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Background: Existing BRCA2-specific variant pathogenicity prediction

algorithms focus on the prediction of the functional impact of a subtype of

variants alone. General variant effect predictors are applicable to all subtypes,

but are trained on putative benign and pathogenic variants and do not account

for gene-specific information, such as hotspots of pathogenic variants. Local,

gene-specific information have been shown to aid variant pathogenicity

prediction; therefore, our aim was to develop a BRCA2-specific machine

learning model to predict pathogenicity of all types of BRCA2 variants.

Methods:We developed an XGBoost-basedmachine learning model to predict

pathogenicity of BRCA2 variants. The model utilizes general variant information

such as position, frequency, and consequence for the canonical BRCA2

transcript, as well as deleteriousness prediction scores from several tools.

We trained the model on 80% of the expert reviewed variants by the

Evidence-Based Network for the Interpretation of Germline Mutant Alleles

(ENIGMA) consortium and tested its performance on the remaining 20%, as

well as on an independent set of variants of uncertain significance with

experimentally determined functional scores.

Results: The novel gene-specificmodel predicted the pathogenicity of ENIGMA

BRCA2 variants with an accuracy of 99.9%. The model also performed

excellently on predicting the functional consequence of the independent set

of variants (accuracy was up to 91.3%).

Conclusion: This new, gene-specific model is an accurate method for

interpreting the pathogenicity of variants in the BRCA2 gene. It is a valuable

addition for variant classification and can prioritize unreviewed variants for

functional analysis or expert review.
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Introduction

Breast cancer is the most common cancer in women,

impacting more than two million each year (Bray et al., 2020;

Sung et al., 2021). The disease affects one in seven women

worldwide and causes the greatest number of cancer-related

deaths among them (McGuire, Brown, Malone, McLaughlin,

& Kerin, 2015; Sung et al., 2021). In 2020, it resulted in

684,996 deaths: equal to 15.5% of all cancer deaths among

women (Ferlay et al., 2020; Sung et al., 2021). Early breast

cancer detection with suitable treatment could reduce breast

cancer death rates significantly in the long-term. If the cancer is

located only in the breast, the 5-year survival rate of women with

breast cancer is 99%, however, if the cancer has spread to a

distant part of the body, the 5-year survival rate decreases to 27%

(Noone et al., 2018). Therefore, to improve breast cancer

outcomes and survival, early detection is crucial. Early

detection involves two strategies: screening and early

diagnosis. Nevertheless, the balance of potential benefits over

risks for mammographic breast cancer screening of the general

population is controversial (Canelo-Aybar et al., 2021). A

Cochrane review published in 2013 found that it is unclear if

mammographic screening does more good or harm (Gøtzsche &

KJ, 2013). Recent studies suggest that mammographic screening

could be most effective if offered based on the personal risk of the

patient calculated from family history, breast density,

reproductive factors, demographic, clinical, imaging-related

and genetic data (Clift et al., 2021). This highlights the great

importance of genetic testing in identifying high risk individuals

for screening and early detection. Mutations in several genes were

associated with increased risks of breast cancer, according to the

Breast Cancer Association Consortium, this includes: BRCA1,

BRCA2, PALB2, CHEK2, ATM, BARD1, MSH6, RAD51C,

RAD51D, NF1, TP53 and PTEN (Dorling et al., 2021).

BRCA1 and BRCA2 are tumor suppressors that aid in

repairing damaged DNA or destroy cells if DNA cannot be

repaired (Yoshida & Miki, 2004). These genes are the two

major breast and ovarian cancer predisposition genes.

