yielded

enriched terms for 14 of the 23 spatial clusters (Table S3). For

example, the turquoise AP cluster displaying a monotonically

increasing pattern (Figure 2E) yielded GO terms associated with

the molecular machinery of mOSNs—such as axonal transporta-

tion, RNA processing, ribosomal regulation, and regulation of his-

tone deacetylation (Table S3). Interestingly, the brownDV cluster,

which displays a monotonically decreasing expression pattern

(Figure 2E), had similar GO term enrichment (Table S3). In agree-

ment with these results, we found that most known OSN activity-
4 Cell Reports 38, 110547, March 22, 2022
dependentmarkers (Wang et al., 2017) are

spatial DEGs belonging to the AP tur-

quoise and brown clusters, which contain

genes with expression peaks in the poste-

rior region (Figure S2E; Table S3). We also

observed a similar trend in the DV axis,

with many of these markers being more

highly expressed in the dorsal region

(Figure S2E).
The results above show that OSNactivity is enriched in the dor-

soposterior region of the OM, which could be due to an enrich-

ment ofOSNs in that region. To test this hypothesis, we estimated

the abundance and spatial variability of OSNs and five additional

major cell types (HBCs, globose basal cells [GBCs], SCs, MVCs,

and immediate neuronal precursors [INPs]) in each section

through a cell deconvolution analysis (see STAR Methods). We

observed statistically significant changes in the abundance of

OSNs,which ispredicted tobehigher in thedorsoposterior region

of the OM, as previously suggested (Nickell et al., 2012; Vedin

et al., 2009). Conversely, other cell types like HBCs are predicted

to have an opposite pattern, as they tend to be more abundant in

the anteroventral region (Figure S2F; Table S2).

Next, we extended our GO analysis to the remaining spatial

clusters and found additional terms enriched or shared between

several clusters among the three axes. For example, GO terms

enriched in the dorsomedial region (turquoise DV, pink AP, and

LM green clusters) include detoxification of several metabolites

and multiple metabolic and catabolic processes, suggesting

that this region is involved in the OM detoxification (Table S3).

Another example is the enrichment in terms related to the im-

mune system—such as defense response and humoral immune

response—in the anteromedial section along the AP axis (yellow,

black, and magenta AP and turquoise LM clusters), which
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strongly hints at a role of this area in defending OM from patho-

genic invaders (Table S3). The anteroventral and posteroventral

regions (blue DV and blue AP clusters) are enriched in terms

related to the cellular and anatomical organization (e.g., extracel-

lular matrix organization and regulation of cell communication)

and bone and cartilage development (e.g., ossification and bio-

mineral tissue development), suggesting these locations are hot-

spots for the development and regulation of the OM structure.

Finally, the ventral portion of the DV (red DV cluster) is associated

with terms related to cilia movement and function (e.g., regula-

tion of cilium movement and microtubule-based movement),

consistent with both the location and functions of the respiratory

epithelium (Yu et al., 2005).

Next, we further explored the relationships between the genes

populating each cluster. We found that ventral genes (blue DV

cluster) tend to reach a peak in expression in the anterior area

of the OM (yellow AP cluster) more often than expected by

chance (Figure 2F). We also observed that medial genes (tur-

quoise LM cluster) are more highly expressed in the dorsal

(magenta DV cluster) and anterior regions (black, yellow, and

magenta AP cluster), while genes peaking in the lateral region

(brown LM cluster) tend to be ventral (red DV cluster; Figure 2F).

These conclusions hold, even when we exclude Olfrs from the

analysis (Figure S2D).

These associations between the clusters of spatial DEGs

along different axes suggest that the presence of complex 3D

expression patterns in OM is not restricted to either Olfrs or

OSNs. Moreover, our results show that our experimental

approach can uncover spatially restricted functional hotspots

within the OM.

A 3D transcriptomic atlas of the mouse OM
Since the OR discovery 3 decades ago (Buck and Axel, 1991), in

situ hybridization (ISH) has been the method of choice to study

spatial gene expression patterns across the OM. This method

is technically challenging and inherently a very low-throughput

experimental approach.

As we showed above, our Tomo-seq data enable a systematic

and quantitative estimation of gene expression levels along the

three axes of the OM. Here, we take this analysis one step further

and generate a fully browsable tridimensional (3D) gene expres-

sion atlas of themouseOM. First, we reconstructed the 3D shape

of OM based on publicly available images of OM sections (STAR

Methods). We then fed the shape information combined with the

gene expression data along the three axes into the iterative pro-

portional fitting (IPF) algorithm (Fienberg, 1970; Junker et al.,

2014; Figure 3A). The 3D atlas of the OM faithfully reproduced

the known 3D pattern of the dorsomedial marker Acsm4 (Oka

et al., 2003; Figure 3B). To further validate our 3D gene expres-

sion atlas of theOM,we compared the 3D reconstructed patterns

with conventional ISH patterns for five spatial DEGs identified in

this study. The first gene validated was Cytl1, which we

confirmed to be expressed along the septum throughout the

OM (Figures 3C and 3D), consistent with the role Cytl1 plays in

osteogenesis, chondrogenesis, and bone and cartilage homeo-

stasis (Shin et al., 2019; Zhu et al., 2019). The four additional

genes (Olfr309, Olfr618, Olfr727, and Moxd2) validated via ISH

are presented elsewhere in this manuscript (Figures 4, 5, and S4).
To make this 3D gene expression atlas of the mouse OM avail-

able to thescientificcommunity,wecreatedawebportal (available

athttp://atlas3dnose.helmholtz-muenchen.de:3838/atlas3Dnose)

providing access to the spatial transcriptomicdatadescribed here

in a browsable and user-friendly format. This portal contains

search functionalities allowing the users to perform pattern search

by gene, which returns (1) the normalized counts along each of the

three axes, (2) the predicted expression pattern in 3D with a zoom

function, (3) visualization of the expression patterns in virtual cryo-

sectionsalong theOMbyselecting anypossiblepairwise intersec-

tionbetween twogiven axes (i.e., DVxAP,DVxLM, andAPxLM), (4)

the degrees of belonging for each ‘‘zone’’ (see results section

below), and (5) single-cell expression data across 14 different

cell types.

In sum, here, we generated and made publicly available a

highly detailed and fully browsable 3D gene expression atlas of

the mouse OM, which allows the exploration of the expression

patterns for �20,000 genes.

Topographical expression patterns of Olfrs

In our combined dataset, we detected a total of 959 Olfrs (Fig-

ure 4A), of which we confidently reconstructed the spatial

expression patterns for 689 differentially expressed in space

(FDR< 0.01; Figure 4B)—anumber six times larger than the com-

bined 112 Olfrs characterized by previous ISH studies (Miyami-

chi et al., 2005; Ressler et al., 1993; Vassar et al., 1994; Zapiec

and Mombaerts, 2020). To define Olfr expression in 3D space

in a rigorous, unbiased, and quantitative way, we ran a latent

Dirichlet allocation (LDA) algorithm (STAR Methods; Liu et al.,

2016) on the 689 spatially differentially expressed Olfrs. LDA is

a generative statistical model that can infer the topics of a collec-

tion of documents based on the variability and frequency of spe-

cific words. In the context of this study, if the spatial expression

data of Olfrs are considered equivalent to ‘‘documents,’’ the in-

ferred topics correspond to ‘‘zones’’ (STAR Methods). We ran

LDA for different numbers of zones, and the trend of the log likeli-

hood function suggested that the minimal number of topics

required to represent the diversity of patterns is five (Figure S3A;

STAR Methods). Next, we visualized the spatial distribution of

these five zones in our 3D OM model, with colors representing

the probability that a given spatial position belongs to each

zone. These five zones extend from the dorsomedial-posterior

to the lateroventral-anterior region (Figure 4C), consistent with

the previously described zones (Miyamichi et al., 2005; Ressler

et al., 1993; Vassar et al., 1993).

The majority ofOlfrswith known spatial patterns are restricted

to a single zone, but a small number of Olfrs are expressed

across multiple zones in a continuous or non-continuous fashion

(Miyamichi et al., 2005; Strotmann et al., 1992; Zapiec andMom-

baerts, 2020). Under this logic, eachOlfr has a different probabil-

ity of belonging to the five topics and zones we identified. To test

this assumption, we used the same mathematical framework as

above to compute the probabilities that the expression pattern of

eachOlfr belongs to a given zone, i.e., the ‘‘degree of belonging’’

(DOB) (Table S4). The DOBs represent a decomposition of the

expression patterns in terms of the five zones (Figure 4C) and

quantitatively describe the changes in patterns of genes with

overlapping areas of expression (e.g., see Figure S3B). Thewidth
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Figure 3. The 3D reconstruction of the OM

(A) Schematic of 3D shape reconstruction strategy. Images of 2D slices along the AP axis of the OMwere piled together to build an in silico 3Dmodel of OM, which

can also be used to visualize in silico sections. This 3D model, together with the gene expression data along each axis, was the input of the iterative proportional

fitting algorithm, which allowed us to estimate a 3D expression pattern for any gene.

