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Abstract

Background: Advances in our understanding of the tumor microenvironment have radically changed the cancer
field, highlighting the emerging need for biomarkers of an active, favorable tumor immune phenotype to aid treat-
ment stratification and clinical prognostication. Numerous immune-related gene signatures have been defined;
however, their prognostic value is often limited to one or few cancer types. Moreover, the area of non-coding RNA as
biomarkers remains largely unexplored although their number and biological roles are rapidly expanding.

Methods: We developed a multi-step process to identify immune-related long non-coding RNA signatures with
prognostic connotation in multiple TCGA solid cancer datasets.

Results: Using the breast cancer dataset as a discovery cohort we found 2988 differentially expressed IncRNAs
between immune favorable and unfavorable tumors, as defined by the immunologic constant of rejection (ICR) gene
signature. Mapping of the IncRNAs to a coding-non-coding network identified 127 proxy protein-coding genes that
are enriched in immune-related diseases and functions. Next, we defined two distinct 20-IncRNA prognostic signa-
tures that show a stronger effect on overall survival than the ICR signature in multiple solid cancers. Furthermore, we
found a 3 IncRNA signature that demonstrated prognostic significance across 5 solid cancer types with a stronger
association with clinical outcome than ICR. Moreover, this 3 IncRNA signature showed additional prognostic signifi-
cance in uterine corpus endometrial carcinoma and cervical squamous cell carcinoma and endocervical adenocarci-
noma as compared to ICR.

Conclusion: We identified an immune-related 3-IncRNA signature with prognostic connotation in multiple solid

cancer types which performed equally well and in some cases better than the 20-gene ICR signature, indicating that it
could be used as a minimal informative signature for clinical implementation.
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Background

Cancer treatment has radically changed over time, evolv-
ing from a one-size-fits-all approach to a more tailored,
personalized approach. Furthermore, where once can-
cer treatment focused on the tumor the recent success
of immunotherapy has highlighted the need to consider
the tumor microenvironment in cancer care by harness-
ing the inherent anti-tumor immune response. Early
clinical trials demonstrated the potential of immuno-
therapy to induce durable responses, resulting in immu-
notherapy being heralded as a turning point in cancer
care. The first immune checkpoint inhibitor (ICI) against
cytotoxic T-lymphocyte antigen number 4 (CTLA-4),
ipilimumab, received FDA approval in 2011 for the treat-
ment of advanced melanoma [1]. In the following years,
the FDA approved the use of additional immune check-
point inhibitors and extended their use for a range of
tumor types based on their immune checkpoint ligand
expression rather than their tissue-of-origin [1]. To date,
immunotherapy has shown promising results in 15 differ-
ent cancer types and the use of first-line treatment with
the ICI pembrolizumab even outperforms conventional
chemotherapy in a few cancer types [2, 3]. Unfortunately,
the success of immunotherapy is limited to a minority of
patients as a result of tumor intrinsic factors and micro-
environmental modifiers, leading to a surge of studies
aiming to identify immune-related gene signatures that
could predict which patients would be more likely to
benefit from immunotherapy.

In this study, we explored long non-coding RNA
(IncRNA) profiles of tumors in relation to tumor immune
phenotypes. The number and role of IncRNAs were pre-
viously underappreciated. Currently, the GENCODE
project (v39) lists 18,811 human IncRNAs and 51,306
IncRNA transcripts, and IncRNAs have been involved
in various biological processes regulating gene expres-
sion and post-transcriptional modification [4]. Further-
more, emerging evidence supports a role for IncRNAs in
regulating the adaptive immune response in addition to
the innate immune response with potential implications
for cancer immunity and immunotherapy [5-7]. In par-
ticular, IncRNAs have been implicated in tumor immune
escape through the regulation of the antigen presenta-
tion machinery as well as of immune cell development,
recruitment and function [6-9]. In addition, few IncR-
NAs have been shown to modulate immune checkpoint
expression, and hence may be associated with immuno-
therapy response [10, 11]. While a better understand-
ing of the expression patterns and mechanistic roles

of individual IncRNAs can help to dissect their biologi-
cal functions in cancer, panels or signatures of IncRNAs
will more likely hold prognostic and predictive potential.
Various immune-related IncRNA signatures have been
identified with prognostic connotations for specific can-
cer types, including gastric cancer, head and neck cancer,
lung cancer, colorectal cancer and hepatocellular carci-
noma [12-18]. In breast cancer, few IncRNA signatures
have been associated with tumor immune infiltration or
immune functional status [19-24]. Moreover, IncRNA-
based immune-classification has been proposed to iden-
tify “immune-active” cases that are characterized by an
immune-functional IncRNA signature, high T cell infil-
tration in tumors and improved immunotherapy benefit
[25]. Together, these studies demonstrate the potential
clinical value of immune-related IncRNA signatures,
however, more studies with larger sample sizes and pro-
spective study design are needed to validate these find-
ings. Furthermore, the prognostic value of the reported
signatures may be limited to the tumor type in which
they were identified.

Here, we identified immune-related IncRNA signa-
tures (and proxy protein-coding gene network) that are
associated with clinical outcome and immune check-
point expression in breast cancer and have prognostic
value in multiple cancer types. Using the large TCGA
breast cancer dataset, we first identified differentially
expressed immune-related IncRNAs (ir-IncRNAs) in
immune favorable versus immune unfavorable tumors as
defined by the Immunologic Constant of Rejection (ICR),
a prognostic gene signature of tumor immune activation
[26-30]. Next, we mapped the ir-IncRNAs to a coding-
non-coding gene network enabling the identification of
proximal protein-coding genes using the random walk
with restart (RWR) computational algorithm. We then
investigated the biological role of these proximal pro-
tein-coding genes through pathway enrichment analysis.
Finally, we identified a set of three ir-IncRNAs that are in
addition associated with immune checkpoint expression
and show a stronger effect on overall survival in multi-
ple cancer types as compared with the ICR signature,
highlighting the potential role of IncRNAs in defining the
immune contexture of tumors.