Mutations in BRCA1 and BRCA2 account for up to 90% of

familial breast and ovarian cancer cases (Ford et al., 1998;

Mahdavi et al., 2019). The prevalence of mutation in one of

those genes was previously estimated to be approximately 1 in

every 400 women, nonetheless, recent studies found an overall

prevalence of up to 1 in 139 individuals of the general population

(Group, 2000; McClain, Palomaki, Nathanson, & Haddow, 2005;

Manickam et al., 2018; Abul-Husn et al., 2020). It was estimated

that the cumulative breast cancer risk for a 70-year-old woman is

up to 87% for BRCA1 and 84% for BRCA2mutation carriers with

corresponding ovarian cancer risks up to 68% and 30%,

respectively. The prevalence of breast cancer in those females

was estimated to be 10–30 times more than in those with no

inherited gene mutation (Antoniou et al., 2003; Begg et al., 2008;

Brohet et al., 2014; S. Chen et al., 2006; Evans et al., 2008; Ford

et al., 1998; Gabai-Kapara et al., 2014; Hopper et al., 1999;

Kuchenbaecker et al., 2017; Milne et al., 2008; Park et al., 2021).

Researchers have identified thousands of mutations in BRCA

genes, some of which were determined to be harmful, while

others have no proven impact. The risk associated with any given

variant varies significantly and depends on the exact type and

location of the variant (Dorling et al., 2022; H. Li et al., 2022;

López-Urrutia et al., 2019; Morris & Gordon, 2010). High risk

variants typically disrupt the gene function; however, the

functional impact of many variants cannot be deduced from

their sequence information alone. Such variants are defined as

variants of uncertain significance (VUS) and they represent a

major challenge for the management of families, in which they

are identified (Eccles et al., 2015; López-Urrutia et al., 2019).

Worldwide genetic testing has uncovered thousands of VUS in

the BRCA genes, including missense substitutions, in-frame

insertions and deletions, silent alterations that may influence

splicing or translation and intronic changes of unknown

influence on gene splicing or expression (Spurdle et al., 2012;

López-Urrutia et al., 2019; NCBI ClinVar database, 2021).

A consistent variant classification system is essential to the

use of genomics in patient care. The 2015 joint recommendation

of the American College of Medical Genetics and Genomics and

the Association for Molecular Pathology (ACMG/AMP

2015 guidelines) classifies sequence variants into five

categories: pathogenic, likely pathogenic, uncertain

significance, likely benign, and benign (Richards et al., 2015).

For best classification of cancer gene variants, the probability of

pathogenicity is based on in silico analysis of the sequence

alteration in combination with the available genetic,

epidemiological and clinical data, such as: segregation analysis,

personal and family history, tumor histopathology, and co-

occurrence (Lindor et al., 2012; Richards et al., 2015). While

several assumptions are made in these calculations, this approach

has been widely used to classify variants as pathogenic or benign.

It is the currently accepted method for classifying BRCA variants

by the Evidence-Based Network for the Interpretation of

Germline Mutant Alleles Consortium (ENIGMA) that

specializes in clinical classification of BRCA variants (Spurdle

et al., 2012), the ClinVar database of variants, and the Global

Alliance for Genomic Health organization in their BRCA

Exchange database (Cline et al., 2018). It is noteworthy that

there are still >29,000 BRCA2 variants in the BRCA Exchange

database that have not been reviewed for classification.

The number of identified germline variants in BRCA2

outpace the clinical annotation due to the limited availability

of genetic, epidemiological, and clinical data, which highlights

the importance and the practicality of computational methods

for risk assessment, as well as the need to prioritize BRCA2

variants for functional testing or classification. In fact, there was a

recent call to action to complement the use of the ClinVar

database with computational predictors to enhance the

actionability of rare breast cancer-gene variants (Saad et al.,
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TABLE 1 The receiver operating characteristic (ROC) curve analysis for the different in silico predictions. AUC: Area under the curve, Obs: Number of
observations, Std.Err: Standard error, CI: Confidence interval.