(B and C) Reconstruction of the 3D expression patterns of the Acsm4 (B) and Cytl1 (C) in the OM, visualized in 3D and in OM coronal sections taken along the AP

axis.

(D) ISH experiment validating Cytl1 spatial expression pattern reconstructed in (C); note that Cytl1 is expressed in the septal region all along the OM. Purple

arrowheads indicate the location of labeled cells. The dotted outline marks the borders of the OM dissected and used in the RNA-seq experiments and for the

construction of the 3D model.
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of the distribution of DOBs across the five zones, which can be

measured with entropy, can distinguish genes whose patterns

mostly fit in a single zone from those spanning multiple zones

(Figure S3C; STAR Methods).

To visualize the global distribution of the 689 Olfrs, we applied

the diffusion map algorithm (Haghverdi et al., 2015) to their

DOBs. This showed that the genes are approximately distributed

along a continuous line spanning the five zones andwithout clear

borders between zones (Figure 4D), consistent with previous

studies (Miyamichi et al., 2005; Strotmann et al., 1992; Zapiec

andMombaerts, 2020).With the diffusion pseudo-time algorithm

(Haghverdi et al., 2016), we calculated an index (hereafter

referred to as ‘‘3D index’’) that tracks the position of each Olfr

gene along the 1D curve in the diffusion map and represents

its expression pattern (Figure 4E).

While our approach yielded an index for the 689 spatially

differentially expressed Olfr genes used to build the diffusion
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map, there were 697 Olfrs that could not be analyzed, either

because they were too lowly expressed or not detected at

all in our dataset (Figure 4A). Since the spatial expression pat-

terns for some Olfrs are partly associated with their chromo-

somal and genomic coordinates (Sullivan et al., 1996; Tan

and Xie, 2018; Zhang et al., 2004), we hypothesized that we

could use a machine-learning algorithm to predict the 3D

indices for the 697 Olfrs missing from our dataset. Thus, we

trained a random forest algorithm on the 3D indices of the

spatially differentially expressed Olfrs in our dataset using

nine genomic features as predictors, such as the chromosomal

position, number of Olfrs in cluster, and distance to nearest

known enhancer (Figure 4F; STAR Methods). The algorithm

performance was confirmed by over 100 cross-validation iter-

ations, which revealed a low root-mean-square error ((10%)

on the mean 3D index (Figure S4A; STAR Methods). The five

most important predictors were features associated with



Figure 4. Zonal organization of Olfrs in the OM

(A) Number of Olfrs detected in our data and in an OM bulk RNA-seq data (Saraiva et al., 2015b).

(B) Venn diagram of spatially differentially expressed Olfrs per axis (n = 3 per axis).

(C) Visualization of the five zones across the OM (coronal sections) estimatedwith a latent Dirichlet allocation algorithm. The colors indicate the probability (scaled

by its maximum value) that a position belongs to a given zone.

(D) Diffusion map of Olfrs. Genes are colored based on the zone they fit in the most. DC, diffusion component.

(E) Same as (D), with Olfrs colored by their 3D index.

(F) We fitted a random forest algorithm to the 3D indices of 681 spatialOlfrs using nine genomic features as predictors. After training, the random forest was used

to predict the 3D indices of 697 Olfrs that have too low levels in our data.

(G) 3D indices versus the indices of 80 Olfrs estimated in Miyamichi et al. (2005) from ISH data. Black circles indicate Olfrs detected in our dataset; green circles

are Olfrs whose indices were predicted with random forest. The correlation coefficients computed separately on these two sets of Olfrs are, respectively, rho =

0.92 (p < 2 3 10�16) and rho = 0.69 (p = 0.009).

(H–P) Predicted expression patterns (H, K, and N), degrees of belonging (I, L, and O), and ISH (J, M, and P) forOlfr309,Olfr727, and Olfr618, respectively. Purple

arrowheads indicate the location of labeled cells. The dotted outline marks the borders of the OM dissected and used in the RNA-seq experiments and for the

construction of the 3D model.
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Figure 5. Zonal organization of non-Olfr

genes in the OM

(A) Heatmap of degrees of belonging of most zone-

specific non-Olfr genes.

(B) 3D gene expression pattern (coronal sections)

of most topic-specific non-Olfrs for each topic

along the AP axis.

(C) Reconstruction of the 3D expression pattern of

the gene Moxd2 in the OM.

(D) ISH experiment validating Moxd2 spatial

expression pattern reconstructed in (B) and (C).

Purple arrowheads indicate the location of ISH-

labeled cells. The dotted outline marks the borders

of the OM dissected and used in the RNA-seq

experiments and for the construction of the 3D

model.
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chromosomal position, distance to the closest Olfr enhancer

(Monahan et al., 2017), length of the Olfr cluster, position in

the Olfr cluster, and phylogenetic Olfr class (Figure 4F). Using

this machine-learning algorithm, we predicted the 3D indices

for the 697 Olfrs missing reliable expression estimates in our

dataset (Table S4).

Overall, through multiple unsupervised and supervised

computational methods, we have quantitatively defined five

spatial expression domains in the OM (called zones) and have

provided accurate 3D spatial indices for 1,386 Olfrs, which rep-

resents �98% of the annotated Olfrs.

Importantly, we found strong correlations between the ‘‘Miya-

michi indices’’ inferred using ISH in Miyamichi et al. (2005) and

our 3D indices (rho = 0.88; p < 23 10�16; Figure 4G). This corre-

lation remains significant when we separately analyze the 3D

indices computed by diffusion pseudo-time (rho = 0.92; p <

2 3 10�16) or predicted by random forest (rho = 0.69; p =

0.009). In addition, our indices also correlated with the ‘‘Zolfr

indices’’ (Zapiec and Mombaerts, 2020; rho = 0.88; p < 2 3

10�16; Figure S4B), and with the ‘‘Tan indices’’ (Tan and Xie,

2018; rho = 0.89; p < 2 3 10�16; Figure S4C), inferred by ISH

and RNA-seq, respectively.

To confirm our predictions, we performed ISH for three Olfrs

that have not been characterized before—two detected in our

dataset and for which the 3D index was calculated via diffusion

pseudo-time (DPT) (Olfr309 and Olfr727) and one not detected

in our dataset and for which the 3D index was predicted with

the random forest algorithm (Olfr 618). Notably, all three Olfrs

were expressed primarily within the zones they were predicted

to be expressed in: zone 2 for Olfr309 (3D index = 30.76),

zones 4 and 5 for Olfr727 (3D index = 75.14), and zone 1 for
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Olfr618 (3D index = 7.42; Figures 4H–

4P and S4D–S4F; Table S4).

Topographical expression patterns
for non-Olfr genes
A recent study performed RNA-seq in 12

randomly dissected OM pieces along

the DV axis and identified �700 non-Olfr

genes with putatively spatial patterns

(Tan and Xie, 2018), includingmany genes
with zonal expression patterns identified previously (Duggan

et al., 2008; Gussing and Bohm, 2004; Liberles and Buck,

2006; Ling et al., 2004; Norlin et al., 2001; Oka et al., 2003; Tietjen

et al., 2003;Whitby-Logan et al., 2004; Yoshihara et al., 1997). By

identifying 11,538 non-Olfr spatial DEGs (Figures 2 and 3; Table

S5), we increased the list of non-Olfr genes with spatial zonation

in the OM by 16-fold.