Methods

Patient cohorts

Initial IncRNA analysis was performed using the TCGA
breast cancer cohort, and identified IncRNA signa-
tures were validated in several TCGA cancer datasets
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(BRCA [n=798], HNSC [n=417], SKCM [n=216],
UCEC [n=311], LIHC [n=191], STAD [n=247], BLCA
[n=248], CESC [n=190], KICH [n=65], OV [n=249],
LUSC [n=202], READ [n=44], COAD [n=112],
LUAD [n=469], GBM [n=150], KIRP [n=188], KIRC
[n=298], LGG [n=478]) as well as a small breast can-
cer cohort from Qatar (RAQA [n=24]) [31]. Clinical
information and mRNA sequencing data from the TCGA
datasets were obtained through the GDC portal as pre-
viously described [31], whereas IncRNA expression data
was extracted from the TANRIC database.

RNA isolation and total RNA sequencing of the RAQA
breast tumors was performed as previously reported [31].
Both gene and IncRNA expression data were subjected
to quality control using FastQC (python v.2.7.1, FastQC
v.0.11.2), adapter sequences were trimmed using flexbar
(v.3.0.3), and reads were aligned to GRCh37 using hisat2
(v.2.1.0) and SAMtools (v.1.3). After alignment, QC was
performed to verify the quality of the alignment and
paired-end mapping overlap using Bowtie2 (v.2.3.4.2).
Finally, reads were counted to genomic features using
subreads (v.1.5.1) and GRCh37.87 (gene expression) or
GRCh37.p13 (IncRNA expression).

mRNA-seq data of TCGA and RAQA datasets were
normalized within lanes to correct for gene-specific
effects (including GC-content and gene length) and
between lanes to correct for sample-related differ-
ences (including sequencing depth) using the R pack-
age EDASeq (v.2.12.0). The resulting gene and IncRNA
expression matrices were quantile normalized using R
package preprocessCore (v.1.36.0). All downstream anal-
ysis was performed using R (v.3.5.1 or later).

ICR consensus clustering

Consensus clustering of TCGA-BRCA samples was per-
formed based on the expression values of 20 ICR genes
using the ConsensusClusterPlus (v.1.42.0) and the follow-
ing parameters: 5000 repeats, agglomerative hierarchical
clustering with ward criterion inner and complete outer
linkage. The optimal number of clusters for best segrega-
tion of samples was determined using the Calinski-Har-
abasz criterion, and samples were clustered as ICR high
(immune hot), ICR medium or ICR low (immune cold).
Downstream comparative analyses were performed using
ICR high and ICR low tumor samples.

ICR-differentially expressed IncRNA and protein-coding
gene network analysis

Using the TCGA-BRCA dataset, we developed an analy-
sis pipeline involving the identification of differentially
enriched IncRNAs by ICR cluster and the construction
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of proxy protein-coding gene networks. Linear Model for
Microarray Analysis (LIMMA, FDR p <0.05) was applied
to identify differentially expressed ir-IncRNAs between
ICR high (n=115) and ICR low (n=128) tumors. Next,
the differentially expressed ir-IncRNAs were mapped to
a coding-non-coding gene (CNC) correlation network
(Additional file 1A) as described in the LncRNAs2Path-
ways method [32]. The CNC network consists of 11,391
IncRNAs and 17,222 protein-coding genes. We utilized
the random walk with restart (RWR) global network
propagation algorithm to identify protein-coding genes
that are most likely influenced by the ir-IncRNAs due
to close proximity. Proximal protein-coding genes were
identified based on their propagation scores as per the
RWR algorithm.

Pathway enrichment analysis

Once we defined the proximal coding genes associated
with the differentially expressed ir-IncRNAs, we sought
to explore their biological relevance through pathway
enrichment analysis. First, we applied the approach
described in the LncRNAs2Pathways method whereby
a pathway enrichment score is calculated using the
walkscores of the ranked protein coding genes in a Kol-
mogorov—Smirnov-like statistic with 1000 permuta-
tions. However, we observed that using this approach
the walkscore distribution was highly skewed (Additional
file 1B), whereby the majority of protein-coding genes
have a very small walkscore (~0) and only a small frac-
tion had a relatively high walkscore, which may result
in false positive enriched pathways. Pathways consist-
ing of predominantly protein-coding genes with small
walkscores and few protein-coding genes with relatively
high walkscore would be associated with smaller enrich-
ment scores than pathways that were represented by
protein-coding genes with primarily high walkscores.
To address this limitation, we used a stringent crite-
rion of a walkscore of >0.01 to generate a ranked list of
most proximal protein-coding genes to the differentially
expressed ir-IncRNAs, which coincidentally corresponds
to approximately 1% of protein-coding genes. Next, we
subjected the ranked protein-coding gene list to Con-
sensusPathDB [33, 34] and visualized the data by the
func2vis R package (v.1.0.1) to identify the enriched path-
ways, and to Ingenuity Pathway Analysis (IPA) to identify
enriched diseases and functions.

Single-sample gene set enrichment analysis (ssGSEA)
Single sample gene set enrichment analysis was applied
to calculate enrichment scores of specific gene sets
within each individual sample using the GSVA R package
(v.1.30.0).
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Correlation analysis

Spearman’s correlation analysis was used to assess the
correlation between differentially expressed ir-IncRNAs
and immune checkpoints. Spearman’s rank correla-
tion coeflicients were visualized in a heatmap using the
ComplexHeatmap R package (v.2.1.2) with the columns
ordered by sum of the correlation scores and the rows
ordered by absolute sums of the correlation scores.

