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Abstract
Background: COVID-19 infections could be complicated by acute respiratory distress syndrome (ARDS), increasing
mortality risk. We sought to assess the methylome of peripheral blood mononuclear cells in COVID-19 with ARDS.

Methods: We recruited 100 COVID-19 patients with ARDS under mechanical ventilation and 33 non-COVID-19 con-
trols between April and July 2020. COVID-19 patients were followed at four time points for 60 days. DNA methylation
and immune cell populations were measured at each time point. A multivariate cox proportional risk regression analy-

inclusion increases mortality risk by over twofold.

Trial registration: IMRPOVIE study, NCT04473131.

sis was conducted to identify predictive signatures according to survival.

Results: The comparison of COVID-19 to controls at inclusion revealed the presence of a 14.4% difference in pro-
moter-associated CpGs in genes that control immune-related pathways such as interferon-gamma and interferon-
alpha responses. On day 60, 24% of patients died. The inter-comparison of baseline DNA methylation to the last
recorded time point in both COVID-19 groups or the intra-comparison between inclusion and the end of follow-up in
every group showed that most changes occurred as the disease progressed, mainly in the AIM gene, which is associ-
ated with an intensified immune response in those who recovered. The multivariate Cox proportional risk regression
analysis showed that higher methylation of the “Apoptotic execution Pathway” genes (ROC1, ZNF789, and H1FQ) at

Conclusion: We observed an epigenetic signature of immune-related genes in COVID-19 patients with ARDS. Fur-
ther, Hypermethylation of the apoptotic execution pathway genes predicts the outcome.
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Background

COVID-19 is a novel coronavirus first discovered in
Wuhan, China, in late 2019 and declared a pandemic by
the World Health Organization (WHO) in March 2020
[1]. Two years later, several variants were detected, and
over 5 million deaths were recorded [2].
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Epigenetics refers to the study of gene activity regula-
tion and expression changes that are not dependent on
the DNA sequence [3]. DNA methylation, one of the hall-
marks of epigenetics, involves the covalent addition of a
methyl group to the 5'-carbon of a cytosine ring. Meth-
ylation is inversely correlated with gene expression [4].
For instance, hypermethylation is often associated with
the downregulation of genes, recently demonstrated in
the ACE2 gene [5]. Basic embryological and early devel-
opmental processes are controlled by DNA methylation
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in mammalians [6]. Further, DNA methylation is also
involved in disease and upon exposure to environmental
factors [7].

Patients with severe COVID-19 infection often suffer
from respiratory failure and may require mechanical ven-
tilation, associated with a mortality rate of up to 50% [8,
9]. Several predictors of outcomes in critically ill patients
have already been identified. They include primarily clini-
cal variables, biochemical markers, and comorbidities
[10]. DNA methylation of host cells can be altered dur-
ing infections, which modulates the immune response
[11]. It has been recently shown that DNA methylation
regulates the activity of the immune system in COVID-
19 infections and is associated with clinical outcomes,
such as the severity of the disease, its association with
respiratory failure, and ICU admission [12—-14]. However,
data regarding death or recovery in COVID-19 patients is
lacking. In this study, we report the presence of immune-
related differentially methylated genes that predict sur-
vival in critically ill COVID-19 patients.

Methods

Participants

As part of the “Immune Profiling of COVID19-patients
Admitted to ICU study (IMPROVISE) (clinicaltrial.gov
identifier NCT04473131, start date 27th of April 2020),
we recruited consecutively 100 critically ill COVID-
19 patients with ARDS under mechanical ventilation
(WHO clinical progression scale 7-9 [15]) at the inten-
sive care unit (ICU) and 33 non-COVID participants
from the blood donor unit at Hamad Medical Corpora-
tion (HMC), from April to July 2020. Detailed inclusion
and exclusion criteria of participants are included in the
Appendix. COVID-19 patients were included in the study
upon their admission to the ICU (T1), then followed at
four time points (T): day 7 (T2), day 14 (T3), day 21 (T4),
and day 60 (post-T4), which is the recommended meas-
ure of patient survival according to the WHO Working
Group on the common outcome measure set for COVID-
19 clinical research [15]. After inclusion at T1, patients
would progressively move to the next time point unless
they die or recover, in which case their follow-up ceases.
Recovery was defined as meeting the WHO clinical crite-
ria of less or equal to 5, discontinuing mechanical ventila-
tion, and discharge from the ICU to the COVID-19 ward.
Blood samples were collected for epigenetic analysis at
each time point.

PBMC s isolation and DNA extraction

Seventeen ml of EDTA-coated blood was withdrawn
from each participant. Peripheral blood mononuclear
cells (PBMCs) were isolated by density gradient centrif-
ugation using Ficoll-Paque Premium (GE Healthcare,
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Sweden) and SepMate tubes (STEMCELL technologies,
USA). DNA from PBMCs was extracted (Allprep DNA/
RNA mini kit, Qiagen, Germany) and then sequenced
at the genomics core at WCM-Q.

EPIC850 methylation quality control, data filtering,

and normalization

To determine the DNA methylation status of study
participants, we used Infinium MethylationEPIC 850
Array (~850,000 CpG sites) and its associated mani-
fest file IlluminaHumanMethylationEPICanno.ilm10b4.
hgl9 with CpG sites annotation [16, 17]. Two hundred
eighty-eight samples were collected: 100 from COVID-
19 patients and 33 from controls at inclusion, and 155
for COVID-19 patients at different time points. We
obtained DNA methylation beta values from the raw
Intensity Data (IDAT) files using the minfi package in
R 3.6.3 [18]. We then performed quality control (QC)
by first calculating mean detection p-values across
all samples and probes to identify failed samples and
probes. All 288 samples were kept in the analysis.
Thirty-one thousand seven hundred seventy bad-qual-
ity probes were removed. We then applied multiple fil-
tering steps, including the removal of probes with SNPs
using dropLociWithSnps function from minfi pack-
age [18] (26958 removed), cross-reactive probes were
removed using xreactive_probes in package maxprobes
(40148 removed) [19, 20], and finally probes on X and
Y chromosomes (16109 removed). The final analysis set
contained 288 samples and 750874 probes. After data
filtering, we performed normalization using the pre-
processQuantile function in the minfi package [18]. We
then used the prcomp function to perform the princi-
pal component analysis (PCA).

