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Abstract 

Background:  Onchocerciasis is a disease caused by infection with Onchocerca volvulus, which is transmitted to 
humans via the bite of several species of black fly, and is responsible for permanent blindness or vision loss, as well as 
severe skin disease. Predominantly endemic in parts of Africa and Yemen, preventive chemotherapy with mass drug 
administration of ivermectin is the primary intervention recommended for the elimination of its transmission.

Methods:  A dataset of 18,116 geo-referenced prevalence survey datapoints was used to model annual 2000–2018 
infection prevalence in Africa and Yemen. Using Bayesian model-based geostatistics, we generated spatially continu-
ous estimates of all-age 2000–2018 onchocerciasis infection prevalence at the 5 × 5-km resolution as well as aggrega-
tions to the national level, along with corresponding estimates of the uncertainty in these predictions.

Results:  As of 2018, the prevalence of onchocerciasis infection continues to be concentrated across central and 
western Africa, with the highest mean estimates at the national level in Ghana (12.2%, 95% uncertainty interval [UI] 
5.0–22.7). Mean estimates exceed 5% infection prevalence at the national level for Cameroon, Central African Repub-
lic, Democratic Republic of the Congo (DRC), Guinea-Bissau, Sierra Leone, and South Sudan.

Conclusions:  Our analysis suggests that onchocerciasis infection has declined over the last two decades through-
out western and central Africa. Focal areas of Angola, Cameroon, the Democratic Republic of the Congo, Ethiopia, 
Ghana, Guinea, Mali, Nigeria, South Sudan, and Uganda continue to have mean microfiladermia prevalence estimates 
exceeding 25%. At and above this level, the continuation or initiation of mass drug administration with ivermectin is 
supported. If national programs aim to eliminate onchocerciasis infection, additional surveillance or supervision of 
areas of predicted high prevalence would be warranted to ensure sufficiently high coverage of program interventions.
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Background
Onchocerciasis is a disease caused by infection with the 
filarial nematode Onchocerca volvulus, which is trans-
mitted to humans by the bite of the infected black fly 
(Simulium spp.). Over time, infection can cause perma-
nent blindness or severe skin manifestations, including 
extreme and debilitating itching. Formerly endemic in 

focal areas of the Americas, the global distribution of 
onchocerciasis is now entirely concentrated in Africa and 
Yemen [1]. Interventions to control or interrupt trans-
mission have been implemented since the mid-1970s, 
either through vector control (larviciding) or, since the 
late 1980s, using mass drug administration (MDA) with 
ivermectin. Preventive chemotherapy with MDA (in 
which all eligible individuals residing in endemic areas 
are offered ivermectin) is currently the primary interven-
tion for the control of morbidity and elimination of trans-
mission, largely delivered via the Community-Directed 
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Treatment with Ivermectin (CDTI) strategy [2]. Over 
1 billion ivermectin treatments have been donated to 
national onchocerciasis control programs, in addition 
to millions of treatments provided under the auspices of 
national lymphatic filariasis (LF) elimination programs.

Evidence from settings in Uganda [3] and Sudan [4], 
from the Onchocerciasis Elimination Program in the 
Americas [5, 6], and from modeling studies [7, 8] sug-
gests there is a possibility that annual or more frequent 
MDA reaching at least 80% of the eligible population may 
halt transmission. The success of local elimination has 
led national programs, donors, implementing partners, 
the Mectizan Donation Program, and technical experts 
to consider the feasibility of onchocerciasis elimination 
in Africa [9]. Elimination is achieved as transmission is 
first suppressed through > 80% population coverage with 
annual MDA, and then ultimately interrupted as the res-
ervoir of prevalent adult worms experiences mortality or 
infertility [10]. The duration of MDA required to elimi-
nate transmission in Africa will vary by individual setting, 
with projections from simulation studies ranging from 10 
to 25 years, depending on baseline prevalence and inten-
sity of infection, population MDA coverage, and other 
local factors. Operational research is currently underway 
to refine guidelines for evaluating elimination programs, 
improve diagnostic test performance, and develop new 
therapeutics. Deployment of novel intervention strate-
gies such as “test-and-not-treat” [11] is also being evalu-
ated in areas co-endemic for O. volvulus and the filarial 
nematode Loa loa. MDA with ivermectin is contraindi-
cated among individuals with loiasis due to a significant 
potential for severe neurological outcomes. The risk of 
severe adverse events may outweigh the benefits of iver-
mectin MDA in areas that are both endemic for loiasis 
and hypoendemic for onchocerciasis. Spatial prediction 
of onchocerciasis burden could benefit control programs 
by helping identify locations where alternative strategies 
may be needed for safe and effective elimination [12].

