Mahnara

4 Qatar Research
Repository
by Qatar National Library

NS+

The role of generative adversarial networks in brain MRI: a scoping review

Hazrat Ali, Md. Rafiul Biswas, Farida Mohsen, Uzair Shah, Asma Alamgir, Osama Mousa, Zubair Shah

Item type
Journal Contribution

Terms of use
This work is licensed under a CC BY 4.0 license

This version is available at
https://manara.qgnl.qa/articles/journal_contribution/The_role_of generative_adversarial_networks_in_brain_MRI_a_scoping_revie\
Access the item on Manara for more information about usage details and recommended citation.

Posted on Manara — Qatar Research Repository on
2022-06-04


https://creativecommons.org/licenses/by/4.0/
https://manara.qnl.qa/articles/journal_contribution/The_role_of_generative_adversarial_networks_in_brain_MRI_a_scoping_review/25532443/1

Ali et al. Insights into Imaging (2022) 13:98 . . .
https://doi.org/10.1186/513244-022-01237-0 Insights into Imaging

EDUCATIONAL REVIEW Open Access

. . )
The role of generative adversarial networks ==

in brain MRI: a scoping review

Hazrat Ali", Md. Rafiul Biswas, Farida Mohsen, Uzair Shah, Asma Alamgir, Osama Mousa and Zubair Shah”

Abstract

The performance of artificial intelligence (Al) for brain MRI can improve if enough data are made available. Generative
adversarial networks (GANs) showed a lot of potential to generate synthetic MRI data that can capture the distribution
of real MRI. Besides, GANSs are also popular for segmentation, noise removal, and super-resolution of brain MRl images.
This scoping review aims to explore how GANs methods are being used on brain MRI data, as reported in the litera-
ture. The review describes the different applications of GANs for brain MR, presents the most commonly used GANs
architectures, and summarizes the publicly available brain MRI datasets for advancing the research and development
of GANs-based approaches. This review followed the guidelines of PRISMA-ScR to perform the study search and selec-
tion. The search was conducted on five popular scientific databases. The screening and selection of studies were per-
formed by two independent reviewers, followed by validation by a third reviewer. Finally, the data were synthesized
using a narrative approach. This review included 139 studies out of 789 search results. The most common use case of
GANSs was the synthesis of brain MRl images for data augmentation. GANs were also used to segment brain tumors
and translate healthy images to diseased images or CT to MRI and vice versa. The included studies showed that GANs
could enhance the performance of Al methods used on brain MRl imaging data. However, more efforts are needed to
transform the GANs-based methods in clinical applications.

Keywords: Artificial intelligence, Data augmentation, Generative adversarial networks, Magnetic resonance imaging,
Medical imaging

Key points Introduction
Magnetic resonance imaging (MRI) is a widely used
« This article aims to provide a comprehensive review  medical imaging technology. MRI is non-intrusive and
on the applications of generative adversarial net- considered safe for humans. MRI can generate different

works (GANSs) in brain MRI. modalities of an image and can provide valuable insights
« The specific focus of this education review is on brain  into a specific disease. The frequent sequences of MRI
MRI. are T1-weighted and T2-weighted scans [1, 2]. The major

« It covers a large number of studies on GANs in brain  difference between MRI and other medical imaging tech-
MRI and the most recently published studies on  nologies is that MRI is free from using X-ray radiogra-
brain MRI. phy. The radiologists use MRI to analyze brain tissue and

diagnose brain-related diseases such as brain tumors (i.e.,

the abnormal and uncontrolled growth of brain cells).

This process requires trained radiologists, and the accu-

racy is heavily dependent on the expertise of the radiolo-

gists and the quality of MRI data acquisition [1, 2].

Computer-aided diagnosis (CAD) can aid in the

process of MRI analysis. Recently, there has been a
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significant increase in interest in developing artificial
intelligence and deep learning-based methods for CAD.
However, deep learning methods rely on training using
large medical imaging data. Generative adversarial
networks (GANs) have the potential to generate new
samples of the data and represent the distribution of
the real data. GANs are particular types of deep learn-
ing models formed of two neural networks, namely the
generator and the discriminator. The generator gener-
ates new samples, while the discriminator attempts to
classify the images as real or synthetic. The adversarial
training effectively improves the overall training of the
model. While GANs methods were initially popular
for generating synthetic data in the medical imaging
domain, they have also been used for other applications
such as super-resolution, segmentation, and diagnosis.

This study performed a scoping review to find out
the role of GANs-based methods in brain MRI. While
many reviews have been performed on the use of GANs
in medical imaging and GANs in MRI [1-3], their
scope is too broad. For example, the review in [1] cov-
ers a broad range of MRI and does not focus on brain
MRI only. Similarly, the review in [2] covers many dif-
ferent deep learning techniques and does not limit the
discussion to GANs-based methods only. The review
in [3] covers the discussion on GANs for all types of
medical imaging data. Table 1 provides a comparison of
our work with previous reviews. The growing number
of studies on the use of GANs in brain MRI demands
a dedicated review. In this regard, this review presents
a review of how GANs-based methods were used to
address many challenges in advancing the performance
of Al for brain MRI data. More specifically, it summa-
rizes the applications of GANs-based methods in brain
MRI such as synthesis of brain MRI, segmentation of
brain tumor, and super-resolution of brain MRI. Fur-
thermore, it also highlights the different evaluation
metrics such as structural similarity index measure
(SSIM) and the peak signal-to-noise ratio (PSNR) used
in the literature for evaluation of the performance of
GANs. The following research questions related to the
role of GANs-based method in brain MRI were consid-
ered for this review.