Survival analysis

Univariate Cox proportional hazards regression sur-
vival analysis was performed using the survival R pack-
age (v.2.41-3), Hazard Ratios (HRs) between any two
groups of interest and corresponding p values based on
X2 test, and 95% confidence intervals (95%-CI) were
calculated. Survival analysis was performed with the
IncRNA signatures and ICR score as continuous variables
and visualized in forest plots that were generated with
the forestplot R package (v.1.7.2). The horizontal lines
in the forest plot represent the 95% confidence intervals
and the squares represent the Hazard ratios. In addition,
univariate survival analysis was used to calculate the HRs
of an ICR/3 ir-IncRNA combination model that sums the
scaled enrichment scores of the ICR and 3 ir-IncRNA sig-
natures. The Kaplan—Meier curves were generated using
the ‘ggsurv’ function from survminer (v. 0.4.8) and the
optimal cut-off point for stratification within each cancer
type was determined by 5-fold cross validation analysis.
Log-rank test was used to assess statistical differences in
overall survival.

Multivariate cox regression analysis

Multivariate Cox regression analysis was used to deter-
mine the contribution of individual IncRNAs to the prog-
nostic value of the 3 IncRNA-signature using the survival
package (v3.2-13).

Akaike information criterion (AIC)

To determine whether the ICR or 3 ir-IncRNA signature
is most likely to be the best model, we estimated and
compared the Akaike information criterion (AIC) val-
ues using ‘extractAIC’ function from the stats package
(v3.6.2).

Cell composition deconvolution methods

We applied different deconvolution approaches to esti-
mate the abundance of specific cell subsets from bulk
transcriptomic data, including the Consensus Tumor
MicroEnvironment cell estimation (Consensus™F)
method [35] using ConsensusTME (v. 0.0.1.9), and
immune cell subpopulation estimation methods based on
leukocyte subgroup enrichment scores [36] or immune
metagene expression profiling [37]. In addition, we
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applied the Estimation of STromal and Immune cells in
MAlignant Tumor tissues using Expression data (ESTI-
MATE) algorithm [38] using ESTIMATE (v.1.0.13) to
infer the extent of stromal and immune cell infiltration.
Pearson scatter plots of the model enrichment scores
with the 3 ir-IncRNA enrichment scores were generated
using the corrplot (v. 0.92).

Results

LncRNA to coding-gene network analysis workflow

Few immune-related IncRNA signatures have been
reported in cancer; however, their biological and clini-
cal relevance and impact on downstream signaling path-
ways remain largely unexplored. To address this gap, we
developed an analysis pipeline that involves the mapping
of immune-related IncRNAs to coding-non-coding gene
networks, followed by downstream analysis. The analysis
pipeline was first applied to the TCGA breast cancer data-
set whereby key findings were validated in other TCGA
cancer datasets. We opted to use the TCGA breast cancer
dataset as a discovery cohort given its large sample size,
detailed clinical annotation, and robust prognostic signifi-
cance of the ICR gene signature. First, we applied a 2-step
process to the TCGA breast cancer dataset by identifying
differentially expressed IncRNAs in immune favorable ver-
sus unfavorable breast tumors, followed by determining
their proximal coding genes and their likely downstream
biological effects through pathways and correlation analy-
ses (Fig. 1). Finally, the prognostic value of IncRNA signa-
tures was explored across multiple TCGA cancer datasets
in addition to a smaller breast cancer cohort from Qatar.

Identification of differentially expressed ir-IncRNAs by ICR
tumor immune phenotype

TCGA breast tumor samples were classified into 3 sub-
groups based on the 20-gene ICR signature [27, 28, 39],
and differentially expressed IncRNAs between ICR low
(immune unfavorable) and ICR high (immune favorable)
tumors were identified and labeled as immune related
IncRNAs (ir-IncRNAs). Out of a total of 12,727 IncRNAs,
we identified 2988 to be differentially expressed (FDR
p<0.05, log2FC>1) of which 1284 were up- and 1704
were down-regulated in ICR high tumors (Fig. 2A). The
top 5 ir-IncRNAs with the highest significant upregulation
were HCP5, CTA-384D8.35, CTA-384D8.34, AC096579.7,
CTA-384D8.31 and the top 5 significantly downregulated
ir-IncRNAs included RP11-20F24.2, LINC00993, RP11-
379F12.4, RP11-379F12.3 and RP11-53019.3 (Additional
file 2).

Mapping of ir-IncRNA to proxy coding gene networks
Next, we applied the RWR global network propaga-
tion algorithm to map the 2988 ir-IncRNAs to the CNC
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network and computed propagation scores to identify
protein-coding genes within the network that are most
likely influenced by the ir-IncRNAs. Based on the propa-
gation scores, a ranked list of 127 unique protein-coding
genes with walkscores >0.01 was compiled (Additional
file 3). We then performed limma analysis on ICR high vs
low breast tumors and found that out of the 127 predicted
protein-coding genes, 37 and 40 were significantly up- and
downregulated (FDR p <0.05) respectively (Fig. 2B).

Biological annotation of protein-coding gene networks
indicates involvement in immune and metabolism
pathways

To gain insight into the putative downstream biologi-
cal roles of the differentially expressed ir-IncRNAs, we
explored enriched pathways, diseases and functions
associated with the 127 protein-coding genes. Pathway
enrichment analysis revealed that pathways involved in
‘Electron Transport Chain (OXPHOS system in mito-
chondria), ‘Respiratory electron transport, ‘Oxidative
phosphorylation; ‘Complex I biogenesis’ and ‘Formation
of ATP by chemiosmotic coupling’ were the most sig-
nificantly enriched. The first three pathways were mainly
influenced by the differential expression of MT-NDI,
MT-ND2, MT-CYB, NDUFB4, COX4I1, MT-ATP8 and
MT-ATP6 genes (Fig. 2C, Additional file 4). Disease and
function analysis identified several immunology related
diseases and processes to be highly enriched in associa-
tion with the 127 ir-IncRNA proxy protein-coding genes
(p<0.05), such as ‘Immunological disease, ‘Infectious
diseases, ‘Inflammatory disease; ‘Inflammatory response,
‘Immune cell trafficking, ‘Humoral immune response’
and ‘Antimicrobial response’ in addition to ‘Cancer’
(Fig. 2D, Additional file 4).