Achieving elimination of onchocerciasis transmis-
sion in Africa will require investment across the con-
tinent, from mapping surveys to identify and confirm 
areas requiring MDA to periodic monitoring of program 
impact in human and vector populations over at least a 
decade following initiation of interventions. According 
to the Expanded Special Project for the Elimination of 
Neglected Tropical Diseases (ESPEN), nearly 2000 dis-
tricts may require some form of data collection to con-
firm eligibility for MDA with ivermectin [13]. Since local 
factors such as vector subspecies, human movement, and 
environmental conditions contribute to local variation 
in onchocerciasis prevalence, model-based geostatistics 
offers an opportunity to integrate the spatial and tem-
poral relations in the existing evidence base to predict 

prevalence of onchocerciasis infection continuously, aug-
mented with covariates to capture variation in the distri-
bution of infection at finer spatial scales (see for example 
Cromwell et  al. 2020) [14]. While these predictions are 
no substitute for primary data collection, they can be 
used to guide prioritization of areas to survey or targeted 
strengthening of MDA interventions. Such models have 
been used previously to estimate the pre-control [15] 
prevalence of skin snip positivity for the west African 
context as well as nodule prevalence for areas supported 
by the African Programme for Onchocerciasis Control 
[16]. To date, there are no contemporary geospatial esti-
mates for the entire African continent or Yemen.

The objective of this analysis was to estimate the preva-
lence of onchocerciasis infection across the African con-
tinent and Yemen through time, quantifying the progress 
achieved in reducing onchocerciasis infection from 2000 
to 2018, by accounting for ivermectin MDA implemented 
by national onchocerciasis control programs, as well as 
for the purpose of eliminating lymphatic filariasis as a 
public health problem. We also stratify these estimates of 
the number infected among areas identified to be high-
risk for L. loa, as novel implementation strategies such 
as “test-and-not-treat” [11] will be required to achieve 
onchocerciasis elimination in these locations.

Methods
Data inputs
Data on the prevalence of onchocerciasis infection is 
largely collected by national onchocerciasis control and 
elimination programs as part of routine program moni-
toring. While methods for data collection vary by time 
and place, areas covered by the former Onchocerciasis 
Control Programme (OCP) in west Africa and the Afri-
can Programme for Onchocerciasis Control (APOC), as 
well as onchocerciasis control programs supported by 
other partners, often identified areas (foci or districts) 
eligible for MDA or vector control by purposively sam-
pling communities near known or suspected Simulium 
breeding sites. In OCP-supported areas, prevalence of 
onchocerciasis was estimated using skin snip biopsy 
(microscopy) to detect the presence of microfilariae; in 
APOC-areas, nodule (onchocercoma) palpation was used 
in the rapid epidemiological mapping for onchocerciasis 
(REMO) [17]. More recently, onchocerciasis programs 
have used Ov16 antibody testing by ELISA (enzyme-
linked immunosorbent assay), in conjunction with ento-
mological surveillance, as per WHO guidelines [10] to 
demonstrate elimination of transmission, and the use of 
rapid diagnostic tests is being evaluated for program-
matic use. We compiled an analytical dataset of oncho-
cerciasis infection prevalence from the following sources: 
a systematic review of literature in which data collected 
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between 1988 and the present were included in the anal-
ysis (Additional file 1: Fig. S2 and Table S3); the ESPEN 
online portal [18]; and personal communication for data 
collected under the OCP [15] from its former Direc-
tor, BA Boatin, PhD (personal communication, January 
2019). Data were reviewed and geo-referenced either to 
point locations (i.e., a community) or polygons (i.e., areal 
data attributed to a focus or district). In this analysis, we 
included data for which nodule palpation or skin snip 
biopsy was reported. A total of 17,896 point-referenced 
and 220 polygon-referenced inputs were included in the 
analysis, with 14,314 total inputs initially reported as 
nodule prevalence and 3,802 as skin snip biopsy. Further 
details on the dataset are presented in Additional file 1: 
Section 3.