Estimation of the immune cells’ populations

FlowSorted Blood EPIC package in R [21] was used to
estimate cell-type composition from normalized meth-
ylation data, including T lymphocytes (CD4+and
CD8+), B cells (CD19+), and monocytes (CD14+), NK
cells (CD56+), and neutrophils. An accurate model to
determine differences between immune cell proportions
was determined based on the Akaike information crite-
rion (AIC) and p-value using Im and glance functions in
broom package (https://github.com/tidymodels/broom)
in R. Differences between groups COVID-19/controls
or recovery/death were then determined for each com-
parison using the most appropriate model among several
tested ones that include immune cell proportions and
clinical covariates that are statistically significant among
studied groups.


https://github.com/tidymodels/broom
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Methylation analysis and group comparisons
The getM function in the minfi package was used to
convert row beta values to log-transformed M values
used in downstream analysis. To estimate unknown
variation within methylation data, we used the singu-
lar value approximation method from the sva package
in R. We did not detect any novel variation in our sam-
ple [22]. We then used known covariates from the data
and constructed different linear models to identify dif-
ferentially methylated CpGs between studied groups.
Models were then compared using the limma pack-
age function in R and AIC statistics. The model with
the highest number of CpGs and the lowest AIC was
selected as the best and used in the subsequent analy-
sis. Multiple testing corrections and false discovery
rates were calculated using the Benjamini—Hochberg
procedure [23]. We also performed differentially meth-
ylated regions (DMRs) analysis in which we considered
regions with five or more CpGs using the appropriate
model established for CpGs, and the DMRcate pack-
age (https://bioconductor.org/packages/release/bioc/
html/DMRcate.html) in R. Pathway enrichment analy-
sis for all significant differentially methylated regions
for all comparisons in this study was performed using
50 Human Hallmark pathways from MSigDB database
[24], and pathEnrich function from splineTimeR R [25].
We first assessed methylation changes between
COVID-19 patients and controls at the study’s inclu-
sion, then looked at the differences between COVID-
19 patients who recovered and those who died. Three
different methods were applied for the latter. First, we
looked for differences between both COVID-19 groups
by comparing the methylation profile at inclusion to
the last recorded methylation profile before “death” or
“recovery” Further, we compared COVID-19 patients
who died to those who recovered at their baseline
level than at discharge. Finally, we assessed differential
methylation over time by testing the time-course differ-
ences between death and recovery. Since all compari-
sons were among the same samples at different time
points, we only used the biological replicate as a covari-
ate. To do this, we used the splineDiffExprs function in
the splineTimeR package in R [25]. SplineDiffExprs fits
the splines function for each phenotypic group across
time points and replicates and compares their coef-
ficient values. This allows us to detect differences over
four time points for patients who recovered and those
who died for immune cell proportions and methylation
changes. The splinePlot function from the splineTimeR
package was used to visualize the time-dependent
behavior of CpGs in two phenotypic groups.
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Prediction of the outcome

The univariate Cox proportional hazard analysis of the
CpGs was performed to identify methylation sites rele-
vant to patient survival. We considered only differentially
methylated CpGs between patients who recovered and
those who died using the abovementioned three com-
parisons. Analysis was performed using all samples at
inclusion. We first transformed methylation data to the
standard normal distribution using Z-score. Then Cox
survival model was fitted independently for each gene
using RegParallel R package [26] using hospital stay as
a time variable. The significance was determined using
a log-rank test, and CpGs with p<0.001 were consid-
ered significant. The patients were divided into high- or
low-methylation groups using the median methylation
Z-score as the cutoff point. Subsequently, the Kaplan—
Meier (K-M) analysis was used to estimate the differences
in survival between the two groups for the genes signifi-
cant by the cox proportional hazardous model using the
survival package in R (https://github.com/therneau/survi
val). Finally, we performed a Receiver Operating Char-
acteristic (ROC) analysis of a logistic regression model
where methylation was used to predict survival using
the pROC package [27]. The area under the ROC curve
(AUC) was calculated to compare the sensitivity and
specificity of survival prediction.

Results

Baseline characteristics of the participants at admission
One hundred thirty-three participants were included in
the study, 100 COVID-19 participants and 33 volunteers
at T1 (Fig. 1). COVID-19 patients were significantly older
than controls and more likely to be South Asians (Table 1);
hence, ethnicity and age were tested in the model used to
compare both groups. Forty-one % of COVID-19 patients
had diabetes, and 43% had hypertension. Nosocomial
infections occurred in 55% of patients, and 30% received
convalescent plasma therapy.

Methylation differences between COVID-19 patients
and controls at admission
We first performed PCA analysis to determine if popula-
tion stratification is present in our dataset. Our principal
component 1 (PC1) explained 13.5% of the variation. In
comparison, PCA 2 explained 9.3% of the variation, and
no population structuring was observed in relation to
COVID-19 or control participants or ethnicity (Additional
file 11: Figure S1, only COVID-19/controls PCA is shown).
The proportion of immune cells is frequently variable
in COVID-19 [28]; thus, we performed the deconvolution


https://bioconductor.org/packages/release/bioc/html/DMRcate.html
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Fig. 1 Flow chart of the study

method and estimated the proportion of immune cells
in every sample based on filtered and normalized data.
Using a linear model, we then looked for cell propor-
tions that significantly differed between groups. The best
model (model 4: cell proportions~COVID-19/controls
without the covariates) based on AIC was used (Addi-
tional file 1: Table S1). CD8 T cells, CD4 T cells, and B
cells significantly differed between COVID-19 patients
and controls: CD8 and CD4 T cells were significantly
lower (FDR p<0.05), and B cells were significantly higher
(FDR p<0.05) in COVID-19 patients compared to con-
trols (Fig. 2A). These observations are consistent with
previous observations [29].