In silico
prediction method

Observation AUC Std.Err 95% CI
Low

95% CI
High

XGBoost 820 1 0 0.99996 1

Consequence 4102 0.9978 0.0009 0.9961 0.99945

IMPACT 4102 0.9986 0.0005 0.99765 0.99957

SIFT_Score 142 0.1166 0.0237 0.07008 0.16318

PolyPhen_Scor 142 0.8811 0.0493 0.78446 0.97781

BayesDel_addAF_rankscore 717 0.9896 0.005 0.97974 0.99946

BayesDel_noAF_rankscore 717 0.9657 0.0105 0.94517 0.98617

CADD_raw_rankscore 717 0.9916 0.0041 0.9836 0.99968

ClinPred_rankscore 142 0.9922 0.0054 0.98165 1

DANN_rankscore 717 0.6899 0.0341 0.6231 0.75676

Eigen-PC-raw_coding_rankscore 717 0.8116 0.0255 0.76169 0.86157

Eigen-raw_coding_rankscore 717 0.8641 0.0225 0.81998 0.90832

FATHMM_converted_rankscore 142 0.9238 0.0437 0.8381 1

GERP++_RS_rankscore 717 0.658 0.0271 0.60495 0.71103

GM12878_fitCons_rankscore 717 0.4681 0.0266 0.41598 0.52016

GenoCanyon_rankscore 717 0.5597 0.0264 0.50789 0.61149

H1-hESC_fitCons_rankscore 717 0.5535 0.0285 0.49759 0.6095

HUVEC_fitCons_rankscore 717 0.5132 0.0257 0.46293 0.56354

LRT_converted_rankscore 717 0.5833 0.0273 0.52976 0.63693

M-CAP_rankscore 120 0.9181 0.0341 0.85119 0.985

MPC_rankscore 141 0.9294 0.0295 0.87164 0.98714

MVP_rankscore 135 0.9563 0.0184 0.92017 0.99247

MetaLR_rankscore 142 0.9414 0.0373 0.86837 1

MetaRNN_rankscore 142 0.995 0.0038 0.98745 1

MetaSVM_rankscore 142 0.9096 0.0688 0.77467 1

MutPred_rankscore 46 0.9821 0.0147 0.95336 1

MutationTaster_rankscore 717 0.984 0.0077 0.96888 0.99921

PROVEAN_converted_rankscore 142 0.596 0.068 0.46263 0.72934

PrimateAI_rankscore 141 0.9153 0.0666 0.78482 1

REVEL_rankscore 142 0.9531 0.0217 0.91052 0.99573

SiPhy_29way_logOdds_rankscore 717 0.6476 0.0266 0.59544 0.69976

VEST4_rankscore 717 0.9948 0.0023 0.99039 0.99925

bStatistic_converted_rankscore 717 0.525 0.0271 0.47193 0.57798

fathmm-MKL_coding_rankscore 717 0.6825 0.0281 0.62749 0.73749

fathmm-XF_coding_rankscore 717 0.4945 0.031 0.43373 0.55523

integrated_fitCons_rankscore 717 0.5015 0.0262 0.45006 0.55286

phastCons17way_primate_rankscore 717 0.5545 0.0287 0.49815 0.61085

phyloP17way_primate_rankscore 717 0.4938 0.0341 0.42692 0.56064

MaxEntScan_alt 64 0.1129 0.0416 0.03141 0.19444

MaxEntScan_diff 64 0.8333 0.0496 0.73613 0.93054

MaxEntScan_ref 64 0.3891 0.0843 0.22388 0.55435

SpliceAI_pred_DS_AG 3655 0.5148 0.0048 0.50537 0.52418

SpliceAI_pred_DS_AL 3655 0.5149 0.0029 0.50917 0.52065

SpliceAI_pred_DS_DG 3655 0.5016 0.0032 0.49532 0.5078

SpliceAI_pred_DS_DL 3655 0.5202 0.0032 0.51396 0.52638

Frontiers in Genetics frontiersin.org03

Khandakji and Mifsud 10.3389/fgene.2022.982930

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.982930


2022). Moreover, the existing BRCA2 pathogenicity prediction

algorithms focus on the prediction of the functional impact, as

measured by functional assays, of missense variants only.

Therefore, our aim is to develop a gene-specific machine

learning model to predict pathogenicity according to the

comprehensive ACMG guidelines and for all types of BRCA2

variants, utilizing novel features. We will use this new model to

predict the pathogenicity of all BRCA2 variants that have not

been classified yet and prioritize them according to their

predicted level of pathogenicity.