Using the mathematical framework based on topic modeling

described above, we decomposed the expression patterns of

non-Olfr genes onto the five zones we identified. This allowed

us to identify genes showing zone specificity by calculating the

entropy of the DOBs distributions. Interestingly, we found

28 genes highly specific for each of the five zones (i.e., with en-

tropy <1; STAR Methods; Figure 5A; Table S5). For example,

S100a8 (zone 1) codes for a calcium-binding protein involved

in calcium signaling and inflammation (Yoshikawa et al., 2018),

Moxd2 (zone 2) is a mono-oxygenase dopamine hydroxylase-

like protein possibly involved in olfaction (Kim et al., 2014),

Lcn4 (zone 3) is a lipocalin involved in transporting odorants

and pheromones (Charkoftaki et al., 2019; Miyawaki et al.,

1994), Gucy1b2 (zone 4) is a soluble guanylyl cyclase oxygen

and nitric oxide (Bleymehl et al., 2016; Koglin et al., 2001), and

Odam (zone 5) is a secretory calcium-binding phosphoprotein

involved in cellular differentiation and matrix protein production

and with antimicrobial functions of the junctional epithelium

(Lee et al., 2012; Springer et al., 2019; Figure 5B). The high

zone specificity of the expression pattern of these genes gives

clues into possible biological processes taking place in the

zones. Indeed, Gucy1b2 is a known genetic marker for a small

OSN subpopulation localized in cul-de-sac regions in the lateral

OM, consistent with our reconstruction (Figure 5B), and it



Figure 6. Physiological role of the zones

(A) Circular network illustrating the pairs of Olfrs and ligands that we found in the literature.

(B) Boxplots showing the distributions of the absolute value of 3D index differences between pairs of Olfrs sharing at least one ligand versus pairs of Olfrs without

cognate ligands in common. The difference between the two distributions is statistically significant (p < 2 3 10�16; Wilcoxon rank-sum test).

(C) Scatterplot showing the Spearman correlation coefficients between the ligands’ mean 3D indices and molecular descriptors and the corresponding

�log10(adjusted p value). Turquoise circles indicate the descriptors having a significant correlation only when both class I and II Olfrs are considered; red circles

mark the descriptors with a significant correlation also when class I Olfrs are removed.

(D) Scatterplot illustrating the correlation between air/mucus partition coefficients of the odorants and the average 3D indices of their cognate Olfrs. Only odorants

for which we know at least two cognate Olfrs (110) were used here. Odorants are colored according to the zone they belong to (defined as the zone with the

highest average degree of belonging computed over all cognate receptors). The five odorants highlighted in the plot by larger circles are indicated on the right-

hand side, along with their molecular structure and common name.

(E) Average expression pattern of the cognate Olfrs recognizing each of the five odorants highlighted in (D), including their respective CAS numbers.
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regulates the sensing of environmental oxygen levels through the

nose (Omura and Mombaerts, 2015; Saraiva et al., 2015b). In

addition, our ISH experiments revealed thatMoxd2 is expressed

in a small ventrolateral patch of the OM (Figure 5D), validating its

predicted 3D spatial pattern (Figures 5B and 5C) and highlighting

a potential highly localized role of this protein in neurotransmitter

metabolism (Goh et al., 2016) in the mouse OM.

A recent study showed that the transcription factors Nfia, Nfib,

and Nfix regulate the zonal expression ofOlfrs (Bashkirova et al.,

2020). To get some insights into the signaling pathways involved

in this process, wemined our dataset for genes encoding ligands

and receptors (Efremova et al., 2020) correlated with the expres-

sion patterns of the Nfis (STAR Methods). This analysis returned

476 genes involved in biological processes associated with the

regulation of neurogenesis, regulation of cell development,

anatomical structure development, cellular component organi-

zation or biogenesis, and regulation of neuron differentiation (Ta-

ble S5). As expected, some of these genes have known functions

in the OM, such as segregating different cell lineages forNotch1-

3 (Carson et al., 2006), genes associated with the development

of the nervous system (e.g., Erbb2 and Lrp2; Britsch et al.,

1998; Spuch et al., 2012), and many others associated with

the semaphorin-plexin, ephrin-Eph, and Slit-Robo signaling

complexes—which regulate OSN axon guidance and spatial

patterning of the OM (Cloutier et al., 2002; Cutforth et al., 2003;

Huber et al., 2003; Kania and Klein, 2016). Excitingly, themajority
of these 476 genes still have unknown functions in the OM, thus

highlighting the potential of our approach to discover genes and

pathways involved in the regulation of zonal expression in the

OM.

The anatomical logic of smell
For most sensory systems, the functional logic underlying the

topographic organization of primary receptor neurons and their

receptive fields is well known (Kandel et al., 2013). In contrast,

the anatomic logic of smell still remains unknown, and it is sub-

ject of great controversy and debate (Kurian et al., 2021; Se-

cundo et al., 2014).

To explore the underlying logic linked to the zonal distribution

of Olfrs, we investigated possible biases between their expres-

sion patterns and the physicochemical properties of their

cognate ligands. First, we compiled a list of known 738 Olfr-

ligand pairs, representing 153 Olfrs and 221 odorants (Figure 6A;

Table S6). Interestingly, Olfr pairs sharing at least one common

ligand have more similar expression patterns (i.e., more similar

3D indices) than Olfrs detecting different sets of odorants (Wil-

coxon rank-sum test; p < 23 10�16; Figure 6B). This observation

is consistent with the hypothesis that the Olfr zonal distribution

depends, at least partially, on the properties of the odorants

they bind to.

Next, we considered a set of 1,210 physicochemical descrip-

tors, including the molecular weight, the number of atoms,
Cell Reports 38, 110547, March 22, 2022 9
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aromaticity index, lipophilicity, and the air/mucus partition coef-

ficient (Kam), which quantifies the mucus solubility of each ligand

(Rygg et al., 2017; Scott et al., 2014; STAR Methods). We then

computed the Spearman’s correlation of each of these descrip-

tors of the ligandswith the average 3D indices of theOlfrs detect-

ing them. We found a statistically significant correlation for 744

descriptors (FDR < 0.05; Figure 6C; Table S6). The top five high-

est correlations were with the air/mucus partition coefficient Kam

(rho = 0.55; adjusted p = 1 3 10�7), ATSC2S (rho = �0.56;

adjusted p = 2 3 10�7), SPmax2_Bh.s (rho = �0.52; adjusted

p = 2 3 10�6), SPmax1_Bh.s (rho = �0.51; adjusted p = 3 3

10�6), and ATSC6e (rho = �0.51; adjusted p = 3 3 10�6; Fig-

ure 6C; Table S6). Interestingly, ATSC2S, SPmax1_Bh.s, and

SPmax2_Bh.s are also related to solubility (Consonni and Tode-

schini, 2008; Devillers and Domine, 1997; Hollas, 2003). Notably,

the association between Kam and the mean 3D indices does not

depend on the number of zones defined with LDA (STAR

Methods). Furthermore, it remains robust to changes in the set

of ligands and/or Olfrs used for the analysis, namely, when we

excluded Olfrs for which the 3D indices were predicted with

the random forest model (rho = 0.48; p = 2 3 10�6; Figure S5B)

or when only 3D indices from class II Olfrs were included in the

analysis (rho = 0.5; p = 1 3 10�7; Figure S5C).

In particular, the positive correlation of the 3D indices with Kam

(Figure 6D) indicates that the most soluble odorants (lower) pref-

erentially activate Olfrs located in the most antero-dorsomedial

region (zone 1) of theOM,while the least soluble odorants (higher

Kam) activate Olfrs in the postero-ventrolateral region (zones 4 to

5). In other words, gradients of odorants sorption (as defined by

their Kam) correlate with the gradients of Olfr expression from

zone 1 to zone 5, consistent with the chromatographic/sorption

hypothesis in olfaction (Mozell, 1966; Scott et al., 2014). This is

exemplified by the plots in Figure 6E, illustrating the predicted

average expression levels across OM sections of the Olfrs bind-

ing to five odorants with different values of Kam. These results

show a direct association between Olfr spatial patterns and the

calculated sorption patterns of their cognate ligands in the OM,

providing a potential explanation for the physiological function

of the zones in the OM.

DISCUSSION

Past studies yielded inconclusive and sometimes contradictory

views on the basic logic underlying the peripheral representation

of smell, partly because the topographic distribution of OSN sub-

types and their receptive fields still remained vastly uncharted,

data on Olfr-ligand pairs were scarce, and there were pitfalls

associated with electro-olfactogram recordings used to study

spatial patterns of odor recognition in the nose (Kurian et al.,

2021; Scott and Scott-Johnson, 2002; Secundo et al., 2015).