To examine if changes in CpG methylation levels were
associated with COVID-19 infection, we first established
the best linear model for our analysis by testing the clini-
cal covariates and the immune cell proportions. A total
of 11 different models were tested (Additional file 11:
Figure S2A), and the three immune cell types (CD8 T
cells, CD4 T cells, and B cells) proportions contributed
to the most significant number of CpGs based on AIC
criterium; thus, they were included in the final model for
differential methylation analysis (model F: CpG meth-
ylation ~ COVID-19/controls +the proportion of CD8
T cells/CD4 T cells/B cells). We detected 33.3% dif-
ferentially methylated CpGs in COVID-19 patients in

comparison to controls (a total of 133335 out of 750874;
71527 hypomethylated and 61808 hypermethylated, FDR,
p<0.05) (Fig. 3, Additional file 11: Figure S3, Additional
file 2: Table S2A and B). Gene-associated differentially
methylated CpGs represent 0.7% (1054/133335) of the
sites, while promoter-associated CpGs were more abun-
dant with 14.4% (19238/133335), indicating a potential
role in gene regulation. Observed methylation changes
were associated with 20822 unique genes.

To determine analysis reproducibility, we com-
pared our observations with previously published data
(Fig. 4). First, we investigated if 44 CpG sites that previ-
ously showed great accuracy in predicting COVID-19
severity [13] differed between COVID-19 and controls.
Nine CpGs representing six genes including IFI44L
(cg13452062), DDO (cg02872426), SGMS1 (cg10188795),
CXCR2  (cgl9225688), CCDC6  (cg04736673),
CDC42BPB (cg02003183), cg06601098, cg11671940, and
cgl18523915 were also differentially methylated in our
study. In addition, we have identified differentially meth-
ylated CpGs in the same genes, but not in the same sites
as reported in the study from Castro de Moura et al. [13]
and those included: two CpG in AIM2 and HLA-C genes,
and one CpG site in each of the following genes: CELF4,
CEPS85L, KIFAP3, LCE1C, LHX6, MOBKL2A, PM20D1,
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Table 1 Baseline characteristics of COVID-19 patients and controls

Variable COVID-19 N=100° Controls N=33° p-valu®
Age 49 (42, 59) 40 (35, 45) <0.001
Gender (male) 95 (95%) 33 (100%) 03
BMI (kg/m?) 27.2(24.6,31.0) 293 (264,31.2) 0.12
Ethnicity

East Africa 0 (0%) 1(3.0%) <0.001

Middle East 5(5.0%) 11 (33%)

North Africa 1(1.0%) 0 (0%)

Northeast Africa 5(5.0%) 4(12%)

South Asia 78 (78%) 15 (45%)

Southeast Asia 9 (9.0%) 2(6.1%)

Western Asia 2 (2.0%) 0 (0%)

Duration of MV (days) 8(4,19) -

ICU LoS (days) 15(10,27) -

Hospital LoS (days) 27 (20, 44) -

ECMO 12 (12%) -

Nosocomial infections 55 (55%) -

Convalescent plasma therapy 30 (30%) -
Diabetes status

Non diabetes 55 (55%) - -

Pre-diabetes 4 (4.0%) -

Diabetes 41 (41%) -

Hypertension 43 (43%) - -

Coronary artery disease 6 (6.0%) - -

Chronic kidney failure 11 (11%) - -

Chronic heart failure 2 (2.0%) - -

Data are represented as numbers (%) per each category for categorical variables and as median (IQR) for continuous variables
ECMO extracorporeal membrane oxygenation, LoS length of stay, MV mechanical ventilation

? Median (IQR); n (%)

b Wilcoxon rank-sum test; Fisher’s exact test; Pearson’s Chi-squared test

P-values were calculated with Fisher exact test or Wilcoxon rank-sum test
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Fig. 2 A The proportion of immune cells detected in controls and COVID-19 participants. The X-axis represents different cell types. The Y-axis
represents the proportion of cell types derived from the deconvolution methods. The orange color represents COVID-19-patients, while the blue
color represents controls. B. The proportion of immune cells detected at baseline and the final time point. Baseline-recovered, Baseline-died,
recovered, and died are four different categories by which samples were grouped and compared for immune cell proportion
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PM20D1, SORCS1, UBAP2L, UBE2W, VIM, ZNF385D
(Additional file 2: Table S2A and B).

Further, we examined if any previously reported
COVID-19-associated genes had significant CpG meth-
ylation changes. Among 40 genes reported by Castro de
Moura et al. [13] and replicated in other studies [30-35],
we detected 220 CpGs from 39 genes in COVID-19
patients, 107 hyper-methylated and 113 hypomethylated
(Figs. 3, 4). These included immune response, virus entry,
viral replication, blood clotting, protein binding in lung
cells, ubiquitin ligase, and ACE2-related genes (Addi-
tional file 2: Table S2C and D). We further performed
pathway enrichment analysis to test the relationship
between significantly methylated CpGs. We found sig-
nificant enrichment of immune-related pathways, includ-
ing interferon-gamma and interferon-alpha response,
early estrogen response, apical surface, and UV response
dn. These pathways were hypomethylated in COVID-19

Page 6 of 18

patients, suggesting potentially induced expression of
many immune-related genes. The mitotic spindle path-
way was the only hypermethylated in COVID-19 patients
(Table 2).

