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Background: Existing BRCAZ2-specific variant pathogenicity prediction
algorithms focus on the prediction of the functional impact of a subtype of
variants alone. General variant effect predictors are applicable to all subtypes,
but are trained on putative benign and pathogenic variants and do not account
for gene-specific information, such as hotspots of pathogenic variants. Local,
gene-specific information have been shown to aid variant pathogenicity
prediction; therefore, our aim was to develop a BRCAZ-specific machine
learning model to predict pathogenicity of all types of BRCAZ variants.

Methods: We developed an XGBoost-based machine learning model to predict
pathogenicity of BRCAZ variants. The model utilizes general variant information
such as position, frequency, and consequence for the canonical BRCA2
transcript, as well as deleteriousness prediction scores from several tools.
We trained the model on 80% of the expert reviewed variants by the
Evidence-Based Network for the Interpretation of Germline Mutant Alleles
(ENIGMA) consortium and tested its performance on the remaining 20%, as
well as on an independent set of variants of uncertain significance with
experimentally determined functional scores.

Results: The novel gene-specific model predicted the pathogenicity of ENIGMA
BRCAZ variants with an accuracy of 99.9%. The model also performed
excellently on predicting the functional consequence of the independent set
of variants (accuracy was up to 91.3%).

Conclusion: This new, gene-specific model is an accurate method for
interpreting the pathogenicity of variants in the BRCAZ2 gene. It is a valuable
addition for variant classification and can prioritize unreviewed variants for
functional analysis or expert review.
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Introduction

Breast cancer is the most common cancer in women,
impacting more than two million each year (Bray et al., 2020;
Sung et al., 2021). The disease affects one in seven women
worldwide and causes the greatest number of cancer-related
deaths among them (McGuire, Brown, Malone, McLaughlin,
& Kerin, 2015; Sung et al, 2021). In 2020, it resulted in
684,996 deaths: equal to 15.5% of all cancer deaths among
women (Ferlay et al., 2020; Sung et al, 2021). Early breast
cancer detection with suitable treatment could reduce breast
cancer death rates significantly in the long-term. If the cancer is
located only in the breast, the 5-year survival rate of women with
breast cancer is 99%, however, if the cancer has spread to a
distant part of the body, the 5-year survival rate decreases to 27%
(Noone et al, 2018). Therefore, to improve breast cancer
outcomes and survival, early detection is crucial. Early
detection involves two strategies: screening and early
diagnosis. Nevertheless, the balance of potential benefits over
risks for mammographic breast cancer screening of the general
population is controversial (Canelo-Aybar et al, 2021). A
Cochrane review published in 2013 found that it is unclear if
mammographic screening does more good or harm (Gotzsche &
KJ, 2013). Recent studies suggest that mammographic screening
could be most effective if offered based on the personal risk of the
patient calculated from family history, breast density,
reproductive factors, demographic, clinical, imaging-related
and genetic data (Clift et al, 2021). This highlights the great
importance of genetic testing in identifying high risk individuals
for screening and early detection. Mutations in several genes were
associated with increased risks of breast cancer, according to the
Breast Cancer Association Consortium, this includes: BRCAI,
BRCA2, PALB2, CHEK2, ATM, BARDI, MSH6, RAD5IC,
RADS5ID, NF1, TP53 and PTEN (Dorling et al., 2021).

BRCA1 and BRCA2 are tumor suppressors that aid in
repairing damaged DNA or destroy cells if DNA cannot be
repaired (Yoshida & Miki, 2004). These genes are the two
major breast and ovarian cancer predisposition genes.
Mutations in BRCAI and BRCA2 account for up to 90% of
familial breast and ovarian cancer cases (Ford et al., 1998;
Mahdavi et al., 2019). The prevalence of mutation in one of
those genes was previously estimated to be approximately 1 in
every 400 women, nonetheless, recent studies found an overall
prevalence of up to 1 in 139 individuals of the general population
(Group, 2000; McClain, Palomaki, Nathanson, & Haddow, 2005;
Manickam et al., 2018; Abul-Husn et al., 2020). It was estimated
that the cumulative breast cancer risk for a 70-year-old woman is
up to 87% for BRCAI and 84% for BRCA2 mutation carriers with
corresponding ovarian cancer risks up to 68% and 30%,
respectively. The prevalence of breast cancer in those females
was estimated to be 10-30 times more than in those with no
inherited gene mutation (Antoniou et al., 2003; Begg et al., 2008;

Brohet et al., 2014; S. Chen et al., 2006; Evans et al., 2008; Ford
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et al, 1998; Gabai-Kapara et al., 2014; Hopper et al., 1999;
Kuchenbaecker et al., 2017; Milne et al., 2008; Park et al., 2021).