Here, we combined RNA-seq and computational approaches

that utilize unsupervised and supervised machine learning

methods to discover and quantitatively characterize spatial

expression patterns in the OM. We created a 3D transcriptional

map of themouseOM,which allowed us to spatially characterize

17,628 genes, including �98% of the annotated Olfrs. We iden-

tified and validated by ISH several spatial marker genes, and a

clustering analysis pinpointed the OM locations where specific
10 Cell Reports 38, 110547, March 22, 2022
functions related to, e.g., the immune response might be carried

out. We alsomathematically definedOlfr expression zones in the

OM with an unsupervised machine-learning method based on

topic modeling. We estimated that the OM includes at least

five zones, which can be used to decompose the expression pat-

terns of all genes. However, our analysis showed that there is a

continuous distribution of Olfrs patterns in the OM. Thus, while

a discrete number of zonesmight be convenient to provide a first

classification of Olfrs, these might obscure the complexity of the

OM spatial patterns. To account for this, we adopted a mathe-

matical framework that can rigorously define zones while

capturing finer structures in the data, via the degrees of

belonging and the 3D index, which are more suitable to describe

Olfrs patterns crossing multiple zones.

The global transcriptomic landscape of the vertebrate OM is

similar between individuals and broadly conserved among

different vertebrate species, ranging from zebrafish to human

(Bear et al., 2016; Saraiva et al., 2015a, 2019). Similarly, the

spatial segregation of Olfrs into partially overlapping rings of

expression, centered around the midline structure of the OM,

is also conserved among vertebrates (Freitag et al., 1995; Horo-

witz et al., 2014; Marchand et al., 2004; Miyamichi et al., 2005;

Octura et al., 2018; Ressler et al., 1993; Strotmann et al., 1992;

Vassar et al., 1993; Weth et al., 1996). While the number of Olfr

zones in zebrafish, frog, and salamander still remain unknown

(Freitag et al., 1995; Marchand et al., 2004; Weth et al., 1996),

ISH studies suggested that the total number of Olfr expression

zones can vary between mammals—ranging from two in ma-

caque (Horowitz et al., 2014) to four in rat (Vassar et al., 1993)

and goat (Octura et al., 2018), and between four and nine in

mouse (Miyamichi et al., 2005; Ressler et al., 1993; Zapiec and

Mombaerts, 2020). While the exact number of Olfr expression

zones in OM still remains under debate, our results are consis-

tent with both another recent RNA-seq study (Tan and Xie,

2018) and the largestOlfr ISH study in the mouse OM (Miyamichi

et al., 2005), thus supporting the existence of at least five over-

lapping Olfr expression zones in the mouse nose.

Taking into account how conserved the molecular organiza-

tion of the OM is in vertebrates, the 2-fold reduction in the num-

ber ofOlfr expression zones in macaque compared with rodents

and goat (an ungulate) is puzzling. While we cannot exclude the

presence of confounding factors (e.g., limitedOlfr sampling and/

or inconsistent definitions of ‘‘zones’’), it is interesting that the 2-

fold reduction in number of zones is associated with a 2-fold

reduction in the number of annotated intact Olfrs in macaque

(and other higher primates, including human) compared with

other rodents and ungulates (Horowitz et al., 2014; Niimura

et al., 2014; Saraiva et al., 2019). Since the accelerated loss of

Olfr genes during primate evolution has been linked to the acqui-

sition of trichromatic acute vision and dietary changes (Niimura

et al., 2018), it is plausible that these evolutionary pressures

also helped shape the spatial distribution of Olfrs in macaques

and other primates, including human.

The quantitative framework we built for this dataset will facili-

tate the interrogation of gene expression patterns via an online

tool we provide and help answer important questions on the

physiology of the nose. Our approach could be easily applied

to spatial transcriptomic data collected from other tissues to
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perform comparisons across tissues from different species or

the same tissue across multiple developmental stages. More-

over, the results from this study serve as a template to start

answering other important questions about olfaction, such as

whether Olfr spatial expression maps can encode maps of

odor perception. Because the general molecular mechanisms

of olfaction, zonal organization of Olfrs, conservation of ligands

among Olfr orthologs, and components of olfactory perception

are conserved in mammals (Adipietro et al., 2012; Bear et al.,

2016; Freitag et al., 1995; Horowitz et al., 2014; Kurian et al.,

2021; Manoel et al., 2021; Octura et al., 2018; Saraiva et al.,

2019; Weth et al., 1996), the association we uncovered here be-

tween Olfr zones and the solubility of odorants they detect can

likely be extrapolated to other mammals, including humans.

Finally, the functional logic underlying the mammalian topo-

graphic organization of primary receptor neurons and their

receptive fields in smell is now starting to be exposed.

Limitations of the study
This study enabled us to answer fundamental and long-standing

questions about the rationale behind the spatial organization of

the peripheral olfactory system. Specifically,weprovide evidence

to the hypothesis that the spatial zones increase the discrimina-

torypower of theolfactory systembydistributingOlfrs in theareas

of the OM more likely to be reached by their cognate ligands,

based on their solubility in mucus. A caveat of this approach is

that the Olfr-ligand list we compiled from the literature includes

odorant libraries of different size and composition and tested us-

ing different experimental approaches. Moreover, highly abun-

dant Olfrs have a higher probability of being deorphanized than

lowly abundant Olfrs, and ecologically relevant odorants are

more likely to activate Olfrs when compared with other odorants

(Dunkel et al., 2014; Saraiva et al., 2019; Trimmer and Mainland,

2017). Despite having compiled and performed our analysis on

the largest set of Olfr-ligand pairs assembled to date and carrying

outmultiple robustness checks,wecannot ruleout that ascertain-

ment biasmight contribute to the associationswe found between

the Olfr spatial location and the properties of their respective li-

gands. Future studies investigating the activation profiles for all

mouse Olfrs and/or mapping the in vivo activation patterns of

mouse Olfrs in the olfactory mucosa will be key to stress test

the conclusions of our study.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-Digoxigenin-AP, Fab fragments Merck (Roche) Cat# 11093274910, RRID:AB_514497

Biological samples

Olfactory mucosae from C57Bl/6J mice

(adult males)

The Jackson Laboratory Stock # 00664

Chemicals, peptides, and recombinant proteins

30% Hydrogen Proxyde Solution Merck (Sigma-Aldrich) Cat. # H1009

Triethanolamine Merck (Sigma-Aldrich) Cat. # T58300

Acetic anhydride Merck (Sigma-Aldrich) Cat. # 320102

Deoinized formamide Merck (Sigma-Aldrich) Cat. # F9037

Yeast tRNA Merck (Roche) Cat. # 10109495001

Denhardt’s solution (503) Merck (Sigma-Aldrich) Cat. # D9905

Dextran sulfate solution (50%) Merck (Chemicon) Cat. # S4030

203 SSC Merck (Calbiochem) Cat. # 8310-OP

Tween-20 Merck (Sigma-Aldrich) Cat. # 822184

TSA Blocking Reagent Perkin-Elmer Cat. # FP1020

NBT/BCIP Stock Solution Merck (Roche) Cat. # 11681451001

Critical commercial assays

SMART-Seq v4 Ultra Low Input RNA Kit for

Sequencing

Clontech (Takara Bio) Cat. # 634892

Bioanalyzer DNA High-Sensitivity kit Agilent Technologies Cat. # 5067-4626

Nextera XT DNA Library Preparation Kit (96

samples)

Illumina Cat. # FC-131-1096

Nextera XT Index Kit v2 Set A (96 indexes,

384 samples)

Illumina Cat. # FC-131-2001

pGEM�-T Easy Vector Systems Promega Cat. # A1360

DIG RNA Labeling Kit (SP6/T7) Merck (Roche) Cat. # 11175025910

ProbeQuant G-50 Micro Columns Cytiva Biosciences Cat. # 28903408

Deposited data

TOMO-seq Olfactory Mucosa dataset This study https://www.ebi.ac.uk/arrayexpress/

E-MTAB-10211

Single cell RNA-seq data from the Olfactory

Mucosa

Fletcher et al., 2017 https://www.ncbi.nlm.nih.gov/geo/query/

acc.cgi?acc=GSE95601

Dragon database of molecular descriptors Talete S.R.L. http://www.talete.mi.it

CellphoneDB ligands and receptors

database

Efremova et al., 2020 https://github.com/ventolab/CellphoneDB

Experimental models: Organisms/strains

Adult male C57Bl/6J mice The Jackson Laboratory Stock # 00664

Oligonucleotides

See ‘‘method details’’ section for

oligonucleotides

This study N/A

Software and algorithms

samtools version 0.1.19-44428cd Li et al., 2009 http://samtools.sourceforge.net/

htseq-count version 0.11.2 Anders et al., 2014 https://github.com/htseq/htseq/

R 4.1.2 The R Foundation https://www.r-project.org/

(Continued on next page)
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Python 3.9.6 Python Software Foundation https://www.python.org/

Scripts for TOMO-seq data analysis This study https://doi.org/10.5281/zenodo.6036047

https://zenodo.org/badge/DOI/10.5281/
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Lead contact
Further information and requests for resources and data should be directed to andwill be fulfilled by the Lead Contact Luis R. Saraiva

(saraivalmr@gmail.com).