We also performed a differentially methylated region
(DMR) analysis using the same model as for CpGs, in
which we identified 4788 hypermethylated in COVID-19
patients containing clusters of >5 CpGs spanning 5723
genes (FDR p <0.05; Additional file 3: Table S3). A total of
4347 hypo-methylated regions covering 5072 genes were
also detected, indicating that DMRs spanned more than
one gene. Pathway enrichment analysis was performed to
determine relationships between genes detected by DMR
analysis. We found significant enrichment of interferon-
alpha response and Kras signaling pathways hypometh-
ylated in COVID-19. In contrast, the mitotic spindle
pathway was hyper-methylated, demonstrating similarity
with individual CpG analysis (Table 3).
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Table 2 Summary of differentially methylated pathways detected between COVID-19 patients and controls based on CpG sites

Hallmark pathway N DE P.DE FDR Changes in CpGs
(COVID-19 vs.
controls)

Interferon gamma response 189 175 0.00 0.00 hypomethylation

Estrogen response early 189 174 0.00 0.02 hypomethylation

Apical surface 39 39 0.00 0.02 hypomethylation

Interferon alpha response 93 87 0.00 0.02 hypomethylation

Uv response dn 140 131.33 0.00 0.02 hypomethylation

Mitotic spindle 188 175 0.000 0.001 hypomethylation

Columns represent the following variables: N number of genes in the gene set, DE number of differentially methylated genes, PDE p-value for over-representation of

the gene set, FDR false discovery rate (p < 0.05)

Table 3 Summary of pathways detected between COVID-19
patients and controls based on the differentially methylated
region (DMR) analysis

Hallmark pathway N DE PDE FDR Changesin DMRs
(COVID-19 vs
controls)

Interferon alpha response 97 34 0.00 0.00 Hypomethylation

Kras signaling up 200 55 0.00 003 Hypomethylation

Mitotic spindle 199 68 0.00 000 Hypermethylation

Columns represent the following variables: N number of genes in the gene
set. DE number of differentially methylated genes, PDE p-value for over-
representation of the gene set, FDR false discovery rate (p <0.05). Analyzed
regions are based on five or more CpGs

Methylation changes between the dead and recovered
COVID-19 patients

Three COVID-19 patients died at T2, five at T3, four at
T4, and twelve at post-T4, representing 24 dead patients
among the 100 initially included (24%) in 60 days.
Patients who died were, on average, 11 years older than
the ones who recovered (Table 4). As expected, they
had more nosocomial infections and were more likely to
receive extracorporeal membrane oxygenation (ECMO)
(p<0.05 for all). Interestingly, they did not suffer from
more cardiovascular disease.
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Table 4 Comparison between COVID-19 patients who survived vs. those who died
Variable COVID-19, died N=24? COVID-19, survived N=76% p-valu®
Age 58 (52,63) 47 (41, 56) <0.001
Gender (male) 24 (100%) 70 (92%) 0.023
BMI (kg/m?) 25.7 (24.5,29.7) 275(254,32.1) 0.072
Ethnicity
Middle East 1 (4.1%) 2 (2.6%) 0.14
North Africa 0 (0%) 1(1.3%)
Northeast Africa 2 (8.2%) 4 (5.2%)
South Asia 18 (75%) 63 (82.8%)
Southeast Asia 2 (8.2%) 5 (6.5%)
Western Asia 1 (4.1%) 1(1.3%)
Duration of MV (days) 25(19,47) 8(5,18) <0.001
ICU LoS (days) 26 (20, 48) 15(11,29) <0.001
ECMO 7 (29%) 10 (13%) 0.001
Nosocomial infections 22 (92%) (55 2%) <0.001
Convalescent plasma therapy 9 (37.5%) 5(32.8%) 0.4
Diabetes status
No diabetes 15 (62.5%) 41 (53.9%) 0.14
Pre-diabetes 1 (4.1%) 4 (5.2%)
Diabetes 8(33.4%) 31 (40.7%)
Hypertension 11 (46%) 31 (40.7%) 0.5
Coronary artery disease 1(4.1%) 4 (6.2%) 0.8
Chronic kidney failure 3(12.5%) 8 (10.5%) 03
Chronic heart failure 1 (4.1%) 3(3.9%) 0.9

Data are represented as numbers (%) per each category for categorical variables and as median (Interquartile range, IQR) for continuous variables

ECMO extracorporeal membrane oxygenation, LoS length of stay, MV mechanical ventilation

@ Median (IQR); n (%)
b Wilcoxon rank-sum test; Fisher's exact test; Pearson’s Chi-squared test
P-values were calculated with Fisher exact test or Wilcoxon rank-sum test

Inter-comparison of DNA methylation changes

between baseline and the last recorded time point

in COVID-19 groups

We compared the immune cell content and methylation
profile at inclusion to the last recorded methylation pro-
file before death or recovery. In recovery, we detected a
higher proportion of CD4 T cells and a lower proportion
of neutrophils in comparison to their baseline immune
cell content (adjusted p <0.05 for both) (Additional file 4:
Table S4A, Fig. 2B). Further, we identified 11989 hypo-
methylated and 22082 hypermethylated CpGs (Fig. 5A,
Additional file 4: Table S4B) entailing multiple pathways.
Hypermethylated CpGs were enriched in the inflamma-
tory response, interferon-alpha response, heme metabo-
lism, TNF-alfa signaling via NF-kB, estrogen response
early, Kras signaling up, uv response dn, il2 stat5 signal-
ing, mitotic spindle, interferon-gamma response, il6 jak
stat3 signaling, apical junction, and myogenesis path-
way (Additional file 4: Table S4C). Hypomethylated
CpGs were enriched in allograft rejection, mitotic spin-
dle, and myc targets vl pathways. In patients who died,

the proportion of immune cells between baseline and
the last recorded time point before death did not differ
(Additional file 4: Table S4D, Fig. 3). Surprisingly, those
patients expressed a smaller number of differential meth-
ylation changes than their baseline value compared to
changes observed in those who recovered. We detected
3150 hypomethylated and 3652 hypermethylated CpGs
(Fig. 5B, Additional file 4: Table S4E). There were no sig-
nificant changes in pathways related to these methylation
changes after the false discovery rate (FDR) correction.
(Additional file 4: Table S4F).