Identification of ir-IncRNAs that are associated

with the expression of multiple immune checkpoints

In addition to its prognostic value, the ICR classifier
has been suggested to potentially hold value as a pre-
dictor of response to immune checkpoint blockade [27,
40]. Furthermore, several IncRNAs have been found
to be involved in the regulation of the immune check-
point expression [41]. Hence, we further explored the
correlation of the differentially expressed ir-IncRNAs
with immune checkpoints in the TCGA-BRCA cohort
using Spearman correlation analysis (Fig. 3A, Additional
file 5). Overall, similar correlation patterns were observed
between individual ir-IncRNAs and immune check-
points. Notably, CD276 (B7-H3) was the only immune
checkpoint that showed an opposite correlation pattern
with ir-IncRNA expression.
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Ir-IncRNA signatures with prognostic value in breast cancer
Next, we investigated the prognostic value of two ir-
IncRNA signatures in breast cancer, the first consisting
of the top 20 differentially expressed ir-IncRNAs by ICR
(20-ICRIncRNA) and the second of the top 20 differ-
entially expressed ir-IncRNAs associated with immune
checkpoints (20-ICPIncRNA). Both ir-IncRNA signa-
tures conferred a significant survival benefit (20-ICRI-
ncRNA HR=0.2001 [95% CI 0.08202-0.488], p <0.001;
20-ICPIncRNA HR=0.304 [95% CI 0.1112-0.8315],
p=0.02036), with the 20-ICRIncRNA signature even
outperforming the ICR score itself (HR=0.8546 [95%
CI 0.7518-0.9715], p=0.01627) (Fig. 3B). Interest-
ingly, the two ir-IncRNA signatures shared 3 com-
mon ir-IncRNAs (PCED1B-AS1 (ENSG00000247774),
RP11-291B21.2 (ENSG00000256039) and AC092580.4
(ENSG00000235576), Fig. 3C) which together consti-
tute a much smaller signature that retains prognos-
tic significance (HR=0.3588 [95% CI 0.1391-0.9259],
p=0.03408) in a more practical format for clinical use.

Ir-IncRNA signatures demonstrate prognostic significance
across multiple tumor types

Given the prognostic connotation of the ir-IncRNA
signatures in breast tumors, we sought to assess its
clinical value across different solid tumor types in com-
parison with the ICR classifier. For this purpose, we
included an additional 17 TCGA datasets for which
both gene and IncRNA expression data are available
as well as one small breast cancer dataset from Qatar
(RAQA). Forest plot results (Fig. 4) show that both
20-IncRNA signatures are significantly associated with
better overall survival in head and neck squamous cell
carcinoma (HNSC, 20-ICRIncRNA HR =0.2456 [95%
CI 0.09025-0.6683] and 20-ICPIncRNA HR=0.3118
[95% CI 0.1455-0.668], p<0.01) and skin cutaneous
melanoma (SKCM, 20-ICRIncRNA HR=0.2255 [95%
CI10.101-0.5037] and 20-ICPIncRNA HR =0.2666 [95%
CI 0.1296-0.5482], p<0.001) in addition to breast can-
cer (BRCA), whereas the opposite was true in kidney
renal papillary cell carcinoma (KIRP, 20-ICRIncRNA
HR=11.18 [95% CI 1.524-82.03], p=0.01765, 20-ICPI-
ncRNA HR=35.98 [95% CI 3.269-396], p<0.01) and
low-grade glioma (LGG, 20-ICRIncRNA HR=37.13
[95% CI 11.67-118.1] and 20-ICPIncRNA HR =43.25
[95% CI 13.63-137.2], p<0.001). Furthermore, the
20-ICRIncRNA signature (Fig. 4A) was negatively cor-
related with overall survival in kidney renal clear cell
carcinoma (KIRC, HR=21.65 [95% CI 2.481-189],
p<0.01), while the 20-ICPIncRNA signature (Fig. 4B)
was positively correlated with survival in uterine cor-
pus endometrial carcinoma (UCEC, HR=0.1884 [95%
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Fig. 4 Prognostic significance of 20-ICRINcRNA and 20-ICPINRNA signature in solid cancers. Forest plot showing HRs for death (overall survival)
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CI 0.0481-0.7382], p=0.0166), liver hepatocellular
carcinoma (LIHC, HR=0.25 [95% CI 0.06491-0.963],
p=0.04394) and cervical squamous cell carcinoma
and endocervical adenocarcinoma (CESC, HR =0.2021
[95% CI 0.04654-0.8778], p=0.03284). In accord-
ance with our previous work [28], we classified each
tumor cohort with available IncRNA data as either
‘ICR enabled’ (HR <1 with a p-value<0.05), ‘ICR disa-
bled” (HR>1 with a p-value<0.05), or ‘ICR neutral’
(p-value >0.05) as based on the prognostic connota-
tion of the ICR score (Additional file 6). Interestingly,
all ICR-enabled tumors (BRCA, HNSC, SKCM, LIHC)
were associated with a favorable prognostic ir-lncRNA
signature and conversely, all ICR disabled tumors
(KIRP, LGG) were characterized by an unfavorable
prognostic ir-IncRNA signature (Fig. 4).