Materials availability
This study did not generate new unique reagents.

Data and code availability
RNA-seq raw data have been deposited and are publicly available as of the date of publication at ArrayExpress: E-MTAB-10211. All

original code and scripts for the 3D nose atlas shiny app has been deposited at Github and can be found at the Github Repository:

https://doi.org/10.5281/zenodo.6036047https://zenodo.org/badge/DOI/10.5281/zenodo.6045897.svg. The 3D nose atlas pro-

cessed data can be browsed and visualized here: http://atlas3dnose.helmholtz-muenchen.de:3838/atlas3Dnose.

Any additional information required to reanalyze the data reported in this paper is available from the lead contacts upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals
The animals used in this study were adult male C57Bl/6J mice (aged 8–14 weeks, The Jackson Laboratory, Stock # 00664) main-

tained in group-housed conditions on a 12:12 h light:dark schedule (lights on at 0700 hours). Each mouse was randomly assigned

for cryosectioning along one of the three cartesian axes.

The use and care of animals used in this study was approved by the Internal Animal Care and Use Committee (IACUC) of Monell

Chemical Senses Center, by the IACUC of the University of S~ao Paulo, and by the Wellcome Trust Sanger Institute Animal Welfare

and Ethics Review Board in accordance with UK Home Office regulations, the UK Animals (Scientific Procedures) Act of 1986.

METHOD DETAILS

Dissection of the olfactory mucosa, cryosections, and RNA-sequencing
Theolfactorymucosa (OM) of 9micewascarefully dissected, andall the surrounding tissue (includingglands andbone) removed – this

was necessary to ensure that the transcripts present in the surrounding tissue do not contaminate the RNA isolated from the OM. The

OMs were then embedded in OCT (Tissue Tek), immediately frozen in dry-ice and kept at �80�C. Each OM was then cryosectioned

along each of the 3 cartesian axes: dorsal-ventral (DV, n = 3), anterior-posterior (AP, n = 3), or lateral-medial-lateral (LML, N = 3). Every

second cryosections (35 mm thick) was collected into 1.5 mL eppendorf tubes containing 350 mL RLT Plus Buffer (Qiagen) supple-

mented with 1% 2-mercaptoethanol, immediately frozen in dry-ice and kept at �80�C until extraction. RNA was extracted using

theRNeasyPlusMicroKit (Qiagen), togetherwith agenomicDNAeliminator columnanda30-minute incubationwithDNAse I (Qiagen).

Reverse transcription and cDNA pre-amplification were performed using the SMART-Seq v4 Ultra Low Input RNA Kit for Sequencing

(Clontech/Takara). cDNAwas harvested and quantifiedwith the Bioanalyzer DNAHigh-Sensitivity kit (Agilent Technologies). Libraries

were prepared using the Nextera XT DNA Sample Preparation Kit and the Nextera Index Kit (Illumina). Multiplexed libraries were

pooled and paired-end 150-bp sequencing was performed on the Illumina HiSeq 4000 platform at Sidra Medicine, except for one li-

brary (DV-I) for which 125-bp paired-end sequencing was performed on the Illumina HiSeq 2500 platform at the Wellcome Sanger

Institute. The raw data are available through ArrayExpress under accession number E-MTAB-10211.

RNA-seq data mapping and gene counting
Readswere aligned to themm10mouse genome (release 99). The sequences of the genes ‘‘Xntrpc’’ and ‘‘Capn5’’ were removed from

the genome files as in Saraiva et al. (2015b). The alignment was performed with the software STAR version 2.7.3a (Dobin et al., 2013).

Genome indexeswere generated using STAR–runModegenomeGeneratewith default parameters. Then, alignment of readswas per-

formed with the following options: –runThreadN 48 –outSAMunmapped Within –outFilterMultimapNmax 1000 –outFilterMismatchN-

max 4 –outFilterMatchNmin 100 –alignIntronMax 50000 –alignMatesGapMax 50500 –outSAMstrandField intronMotif –outFilterType

BySJout. The resulting SAM files were converted to bam format and sorted using samtools (version 0.1.19-44428cd) (Li et al.,
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2009). Themulti mapping readswere eliminated using the same software (samtools view -q 255). Finally, the reads for each genewere

counted using htseq-count (version 0.11.2) with the options -m intersection-nonempty -s no -i gene_name -r pos (Anders et al., 2014).

Quality control
We excluded all the samples that fulfilled any of these criteria: they had less than 50% mapped reads, less than 4,000 detected

genes, more than 20% mitochondrial reads, less than 10,000 total number of reads, or did not express any of the 3 canonical

OSN markers Omp, Cnga and Gnal. This resulted in �51 good-quality sections along the DV axis (�84% out of the collected sec-

tions), �76 (�91% of total) along the AP axis and �59 (�93% of total) along the LML axis, as averaged across the three replicates

per axis.

Data normalization
Gene expression counts were normalized by reads-per-million (RPM), then genes detected in only one replicate and genes that were

detected in less than 10% of all samples along one axis were eliminated. To check the similarity between replicates, we calculated

Spearman correlations between the transcriptional profiles of sections along each axis (using the top 1000 Highly Variable Genes per

axis). Close positions had themost similar transcriptional profiles (Figure 1C). Afterward, the 3 replicates for each axis were aligned as

follows: the top 3,000 highly variable genes (HVGs) from each replicate were identified using the method implemented in the scran

library in R (Lun et al., 2016) and the intersection of these 3 groups was used in the next steps. For the replicates’ alignment, we took

as reference the replicate with the smallest number of slices. We used a sliding window approach that identified the range of consec-

utive positions on each replicate along which the average value of the Spearman’s correlation coefficient computed with the refer-

ence replicate over the HVGwasmaximum (mean Spearman’s Rho = 0.80, p < 0.05). Tomitigate batch effects, the level of every gene

was scaled in such a way that their average value in each replicate was equal to the average calculated across all replicates. After this

scaling transformation, the data was then averaged between replicates. Once the 3 biological replicates were combined, we had 54

sections along the DV axis, 60 along the AP and 56 along the LML. Along the LML axis a symmetric pattern of expression is expected

around the central position, where the septal bone is located. To confirm this in our data, first we identified the central position by

analyzing the expression pattern of neuronal markers like Cnga2, Omp and Gnal, whose expression is lowest in the area around

the septal bone. Indeed, all three marker genes reach aminimum at the same position along the LML axis (slice 28), which we consid-

ered to be the center. The expression patterns of�90%of genes on either side of the central position show a positive correlation, and

�70% reach statistical significance (Spearman’s correlation computed on the highly variable genes having more than 50 normalized

counts in at least 3 slices), further supporting the hypothesis of the bilateral symmetry. Hence, after replicates were averaged, LML

axis was made symmetric averaging positions 1:28 and 56:29. Moreover, Olfrs were normalized by the geometric mean of neuronal

markers Omp, Gnal and Cnga2, as done previously (Ibarra-Soria et al., 2017).

To verify the presence of a spatial signal, we calculated the Moran’s I and the associated p-values for the top 100 Highly Variable

genes along each axis using the ‘‘Moran.I00 function from the ‘‘ape’’ library in R with default parameters (Paradis et al., 2004). The

p-values of the genes along each axis were combined with the Simes’ method (Simes, 1986) using the function combinePValues

from the scran R library (Figure S1E).