Geospatial covariates
In order to develop a predictive model of onchocercia-
sis prevalence that was generalizable to under-surveyed 
locations and years, we sought to include a suite of envi-
ronmental covariates that may be associated with the 
presence or intensity of O. volvulus transmission (Addi-
tional file 1: Table S5 and Fig. S4). We compiled covari-
ates that collectively provide a broad characterization 
of local ecological conditions, including precipitation, 
temperature, aridity, orographic slope, vegetation, soil 
characteristics, distance to rivers, and maximum river 
width. Human population density was also included to 
accommodate a possible association with urbanicity. 
Cumulative years of any MDA with ivermectin for 
onchocerciasis or lymphatic filariasis (as a single covari-
ate) were included. Finally, we included outputs from a 
recent model of onchocerciasis environmental suitabil-
ity (Additional file  1: Fig. S8; Cromwell and colleagues 
[19]) to incorporate environmental effects calibrated by 
onchocerciasis presence data. Raw covariate raster sur-
faces were resampled to a consistent 5 × 5-km grid-cell 
resolution (see Additional file 1: Section 4.1). Time-var-
ying covariates (e.g., climatic variables and interventions) 
were associated with their corresponding model years, 
except when specific years of data were unavailable for a 
given covariate, in which case the nearest available year 
of data was used (covariate temporal coverage is listed 
in Additional file 1: Table S5). Analysis of variance infla-
tion factors [20] (VIF, with a VIF threshold of 3.0) was 
used to exclude collinear covariates (Additional file  1: 
Section  4.3). Model reliability is affected by the overlap 
between covariate values in training and prediction data-
sets (see Additional file 1: Fig. S7). Predictions in regions 
with covariate values falling outside the range of training 
values may be prone to extrapolation errors and should 
be considered with special caution. Such areas include 

the Sahel and Sahara, Yemen, Kenya, Somalia, eastern 
Ethiopia, and southern Angola.

Age and diagnostic adjustment
In order to derive global estimates of onchocerciasis 
infection using data reported across different age ranges 
and diagnostic tests, we used age and diagnostic mod-
els to adjust (“crosswalk”) input data prior to the main 
modeling analysis, yielding estimates of both-sex, all-age 
(0–94 years) microfiladermia prevalence as measured 
by skin snip microscopy. To develop models to adjust 
age-specific data to all-age prevalence or to adjust nod-
ule prevalence data to skin snip microscopy, we iden-
tified peer-reviewed published surveys that reported 
skin snip or nodule prevalence, or both, in multiple age 
groups within the same study populations, from coun-
tries included in the geospatial modeling region (Addi-
tional file 1: Table S6). Diagnostic effects and non-linear 
prevalence-by-age relationships were estimated simulta-
neously by maximum likelihood optimization of a logistic 
regression model, using separate basis splines on age for 
each diagnostic test (skin snips and nodules), an indicator 
variable for skin snip surveys, and study population-level 
fixed effects. Scaling factors were then estimated for each 
observation in the full geospatial modeling dataset, by 
fixing model coefficients to the mean estimates derived 
from the training set and optimizing the study popu-
lation-level effects via maximum likelihood. Reported 
prevalence values were adjusted by applying these scaling 
factors to the inferred (age and diagnostic models) all-age 
prevalence curves for the reported diagnostic type, yield-
ing estimates of all-age skin snip prevalence. These cross-
walked prevalence values were used as outcome data in 
the geospatial model. Further details about the diagnos-
tic and age adjustment methodology and results are pro-
vided in Additional file 1: Section 5.1.