Materials and methods

BRCA2 set of variants

We downloaded BRCA2 variants from the BRCA Exchange

database, which contains information drawn from multiple

databases that provide a comprehensive list of BRCA1 and

BRCA2 variants with their annotations (https://brcaexchange.

org/variants; accessed on 14 March 2022). It contains variants

curated and classified by an international consortium of

investigators (ENIGMA consortium) to assess variant

pathogenicity. At the time of this study, there were

33,550 BRCA2 variants, of which 4,102 variants were reviewed

by the ENIGMA expert panel and had known effect of being

pathogenic (2,672), likely benign (738) or benign (692).

Variant annotation

The Ensembl Variant Effect Predictor determines the effect

of any variant on genes, transcripts, and protein sequence, as well

as on regulatory regions. It is a tool for the analysis and

annotation of genomic variants. It provides information on

the affected transcript, protein, non-coding region, on the

frequency and the phenotypes associated with the variant.

Additionally, it provides access to numerous in silico

pathogenicity prediction scores that are present in the

dbNSFP database (Liu, Jian, & Boerwinkle, 2011). The in

silico predictions we included in the model were

BayesDel_addAF, BayesDel_noAF, bStatistic, CADD,

ClinPred, DANN, Eigen, EigenPC, FATHMM-XF coding,

FATHMM-MKL coding, GenoCanyon, GERP++RS,

GM12878fitCons, H1hESCfitCons, HUVECfitCons,

integratedfitCons, LRT, MaxEntScan, MCAP, MetaLR,

MetaSVM, MutationAssessor, MutationTaster2, MutPred,

MPC, MVP, phastCons, PhyloP, Polyphen, PrimateAI,

PROVEAN, REVEL, SIFT, SiPhy, SpliceAI, and VEST4. For

the in silico predictions, we used the rank scores whenever

they were provided. The detailed list is presented in Table1.

Other variables that were collected or derived from VEP

included the position of the variant, variant length (number of

bases involved based on reference and alternative alleles),

presence in protein domain, variant association with

phenotype, presence as a somatic mutation, variant impact,

and variant consequences. The variant consequence variable

included 18 different effects of the variant position

(Supplementary Table S1). We ranked them based on the

assumed pathogenicity of the effect with downstream variants

having the least effect and stop gained variants having the highest

effect.

Allele frequencies

We obtained population frequency of the variants from both

the BRCA Exchange database and from VEP, which included

population frequency data from: Exome Aggregation

Consortium, NHLBI exome sequencing, 1000 Genomes

Project, gnomAD, UK10K cohort data, and the NHLBI

Exome Sequencing Project ESP6500 data. We used the highest

frequency reported for any given variant as a variable called

maximum allele frequency in the model.

XGBoost

XGBoost (Extreme Gradient Boosting) is an open-source

software, which provides a regularizing gradient boosting

framework (T. Chen & Guestrin, 2016). It implements a

highly flexible, optimized distributed gradient boosting

machine learning algorithm under the Gradient Boosting

framework through parallel processing to speed up

calculations, regularization to avoid overfitting, tree-pruning

and handling of missing values.

We chose XGBoost, because it is widely used in

bioinformatics; some of those applications were for analyzing

protein translocation between cellular organelles (Mendik et al.,

2019); predicting gene expression values (W. Li, Yin, Quan, &

Zhang, 2019); predicting early-stage prostate cancer (Danciu

et al., 2020); identifying the origin of DNA replication (Do &

Le, 2020); and predicting Kruppel-like factors (Le, Do, & Le,

2021). Additionally, XGBoosted Machine learning performed

better than other predictive models, including Linear models,

Gradient Boosting Machines, Neural Networks, Random Forests,

and Extremely Randomized Forests, in predicting the functional

impact of BRCA2 missense variants (Hart, Polley, Shimelis,

Yadav, & Couch, 2020).