Researchers have identified thousands of mutations in BRCA
genes, some of which were determined to be harmful, while
others have no proven impact. The risk associated with any given
variant varies significantly and depends on the exact type and
location of the variant (Dorling et al., 2022; H. Li et al,, 2022;
Lopez-Urrutia et al.,, 2019; Morris & Gordon, 2010). High risk
variants typically disrupt the gene function; however, the
functional impact of many variants cannot be deduced from
their sequence information alone. Such variants are defined as
variants of uncertain significance (VUS) and they represent a
major challenge for the management of families, in which they
are identified (Eccles et al., 2015; Lopez-Urrutia et al., 2019).
Worldwide genetic testing has uncovered thousands of VUS in
the BRCA genes, including missense substitutions, in-frame
insertions and deletions, silent alterations that may influence
splicing or translation and intronic changes of unknown
influence on gene splicing or expression (Spurdle et al., 2012;
Lépez-Urrutia et al., 2019; NCBI ClinVar database, 2021).

A consistent variant classification system is essential to the
use of genomics in patient care. The 2015 joint recommendation
of the American College of Medical Genetics and Genomics and

the Association for Molecular Pathology (ACMG/AMP
2015 guidelines) classifies sequence variants into five
categories:  pathogenic, likely  pathogenic,  uncertain

significance, likely benign, and benign (Richards et al., 2015).
For best classification of cancer gene variants, the probability of
pathogenicity is based on in silico analysis of the sequence
the
epidemiological and clinical data, such as: segregation analysis,

alteration in combination with available genetic,
personal and family history, tumor histopathology, and co-
occurrence (Lindor et al., 2012; Richards et al., 2015). While
several assumptions are made in these calculations, this approach
has been widely used to classify variants as pathogenic or benign.
It is the currently accepted method for classifying BRCA variants
by the Evidence-Based Network for the Interpretation of
Mutant  Alleles (ENIGMA) that
specializes in clinical classification of BRCA variants (Spurdle
et al., 2012), the ClinVar database of variants, and the Global
Alliance for Genomic Health organization in their BRCA
Exchange database (Cline et al, 2018). It is noteworthy that
there are still >29,000 BRCA2 variants in the BRCA Exchange

database that have not been reviewed for classification.

Germline Consortium

The number of identified germline variants in BRCA2
outpace the clinical annotation due to the limited availability
of genetic, epidemiological, and clinical data, which highlights
the importance and the practicality of computational methods
for risk assessment, as well as the need to prioritize BRCA2
variants for functional testing or classification. In fact, there was a
recent call to action to complement the use of the ClinVar
database with computational predictors to enhance the
actionability of rare breast cancer-gene variants (Saad et al,
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TABLE 1 The receiver operating characteristic (ROC) curve analysis for the different in silico predictions. AUC: Area under the curve, Obs: Number of

observations, Std.Err: Standard error, Cl: Confidence interval.

In silico
prediction method

XGBoost

Consequence

IMPACT

SIFT_Score

PolyPhen_Scor
BayesDel_addAF_rankscore
BayesDel_noAF_rankscore
CADD_raw_rankscore
ClinPred_rankscore
DANN_rankscore
Eigen-PC-raw_coding_rankscore
Eigen-raw_coding_rankscore
FATHMM_ converted_rankscore
GERP++_RS_rankscore
GM12878_fitCons_rankscore
GenoCanyon_rankscore
H1-hESC_fitCons_rankscore
HUVEC_fitCons_rankscore
LRT_converted_rankscore
M-CAP_rankscore
MPC_rankscore