Identification of differentially expressed genes and gene clustering
Before testing for differential expression along a given axis, we filtered out genes whose expression levels had low variability. To this

aim, for each genewe estimated their highest and lowest expression by taking the average of its three highest and three lowest values

respectively. Then, we considered for downstream analyses only the genes that meet either of these two criteria: the highest expres-

sion value is greater than or equal to 5 normalized counts and the fold-change between the highest and lowest value is greater than 2;

or the difference between the highest and the lowest value is greater than or equal to 4 normalized counts. The expression levels of

the genes were binarized according towhether their valuewas higher or lower than their median expression along the axis. Finally, we

used the ‘‘ts’’ function in R to transform the binarized expression values into time series objects, and we applied on them the Ljung-

Box test (Box.test function in R with lag = (axis length)-10) which identifies genes with statistically significant autocorrelations, i.e.,

with non-random expression patterns along an axis. The resulting p-values were adjusted using the FDR method and genes with

an FDR <0.01 were considered as differentially expressed. For the next steps, the log10 normalized expression of differentially ex-

pressed genes along each axis was fitted with a local regression using the locfit function in the R library locfit (Loader, 2007). Smooth-

ing was defined in the local polynomial model term of the locfit model using the function ‘‘lp’’ from the same library with the following

parameters: nn = 1 (Nearest neighbor component of the smoothing parameter) and deg = 2 (degree of polynomial). The fitted expres-

sion values of these genes along each axis were normalized between 0 and 1. Clustering was performed separately for each axis on

the fitted and normalized patterns of the differentially expressed genes. We used the R function ‘‘hclust’’ to perform hierarchical clus-

tering on the gene expression patterns, with a Spearman’s correlation-based distance (defined as
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 ð1� rÞp

) and the "average"

aggregation method. The number of clusters were defined with the cutreeDynamic function from the dynamicTreeCut R library, with

the parameters minClusterSize = 50, method = ‘‘hybrid’’ and deepSplit = 0. To visualize the data in two dimensions, we applied the

UMAP dimensionality reduction algorithm (umap function in the R library umapwith default options; see Figure 2D) (Becht et al., 2018;

McInnes et al., 2018). To analyze the relationship between the expression patterns of genes along different axes, we computed the
e3 Cell Reports 38, 110547, March 22, 2022
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intersections of the gene clusters between any pair of axes. The expected number of elements in each intersection under the

assumption of independent sets is given by:

jAXBjexp =
jAjjBj
jAWBj

whereAandB indicate thesetsofgenes in twoclusters identifiedalong twodifferent axesand j,j indicates thecardinality of a set (i.e., the
number of its elements). The ratio between the observed and the expected number of elements in the intersection jAXBjobs = jAXBjexp
quantifies the enrichment/depletion of genes having a given pair of patterns across two axes with respect to the random case. The log2
values of ð1 + jAXBjobs = jAXBjexpÞ are shown in Figure 2F.

Combining Tomo-seq with single-cell RNA-seq data
The TPM (transcripts per million)-normalized single cell RNA-seq (scRNA-seq) data collected frommouse olfactory epithelium avail-

able from Fletcher et al. (2017) was used to identify cell-type specific genes. To this aim, we computed the average expression level

for each cell type in the scRNA-seq dataset for all the differentially expressed genes that we identified in our TOMO-seq data. The

genes with an average expression above 100 TPM in mOSNs and below 10 TPM in all other cell types were considered mOSN-spe-

cific. Conversely, genes with an average expression above 100 TPM in any of the non-mOSN cell types and below 10 in mOSNswere

considered to be specific for non-mOSN cells.

Gene ontology (GO) enrichment analysis
GO Enrichment analyses were performed using the GOrilla online tool (http://cbl-gorilla.cs.technion.ac.il) with the option ‘‘Two un-

ranked lists of genes (target and background lists)’’. For each axis, we used as background list the list of the genes we tested.

Cell type deconvolution analysis
To perform cell type deconvolution analysis, we used a previously published single-cell RNA-seq (scRNA-seq) data from the mouse

OM (Fletcher et al., 2017). First, the cells included in unclassified clusters were removed and the data was rescaled using the function

‘‘pp.log1p’’ from the scanpy library (Wolf et al., 2018). Then, we obtained 2000 highly variable genes using the function ‘‘pp.highly_

variable_genes’’ (scanpy library). In the following analysis, we merged clusters of similar cell populations and considered the

following 6 cell types: 1-HBC = HBC1+HBC2+HBC3; 2-INP = INP1+INP2+INP3; 3-GBC = GBC, 4-SC = mSC + iSC, 5-OSN =

iOSN + mOSN, 6-MVC = MVC1+MVC2.

This scRNA-seq data was used as input for the AutoGeneS algorithm (Aliee and Theis, 2021). The cell type assignment as well as

the list of highly variable genes were passed as input to the function ‘‘ag.init’’ from AutogeneS, and then we estimated the optimal

subset of genes to perform cell type deconvolution with the function ‘‘ag.optimize’’ (with parameters: ‘‘ngen’’ = 5000, ‘‘nfeatures’’ =

400 and ‘‘mode’’ = ‘‘fixed’’). Finally, we deconvolved the Tomo-seq data along the three axeswith the function ‘‘ag.deconvolve’’ using

Nu Support Vector regression models (‘‘model’’ = ‘‘nusvr’’). The results were normalized such that the sums of cell type proportions

per slice is equal to 1 (Figure S2F). To identify the cell types with non-random spatial distribution along the axes, we applied the Ljung-

Box test as explained above (section ‘‘identification of differentially expressed genes and gene clustering’’); the p values are reported

in Table S2.

Identification of ligands and receptors associated with the NfiA, NfiB or NfiX transcription factors
The genes in the CellphoneDB ligands and receptor database (Efremova et al., 2020) that were among our spatially differentially ex-

pressed genes were selected and Spearman correlation tests between their 1D expression patterns and the 1D patterns for the Nfi

transcription factors were performed. Correlation coefficients from the three axes were averaged and FDRs from the 3 axes were

combined with the Simes’ method (Simes, 1986) using the function combinePValues from the scran R library. Combined FDR values

<0.01 were taken as significant.

3D spatial reconstruction
The olfactory mucosa shapewas obtained from publicly available images of themouse nasal cavity along the posterior to the anterior

axis published in Barrios et al. (2014). The area of the slices corresponding to the OM was manually selected and images of their sil-

houettes were made. Those images were then transformed into binary matrices having 1’s in the area occupied by the OM and 0’s in

the remaining regions. The binarymatrices were rescaled tomatch the spatial resolution in our dataset, which is composed of 54 vox-

els along theDVaxis, 56 along the LMLaxis and 60 along the APaxis. Finally,matriceswere piled in a 3Darray inR to obtain an in-silico

representation of the 3D shape of the OM, which, in total, was composed of 77,410 voxels. To perform the 3D reconstruction of the

expression pattern for a given gene, first we normalized its expression levels by the volume of the slice at each corresponding position

along the three axes, which was estimated using our 3D in silico representation of the OM. Then, we rescaled the data in such a way

that the sum of the expression levels along each axis was equal to the average expression computed across the whole dataset. This

rescaled dataset together with the binary matrix representing the 3D OM shape was used as input of the Iterative Proportional Fitting

algorithm, which produced an estimation of the expression level of a gene in each voxel (Junker et al., 2014). Iterations stopped when

the differences between the true and the reconstructed 1D values summed across the three axes was smaller than 1.
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Definition of zones by topic modelling
In order to identify zones, we fitted a Latent Dirichlet Allocation (LDA) (Blei et al., 2003) algorithm to the 3D gene expression patterns

(in log10 scale) of the differentially expressed Olfrs (689 Olfrs x 77,410 voxels).

The LDA algorithm was originally employed for document classification: based on the words included in each document, LDA can

identify "topics", in which the documents can then be classified. Using this linguistic analogy, in our application of LDA, we consid-

ered the genes as ‘‘documents’’, and the spatial locations as ‘‘words’’, with the matrix of gene expression levels being the analogous

of the "bag-of-word" matrix (Liu et al., 2016). In this representation, the zones are the equivalent of ‘‘topics’’, and they are automat-

ically identified by LDA.We used the LDA implementation included in the R package ‘‘Countclust’’ (Dey et al., 2017), developed based

on the ‘‘maptpx’’ library (Taddy, 2012), which performs a maximum a posteriori estimation to for model fitting. LDA was run for all

possible numbers of topics K ˛ [2,9]. The following parameters were chosen: convergence tolerance = 0.1; max time optimization

step = 180 seconds; n_init = 3. For each number of topics k, three independent runs were performed with different starting points,

in order to avoid biases due to the choice of the initial condition. We estimated the number of topics by computing the log likelihood

for each value of K˛ [2,9]. As seen in Figure S3A, while the log-likelihood is amonotonically increasing function of the number of topic

(as expected), for a number of topics around �5 it shows a ‘‘knee’’ and starts to increase more slowly. This suggests that �5 is the

minimal number of topics needed to describe the complexity of the data without overfitting. Hence, we fix a number of topics equal to

5; however, we also verified that all our conclusions remain substantially unaffected if a different number of topics is chosen.

After running LDAwith K = 5, we retrieved themodel output, which consists of two probability distributions: the first is P(position| k)

with k ˛ [1,5], which is the conditional probability distribution defining the topic k; the second probability distribution is P(k | gene),

namely the probability distribution that quantifies the degrees of belonging of a given gene to the topics k˛[1,5].With these probability

distributions, we can identify the spatial positions that form each topic and how the different topics can be combined to generate the

spatial expression pattern of each gene.