Model building

We used the XGBoost R package (version 1.4.1.1) with

default parameters (booster = “gbtree”, objective = “binary:

logistic”, eta = 0.3, gamma = 0, max_depth = 6,
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min_child_weight = 1, subsample = 1, colsample_bytree = 1,

nrounds = 100) to train a classifier model on the variant

annotations for predicting pathogenicity. Pathogenicity was

based on the ENIGMA expert panel’s review. Therefore, only

the variants that have been reviewed were included in building

the model (4,012 variants), and they were split into 80% training

set and 20% test set. The original variant pathogenicity groups

were recategorized as pathogenic (“pathogenic” and “likely

pathogenic”) and benign (“benign” and “likely benign”) for

the binary classification. The model was trained to predict the

expert classification of either pathogenic or benign variants and

we performed 5-fold cross-validation of the model. We used the

xgb.plot.importance function to show which are the top 10 most

important features of the model (gain was used as the measure of

importance). The Shapely values were also examined to find the

most predictive characteristics and prediction scores

(xgb.plot.shap function and SHAPforxgboost package). Finally,

we predicted the pathogenicity of the 29,448 unreviewed variants.

Testing the model on independent VUS
with functional data

Richardson et al., in 2021 assessed the functional effect of

252 BRCA2 VUS by a BRCA2 homology-directed DNA repair

(HDR) assay. Utilizing the Variant Recoder tool in Ensembl, the

252 BRCA2 amino acid changes corresponded to 276 missense

sequence variants. Out of the 276 variants, 251 were not reviewed

by the BRCA Exchange database and 4 of them were both

missense and splice region variants. Accordingly, 247 variants

were used for independent assessment of the model on missense

VUS. Those VUS had functional data on their ability to

complement DR-GFP BRCA2 deficient V-C8 cells in a

BRCA2 homology-directed DNA repair (HDR) assay. Known

pathogenic variants with functional defects had HDR

scores <1.66, and known benign variants that were

nonfunctional had HDR scores >2.44 (Richardson et al.,

2021). More extreme HDR scores of <1.0 and >3.0 have also

been utilized in the literature for pathogenic and benign variants,

respectively (Guidugli et al., 2018), therefore we tested the

model’s performance with both cut-offs.

Results

Variant datasets

At the time of data collection, the BRCA Exchange database

had 33,550 BRCA2 variants. The largest proportion of those

variants were intronic (36%), and of those found in the coding

region, the majority were missense (53%: Supplementary Figures

S1A,B). Only 4,102 variants were reviewed by the expert panel

and had a known effect: 2,672 were pathogenic, and 1,430 were

benign. The distribution of the variants in the expert reviewed

portion markedly differed from the distribution of all variants.

Out of the reviewed 4,102 variants, 29% were frame shift,

compared to the 5% of all variants, and intronic variants were

only 9%, compared to the 36% of all variants (Supplementary

Figures S1A,C). There was an even more pronounced

distribution difference for coding sequence variants, with the

proportion of frameshift, synonymous and stop gained variants

being much higher for the reviewed variants, while only 4% of

them were missense variants (Supplementary Figures S1B,D).

This highlights that a large proportion of missense variants could

not be unambiguously assigned to either pathogenic or benign

categories.

Variant location

Out of the 33,550 BRCA2 variants, 14,259 were present along

the 27 BRCA2 exons. Out of the 4,012 reviewed variants, the

highest number of both benign and pathogenic variants were

found in exon 11 (47.6%) followed by exon 10 (10.4%)

(Figure 1A). Similarly, the highest number of specifically

missense variants were present in Exons 10 and 11 (41.1%

and 15.6% of all missense variants, respectively). However,

exon 10 and 11 had only benign missense variants.

Pathogenic missense variants were present in exons 13, 17, 18,

24 and 25 (Supplementary Figure S2). Only a small fraction of the

reviewed variants were intronic, and most of those were

determined to be benign (Figure 1B).

Predicting pathogenicity of the ENIGMA
reviewed variants

To develop the prediction model, we used an extreme

gradient boosting machine learning algorithm (XGBoost)

and included the variants with known expert reviewed

effect (4,102 variants). Variants were divided into a

training (80%) and a test set (20%). The training model

included 3,282 variants and it was trained to predict the

expert classification of either pathogenic (2,118 variants) or

benign (1,164 variants) variants. The test model included

554 pathogenic and 266 benign variants.

The model was used to predict the test group of 820 variants

and yielded an accuracy of 0.999 with sensitivity of 99.6% and the

specificity of 100% (Figure 2A). The most important variable was

the variant consequence followed by a combination of different

in silico prediction tools (Figure 2B, Supplementary Figure S3A).