Geostatistical analysis
A Bayesian geostatistical model [21, 22] was fit for the 
group of African countries (plus Yemen) known or sus-
pected to include locations endemic for onchocerciasis 
as defined by ESPEN. Justification of the geographical 
restrictions used to establish the modeling region is pre-
sented in Additional file 1: Section 3 and Table S2. While 
we were primarily concerned with prevalence estimates 
for the time period 2000–2018, we fit the model using 
data from 1988 to 2018 in order to incorporate data from 
pre-2000 OCP and APOC surveys and thereby improve 
estimates in countries covered by those programs. 
Reporting of results focuses on estimates for 2000–2018.

The full onchocerciasis prevalence model was a spa-
tial generalized linear mixed effects model using a 
binomial likelihood and minimally informative priors 
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(Additional file 1: Section 5.3 and Table S7). The model 
was estimated by integrated nested Laplace approxima-
tion (INLA) [23] within the R package R-INLA [24]. 
Covariates were included as fixed effects, except that 
estimates from the onchocerciasis suitability model 
were incorporated using a second-order random walk 
model to accommodate non-linearity. The model 
included country-level random effects to account for 
variation in national onchocerciasis burdens and con-
trol programs, and a nugget variance term to accommo-
date fine-spatial scale and sampling variation. A spatial 
Gaussian process was used to model residual spatial 
variation, using stochastic partial differential equations 
(SPDE) [25] and a Matérn spatial covariance function. 
Predictions were generated at a 5 × 5-km spatial reso-
lution, with 1,000 samples drawn from the joint poste-
rior distribution. Predictions were summarized using 
the means and 95% uncertainty intervals (UI; 2·5th and 
97·5th percentiles) from the 1,000 draws of prevalence.

Aggregate estimates of onchocerciasis prevalence 
were calculated using population-weighted means of 
grid-cell-level prevalence, with weighting by WorldPop 
[26] grid-cell-level modeled population estimates cali-
brated to match Global Burden of Disease population 
estimates at national or administrative subunit level 1 
(where available). Estimates were aggregated across 5 × 
5-km cells within administrative boundaries at national 
and administrative levels 1 and 2, using updated admin-
istrative shapefiles originally supplied by GADM 
(Global Administrative Areas) [27]. We first masked all 
final model outputs for which land cover was classified 
as “barren or sparsely vegetated” by Moderate Resolu-
tion Imaging Spectroradiometer satellite data for 2015 
[28], as well as areas in which total population density 
in 2015 was less than ten individuals per 1 × 1-km grid 
cell by WorldPop population estimates. Estimates from 
such locations (e.g., the southern Sahara Desert) are 
considered less reliable due to sparse prevalence data 
sampling and extreme covariate values. We retained 
input data from such areas in the model because they 
are still informative about the spatial distribution of 
onchocerciasis prevalence and its relationship with 
model covariates.

Five-fold cross-validation was used for out-of-sample 
model validation. The geostatistical model was run five 
times, each time holding out data from one spatially 
stratified fold and generating predictions for the held-
out data. A suite of measures of out-of-sample perfor-
mance were examined, namely bias, mean absolute error, 
root mean square error, 95% prediction interval data 
coverage, and correlations of observed to predicted val-
ues. The data processing and modeling workflows for 
this study are outlined in Additional file  1: Fig. S1. All 

statistical analysis was performed using statistical soft-
ware R v.3.5.1.