Performance of 3 Ir-IncRNA signature as a prognostic
classifier in cancer

Similarly, we assessed the prognostic value of the 3
ir-IncRNA signature across all 18 solid tumor types
(Fig. 5A). In analogy with the ICR signature, we found
that the 3 ir-IncRNA signature was associated with better
prognosis in breast cancer (BRCA, HR=10.3588 [95% CI
0.1391-0.9259], p=0.03408), head and neck squamous
cell carcinoma (HNSC, HR=0.3396 [95% CI 0.1595—
0.7232], p<0.01) and skin cutaneous melanoma (SKCM,
HR=0.3021 [95% CI 0.1396-0.6539], p<0.01), while
demonstrating a negative association with survival in
kidney renal papillary cell carcinoma (KIRP, HR=95.36
[95% CI 4.549-1999], p<0.01) and low-grade glioma
(LGG, HR=13.68 [95% CI 4.903-38.15], p<0.001). Fur-
thermore, the 3 ir-IncRNA signature, but not the ICR
signature, held prognostic significance in uterine cor-
pus endometrial carcinoma (UCEC, HR=0.158 [95% CI
0.03943-0.6328], p<0.01) and cervical squamous cell
carcinoma and endocervical adenocarcinoma (CESC,
HR=0.1787 [95% CI 0.03225-0.9905], p=0.04873).
Although no significant association was found in the
Qatari breast cancer cohort, most likely to the small sam-
ple size, a clear trend for better survival was observed
(HR=0.1424 [95% CI 0.008178-2.48], ns). The prog-
nostic performance of the 3 ir-IncRNA signature as
determined by the Akaike information criterion (AIC)
demonstrated a similar performance as the ICR classifier
across solid cancers (Additional file 7), with the excep-
tion of uterine corpus endometrial carcinoma where
the 3 ir-IncRNA signature was the better model (UCEC,
dAIC = — 4.3) and skin cutaneous melanoma where the
ICR signature was found to be the best model (SKCM,
dAIC=6.0). Given the smaller size of the 3 ir-IncRNA
signature, it provides a better ease-of-use for clinical
practice even in cancer types where both models perform
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equally well. In addition, 5-fold cross-validated Kaplan
Meier survival curves with log-rank test (Fig. 5B, Addi-
tional file 8) corroborated the prognostic value of the 3
ir-IncRNA signature in breast cancer, head and neck
squamous cell carcinoma and skin cutaneous melanoma
(BRCA, HNSC, SKCM; ICR enabled tumor types), uter-
ine corpus endometrial carcinoma and cervical squa-
mous cell carcinoma and endocervical adenocarcinoma
(UCEC, CESC; ICR neutral tumor types), and kidney
renal papillary cell carcinoma and low-grade glioma
(KIRP, LGG; ICR disabled tumor types). Survival analysis
of the RAQA breast cancer cohort showed a clear bifur-
cation of overall survival (p=0.017) despite the smaller
size of the cohort. Due to limitations with cohort size and
event numbers, we were not able to perform the 5-fold
cross-validation analyses on the rectum adenocarci-
noma (READ) and colon adenocarcinoma (COAD) data-
sets. Multivariate Cox regression analysis of the three
individual ir-IncRNAs (Table 1) showed that out of the
three IncRNAs, RP11-291B21.2 was most often associ-
ated with survival (STAD, GBM, KIRP, KIRC), followed
by AC092580.4 (BRCA, STAD, LGG) and PCED1B-AS1
(LUAD, KIRP).

Next, we sought to investigate whether combining the
enrichment scores of the 3 ir-IncRNA and ICR signatures
may improve prognostic significance (Table 2). We found
that the combined model performed equally well as the 3
ir-IncRNA or the ICR signature in many cancers which is
to be expected as the signatures are strongly correlated.
In some cases, the combined model performed less well
than the individual ICR and 3 ir-IncRNA signatures.
For instance, in uterine corpus endometrial carcinoma
(UCEC), the 3 ir-IncRNA signature remained the strong-
est prognostic predictor (HR=0.2662 [95% CI 0.09837—
0.7202], p=0.009155) compared to the ICR signature
(HR=0.8485 [95% CI 0.6783-1.061], p=0.1505) or the
combined model (HR=0.8458 [95% CI 0.6958-1.028],
p=0.09279).

Association of 3 Ir-IncRNA signature with tumor features

Finally, we sought to investigate whether the 3 ir-IncRNA
signature shows any significant association with prognos-
tic tumor features such as stromal cell composition and
immune cell infiltration. Using the ESTIMATE algorithm,
we calculated the stromal (Fig. 6) and immune scores for
each cancer type and determined their correlation with
the 3 ir-IncRNA enrichment score (Fig. 7). We found
moderate to strong correlations between the 3 ir-IncRNA
signature and the ESTIMATE stromal score in most can-
cer types with the strongest correlation in rectum adeno-
carcinoma (READ, R=0.66, p<0.001) and low-grade
glioma (LGG, R=0.59, p<0.001). Not entirely unex-
pected we found moderate to very strong correlations
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enabled (HR< 1, p-value <0.05) cancer types are indicated with orange asterisks and ICR disabled (HR> 1, p-value < 0.05) cancers are indicated with
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Table 1 Multivariate analysis of the enrichment scores of the 3 ir-IncRNAs in cancer

Cancer Gene name HR Cox p value, Cl lower Cl upper log rank p, Cox p value
multivariate multivariate 3, IncRNAs
signature