Removing the consequence variable from the model did not

affect the accuracy (0.996) and the maximum allele frequency

became the most important feature followed by the Combined

Annotation Dependent Depletion (CADD) Phred score and the

number of involved bases “variant length” (Figure 2C,
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Supplementary Figure S3B). We performed cross validation of

the BRCA2 model with 5 different subsamples that included

random training and test groups. All models demonstrated

similar accuracies between 99.6% and 99.9% (Supplementary

Table S2). Similar to the original model, the variant consequence

was the most important variable across the 5 subsamples, and

when it was removed, the maximum allele frequency became the

most important feature.

Comparison of the novel model to
previous in silico prediction algorithms

We compared the area under the curve for our novel

XGBoost model and the input in silico prediction tools on

their own. The XGBoost model had the highest AUC of

1.00, followed by VEST4, ClinPred, and CADD rank

scores (Table 1). It should be noted that, the receiver

FIGURE 1
Comparison of the number of pathogenic and benign variants among the 4,102 reviewed, across the BRCA2 gene. (A) The number of
pathogenic and benign variants per BRCA2 exons. (B) The number of pathogenic and benign variants per BRCA2 introns.
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operating characteristic (ROC) analysis of the different in

silico predictions was performed using the full sample of

4,102 variants and the AUCs were calculated for only

those variants that had prediction scores for the

given tool.

We also performed ROC analysis for the association of the

consequence, which demonstrated excellent diagnostic

abilities with the area under the curve (AUC) equal to

99.8% (Supplementary Figure S4). The cutoff point of

more than 12 (missense variant) had the best balance

between sensitivity (99.4%) and specificity (99.9%). Thus,

we can expect that the model’s accuracy in identifying only

VUS will decrease, because VUS are usually missense

variants.

FIGURE 2
The BRCA2 XGBoost models. (A) The models characteristics (AUC: Area Under the Curve). (B) Feature importance of the XGBoost model. (C)
Feature importance of the XGBoostmodel without consequence. The BRCA2 XGBoost model trained on thewhole reviewed dataset (4,102 variants)
was used to predict VUS pathogenicity based on HDR functional assay scores. (D) The performance of the model on a set of pathogenic and benign
variants according to HDR cutoffs <= 1.66 and =>2.44 (247 variants) and cutoffs <= 1.0 and >=3.0 (160 variants). (E) Feature importance of the
XGBoost model trained on the whole reviewed dataset.
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Model validation in predicting VUS

We obtained missense VUS with functional data from a

recent study by Richardson et al. After removing variants that

were already included in building the model, 247 variants

were used to assess the model’s performance in predicting

variants of uncertain significance. Out of 247 VUS,

88 demonstrated functional defects with HDR

scores <1.66, and 159 variants were considered benign

with HDR >2.44.

The BRCA2 model, trained on the full set of ENIGMA

BRCA2 variants (4,102), was tasked to predict the VUS that

demonstrated functional defects. The model had high

accuracy of 0.834 with sensitivity of 91.8% and specificity

of 68.2% (Figure 2D). The most important variable was the

variant consequence (Figure 2E, Supplementary Figure S5).

The diagnostic performance of the model significantly

improved with the more extreme HDR cutoff points

of <= 1 for pathogenic and >=3 for benign variants

(160 variants). The accuracy of the model increased to

FIGURE 3
Comparison between the predicted pathogenic and benign variants across the BRCA2 exons. (A) The number of predicted pathogenic and
benign missense variants (7,131) per BRCA2 exons. (B) Percent distribution of predicted pathogenic and benign missense variants across the
BRCA2 exons.
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0.913 with a sensitivity of 91.3% and specificity of 90.9%

(Figure 2D).

Model pathogenicity predictions for the
not reviewed variants

Finally, we used the novel gene-specific BRCA2 model to

predict the remaining 29,448 variants present in the BRCA

Exchange database that are not yet reviewed by the expert

panel. We predicted 2,092 variants to be pathogenic and

prioritized them according to the total SHAP values of the

different predictors (Supplementary Table S3). We predicted

186 pathogenic missense variants (Figure 3A). The majority of

those are in the DNA-binding domain (exons 12–26), however

23 were in exon 11, which is outside of it (Figure 3B).