We also performed a DMR analysis in which we con-
sidered regions with five or more CpGs. There were 310
hypermethylated regions relative to 363 genes and 82
hypomethylated regions relative to 102 genes in recov-
ered patients (Additional file 4: Table S4G). There were
no significant pathways after FDR correction. However,
some of the same pathways related to immunity that were
significant in individual CpGs analysis also showed nomi-
nal significance for DMR (Additional file 4: Table S4H).
We also tested if any DMRs were significantly associated
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Fig. 6 Heatmap representing significant changes in CpGs from genes previously associated with COVID-19 [13]. Heatmap represents methylation

4

istance and Ward.D2 clustering methods were used). Details on these genes

with death. We identified 35 regions encompassing 45
genes that were hypermethylated in patients who died.
Only three regions were hypomethylated in the same
comparison, and they spanned four genes (i.e., GNAS,
MEST, RP1-309F20.3) (Additional file 4: Table S4I). Nev-
ertheless, we did not detect significant pathways related
to those DMR changes (Additional file 4: Table S47).

Intra-comparison of DNA methylation differences

between both groups at inclusion and the end of follow-up
We compared COVID-19 patients who died to those
who recovered at their baseline level. We first tested the

models, including different combinations of the clini-
cal covariates, to determine the optimal model to com-
pare immune cell proportion differences. The model
without covariates (mod7; cell proportions~Dead/
Recovered) was selected as the best model based on
this criterium and was used in data analysis (Additional
file 5: Table S5A). We did not identify significant differ-
ences between “dead” and “recovered” patients at base-
line or last time point for immune cells (Additional file 5:
Table S5B, C). We next established the best model for
differential methylation comparisons of these groups by
testing different covariates. The model “none” (without
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Fig. 7 Summary of immune cells and methylation changes over four time points in COVID-19 patients. A. Spline regression plot of neutrophile
changes over four time points in dead (red color) vs. recovered patients (blue color). B. Spline regression plot of significant CpGs (cg00237825)
over four time points in recovered vs. dead patients for DEFB115 C. Spline regression plot of significant CpGs (cg13700506) over four time points in
recovered vs. dead patients for DEFB116. Spline plots show the spline regression model fitted to the four time points neutrophile proportion data
(A) and methylation (B). The blue line represents the fitted model for the recovered, while the red line represents dead patients. Blue and red dots
represent the proportion of neutrophils/methylation of the biological replicates for dead and recovered patients. Vertical lines are the endpoints

and interior knots representing 0.33 and 0.66 quantiles

any covariates) fitted most of the CpGs based on both
criteria; thus, this model was selected for subsequent
analysis. (Additional file 11: Figure S2B).

CpG sites or regions suggest that the methylation
changes at baseline (baseline died vs. baseline recovered)
did not significantly affect the outcome. However, com-
paring the same patients at their last time point resulted
in 1478 hypomethylated and 1557 hypermethylated
CpGs in patients who died compared to those who recov-
ered (Fig. 5C, Additional file 6: Table S6A). No significant
pathways were detected for this comparison. Further-
more, we identified hypermethylated DMRs in 156
regions near 190 genes and 102 hypomethylated regions
in 133 genes. (Additional file 6: Table S6B). There were no
significant pathways based on genes in DMR pathways.
We also did not find any immune cell proportion differ-
ences in this comparison.

Compared to the published study of Castro de Moura
et al. [13], which predicts 44 CpGs for severe COVID-
19 cases, we have identified five CpGs that differ only
between baseline and the final time points in patients
who recovered. None differed between patients who
died and their baseline (Fig. 4). Four CpGs (cgl11671940;
RP11-351M16.3, ¢gl0188795; SGMSI1, ¢gl7515347,
and ¢g24145401; AIM2) were hypermethylated in
comparison to baseline, and one was hypomethylated
(cg06601098), which did not belong to any gene region
and was an open sea CpG. All but one of those CpGs
was hypomethylated in severe COVID-19 cases in Cas-
tro de Moura et al. [13]. They were significantly hyper-
methylated in recovered patients, suggesting their
potential to improve outcomes. The exception of that
was ¢g06601098 which was hypomethylated in severe
COVID-19 patients who recovered in Castro de Moura
et al’s study. [13]. However, none of these changes were

significant when comparing the last time point in recov-
ered vs. dead patients. Furthermore, we also identified
changes in CpGs from 40 candidate genes from previ-
ous studies. Here we observed 29 hypermethylated and
31 hypomethylated CpGs in recovered at the last time
point with respect to baseline (Figs. 6, 4). Patients who
died had seven hypermethylated and eight hypomethyl-
ated CpGs. One of these CpGs (cg16371860 in TMPRSS2
gene) was significantly hypomethylated in both recovered
and those who died; thus, it is probably not of great inter-
est as a potential marker for recovery. Comparing recov-
ered and died at the last time point with published data
did not yield any significant CpGs from Castro de Moura
et al. [13]. However, we found nine CpGs from 40 can-
didate genes, including two hypo-methylated CpGs in
dead patients (promoter-associated OAS1; cgl18217049,
and TMPRSS2; ¢g19020860). We also saw three hyper-
methylated CpGs in deceased patients from STAT3
(cgl17833746, ¢g24312520, cg24718015), one from OAS2
(cg19371652), one from LZTFL1 (cg09709426), and one
that was from the TBK1 gene (cg13540592) (Figs. 6, 4).
These CpGs were not enriched in any pathways.

Time course of differential methylation induced by critical
COVID-19 illness

To determine methylation changes over time, we ana-
lyzed patients who either died or recovered at day 60
(post T4) for all the four time points (patients who did
not reach T4 were excluded from this analysis. First, we
looked at whether patients who died and recovered dif-
fered in immune cell dynamics. Immune cell propor-
tion analysis using spline function identified significant
changes in neutrophils (adjusted p<0.05). Neutrophils
showed a sudden increase in T3 and T4 in patients who
later died. In contrast, those who recovered showed the
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Fig. 8 Heatmap representing significant changes in Cst between patients who died and those who recovered over four time points. Heatmap
represents methylation beta values which were Z-score transformed (the euclidean clustering distance and Ward.D2 clustering methods were

opposite scenario (Fig. 7. A, Additional file 7: Table S7A),
suggesting the critical importance of these cells in the
clinical outcome.