BRCA AC092580.4 0.59 0.03 037 0.94 0.02 0.03
PCED1B-AS1 1.01 0.90 0.85 1.20
RP11-291B21.2 0.98 0.90 0.65 1.46

HNSC AC092580.4 0.98 0.78 0.88 1.10 0.02 2.38E-03
PCED1B-AS1 0.86 023 0.68 1.10
RP11-291B21.2 0.88 0.18 0.72 1.06

RAQA AC092580.4 3.66E-06 1.00 0.00 Inf 0.50 0.14
PCED1B-AS1 1.00 097 0.79 1.28
RP11-291B21.2 1.28E-03 1.00 0.00 Inf

SKCM AC092580.4 0.87 0.19 0.70 1.07 0.04 2.38E-03
PCED1B-AS1 098 0.71 0.86 1.11
RP11-291B21.2 097 0.81 0.70 1.27

UCEC AC092580.4 - - - - 0.39 0.01
PCED1B-AS1 0.88 0.39 0.66 1.18
RP11-291B21.2 - - - -

LIHC AC092580.4 092 0.55 0.70 1.20 061 0.06
PCED1B-AS1 1.14 0.46 0.80 1.63
RP11-291B21.2 0.57 033 0.18 1.76

STAD AC092580.4 0.73 0.01 057 0.93 0.09 0.75
PCED1B-AS1 1.02 0.84 0.80 1.30
RP11-291B21.2 1.36 0.05 1.00 1.85

BLCA AC092580.4 1.05 0.40 0.93 1.19 043 0.07
PCED1B-AS1 098 0.70 0.89 1.09
RP11-291B21.2 0.87 0.10 0.70 1.05

CESC AC092580.4 095 0.60 0.79 1.15 0.06 0.05
PCED1B-AS1 0.66 0.20 0.35 1.25
RP11-291B21.2 1.02 0.80 0.83 127

KICH AC092580.4 0.01 0.12 1.18E-05 391 2.81E-07 095
PCED1B-AS1 3.50 0.16 0.62 20.12
RP11-291B21.2 877.00 0.51 1.49E-06 517+ 11

ov AC092580.4 1.07 0.74 0.70 1.62 0.90 0.62
PCED1B-AS1 0.82 0.44 0.49 137
RP11-291B21.2 1.03 097 0.30 3.50

LUSC AC092580.4 0.96 0.71 0.77 1.20 0.50 0.70
PCED1B-AS1 1.08 046 0.88 133
RP11-291B21.2 0.89 041 0.66 1.19

READ AC092580.4 - - - - 0.19 0.27
PCED1B-AS1 0.01 0.24 8.05E-07 3558
RP11-291B21.2 - - - -

COAD AC092580.4 - - - - 0.96 1.00
PCED1B-AS1 0.98 0.96 0.35 2.69
RP11-291B21.2 - - - -

LUAD AC092580.4 1.00 0.98 0.90 1.12 0.20 042
PCED1B-AS1 0.88 0.05 0.77 1.00
RP11-291B21.2 1.04 046 093 117

GBM AC092580.4 097 0.86 0.72 132 0.10 0.54
PCED1B-AS1 1.00 0.93 092 1.08

RP11-291B21.2 32.10 0.01 203 507.13
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Table 1 (continued)
Cancer Gene name HR Cox p value, Cl lower Cl upper log rank p, Cox p value
multivariate multivariate 3, IncRNAs
signature
KIRP AC092580.4 137 0.18 0.86 220 1.30E-06 3.33E-03
PCED1B-AS1 0.77 0.05 0.60 1.00
RP11-291B21.2 15.50 9.87E-05 3.90 61.58
KIRC AC092580.4 1.03 0.78 0.85 1.24 5.17E-10 0.30
PCED1B-AS1 1.08 0.34 0.92 1.27
RP11-291B21.2 1.19 3.00E-03 1.06 133
LGG AC092580.4 6.90 1.64E-05 2.87 16.70 3.71E-08 5.82E-07
PCED1B-AST 0.99 0.84 0.86 1.13
RP11-291B21.2 1.28 0.62 048 340

Table 2 Univariate analysis of ICR, 3 ir-IncRNA and combination ICR/3 ir-IncRNA model

Cancer n ICR signature 3ir-IncRNA signature ICR/3 ir-IncRNA signature

p-value HR[CI] p-value HR[CI] p-value HR[CI]
BRCA 798 001617 0.8636 [0.7664-0.9732] 0.03408 04794 [0.2429-0.9463] 0.01525 0.8784[0.7911-0.9754]
RAQA 24 04672 0.8761 [0.6134-1.251] 0.1813 0.2471[0.03183-1.918] 0.3824 0.8583 [0.6091-1.209]
HNSC 417 0.007468 0.8955 [0.8259-0.9709] 0.00511 0.4609 [0.268-0.7926] 0.005836 0.9024 [0.8388-0.9707]
SKCM 216 0.000243 0.8287 [0.7496-0.9162] 0.002382 04238 [0.2435-0.7374] 0.000243 0.8496 [0.7787-0.9269]
UCEC 3N 0.1505 0.8485 [0.6783-1.061] 0.009155 0.2662 [0.0984-0.7202] 0.09279 0.8458 [0.6958-1.028]
LIHC 191 0.0983 0.89[0.7752-1.022] 0.05554 04662 [0.2134-1.018] 0.07708 0.8926 [0.7869-1.012]
STAD 247 0.2773 0.9391 [0.8385-1.052] 0.7487 1.173[04419-3.114] 0.3354 0.9506 [0.8575-1.054]
BLCA 248 0.3766 0.9567 [0.8672-1.055] 0.6954 0.8875 [0.4884-1.613] 04031 0.964 [0.8845-1.051]
CESC 190 0.03583 0.8286 [0.6951-0.9876] 0.04873 0.2908 [0.08516-0.993] 0.03316 0.8413[0.7177-0.9863]
KICH 65 0.5425 0.8991 [0.6385-1.266] 0.9452 0.9403 [0.1623-5.447] 0.5853 0.9214 [0.6868-1.236]
ov 249 0.6857 0.9801 [0.8893-1.08] 0.6233 1.14[0.6766-1.919] 0.7909 0.9888[0.9101-1.074]
LUSC 202 0.2156 0.9207 [0.8079-1.049] 0.6961 0.8491 [0.3738-1.929] 0.2505 0.9352[0.8341-1.048]
READ 44 0.1527 0.3151 [0.06472-1.534] 0.2701 0.0752 [0.00076-7.467] 0.1497 0.3248[0.07033-1.5]
COAD 112 0.9295 2[0.7783-1.316] 0.9982 0.998 [0.1777-5.604] 0.9357 1.01 [0.7939-1.285]
LUAD 469 0.8737 0.993 [0.9108-1.083] 04199 0.7292 [0.3384-1.571] 0.8207 0.9908 [0.9148-1.073]
GBM 150 0.5058 1.043 [0.9216-1.18] 0.536 1.251[0.6153-2.545] 04844 1.041[0.9308-1.163]
KIRP 188 7.63E-05 1[1.231-1.853] 0.003328 26.28 [2.964-233.1] 5.14E-05 1477 [1.223-1.784]
KIRC 298 0.1702 1.094 [0.9621-1.245] 0.3038 2.016[0.5298-7.672] 0.1689 1.088 [0.9648-1.227]
LGG 478 3.14E-09 1.37[1.234-1.52] 5.82E-07 6.528 [3.128-13.63] 7.04E-10 1.341[1.222-1472]