MVP_rankscore
MetaLR_rankscore
MetaRNN_rankscore
MetaSVM_rankscore
MutPred_rankscore
MutationTaster_rankscore
PROVEAN_ converted_rankscore
PrimateAl_rankscore
REVEL_rankscore
SiPhy_29way_logOdds_rankscore
VEST4_rankscore
bStatistic_converted_rankscore
fathmm-MKL_coding_rankscore
fathmm-XF_coding_rankscore
integrated_fitCons_rankscore
phastCons17way_primate_rankscore
phyloP17way_primate_rankscore
MaxEntScan_alt
MaxEntScan_diff
MaxEntScan_ref
SpliceAI_pred_DS_AG
SpliceAI_pred_DS_AL
SpliceAI_pred_DS_DG

SpliceAI pred_DS_DL
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Observation

820
4102
4102
142
142
717

717
142
717
717
717
142
717
717
717

717
717
120
141
135
142
142
142
46

717
142
141
142
717
717
717

717
717
717
717
64
64
64
3655
3655
3655
3655

AUC

0.9978
0.9986
0.1166
0.8811
0.9896
0.9657
0.9916
0.9922
0.6899
0.8116
0.8641
0.9238
0.658

0.4681
0.5597
0.5535
0.5132
0.5833
0.9181
0.9294
0.9563
0.9414
0.995

0.9096
0.9821
0.984

0.596

0.9153
0.9531
0.6476
0.9948
0.525

0.6825
0.4945
0.5015
0.5545
0.4938
0.1129
0.8333
0.3891
0.5148
0.5149
0.5016
0.5202

03

Std.Err

0.0009
0.0005
0.0237
0.0493
0.005

0.0105
0.0041
0.0054
0.0341
0.0255
0.0225
0.0437
0.0271
0.0266
0.0264
0.0285
0.0257
0.0273
0.0341
0.0295
0.0184
0.0373
0.0038
0.0688
0.0147
0.0077
0.068

0.0666
0.0217
0.0266
0.0023
0.0271
0.0281
0.031

0.0262
0.0287
0.0341
0.0416
0.0496
0.0843
0.0048
0.0029
0.0032
0.0032

95% CI
Low

0.99996
0.9961

0.99765
0.07008
0.78446
0.97974
0.94517
0.9836

0.98165
0.6231

0.76169
0.81998
0.8381

0.60495
0.41598
0.50789
0.49759
0.46293
0.52976
0.85119
0.87164
0.92017
0.86837
0.98745
0.77467
0.95336
0.96888
0.46263
0.78482
0.91052
0.59544
0.99039
0.47193
0.62749
0.43373
0.45006
0.49815
0.42692
0.03141
0.73613
0.22388
0.50537
0.50917
0.49532
0.51396

95% CI
High

1
0.99945
0.99957
0.16318
0.97781
0.99946
0.98617
0.99968
1
0.75676
0.86157
0.90832
1
0.71103
0.52016
0.61149
0.6095
0.56354
0.63693
0.985
0.98714
0.99247
1

1

1

1
0.99921
0.72934
1
0.99573
0.69976
0.99925
0.57798
0.73749
0.55523
0.55286
0.61085
0.56064
0.19444
0.93054
0.55435
0.52418
0.52065
0.5078
0.52638
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2022). Moreover, the existing BRCA2 pathogenicity prediction
algorithms focus on the prediction of the functional impact, as
measured by functional assays, of missense variants only.
Therefore, our aim is to develop a gene-specific machine
learning model to predict pathogenicity according to the
comprehensive ACMG guidelines and for all types of BRCA2
variants, utilizing novel features. We will use this new model to
predict the pathogenicity of all BRCA2 variants that have not
been classified yet and prioritize them according to their
predicted level of pathogenicity.

Materials and methods
BRCAZ2 set of variants

We downloaded BRCA2 variants from the BRCA Exchange
database, which contains information drawn from multiple
databases that provide a comprehensive list of BRCAI and
BRCA?2 variants with their annotations (https://brcaexchange.
org/variants; accessed on 14 March 2022). It contains variants
curated and classified by an international consortium of
(ENIGMA
pathogenicity. At the time of this study, there were
33,550 BRCA2 variants, of which 4,102 variants were reviewed
by the ENIGMA expert panel and had known effect of being
pathogenic (2,672), likely benign (738) or benign (692).