We identified differences in methylation trends
between patients who died and those who recovered
over four time points for 49 CpG sites that correspond
to 27 genes (Fig. 8, Additional file 7: Table S7B), most of
which are known to regulate the activity of protein bind-
ing Among those 27 genes, 19 were already reported in
COVID-19 either in the viral entry and binding to recep-
tors, or in clinical prediction such as the severity of the
disease or its associations with end-organ damage (Addi-
tional file 8: Table S8).

Among genes not reported in COVID-19, two are
known to play a role in the immune system: DEFB116
and DEFB115. Those genes belong to the beta-defensins
system, which is a vital part of the innate immune
response and plays an essential role in protection
against infections [36]. We identified differential meth-
ylation of CpGs in those genes over all four time points

(Fig. 7B and C). DEFB115 was overall less methylated in
COVID-19 patients who died, suggesting a potentially
increased expression in critical COVID-19 patients.
DEF116 was only hypomethylated in patients who died.

Prediction of the outcome

We tested all CpGs (a total of 40,956) issued from
the inter-comparison between baseline and the last
recorded time point before the outcome in both
COVID-19 groups, the intra-comparison between
both groups at inclusion and by the end of follow-up,
and those issued from the time course of differential
methylation. A total of 13 CpGs corresponding to 8
genes predicted the outcome. Three of those genes are
issued from the comparison of methylation changes
between baseline and the last time point in patients
who survived (PSMB9, MFHAS1, and MRPS2), and five
from the comparison of baseline and the last points in
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patients who died (MAT2B, YY1P2, ROCK1, ZNF789,
H1FO).

Higher methylation of ROC1, ZNF789, and HI1FO0
increased the mortality risk (cox proportional
HR=2.43, 95% CI [1.58-3.6]; 2.29, 95% CI [1.49-3.53];
2.62, 95%, CI [1.60—4.29]; respectively) (Fig. 9, Addi-
tional file 9: Table S9) whereas higher methylation
of PSMB9, MFHAS1, MRPS2, MAT2B, and YY1P2
decreased it risk (cox proportional HR=2.43, 95%
CI [1.58-3.6]; 2.29, 95% CI [1.49-3.53]; 2.62, 95%, CI
[1.60—4.29]; respectively) (Fig. 10). The ROC curves
of sensitivity and specificity of the model showed
a very good prediction of the outcome for ZNF789
(80.6%) and MRPS2 (80%), a good one for PSMB9
(78.5%), MFHAS (75.7%), H1FO 75.8%), YY1P2 (72%),
and ROCK1(77.7%) genes, and a fair one for MAT2B
(66.9%) (Figs. 9 and 10). Those genes are mostly linked
to inflammation or DNA regulation. Interestingly,
seven of those genes have been reported in previous
COVID-19 studies (Additional file 10: Table S10). Fur-
ther, we looked at the string database to assess protein
interaction in those genes. At the same time, no inter-
action exists in the five genes that decrease mortality
and enrichment in the Reactome pathway [37], known
as the “Apoptotic execution Pathway,” exists [38].

Discussion

To our knowledge, this is the first longitudinal study to
investigate the methylation profile in critically ill COVID-
19 patients with ARDS under mechanical ventilation and
identify a methylome signature that predicts survival.

We showed that the epigenetic signature of critical
COVID-19 infection is enriched for immune response
pathways, particularly type I Interferon signaling, which
is a key signature of the host response to this virus [14,
33, 39, 40]. Interferon-driven response plays a vital role
in shaping the fate of a viral infection, affecting the acti-
vation and differentiation of immune cells and the virus
spread [14, 33, 39, 40]. Other differentially methylated
genes also contribute to immune-related functions and
viral pathogenesis. For example, IFNAR1 and IFNAR2
genes partake in type I interferon-related pathways
as main receptors for interferon-alpha and beta [41].
Another gene is CLEC4M which encodes for the CD209L
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receptor and mediates the virus entry to epithelial and
endothelial cells of various tissues [42].

Compared to controls, critically ill COVID-19 patients
showed a similar differential methylation pattern to pre-
viously reported studies [12, 13, 30-35]. Konigsberg et al.
recently identified 13033 differentially methylated CpGs,
from which we have confirmed 3613 that represent 2290
genes [40]. In particular, we found that the probes of
robust predictors of COVID-19 were hypomethylated in
our patients, including genes involved in interferon regu-
lation and viral response. This may suggest an increased
expression of those genes during critical COVID-19
infection, which has also been reported earlier [14].

Interestingly, at inclusion, we did not observe any
intra-differences in DNA methylation between dead
and recovered groups. However, the same comparison
showed significant differences at the last recorded time
point, suggesting that most changes occurred as the dis-
ease progressed. Further, the inter-comparison of meth-
ylation changes between baseline and the last recorded
time point revealed hypermethylation of pathways linked
to host immune response such as interferon-alpha, TNF
alpha, IL-6, and IL-2 signaling in patients who recovered,
but not in those who died. Among the reported genes
in patients who recovered, AIM plays a vital role in the
immune response. It initiates the inflammatory cytokines
release upon sensing exogenous nucleic acid inside the
host cell, followed by pyroptosis (lytic cell death) [43]. It
has been associated with intensified immune responses
to COVID-19 [44]. CpGs in that gene are promoter-
associated, and their hypermethylation suggests reduced
AIM expression in patients just before recovery; thus,
its reduced activity might be related to improvement
and survival. Among the genes we reported in patients
who died, LZTFL1 is known to inhibit epithelial-mesen-
chymal transition (EMT) in the lungs in the presence of
inflammation or cancer [45, 46]. EMT is a well-known
pathway in fibrosis that is activated in prolonged lung
inflammation and tissue injury [47]. In-vitro studies
showed that COVID-19 upregulates EMT pathway genes
[48]. In our study, LZTFL1 was hypermethylated, which
would be translated by a decrease in its expression, less
inhibition of EMT, and progressive lung injury.