between the 3 ir-IncRNA signature and the ESTIMATE
immune score in all tumor types with the strongest asso-
ciations found in skin cutaneous melanoma (SKCM,
R=0.8), rectum adenocarcinoma (READ, HR=0.79),
uterine Corpus Endometrial Carcinoma (UCEC,
R=0.78) and ovarian serous cystadenocarcinoma (OV,
R=0.78). These findings suggest that the expression of
the 3 ir-IncRNAs in our signature likely originates from
both the stromal and immune cell compartment. Fur-
thermore, we used two distinct deconvolution methods

to estimate the relative cell composition of the tumor
microenvironment in association with the 3 ir-IncRNA
signature; the first using leukocyte subgroup enrichment
scores and the second being the Consensus™F approach
[35, 36] (Additional file 9). Correlation heatmaps
revealed similar patterns across tumor types, showing an
overall positive association of the 3 ir-IncRNA signature
with pro-inflammatory and cytotoxic immune cells from
the adaptive and innate immune system and an inverse
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association with Th2 helper cells, Th17 cells, T cell mem-
ory cells and immunomodulatory NK CD56bright.

Discussion

The vast amount of tumor immunology research studies
and immunotherapy clinical trials have clearly demon-
strated the importance of the tumor immunophenotype
in clinical outcome and highlighted the need for predic-
tive biomarkers of an active tumor immune microenvi-
ronment. In our previous work, we defined and validated
the ICR signature as a prognostic tool to distinguish
‘hot” tumors (ICR high) from ‘cold’ tumors (ICR low),
whereby, the former are associated with a more favora-
ble clinical outcome and greater treatment response to
immune checkpoint blockade [27, 28]. Mechanistically,
we found that ICR low tumors are strongly associated
with mutations in MAPK and activation of the TGF-f3
and Wnt-$ catenin pathways [27, 42]. In a recent pan-
cancer analysis, we further demonstrated that the prog-
nostic connotation of the ICR immune phenotype may
be differentially impacted by the activation of distinct
oncogenic pathways [28]. As such, the favorable prog-
nosis associated with ICR high tumors was abolished by
the activation of TGF-p signaling and a low proliferation
molecular profile.

In the present study, we expanded our molecular anal-
ysis of ICR immune phenotypes to include IncRNAs as
potential regulators of immune disposition and concomi-
tantly immunotherapy response. Analysis of the IncRNA
profile of ICR high versus ICR low breast tumors from
the TCGA repository revealed a number of differentially
expressed immune-related IncRNAs (ir-IncRNAs) which
we subsequently mapped to a coding-non-coding gene
network using a computational network propagation
algorithm. Pathway analysis of those proxy protein-cod-
ing genes subsequently identified the genes to be involved
in multiple biological processes related to metabolic
pathways and protein trafficking. Several of the identi-
fied processes play a major role in mitochondrial oxida-
tive phosphorylation which largely defines the metabolic
fitness of cancer and immune cells. Generally, as tumors
progress cancer cells undergo metabolic reprogramming
from oxidative phosphorylation to aerobic glycolysis in
order to support growth and survival. This reprogram-
ming creates an environment of metabolic competition
for glucose between cancer cells and tumor infiltrating
cytotoxic T cells who also increasingly rely on aerobic
glycolysis upon activation [43, 44]. As such, metabolic
competition can lead to T cell dysfunction, resulting in
unfavorable tumor immune phenotypes. Furthermore,
the synthesis of leukotrienes and eoxins plays an impor-
tant role in shaping the tumor microenvironment by
regulating leukocyte migration and promoting tumor
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growth and metastasis [45]. Together, this suggests that
ir-IncRNAs may be implicated in defining the immune
contexture of tumors in addition to promoting tumo-
rigenesis. The presence of an active pre-existing immune
response is a crucial determining factor in immuno-
therapy response, in particular to immune checkpoint
blockade.

To address the role of ir-IncRNAs in immune check-
point expression, we investigated the relationship of
ir-IncRNA signatures with 30 immune checkpoint mol-
ecules in breast cancer. We found that ICR-associated
ir-IncRNAs could be categorized into two clusters, one
with positive and one with negative correlations with
immune checkpoint molecules. In exception, CD276
(B7-H3) expression showed an opposite correlation with
ir-IncRNA expression. CD276 is expressed in many cell
types and has been shown to play a role in innate and
adaptive immune responses, however, its function as a
co-stimulatory or co-inhibitory molecule remains con-
troversial [46].