investigators consortium) to assess variant

Variant annotation

The Ensembl Variant Effect Predictor determines the effect
of any variant on genes, transcripts, and protein sequence, as well
as on regulatory regions. It is a tool for the analysis and
annotation of genomic variants. It provides information on
the affected transcript, protein, non-coding region, on the
frequency and the phenotypes associated with the variant.
Additionally, it
pathogenicity prediction scores that are present in the
dbNSFP database (Liu, Jian, & Boerwinkle, 2011). The in
silico  predictions we included the model were
BayesDel_addAF,  BayesDel noAF,  bStatisticc, ~CADD,
ClinPred, DANN, Eigen, EigenPC, FATHMM-XF coding,
FATHMM-MKL GERP++RS,
GM12878fitCons, HI1hESCfitCons, HUVECfitCons,
integratedfitCons, LRT, MaxEntScan, MCAP, MetalR,
MetaSVM, MutationAssessor, MutationTaster2, MutPred,
MPC, MVP, phastCons, PhyloP, Polyphen, PrimateAl,
PROVEAN, REVEL, SIFT, SiPhy, SpliceAl, and VEST4. For
the in silico predictions, we used the rank scores whenever

provides access to numerous in silico

in

coding, GenoCanyon,

they were provided. The detailed list is presented in Tablel.
Other variables that were collected or derived from VEP
included the position of the variant, variant length (number of
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bases involved based on reference and alternative alleles),

presence in protein domain, variant association with
phenotype, presence as a somatic mutation, variant impact,
and variant consequences. The variant consequence variable
18 different effects

(Supplementary Table S1). We ranked them based on the

included of the variant position
assumed pathogenicity of the effect with downstream variants
having the least effect and stop gained variants having the highest

effect.

Allele frequencies

We obtained population frequency of the variants from both
the BRCA Exchange database and from VEP, which included
population frequency data from: Exome Aggregation
Consortium, NHLBI exome sequencing, 1000 Genomes
Project, gnomAD, UKI10K cohort data, and the NHLBI
Exome Sequencing Project ESP6500 data. We used the highest
frequency reported for any given variant as a variable called

maximum allele frequency in the model.

XGBoost

XGBoost (Extreme Gradient Boosting) is an open-source
software, which provides a regularizing gradient boosting
framework (T. Chen & Guestrin, 2016). It implements a
highly flexible,
machine learning algorithm under the Gradient Boosting
up
calculations, regularization to avoid overfitting, tree-pruning

optimized distributed gradient boosting

framework through parallel processing to speed
and handling of missing values.

We chose XGBoost, because it is widely used in
bioinformatics; some of those applications were for analyzing
protein translocation between cellular organelles (Mendik et al.,
2019); predicting gene expression values (W. Li, Yin, Quan, &
Zhang, 2019); predicting early-stage prostate cancer (Danciu
et al,, 2020); identifying the origin of DNA replication (Do &
Le, 2020); and predicting Kruppel-like factors (Le, Do, & Le,
2021). Additionally, XGBoosted Machine learning performed
better than other predictive models, including Linear models,
Gradient Boosting Machines, Neural Networks, Random Forests,
and Extremely Randomized Forests, in predicting the functional
impact of BRCA2 missense variants (Hart, Polley, Shimelis,

Yadav, & Couch, 2020).

Model building

We used the XGBoost R package (version 1.4.1.1) with
default parameters (booster =
0.3,

“gbtree”, objective = “binary:

logistic”, eta = gamma = 0, max_depth = 6,
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min_child_weight = 1, subsample = 1, colsample_bytree = 1,
nrounds = 100) to train a classifier model on the variant
annotations for predicting pathogenicity. Pathogenicity was
based on the ENIGMA expert panel’s review. Therefore, only
the variants that have been reviewed were included in building
the model (4,012 variants), and they were split into 80% training
set and 20% test set. The original variant pathogenicity groups
were recategorized as pathogenic (“pathogenic” and “likely
pathogenic”) and benign (“benign” and “likely benign”) for
the binary classification. The model was trained to predict the
expert classification of either pathogenic or benign variants and
we performed 5-fold cross-validation of the model. We used the
xgb.plot.importance function to show which are the top 10 most
important features of the model (gain was used as the measure of
importance). The Shapely values were also examined to find the
most  predictive  characteristics and prediction scores
(xgb.plot.shap function and SHAPforxgboost package). Finally,

we predicted the pathogenicity of the 29,448 unreviewed variants.