Results
As of 2018, the prevalence of onchocerciasis infection 
continues to be concentrated across central Africa, with 
the highest prevalence areas in focal areas of the Dem-
ocratic Republic of the Congo (DRC), Ghana, Nigeria, 
Cameroon, and South Sudan, based on mean predictions 
at the 5 × 5-km resolution. Mean prevalence predictions 
were also above 10% in focal areas of several additional 
countries, including Angola, Ethiopia, Gabon, Nigeria, 
and the Republic of the Congo. Mean prevalence at the 
national level was highest in Ghana (12.2%, 95% uncer-
tainty interval [UI] 5.0–22.7) and Equatorial Guinea 
(9.7%, 8.0–11.7), with mean estimates also exceeding 5% 
infection prevalence at the national level for Cameroon, 
Central African Republic, DRC, Guinea-Bissau, Sierra 
Leone, and South Sudan.

Our model estimates should be considered in the con-
text of model performance (Additional file  1: Fig. S11 
and Table S9). Overall out-of-sample bias was low, with 
a mean error of 0.003 (0.3% in prevalence space) across 
all model years (1988–2018). The variation over time 
and space of mean error and other performance metrics, 
including mean absolute error (overall value: 0.111, or 
11.1%), RMSE (overall value: 0.168, or 16.8%), and cor-
relation (overall value: 0.706), and the sometimes wide 
uncertainty intervals of predictions (both in- and out-
of-sample) reflect in part limited data on onchocerciasis 
infection prevalence across the time series for many loca-
tions. In other areas where data are unavailable, such as 
southern Kenya or the border between Sudan and South 
Sudan, covariate patterns are under-represented in the 
input data and our predictions should be interpreted in 
conjunction with other programmatic data sources.

As illustrated in Fig. 1, while the analysis shows large 
declines overall in the prevalence of onchocerciasis 
from 2000 to 2018, much of central Africa would con-
tinue to warrant MDA with ivermectin (among districts 
for which Loa loa is non-endemic) or consideration for 
“test-and-not-treat” implementation in areas where 
MDA might be broadly contraindicated due to high loi-
asis burden. In central Africa, much of the high infec-
tion prevalence is, in part, among areas ineligible for 
ivermectin due to loiasis burden, or areas of greater 
insecurity or inaccessibility. The model predicts low 
(under 1%) infection prevalence for nearly all areas in 
northern and central Burkina Faso, central and eastern 
Niger, northern Guinea, northern Côte d’Ivoire, east-
ern Ethiopia, Kenya, and much of Tanzania. The uncer-
tainty (Fig.  2) of these predictions is high, particularly 
for estimates from 2000 to 2005, at both the fine-spatial 
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scale (5 × 5-km resolution), as well as national and 
subnational-level predictions. Detailed model results, 
including uncertainty results and temporal trends, are 
also available for scrutiny in an interactive visualization 
tool at https://​vizhub.​healt​hdata.​org/​lbd/​oncho.

For the period 2000–2018, most national onchocer-
ciasis programs aimed to control morbidity, not elimi-
nate transmission. As such, high-burden areas typically 
received interventions with CDTi. In Fig. 3, we present 
the median, minimum, and maximum second-order 
administrative unit-level prevalence estimates for 2000 
and 2018. This comparison illustrates the reductions 
in infection prevalence achieved, narrowing the gap 
between high-burden and low-burden districts. Such 
reductions are most notable in Cameroon, Ghana, and 
Sierra Leone. In areas of Uganda and Sudan known to 

have achieved elimination of transmission, our model 
predictions are consistent with observed data. In the 
Abu Hamed focus (Sudan), our results are consist-
ent with elimination targets being met by 2007 [29]. In 
Uganda, our model results are consistent with program 
progress in the 15 foci for which MDA has ceased [30].

Discussion
This analysis quantifies the impact of nearly two decades 
of national onchocerciasis control and elimination pro-
gram activities. While there have been substantial reduc-
tions in the overall prevalence of infection that should 
be celebrated, like so many health metrics [22, 31], this 
has not been achieved equally throughout the continent. 
Prior geospatial analyses of onchocerciasis prevalence 
[15, 16] have been limited to regional estimates for west 
Africa and the APOC areas (central and eastern Africa). 