Finally, we sought to determine the prognostic value
of ir-IncRNAs based on our findings that showed an
association of ir-IncRNAs with metabolic activities
and immune checkpoint expression, which both regu-
late immune cell disposition and therefore may impact
clinical outcome. We defined three different ir-IncRNA
signatures using the TCGA breast cancer dataset, evalu-
ated their prognostic significance in a local breast cancer
cohort and explored their clinical value in a pan-cancer
setting. Although the local breast cancer cohort (RAQA)
is considerably small in size, similar patterns in prog-
nostic significance were observed, highlighting the
robustness of the ir-IncRNA signatures across ancestral
populations such as the Arab population which remains
largely underrepresented. The first signature comprised
the top 20 differentially expressed ir-IncRNA in ICR
high versus ICR low tumors (20-ICRIncRNA) and dem-
onstrated prognostic significance in 6 solid tumor types
(BRCA, HNSC, SKCM, KIRP, KIRC and LGG) with a
lower hazard ratio for overall survival than the ICR sig-
nature. The second IncRNA signature is composed out
of the top 20 ir-IncRNAs that are positively correlated
with immune checkpoint expression (20-ICPIncRNA)
and overall shows a stronger effect on survival than the
ICR signature. Further study is needed to investigate the
individual checkpoint molecule correlations with the
20-ICPIncRNA signature in order to gain insight into
potential molecular mechanisms and to explore their
value in predicting immunotherapy response in larger
prospective cancer patient cohorts. Comparison of the
two ir-IncRNA signatures revealed the presence of three
common ir-lncRNAs, PCED1B-AS1, RP11-291B21.2
and AC092580.4, that could potentially be used as a
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minimal informative set of ir-IncRNAs with prognos-
tic significance and more practical format for clinical
use compared to the ICR signature. Survival analyses
of the 3 ir-IncRNA signature confirmed its prognostic
value in 7 cancer types; 5 in which it showed a stronger
effect on survival compared to the ICR signature (ICR
enabled [BRCA, HNSC, SKCM], ICR disabled [KIRP,
LGG]) and 2 in which the ICR does not hold prognos-
tic significance (ICR neutral [UCEC, CESC]). These find-
ings suggest that the 3 ir-IncRNA signature could be used
to improve prognostic stratification over the ICR and in
addition could offer prognostic information in tumors
where ICR does not hold prognostic value (ICR neutral).
Of note, whereas both signatures show a positive correla-
tion with overall survival in the majority of cancer types,
they are associated with a worse survival in kidney renal
papillary cell carcinoma (KIRP) and low-grade glioma
(LGG). In accordance, several studies have reported an
inverse association between high immune cell infiltra-
tion or immune activity with prognosis in these specific
tumor types. For instance, in low-grade glioma a worse
prognosis has been associated with enhanced immune
infiltration whereby an increase in MO/M1 macrophages
increases the permeability of the blood brain barrier and
promotes glioma cell growth and invasion [47-49]. In
addition, high B cell infiltration has been associated with
worse prognosis in kidney renal papillary cell carcinoma
(KIRP) and low-grade glioma (LGG) and may be linked
to the presence of a specific immunosuppressive B cell
subset, regulatory B cells [50, 51]. Moreover, despite the
presence of tumor immune cell infiltration, T cell func-
tion may be suppressed by an increase in immune check-
point expression as has been suggested by a 15-gene
signature in kidney renal papillary cell carcinoma (KIRP)
[52]. Further study is needed to tease out the relation
between KIRP and LGG patient survival and the abun-
dance and functionality of diverse immune cell subsets.

In order to further investigate the association of the
3 IncRNAs with multiple cell types within the tumor
microenvironment, we used several deconvolution meth-
ods. Using the ESTIMATE algorithm, we found that the
3 ir-IncRNA signature strongly correlates with both the
ESTIMATE stromal and immune scores across cancers,
suggesting that the 3 ir-IncRNA expression might be
derived from both the stromal and immune cell compart-
ment within the tumors. Furthermore, we found an over-
all positive association of the 3 ir-IncRNA signature with
pro-inflammatory and cytotoxic immune cell subpopula-
tions, and a negative correlation with T helper 2 and T
helper 17 cells, T cell memory cells and immunomodula-
tory NK CD56bright cells.

Given the potential clinical value of the 3 ir-IncRNA
signature, we looked into the reported molecular
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mechanisms and biological processes that may be
affected by these 3 ir-IncRNAs. All three ir-IncRNAs have
been found to be overexpressed in multiple cancer types
[53-61]. Mechanistically, PCED1B-AS1 has been shown
to function as an oncogenic IncRNA regulating miRNA
expression, ultimately promoting aerobic glycolysis,
proliferation, invasion and epithelial-to-mesenchymal
transition while reducing apoptosis of cancer cells [53,
56, 57, 59]. In addition, PCED1B-AS1 was found to be
positively associated with immune checkpoint expression
and in particular to increase the expression of PD-L1 and
PD-L2 through interaction with mir-194-5p, leading to
an enhanced immunosuppression [10, 58]. Less is known
about the function of RP11-291B21.2 in cancer, however,
it has been associated with durvalumab response in non-
small cell lung cancer and bladder cancer patients, and
was found to correlate with several key immune genes
[62]. Single-cell RNAseq analysis further indicates that
RP11-291B21.2 is dominantly expressed in exhausted
CD8+ T cells [62]. Furthermore, AC092580.4 expression
is strongly correlated with key immune genes and path-
ways including Gata3 expression, suggesting that it may
be involved in modulating T cell polarization and hence
anti-tumor immunity [63, 64]. Additional single cell
multi-omics and functional studies are needed to bet-
ter characterize the cellular origin and interacting part-
ners and downstream signaling pathways of each of these
ir-IncRNAs.

Conclusions

In summary, our findings indicate that the 3 ir-IncRNA
signature holds prognostic value in multiple solid cancer
types with stronger effects on overall survival than the
well-established 20-gene ICR signature, in particular in
uterine corpus endometrial carcinoma. Moreover, given
the smaller size of the IncRNA signature it provides a
greater ease-of-use for clinical implementation, warrant-
ing the need for larger, prospective studies to validate its
clinical utility.
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