Testing the model on independent VUS
with functional data

Richardson et al., in 2021 assessed the functional effect of
252 BRCA2 VUS by a BRCA2 homology-directed DNA repair
(HDR) assay. Utilizing the Variant Recoder tool in Ensembl, the
252 BRCA2 amino acid changes corresponded to 276 missense
sequence variants. Out of the 276 variants, 251 were not reviewed
by the BRCA Exchange database and 4 of them were both
missense and splice region variants. Accordingly, 247 variants
were used for independent assessment of the model on missense
VUS. Those VUS had functional data on their ability to
complement DR-GFP BRCA2 deficient V-C8 cells in a
BRCA2 homology-directed DNA repair (HDR) assay. Known
pathogenic  variants defects had HDR
<1.66, and known benign variants that
nonfunctional had HDR scores >2.44 (Richardson et al.,
2021). More extreme HDR scores of <1.0 and >3.0 have also
been utilized in the literature for pathogenic and benign variants,

with functional

scores were

respectively (Guidugli et al., 2018), therefore we tested the
model’s performance with both cut-offs.

Results
Variant datasets

At the time of data collection, the BRCA Exchange database
had 33,550 BRCA2 variants. The largest proportion of those
variants were intronic (36%), and of those found in the coding
region, the majority were missense (53%: Supplementary Figures
S1A,B). Only 4,102 variants were reviewed by the expert panel
and had a known effect: 2,672 were pathogenic, and 1,430 were
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benign. The distribution of the variants in the expert reviewed
portion markedly differed from the distribution of all variants.
Out of the reviewed 4,102 variants, 29% were frame shift,
compared to the 5% of all variants, and intronic variants were
only 9%, compared to the 36% of all variants (Supplementary
Figures SIA,C). There was an even more pronounced
distribution difference for coding sequence variants, with the
proportion of frameshift, synonymous and stop gained variants
being much higher for the reviewed variants, while only 4% of
them were missense variants (Supplementary Figures S1B,D).
This highlights that a large proportion of missense variants could
not be unambiguously assigned to either pathogenic or benign
categories.

Variant location

Out of the 33,550 BRCA2 variants, 14,259 were present along
the 27 BRCA2 exons. Out of the 4,012 reviewed variants, the
highest number of both benign and pathogenic variants were
found in exon 11 (47.6%) followed by exon 10 (10.4%)
(Figure 1A). Similarly, the highest number of specifically
missense variants were present in Exons 10 and 11 (41.1%
and 15.6% of all missense variants, respectively). However,
10 and
Pathogenic missense variants were present in exons 13, 17, 18,

exon 11 had only benign missense variants.
24 and 25 (Supplementary Figure S2). Only a small fraction of the
reviewed variants were intronic, and most of those were
determined to be benign (Figure 1B).

Predicting pathogenicity of the ENIGMA
reviewed variants

To develop the prediction model, we used an extreme
gradient boosting machine learning algorithm (XGBoost)
and included the variants with known expert reviewed
effect (4,102 variants).
training (80%) and a test set (20%). The training model
included 3,282 variants and it was trained to predict the

Variants were divided into a

expert classification of either pathogenic (2,118 variants) or
benign (1,164 variants) variants. The test model included
554 pathogenic and 266 benign variants.

The model was used to predict the test group of 820 variants
and yielded an accuracy of 0.999 with sensitivity of 99.6% and the
specificity of 100% (Figure 2A). The most important variable was
the variant consequence followed by a combination of different
in silico prediction tools (Figure 2B, Supplementary Figure S3A).
Removing the consequence variable from the model did not
affect the accuracy (0.996) and the maximum allele frequency
became the most important feature followed by the Combined
Annotation Dependent Depletion (CADD) Phred score and the
number of involved bases “variant length” (Figure 2C,
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FIGURE 1

Comparison of the number of pathogenic and benign variants among the 4,102 reviewed, across the BRCA2 gene. (A) The number of
pathogenic and benign variants per BRCA2 exons. (B) The number of pathogenic and benign variants per BRCA2 introns.
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Supplementary Figure S3B). We performed cross validation of
the BRCA2 model with 5 different subsamples that included
random training and test groups. All models demonstrated
similar accuracies between 99.6% and 99.9% (Supplementary
Table S2). Similar to the original model, the variant consequence
was the most important variable across the 5 subsamples, and
when it was removed, the maximum allele frequency became the
most important feature.
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Comparison of the novel model to
previous in silico prediction algorithms