Fig. 1  Prevalence of O. volvulus microfiladermia in Africa and Yemen at the 5 × 5-km level. Mean predictions of O. volvulus microfiladermia 
prevalence (all-age, both sexes) from the Bayesian geostatistical model, as measured by skin snip biopsies and crosswalked nodule palpation 
surveys. Hatch-marks indicate countries for which estimates were not produced; grey areas are masked based on sparsely populated areas (fewer 
than ten people per 1 × 1-km grid cell) and barren landscape classification. Data can be viewed on an interactive visualization tool at https://​
vizhub.​healt​hdata.​org/​lbd/​oncho

https://vizhub.healthdata.org/lbd/oncho
https://vizhub.healthdata.org/lbd/oncho
https://vizhub.healthdata.org/lbd/oncho
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Our analysis is qualitatively very similar to these previ-
ous estimates of high nodule prevalence, showing par-
ticularly high burden in the DRC [16]. This is expected, as 
the relationship between nodule prevalence and skin snip 
positivity has better agreement at higher levels of preva-
lence [32]. Although our model includes data collected 
throughout the continent for both skin snip and nodule 
prevalence (with nodule prevalence adjusted to repre-
sent prevalence of infection measured via skin snip), our 
model predictions for 2011 (available via the online visu-
alization) are qualitatively similar to the estimates pub-
lished by Zouré and colleagues [16]. Our analysis extends 
prediction to include areas masked from that analy-
sis based on expert opinion on suitability, as we intend 
these model results to be useful for decision-making by 
national programs for locations under consideration for 

onchocerciasis elimination mapping, in conjunction with 
the best local evidence.

We envision three specific use cases for this analysis. 
First, overall onchocerciasis burden estimates should 
reflect the implementation of nearly 20 years of MDA for 
both onchocerciasis and lymphatic filariasis programs. 
This geospatial model will be used in future updates to 
the Global Burden of Disease Study [33] to adjust esti-
mates of contemporary morbidity due to onchocerciasis. 
Second, as national onchocerciasis programs are cur-
rently in the process of consolidating historical evidence, 
plans for elimination of transmission including additional 
mapping surveys and MDA will require such evidence to 
be aggregated for decision-making and prioritization. In 
light of limited resources, programs may wish to consider 
using these maps, alongside other data sources, to iden-
tify priority areas or evaluate potential low-endemicity 

Fig. 2  Africa and Yemen O. volvulus microfiladermia model uncertainty at the 5 x 5-km level. Mean and absolute uncertainty (measured as the 
range, or difference between, the upper and lower 95% UI) in O. volvulus microfiladermia prevalence estimates (all-age, both sexes) in Africa and 
Yemen. Hatch-marks indicate countries for which estimates were not produced; grey areas are masked based on sparsely populated areas (fewer 
than ten people per 1 × 1-km grid cell) and barren landscape classification. Quantile breakpoints for plotted categories are 0.001 (25th percentile), 
0.009 (50th percentile), and 0.048 (75th percentile) for mean prevalence, and 0.009, 0.054, and 0.258 for range. Data can be viewed on an interactive 
visualization tool at https://​vizhub.​healt​hdata.​org/​lbd/​oncho.

https://vizhub.healthdata.org/lbd/oncho
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areas for program eligibility. In the case of areas poten-
tially co-endemic for LF and onchocerciasis, these results 
may enable program managers to prioritize timing of 
post-MDA surveillance for both pathogens, rather than 
ceasing MDA for LF while onchocerciasis infection may 
still be prevalent. Third, in areas co-endemic for Loa loa, 
this analysis may serve to quantify program targets for 
novel MDA implementation strategies.

By producing estimates for all known endemic coun-
tries in Africa and Yemen, this analysis is comprehensive 
in scope for the locations currently under consideration 
for the elimination of transmission. We conducted a 
systematic literature review to identify historical preva-
lence data and included publicly available prevalence 
data provided by national programs via the ESPEN online 
data portal. Additional data from the former OCP areas 
were also included, substantially strengthening our pre-
dictions for west Africa. We also developed models for 
age and diagnostic adjustment in order to leverage data 
reported across multiple age categories and reconcile the 
two dominant diagnostic methods employed in program 
monitoring. Our approach using model-based geosta-
tistics enables us to predict prevalence while accounting 
for a broad range of covariates associated with oncho-
cerciasis and other neglected tropical diseases optimized 
for prediction, to be of maximal utility to programs. We 
developed a geospatial covariate of MDA with ivermec-
tin to account for the impact of both onchocerciasis and 
lymphatic filariasis programs.