Being a generativemodel, once trained, LDA can also decompose into topics the spatial expression patterns of genes that were not

used during the training procedure. We exploited this feature of LDA to estimate the degrees of belonging of non-olfactory receptor

genes. To this aim, we utilized an algorithm based on the python gensim library Lda.Model.inference function (Rehurek and Sojka,

2010), using as input the estimated probability distribution P(position | k) with k ˛ [1,5]. The model fitting was performed using the

Open Computing Cluster for Advanced data Manipulation (OCCAM), the High-Performance Computer designed and managed in

collaboration between theUniversity of Torino and the Torino division of the IstitutoNazionale di FisicaNucleare (Aldinucci et al., 2017).

Definition of Olfr 3D indexes via diffusion pseudo-time
As explained in the section above, we can describe the spatial expression pattern of each gene through a set of five numbers, which

represent the degrees of belonging to the five topics identified by LDA. We applied a diffusion map (Haghverdi et al., 2015) to the

degrees of belonging of theOlfrs to visualize them in two dimensions by using the ‘‘DiffusionMap’’ function from the ‘‘destiny’’ R pack-

age (Angerer et al., 2016) (with distance = ‘‘rankcor’’ and default parameters). In this two-dimensional map, the Olfrs are approxi-

mately distributed along a curve that joins the most dorsal/medial genes (those in zones 1–2) with those that are more ventral/lateral

(zones 3–5). To track the position of the genes along this curve, we computed a diffusion pseudo-time (DPT) coordinate (Haghverdi

et al., 2016) with the ‘‘DPT’’ function from the ‘‘destiny’’ R package (taking as starting point the gene with the smallest first diffusion

component among the genes suggested by the function find_tips from the same package). In order to make the indexes go from

Dorsal to Ventral, as in previous studies (Miyamichi et al., 2005), we reversed the order of the DPT coordinates by substracting

the maximum coordinate from all coordinates and multiplying them by (�1). By doing this, we obtained for each Olfr an index, which

we called 3D index, representing its spatial expression pattern in the 3D space: more dorsal/medial genes (zones 1–2) have smaller

3D indexes than Olfrs expressed in the ventral/lateral regions (zones 3–5).

Prediction of zone index for undetected Olfrs with Random Forest
WefittedaRandomForestmodel to the3D indexesof 681of the689Olfrswecharacterizedwithour dataset (i.e., those that are located

in genomic clusters). The following nine features of each Olfr were used as predictors: genomic position (i.e., gene starting position

divided by chromosome length); genomic cluster; genomic cluster length; number of Olfrs in the genomic cluster; number of en-

hancers in the genomic cluster; cluster position (i.e., starting position of the cluster divided by the chromosome length); distance to

the closest enhancer; gene positionwithin the cluster (i.e., the distance of the gene starting position from the end of the cluster divided

by the cluster length); and phylogenetic class. These features were computed using the mm10 mouse genome in Biomart (Kinsella

et al., 2011), while the list of enhancers and the genomic clusters assigned to each Olfr were taken from Monahan et al. (2017). The

Random Forest model was fitted with the function ‘‘randomForest’’ (R library ‘‘randomForest’’ (Liaw and Wiener, 2002), with option

‘‘na.action = na.omit’’). Afterward, we performed a cross-validation test with the function ‘‘rf.crossValidation’’ from the ‘‘rfUtilities’’

package (Rather et al., 2020) with default parameters. Over 100 cross-validation iterations, the root mean square error (RMSE)

was(10% of the mean 3D index. The feature importance was computed with the ‘‘importance’’ function from the randomForest li-

brary with default parameters. Finally, the Random Forest model trained on the 681 Olfrs was used to predict the 3D indexes of 697

Olfrs thatwere too lowly expressedorwereundetected inour dataset.Overall,wewereable to computeorpredictwithRandomForest

a 3D index for all theOlfrs annotated in the mouse genome, except for 28 of them that do not have any genomic cluster assigned. To

quantify the consistency between our Olfr 3D indexes and indexes defined previously, we calculated the Spearman’s correlation
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coefficients between our indexes and those defined in three previous studies (Miyamichi et al., 2005; Tan and Xie, 2018; Zapiec and

Mombaerts, 2020) (see Figures 4G, S4B, and S4C).

Odorant information and Olfr-ligand pairs
All odorant structures and associated CAS numbers were retrieved from either Sigma-Aldrich (www.sigmaaldrich.com) or PubChem

(https://pubchem.ncbi.nlm.nih.gov). A comprehensive catalog of the cognate mouse Olfr-ligand pairs was collected (last update:

March 2021) by combining data from the ODORactor database (Liu et al., 2011) and additional literature sources (Abaffy et al.,

2006; Araneda et al., 2004; Bozza et al., 2002; Dunkel et al., 2014; Floriano et al., 2000; Gaillard et al., 2002; Godfrey et al., 2004;

Grosmaitre et al., 2006, 2009; Jiang et al., 2015; Jones et al., 2019; Kajiya et al., 2001; Malnic et al., 1999, 2004; Nara et al., 2011;

Nguyen et al., 2007; Oka et al., 2004, 2006, 2009; Pfister et al., 2020; Repicky and Luetje, 2009; Saito et al., 2004, 2017; Saraiva

et al., 2019; Shirasu et al., 2014; Shirokova et al., 2005; von der Weid et al., 2015; Yoshikawa et al., 2013; Yoshikawa and Touhara,

2009; Yu et al., 2015; Zhuang and Matsunami, 2007).

This catalog includes 738 Olfr-ligand interactions for a total of 153 Olfrs and 221 odorants. These 153Olfrs include 100 spatialOlfrs

in our dataset and for which we have 3D indexes, and 49 additional Olfrs with predicted 3D indexes (see above). Next, we checked

whether Olfrs pairs sharing at least one cognate ligand have more similar spatial expression patterns than pairs not sharing ligands.

To do this, we computed the absolute values of the differences between the 3D indexes (D) of 1706 pairs of ORs sharing at least one

odorant and 9,922 pairs of ORs that are known to bind to different odorants (Figure 6B). The two sets of D values were significantly

different (Mann-Whitney U test, p value < 2 3 10-16). This test remained significant when excluding Olfrs for which 3D indexes were

estimated by the Random Forests model (p value < 2 3 10-16), and also when excluding class I Olfrs (p value < 2 3 10-16).

Correlation analysis of physico-chemical descriptors with 3D index
Physicochemical descriptors for ligands were obtained from the Dragon 6.0 software (http://www.talete.mi.it/). After removing the

descriptors showing 0 variance, a table of 1911 descriptors for 205 ligands was obtained. In addition to these, we estimated the

air/mucus partition coefficients (Kam) of the odorants as done previously (Rygg et al., 2017; Scott et al., 2014). Briefly, we calculated

the air/water partition coefficients (Kaw) for each odorant from the Henry’s Law constants obtained using the HENRYWINmodel in the

US EPA Estimation Program Interface (EPI) Suite (version 4.11; www.epa.gov/oppt/exposure/pubs/episuite.htm). Then, we

computed the air/mucus partition coefficients (Kam) according to the formula:

LogðKamÞ = 0:524,LogðKawÞ ,LogðKowÞ
where Kow indicates the octanol/water partition coefficient, which were obtained using the KOWWIN model in the EPI Suite.

To increase the robustness of our correlation analysis, we removed the descriptors with 20 or more identical values across our set

of ligands, andwe initially considered only the ligands having 2 ormore known cognate receptors; these filters gave us 1,210 descrip-

tors (including Kam) for 101 ligands.

We performed Spearman’s correlation tests between the physicochemical descriptors and mean 3D index of the cognate Olfrs,

and we considered as statistically significant those correlations with FDR <0.05 (see Table S6). The descriptors with the largest

correlation coefficients were Kam (rho = 0.55, p = 1 3 10-7) and ATSC2s (Centred Broto-Moreau Autocorrelation of lag 2 weighted

by I-state, rho = �0.56, p = 2 3 10-7). We obtained statistically significant correlations between Kam and the mean 3D indexes

also when excluding Olfrs with 3D indexes predicted by Random Forest (Rho = 0.48, p value = 2 3 10-6, based on 87 ligands; Fig-

ure S5B) or excluding class I Olfrs (Rho = 0.5, p value = 1 3 10-7, based on 101 ligands; Figure S5C).