We compared the area under the curve for our novel
XGBoost model and the input in silico prediction tools on
their own. The XGBoost model had the highest AUC of
1.00, followed by VEST4, ClinPred, and CADD rank
scores (Table 1). It should be noted that, the receiver
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A Model Accuracy (95%) Sensitivity | Specificity P-value
Full model 0.999 (0.993, 1) 0.996 1 <2.00E-16
Without consequence 0.995 (0.988, 0.999) 0.993 0.996 <2.00E-16

B C
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MutPred_rankscore CADD_phred
Maximum_allele_frequency Variant_length
SpliceAl_pred_DS_DL MaxEntScan_alt
MetaRNN_rankscore BayesDel_addAF_rankscore
MaxEntScan_alt VEST4_rankscore
PrimateAl_rankscore Exon_number
MaxEntScan_diff MutationTaster_rankscore
Exon_number Intron_number
MaxEntScan_ref SpliceAl_pred_DS_AG
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D e —_p
Model Accuracy (95%) Sensitivity | Specificity P-value
HDR cutoff <= 1.66 =>2.44 | 0.834(0.782, 0.878) 0.918 0.682 2.835E-11
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FIGURE 2

The BRCA2 XGBoost models. (A) The models characteristics (AUC: Area Under the Curve). (B) Feature importance of the XGBoost model. (C)
Feature importance of the XGBoost model without consequence. The BRCA2 XGBoost model trained on the whole reviewed dataset (4,102 variants)
was used to predict VUS pathogenicity based on HDR functional assay scores. (D) The performance of the model on a set of pathogenic and benign
variants according to HDR cutoffs <= 1.66 and =>2.44 (247 variants) and cutoffs <= 1.0 and >=3.0 (160 variants). (E) Feature importance of the

XGBoost model trained on the whole reviewed dataset.

operating characteristic (ROC) analysis of the different in
silico predictions was performed using the full sample of
4,102 variants and the AUCs were calculated for only
those variants that had prediction scores for the
given tool.

We also performed ROC analysis for the association of the

consequence, which demonstrated excellent diagnostic
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abilities with the area under the curve (AUC) equal to
99.8% (Supplementary Figure S4). The cutoff point of
more than 12 (missense variant) had the best balance
between sensitivity (99.4%) and specificity (99.9%). Thus,
we can expect that the model’s accuracy in identifying only
VUS will decrease, because VUS are usually missense
variants.

frontiersin.org


https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.982930

Khandakji and Mifsud

A 4000

3500

3000

2500

2000

1500

Number of variants

1000

500

0 —l s =m_ =

10.3389/fgene.2022.982930

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Exon number

W Benign m Pathogenic

B 60%

50%
40%

30%

Percentage

20%

- _.__,,_,_I __m.a JAa - ma_ 1

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Exon number

W Benign m Pathogenic

FIGURE 3

Comparison between the predicted pathogenic and benign variants across the BRCA2 exons. (A) The number of predicted pathogenic and
benign missense variants (7,131) per BRCA2 exons. (B) Percent distribution of predicted pathogenic and benign missense variants across the

BRCA2 exons.

Model validation in predicting VUS

We obtained missense VUS with functional data from a
recent study by Richardson et al. After removing variants that
were already included in building the model, 247 variants
were used to assess the model’s performance in predicting
variants of uncertain significance. Out of 247 VUS,
defects  with  HDR
scores <1.66, and 159 variants were considered benign
with HDR >2.44.

88 demonstrated functional

Frontiers in Genetics

The BRCA2 model, trained on the full set of ENIGMA
BRCA2 variants (4,102), was tasked to predict the VUS that
demonstrated functional defects. The model had high
accuracy of 0.834 with sensitivity of 91.8% and specificity
of 68.2% (Figure 2D). The most important variable was the
variant consequence (Figure 2E, Supplementary Figure S5).
The diagnostic performance of the model significantly
improved with the more extreme HDR cutoff points
of <= 1 for pathogenic and >=3 for benign variants
(160 variants). The accuracy of the model increased to
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0.913 with a sensitivity of 91.3% and specificity of 90.9%
(Figure 2D).