(See figure on next page.)

each gene showing how good the model is for hazard prediction

Fig. 9 Kaplan-Meier and ROC analysis of genes that are top predictors of COVID-19 survival showing the three genes that increase mortality (A
Kaplan-Meier plot represents the difference in survival probability between high and low methylation associated with CpG within a gene region.
High and low methylation represents two groups determined based on the median of methylation Z-score as a cutoff. The X-axis represents time.
The Y-axis represents survival probability. The tick marks indicate the censored patients. B ROC curves of the differentially methylated genes were
used to demonstrate the sensitivity and specificity in predicting the survival of COVID-19 patients at inclusion. The X-axes show the false positive
percentages, while the y-axes show the true positive percentages. P values on the plots represent the significance of logistic regression, where
methylation was used as a dependent variable and survival (dead/alive) as an independent variable. The area under the curve (AUC) is shown for
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Fig. 10 Kaplan—Meier and ROC analysis of genes that are top predictors of COVID-19 survival showing the five genes that decrease mortality) A
Kaplan-Meier plot represents the difference in survival probability between high and low methylation associated with CpG within a gene region.
High and low methylation represents two groups determined based on the median of methylation Z-score as a cutoff. The X-axis represents time.
The Y-axis represents survival probability. The tick marks indicate the censored patients. B ROC curves of the differentially methylated genes were
used to demonstrate the sensitivity and specificity in predicting the survival of COVID-19 patients at inclusion. The X-axes show the false positive
percentages, while the y-axes show the true positive percentages. P values on the plots represent the significance of logistic regression, where
methylation was used as a dependent variable and survival (dead/alive) as an independent variable. The area under the curve (AUC) is shown for

Time course differential methylation analysis identi-
fied 49 CpGs, two of which are beta-defensin genes.
Beta-defensins are antimicrobial peptides, modulators
of microbiome diversity and host-microbe equilibrium
in the mucosa of oropharyngeal and tracheal highways,
and regulators of inflammatory responses secreted by
neutrophils during infections [49]. They are one of the
primary arms of the innate immune system, contributing
to immune cell activation and proliferation [36]. In our
study, the lower methylation of those genes in non-sur-
vivors suggests a higher expression of antimicrobial pep-
tides throughout their ICU stay.

CD4 and CD8 T cells are critical elements in anti-viral
immunity; they work harmoniously to recognize viral
antigens, proliferate, kill infected cells, neutralize the
virus, and memorize the viral print to respond faster in
the case of future encounters [50]. Our deconvolution
analysis confirmed a lymphopenic profile (low CD4 and
CD8 proportion) in COVID-19 patients upon admis-
sion to the ICU. This is consistent with previous reports
and could be interpreted as a sign of dysfunctional or

exhausted immune cells [51]. At late stages, CD4 T cell
proportion increased in survivors, indicating the restored
function of the immune system [51]. Neutrophils showed
a sudden increase in patients who died at the last two
time points, which could reflect a prolonged inflamma-
tory response, contributing to severe conditions [52].
One of the plausible theories behind the increase in neu-
trophils and hyper expression of the beta-defensins and
other immune-related genes is the re-occurrence of a
cytokine storm before death.

Among the genes that predict mortality, ROCK1 plays
a crucial role in apoptosis by regulating membrane bleb-
bing, a characteristic feature of apoptotic cells [53], and
H1FO0 through apoptosis-induced DNA fragmenta-
tion and cellular component disassembly [54]. It is well
known that the apoptotic execution pathway initiates
cell death once activated by an abnormal immune reac-
tion [55]. This finding was reported in cancer cells that
resist the activation of this pathway to escape anti-can-
cer therapeutics in vitro [56] but never reported in vivo
in COVID-19 infections. On the other hand, higher
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methylation of PSMB9, MRPS2, MFHAS]1, and MAT2B
genes are known to be expressed in COVID-19 patients
with high viral load or severe infection [57-61], which
could translate to a lower expression of those genes.
It might be possible that a less severe infection at ICU
admission predicts better survival.

Cumulative data suggest that epigenetics play an impor-
tant role in the pathophysiology of several pathologies such
as cardiovascular disease, diabetes, and cancer [7, 62—63].
Recently, epigenetic markers were suggested as potential
indicators and biomarkers for disease detection and pro-
gression [64]. In acute Charcot disease, a rare diabetes
complication characterized by bone destruction, we have
previously shown the presence of differentially methylated
genes involved in the migration process during monocyte
differentiation into osteoclasts [65]. Further, epigenetic-
based therapy is increasingly used in several disciplines such
as immunotherapy and cancer [66, 67]. Current experimen-
tal approaches in infectious diseases in general and viral
infections, mainly, are promising [68, 69].

This study has a few limitations. The sample size of our
patients was relatively moderate; hence a higher number of
participants might have enabled us to detect more methyla-
tion calls knowing that power calculations for the sample size
are not established for epigenetic analysis. We conducted the
study in early 2020 during the first wave of COVID-19 when
the Alpha variant was the only one universally reported.
Therefore, we cannot ascertain that the same methylation
changes exist with different variants in vaccination or the
constant changes in drug therapies.

Conclusion

In total, we identified an epigenetic signature in criti-
cally ill COVID-19 patients with ARDS that predicts the
clinical outcome. While immune-related pathways, inter-
feron-alpha and -gamma, were initially the main biologi-
cal mechanisms differentiating critically ill COVID-19,
an epigenetic signature set of eight genes predicted sur-
vival. Further studies are needed to elucidate the poten-
tial use of the methylome as a biomarker of the disease
and, most importantly, to assess DNA methyltransferase,
nucleoside inhibitors, or other pharmaceutical potential
epigenetic-targeted therapies in COVID-19.

Appendix

I- Inclusion/Exclusion criteria of participants.

1) For COVID-19 positive patients
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Inclusion criteria:

1.Male or female aged over 18 years.