Discussion

The highest number of both benign and pathogenic variants

were found in exon 11 followed by exon 10, which was expected

as those two exons represent around 65% of the BRCA2 coding

sequence. However, looking only at expert reviewed missense

variants, exons 10 and 11 had only benignmissense variants. This

is in agreement with previous studies that referred to exon 10 and

11 as “coldspots” which were described as “regions of a gene that

are tolerant of variation, where pathogenic missense variants are

unlikely” (Dines et al., 2020). However, we predicted

23 pathogenic missense variants in exon 11, which fell into

the BRCA2 BRC repeats that binds to RAD51 and

DSS1 resulting in the RAD51–BRCA2–DSS1 complex

(Shailani, Kaur, & Munshi, 2018), indicating that these

missense variants are likely to effect the complex’s stability.

This suggests that only exon 10 is a “coldspot”.

We have demonstrated that the gene-specific BRCA2 model

is an extremely accurate method for predicting variant

pathogenicity in the BRCA2 gene according to the

classification by the ENGIMA group. Moreover, the model

demonstrated excellent abilities in predicting damaging

missense variants of uncertain significance. The gene-specific

model demonstrated better diagnostic probabilities than other in

silico prediction tools. In contrast to other gene-specific models

or in silico predictions, our model was built to predict the

ENGIMA final classification (Hart et al., 2019; Hart et al.,

2020). Therefore, it encompasses not only missense variants

that are tested in functional studies but all possible variant

types. The previously published models or predictions are

built specifically for missense variants and to predict their

functional impact as tested by functional assays. In fact, the

BRCA2 model developed by Hart et al. was limited to missense

mutations in the DNA-binding domain of the BRCA2 protein

known to be associated with impaired function (Hart et al., 2020).

Moreover, the existing BRCA2model was trained and tested with

only 202 BRCA2 variants. It is based on small numbers of known

damaging mutations, which limits both the model’s ability to

capture the variability of variant data and the direct comparison

between the two gene-specific models. Nevertheless, to compare

our model to the previous one, we examined the performance of

our model to predict only the missense variants, which are

present in the testing group and calculated the Matthews

Correlation Coefficient (MCC). Our model had an MCC of

0.849 which is better than the MCC of 0.73 reported for the

previous BRCA2 model (Hart et al., 2020).

Despite the increasing number of variants that have been

functionally tested, there are still 29,448 BRCA2 variants that have

not been classified by the BRCA Exchange expert panel (ENIGMA).

Variant classification is based on the probability of pathogenicity that

includes in silico analysis of the sequence alteration in combination

with the available genetic, epidemiological, and clinical data, as well as

functional studies (Lindor et al., 2012). All these underscore the

importance and current need of computational methods to predict

and prioritize variants for classification or functional testing. Our

prioritized list of so far unreviewed variants could guide future efforts

in studying damaging mutations and aid genetic counselors and

researchers for interpreting the pathogenicity of different BRCA2

variants.

There are still limitations for the BRCA2 model. The fact that

variants at the lower and upper extremes of HDR scores had better

predictions emphasize that variants with intermediate HDR scores

are more challenging for the model. These variants are also likely to

represent a set of variants with variable functional effect that might

depend on other variants or external factors. Moreover, we did not

optimize the model parameters, therefore the model might perform

better with optimal settings. We also did not systematically test

whether leaving out certain in silico prediction variables would

improve the model’s performance. While a model with an

optimal set of variables might exist, the XGBoost algorithm is

resistant to redundant information, and therefore we do not

foresee a significant improvement over including all available in

silico predictions.

The BRCA2 gene-specific model is an accurate method for

interpreting the pathogenicity of all types of variants in the

BRCA2 gene as they were classified according to the ACMG

criteria. It is a valuable addition for variant classification and can

prioritize unreviewed variants for functional analysis or expert

review. Finally, our approach could be utilized for other high-risk

cancer genes that have a large number of variants with high-

confidence pathogenicity annotation.
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