Model pathogenicity predictions for the
not reviewed variants

Finally, we used the novel gene-specific BRCA2 model to
predict the remaining 29,448 variants present in the BRCA
Exchange database that are not yet reviewed by the expert
panel. We predicted 2,092 variants to be pathogenic and
prioritized them according to the total SHAP values of the
different predictors (Supplementary Table S3). We predicted
186 pathogenic missense variants (Figure 3A). The majority of
those are in the DNA-binding domain (exons 12-26), however
23 were in exon 11, which is outside of it (Figure 3B).

Discussion

The highest number of both benign and pathogenic variants
were found in exon 11 followed by exon 10, which was expected
as those two exons represent around 65% of the BRCA2 coding
sequence. However, looking only at expert reviewed missense
variants, exons 10 and 11 had only benign missense variants. This
is in agreement with previous studies that referred to exon 10 and
11 as “coldspots” which were described as “regions of a gene that
are tolerant of variation, where pathogenic missense variants are
(Dines et 2020).
23 pathogenic missense variants in exon 11, which fell into
the BRCA2 BRC repeats that binds to RADS5I
DSS1  resulting in the RAD51-BRCA2-DSS1 complex
(Shailani, Kaur, & Munshi, 2018), indicating that these
missense variants are likely to effect the complex’s stability.

unlikely” al., However, we predicted

and

This suggests that only exon 10 is a “coldspot”.

We have demonstrated that the gene-specific BRCA2 model
is an extremely accurate method for predicting variant
pathogenicity in the BRCA2 gene the
classification by the ENGIMA group. Moreover, the model
demonstrated

according  to

excellent abilities in predicting damaging
missense variants of uncertain significance. The gene-specific
model demonstrated better diagnostic probabilities than other in
silico prediction tools. In contrast to other gene-specific models
or in silico predictions, our model was built to predict the
ENGIMA final classification (Hart et al., 2019; Hart et al.,
2020). Therefore, it encompasses not only missense variants
that are tested in functional studies but all possible variant
types. The previously published models or predictions are
built specifically for missense variants and to predict their
functional impact as tested by functional assays. In fact, the
BRCA2 model developed by Hart et al. was limited to missense
mutations in the DNA-binding domain of the BRCA2 protein

known to be associated with impaired function (Hart et al., 2020).
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Moreover, the existing BRCA2 model was trained and tested with
only 202 BRCA2 variants. It is based on small numbers of known
damaging mutations, which limits both the model’s ability to
capture the variability of variant data and the direct comparison
between the two gene-specific models. Nevertheless, to compare
our model to the previous one, we examined the performance of
our model to predict only the missense variants, which are
present in the testing group and calculated the Matthews
Correlation Coefficient (MCC). Our model had an MCC of
0.849 which is better than the MCC of 0.73 reported for the
previous BRCA2 model (Hart et al., 2020).

Despite the increasing number of variants that have been
functionally tested, there are still 29,448 BRCA2 variants that have
not been classified by the BRCA Exchange expert panel (ENIGMA).
Variant classification is based on the probability of pathogenicity that
includes in silico analysis of the sequence alteration in combination
with the available genetic, epidemiological, and clinical data, as well as
functional studies (Lindor et al, 2012). All these underscore the
importance and current need of computational methods to predict
and prioritize variants for classification or functional testing. Our
prioritized list of so far unreviewed variants could guide future efforts
in studying damaging mutations and aid genetic counselors and
researchers for interpreting the pathogenicity of different BRCA2
variants.

There are still limitations for the BRCA2 model. The fact that
variants at the lower and upper extremes of HDR scores had better
predictions emphasize that variants with intermediate HDR scores
are more challenging for the model. These variants are also likely to
represent a set of variants with variable functional effect that might
depend on other variants or external factors. Moreover, we did not
optimize the model parameters, therefore the model might perform
better with optimal settings. We also did not systematically test
whether leaving out certain in silico prediction variables would
improve the model's performance. While a model with an
optimal set of variables might exist, the XGBoost algorithm is
resistant to redundant information, and therefore we do not
foresee a significant improvement over including all available in
silico predictions.

The BRCA2 gene-specific model is an accurate method for
interpreting the pathogenicity of all types of variants in the
BRCA2 gene as they were classified according to the ACMG
criteria. It is a valuable addition for variant classification and can
prioritize unreviewed variants for functional analysis or expert
review. Finally, our approach could be utilized for other high-risk
cancer genes that have a large number of variants with high-
confidence pathogenicity annotation.
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