In-situ hybridization
In-situ hybridization was basically performed as previously described (Ibarra-Soria et al., 2017). Adult 12-week-old male C57BL/6J

mice anesthetized, and then perfused with 4% paraformaldehyde. The snouts containing the OM were dissected out, decalcified in

RNase-free 0.45M EDTA solution (in 13 PBS) for two weeks – the bone and tissue encapsulating the OM are necessary to preserve

the OM tissue integrity during the ISH. Next, the decalcified snouts were cryoprotected in RNase-free 30% sucrose solution (13

PBS), dried, embedded in OCT embedding medium, and frozen at�80�C. Sequential 16 mm sections were prepared with a cryostat

and the sections were hybridized to digoxigenin-labeled cRNA probes prepared from the different genes using the following oligo-

nucleotides: Cytl (50-AAAGACACTACCTCTGTTGCTGCTG-30 and 50-GTAAGCAGAGACCAGAAAGAAGAGTG-30), Moxd2 (50-TGTA

CCTTTCTCCCACTCCCTATTGTC-30 and 50-CCCATGCAACTGGAGATGTTAATTCTG-30), Olfr309 (50-TACAATGGCCTATGACCGC

TATGTG-30 and 50-TCCTGACTGCATCTCTTTGTTCCTG-30), Olfr727 (50-CGCTATGTTGCAATATGCAAGCCTC-30 and 50-GCTTTGA

CATTGCTGCTTTCACCTC-30), and Olfr618 (50-CATGAACCAATGTACCTTTTCCTCTC-30 and 50-AAACCTGTCTTGAATTTGCTTTG

TC-30). The PCR products were cloned into pGEM-T Easy vector and the probes were obtained by in vitro transcription of the plas-

mids, using SP6 or T7 RNA Polymerases (Roche) and DIG RNA Labeling mix (Roche).

QUANTIFICATION AND STATISTICAL ANALYSIS

Information on gene expression thresholds for spatial differential expression analysis is described in the method details section. The

presence of a spatial signal along the 3 axes was verified via the Moran’s I statistic (see relevant section above). The presence of
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spatial non-randompatternswas tested using the Ljung-Box test and the resulting p valueswere adjusted using the FDRmethod (see

relevant section above). Consistency between different datasets and replicates, as well as association between independent data

were tested using Spearman correlation tests. Mann-Whitney U tests were employed to test the statistical significance of differences

between two distributions. Finally, a cross validation test was used to quantify the accuracy of our Random Forests model through

the root mean square error (RMSE). Statistical tests were performed using R (version 4.1.2). Statistical details are reported in theMain

text, Figures and Figure legends, the STAR methods section and supplementary tables. N represents the number of biological rep-

licates (animals) we analyzed. Boxplots are centered at themedian of the distribution, the bottom and top of the box represent the 1st

and 3rd quartiles respectively, and the whiskers extend for an additional 1.5 times the interquartile range.
e7 Cell Reports 38, 110547, March 22, 2022
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SUPPLEMENTAL FIGURES  

 

Figure S1. TOMO-seq data QC, Related to Figure 1 and Table S1. (A) Boxplots showing the distributions of the 

log10 total number of reads per sample in each axis (DV = dorsal-ventral; AP = anterior – posterior; LML = lateral-

mid-lateral). (B) Boxplots of percentage of uniquely mapped reads per sample per axis. (C) Boxplots of distributions 

of log10 detected genes per sample per axis. (D) Boxplots of percentage of mitochondrial reads per sample per axis. 

(E) Boxplots showing the distribution of the Moran’s I statistics calculated for the top 100 Highly Variable Genes 

per axis. P-values are computed for each gene and then combined with the Simes’ method. The combined p-values 

are < 2.2x10-16 for all axes. (F) Normalized expression of canonical OM spatial marker genes along the three axes. 

Red line showing fits with local polynomial models.  
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Figure S2. Spatial differential expression analysis, Related to Figure 2 and Table S2. (A) Schematics of 

strategy to find spatially differentially expressed genes; as an example, data for Acsm4 along the dorsal-ventral (DV) 

axis is shown: Gene expression was binarized according to whether the expression per slice was higher or lower 

than the median expression (red horizontal line). Then, we computed the autocorrelation function for different 

values of the lags, and we applied the Ljung-Box test to verify whether the autocorrelation values are significantly 

higher than zero. (B) Box plots of example genes’ expression (log10 reads-per-million, RPMs) distributions in 

different cell types. None of these genes is expressed in mOSNs (INP = Immediate Neuronal Precursors; GBC = 

Globose Basal Cells;  mOSNs = mature Olfactory sensory neurons; iOSNs = immature Olfactory Sensory Neurons; 

MVC = Microvillous Cells; iSC = Immature Sustentacular Cells; mSC = Mature Sustentacular Cells; HBCs = 

Horizontal Basal Cells). (C) Spatial gene expression trends along each axis of the example genes shown in panel B.  

(D) Heatmap showing the log2 enrichment for the intersection between different gene clusters (indicated by colored 

circles) across pairs of axes, after excluding Olfr genes. (E) Heatmaps showing normalized mean expression of the 

neuronal activity marker genes listed in Table S2 from (Wang et al., 2017) along the three axes. (F) We used cell 

type deconvolution analysis to estimate the cell type composition per section along the three axes. The red line 

marks the fit with local polynomial models. 
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Figure S3. Olfr genes 3D zones, Related to Figure 3. (A) Log-likelihood values for fits with LDA models as a 

function of the number of zones. (B) Bar plot showing the degrees of belonging of Olfr genes with overlapping 

spatial patterns (Miyamichi indexes of 1, 1.3 and 2 respectively). (C) Distribution of entropy values of our 689 

spatially differentially expressed Olfrs. The Olfrs with entropy values less than 1 bit (vertical red line) can be 

considered to fit mostly in one zone. (D) Bar plot showing the degrees of belonging of Moxd2.  
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Figure S4. Olfr 3D index prediction, Related to Figure 4 and Tables S3 and S4. (A) Root mean square error 

(RMSE) per iteration of the cross-validation test for the Random Forest model used to predict 3D indexes. (B) 

Scatter plot illustrating the comparison of our 3D indexes versus the “Zolfr indexes” defined by (Zapiec and 

Mombaerts, 2020) from ISH data. For this comparison, these zones were numbered from 1 to 9 from the most dorsal 

to the most ventral. Black circles indicate Olfrs detected in our dataset; green circles are Olfrs for which indexes 

were predicted with Random Forest. The correlation coefficients computed separately on these two sets of Olfrs are 

respectively rho=0.92, p-value<2x10-16 and rho=0.44, p-value>0.05. (C) Scatter plot showing the correlation of our 

3D indexes with the “Tan Indexes” estimated by (Tan and Xie, 2018), who performed RNA-seq on 12 samples at 

different positions along the dorsal-ventral axis of the OM and estimated indexes using as reference the ~80 Olfrs 

analyzed in (Miyamichi et al., 2005) via ISH. Black circles indicate Olfrs detected in our dataset; green circles are 

Olfrs for which indexes were predicted with Random Forest. The correlation coefficients computed separately on 

these two sets of Olfrs are respectively rho=0.95, p-value<2x10-16, and rho=0.68, p-value < 2x10-16.(D-F) In-situ 

hybridization experiment validating the predicted 3D spatial expression patterns for Olfr309 (D), Olfr727 (E), and 

Olfr618 (F). Note that Olfr618 is expressed in Zone 1, consistent with its predicted spatial expression pattern and 

calculated 3D index of 7.42 (Figure 4 N, O). Purple arrowheads indicate the location of ISH labeled cells. The 

dotted outline indicates the borders of the OM dissected and used in the RNA-seq experiments and for the 

construction of the 3D model.  
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Figure S5. Physiological role of the zones, Related to Figure 6 and Table S6. Scatter plot illustrating the 

correlation between ATSC2s of the odorants and the average 3D indexes of their cognate Olfrs. Only odorants for 

which we know at least two cognate Olfrs (110) were used here. Odorants are colored according to the zone they 

belong to (defined as the zone with the highest average degree of belonging computed over all cognate receptors).  

(B) Scatter plot illustrating the correlation between air/mucus partition coefficients of the odorants and the average 

3D indexes of their cognate Olfrs. Only odorants which are detected by Olfrs present in our TOMO-seq dataset (87) 

were used here. (C) Scatter plot illustrating the correlation between air/mucus partition coefficients of the odorants 

and the average 3D indexes of their cognate Olfrs. Only odorants which are detected by Class II Olfrs (101) were 

used here. 
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