The analysis has several limitations we wish to acknowl-
edge. First, it is possible that covariate patterns do not 
adequately capture the ecological niche for Simulium in 
all settings, particularly given the flight range of the vec-
tor exceeds 5 km [34]. Combined with human movement, 
it is possible that the locations for which communities 
test positive may not directly correlate with where indi-
viduals are infected. Simulium density data are not widely 
available; therefore, we are unable to include measures of 
the vector as a covariate. These model results could be 
compared against more detailed remote sensing analy-
ses for specific locations; however, the fine spatial scale 
of those approaches would be computationally infeasible 
at the continental scale. Further, we do not have com-
plete enumeration of breeding sites, and so the analysis 
assumes other covariates represent ecological conditions 
that might be suitable for transmission and are a suf-
ficient proxy for exposure to both the vector and O. vol-
vulus. There may be settings where seasonal rivers enable 
establishment of viable breeding sites, and future analysis 
could consider more detailed hydrological data sources. 
We excluded serological prevalence data inputs, as the 
relationship between antibody positivity and population-
level infection prevalence was unstable, and variabil-
ity exists in the performance of specific antibody-based 
diagnostic methods or protocols [35]. Less than 1% of the 
total input data we obtained was measured using sero-
logical tests (from a total of seven countries), and exclu-
sion of these data from preliminary models resulted in 

Fig. 3  Distribution of onchocerciasis prevalence within and among countries at administrative level 2 (2000 and 2018). The median (central points) 
and lowest–highest (bars) mean prevalence estimates at administrative level 2 are shown for each country in the modeling region, for 2000 and 
2018. Countries are ordered by increasing median administrative level 2 prevalence in 2018
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negligible differences in the results. Prevalence of micro-
filariae measured by skin snip biopsy is also subject to 
limitations as sensitivity is lower in low-prevalence set-
tings. Future work should consider the possibility of false 
negatives, particularly in pre-control data inputs. Future 
work is needed to incorporate Ov16 serological tests into 
the modeling framework, as more programs will use this 
diagnostic for end of program surveillance, as well as 
baseline mapping of districts for which contemporary evi-
dence is unavailable. While our model does include MDA 
as a covariate, we did not use reported coverage (i.e., per-
centage of the population that received treatment). Data 
on reported coverage by district are unavailable for all 
implementation units across the time series, and reported 
coverage has been demonstrated to be biased [36]. We did 
not include explicit temporal terms in the model because 
extensive time series exist for relatively few locations (see 
the spatial and temporal distribution of available data in 
Additional file  1: Fig. S3), and exploratory spatiotempo-
ral models yielded unrealistically erratic temporal trends. 
Allowing temporal changes in prevalence to be driven 
by the covariates produced more tenable trends, but the 
resulting model may be insensitive to particularly rapid 
prevalence changes in some localities. Finally, as preva-
lence data were collected for the purposes of program 
monitoring, there is likely heterogeneity in the quality of 
field-based data collection that we are unable to account 
for in this model.

Conclusions
The feasibility of elimination of onchocerciasis trans-
mission throughout Africa is currently under consid-
eration by national programs, implementing partners, 
donors, and drug-donating pharmaceutical com-
panies. While areas of high prevalence remain, our 
analysis shows that programs have been extremely 
successful in reducing prevalence across high-ende-
micity locations. We present the first time series esti-
mates of infection prevalence to quantify the gains 
currently achieved by control and elimination inter-
ventions to assist with prioritization and program 
planning. It is for decision-makers at all levels to 
decide if elimination is a feasible goal.
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