2.Tested positive for COVID-19 by Real-Time Quan-
titative Reverse Transcription.

3.Admitted to ICU for critically COVID-19 with
acute respiratory distress syndrome (ARDS) under
mechanical ventilation.

4.Patients satisfying the score of 7 to 9 on the WHO
clinical progression scale [1] and severe ARDS
according to the Berlin definition [2].

Exclusion criteria:

1.Burn and trauma.

2.Any immunological diseases or immunosuppres-
sive medications.

3.0ther immune-related conditions (cancer, hema-
tological malignancies, bone marrow diseases, or
transplant).

4.Unsigned informed consent form.

For non-COVID-19 controls:

Inclusion criteria:

1.Male or female aged over 18 years.
2.Signed informed consent form.

Exclusion criteria:

1.Positive COVID-19 infection.

2.Person with an infectious syndrome during the
last 90 days.

3.Person receiving within the last 90 days, a treat-
ment based on: antivirals; antibiotics; antiparasit-
ics; antifungals.

4.Person having received within the last 15 days a
treatment based on: non-steroidal anti-inflamma-
tory drugs

5.Person having received within the Ilast
24 months, a treatment based on: immunosup-
pressive therapy; corticosteroids; therapeutic anti-
bodies; chemotherapy.

6.Person with history of innate or acquired
immune deficiency; hematological disease; solid
tumor; severe chronic disease; surgery or hospi-
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talization within the last two years; pregnancy
within the previous year; participation in a phase
I clinical assay in the previous year; participation
to a degree I clinical assay in the previous year;
pregnant or breastfeeding women; a person with
restricted liberty or under legal protection.
7.Person with a history of cardiovascular disease.
8.Unsigned informed consent form [15, 70]

Abbreviations

ARDS: Acute respiratory distress syndrome; DMR: Differentially methylated
regions; PBMCs: Peripheral blood mononuclear cells; WHO: World health
organization.
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Additional file 2: Table S2. Summary of different models tested for esti-
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p.value for each tested model for each cell type are shown. The following
models were tested, mod1; Age and ethnicity as covariates, mod2; age as
a covariate, mod3; ethnicity as a covariate, mod4; no covariates.

Additional file 3: Table S3. Summary of identified differentially methyl-
ated CpGs between COVID-19 patients and controls. A. All significant
CpGs B. Variable description from Table S2A. C. Significant CpGs from
genes previously described as COVID-19 important [1]. D. Functional
annotation of genes from Supplemental table 3C.

Additional file 4: Table S4. Summary of differentially methylated path-
ways detected between COVID-19 patients and controls based on CpG
sites.

Additional file 5: Table S5. Summary of differentially methylated CpGs
in recovered and died COVID-19 patients. A. Immune cell comparison
between baseline and recovered pairs, B. Significant CpGs between
baseline and recovered pairs, C. CpG pathways between baseline and
recovered pairs, D. Immune cell comparison between baseline and died
pairs, E. Significant CpGs between baseline and died pairs, F. CpG path-
ways between baseline and died pairs.

Additional file 6: Table S6. Analysis of dead and recovered+A3 COVID-
19 patients for immune cell proportions. A. Summary of different models
tested for immune cell proportions. Adjusted R2, residual standard error
(sigma), AIC, and p-value for each tested model for each cell type are
shown. The following models were tested, mod1; Age + MV days + Gen-
der + ICU LoS + ECMO + Nosocomial infections, mod2; Age + Gender +
ICU LoS 4+ ECMO + Nosocomial infections, mod3; Age + MV days + ICU
LoS + ECMO + Nosocomial infections, mod4; Age + ECMO + Nosoco-
mial infections, mod5; Age 4+ Nosocomial infections, mod6; Age, mod7;
no covariates. B. Immune cell differences between dead and recovered at
baseline, C. Immune cell differences between dead and recovered at last
time point.

Additional file 7: Table S7. Summary of immune cell changes and
differentially methylated CpGs between recovered and dead patients
over four time points 7A. Immune cell changes between recovered and
dead patients over four time points, 7B. Differential methylation of CpGs
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between recovered and died patients over four time points. The b_0, b_1,
b_2, and b_3 coefficients correspond to the reference model parameters,
where survival phenotype is used as a reference. The d_0,d_1,d_2,d_3
coefficients represent the differences between the reference model and
the model parameters in the compared group (died). AveExprs refers to
the average log2-expression for an individual immune cell proportion or
CpG. The F column contains moderate F-statistics, P-value -raw p-value,
and adj.PValu- Benjamini-Hochberg adjusted p-value. Other column vari-
ables are described in Supplemental table 2B.

Additional file 8: Table S8. Description of 27 genes from 49 differentially
methylated CpGs between survived and dead patients over four time
points. A summarized description of the 27 genes obtained from Supple-
mentary Table 7B, collected from Gene Ontology (GO) to identify the func-
tional annotation of each gene and recently published COVID-19-related
articles to highlight the role of each gene in relation to COVID-19.

Additional file 9: Table S9. Summary of univariate Cox proportional
hazard analysis of the previously identified CpGs. Column variables
represent Name; chr; chromosome number, pos; position, CpG name,
relation_to_lIsland; where is CpG located in relationship to island, UCSC
RefGene Name; UCSC gene name, UCSC RefGene Accession; UCSC gene
accession, UCSC RefGene Group; where in respect to gene is CpG located,
Beta; estimated coefficient beta from the model, StandardError; standard
error, Z; z-score, LRT; likelihood ratio test, Wald; Wald test, LogRank; log-
rank test, HR; Hazardous ratio, HR lower; Hazardous ratio lower 95% bound,
HR upper; Hazardous ratio upper 95% bound.

Additional file 10: Table S10. Description of the eight genes that are
predictors of mortality. Data were collected from Gene Ontology (GO) to
identify the functional annotation of each gene and recently published
COVID-19 related articles to highlight the role of each gene in relation to
COVID-19.

Additional file 11. Supplementary Figures.
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