1. What were the typical applications of GANs pro-
posed for brain MRI?

2. Which architectures of GANs are most commonly
applied for brain MRI?

3. What was the purpose of using GAN in brain MRI?

4. What were the most commonly used datasets for
brain MRI?

5. How many datasets were publicly accessible?
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6. What evaluation matrices were used for the valida-
tion of the model?

The study will be helpful for researchers and profes-
sionals in the medical imaging and healthcare domain
who are considering using GANs methods to diagnose
and predict the brain tumors from the MRI images. The
review also lists publicly available brain MRI datasets that
will be helpful for AI researchers to develop advanced
research methods.

Methods

We performed a literature search in famous databases
and conducted a scoping review as per the guidelines
of the PRISMA-ScR (Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses Extension for Scop-
ing Reviews) [4]. Additional file 1: Table S1 provides the
adherence to the PRISMA-ScR checklist. The following
methods were used for the search and the study selection.

Search strategy

Search sources

This review searched five different databases for relevant
literature, namely PubMed, Scopus, IEEE Xplore, ACM
Digital Library, and Google Scholar. We note here that
MEDLINE is covered in PubMed. The search was per-
formed between September 20 and 22, 2021. For the
search outcomes of Google Scholar, only the first 100
results were considered, as, beyond the first 100 entries,
the search results were quickly losing match and rele-
vancy to the topic of the review. In addition to the search
on the five databases, we also screened the reference lists
of the included studies to find additional relevant studies.

Search terms

We defined the search terms from the available literature
and by referring to the experts in the fields. The search
terms were selected based on the intervention (e.g., deep
learning, generative adversarial networks (GANSs)), the
target anatomy (brain), and the target data modality (e.g.,
MRI, fMRI, sMRI). The search strings used in this study
are provided in Additional file 1: Table S2.

Search eligibility criteria

We focused on GANs-based approaches used for brain
MRI data. We considered studies published in English
from January 2015 to September 2021. Studies for all
applications of GANs were included, such as segmenta-
tion, synthesis, noise removal, and super-resolution of
brain MRI. We included studies that used GANs for brain
MRI data and excluded studies that used other deep
learning methods (such as convolutional neural networks
or recurrent neural networks) but did not use GANSs.
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Similarly, we excluded studies that used GANs for non-
image data or image data of modalities other than MRI
(such as ultrasound, X-ray, or computed tomography
(CT)). We also excluded studies that used GANs for MRI
data other than the brain.

We included peer-reviewed articles and conference
proceedings and excluded preprints, commentaries,
short reviews, editorials, and abstracts. Similarly, we
excluded studies that presented a survey of GANs meth-
ods. No restrictions were imposed on the country of
publication, comparators, and outcomes of the GANs
methods.

Study selection

Two reviewers, namely authors AJ and OT, indepen-
dently reviewed the titles and abstracts of the stud-
ies identified in the search and made initial flagging for
inclusion and exclusion. The flagging was then verified
by a third reviewer (HA). The studies that passed the title
and abstract screening were shortlisted for the full-text
reading phase to perform study selection. Any disagree-
ment between the reviewers (A] and OT) was investi-
gated and resolved through discussion and consensus.
The Cohen’s kappa score [5] was calculated to measure
the agreement between the two reviewers.

Data extraction

We prepared a purpose-built form for data extraction.
Additional file 1: Table S4 shows the data extraction form.
The entries for the form were pilot-tested using ten rele-
vant studies to extract the data accurately. Two reviewers
(MB and FA) independently performed the data extrac-
tion according to the data extraction form. The data were
extracted for the applications of the studies, the purpose
of using GAN, the type of GAN, features of the dataset,
and the evaluation mechanism of the GANs-based meth-
ods. Any disagreement between the two reviewers was
resolved through discussion and consensus.

Data synthesis

After the extraction of the data from the included studies,
we synthesized the data using a narrative approach. First,
we classified the included studies in terms of their appli-
cations, such as synthesis (data augmentation), diagnosis
(e.g., tumor detection), prognosis, and super-resolution.
We also classified the studies based on the purpose of
using GANS, such as synthesis, noise removal, and trans-
lation. Based on dataset types, we organized the data into
two broad categories: studies that used publicly avail-
able datasets and studies that used privately collected
MRI data. We also summarized the studies based on the
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size of the dataset, the evaluation mechanisms, and the
reporting of external validation. We performed and man-
aged the data synthesis using MS Excel.

Results

Search and study selection results

We retrieved 789 studies as a search result. We
removed 185 duplicates. We then did the screening of
the titles and abstracts of the remaining studies. As a
result of title and abstract screening, we excluded 446
studies following the criteria defined in the protocol.
We then performed the full-text reading of the remain-
ing 158 studies. Among these, we removed 19 studies
that did not fulfill the criteria of inclusion. Finally, we
were left with 139 studies for inclusion in this survey.
See Fig. 1 for the flowchart of the study selection pro-
cess. No additional studies were identified by forward-
and-backward reference checking. The Cohen’s kappa
score was 86.3% for the title and abstract screening,
which shows a good agreement between the review-
ers. The Cohen’s kappa score was 84.7% for the full-text
reading phase, which shows a good agreement between
the reviewers. Additional file 1: Table S3 shows the
matrix for the calculation of the Cohen’s kappa score.

Demographics of the included studies

Among the included studies, 87 were peer-reviewed
journal articles and 52 were conference publications.
More than two-thirds of the studies (#=104) were
published in the last 2 years, i.e.,, 2020 and 2021. In
comparison, only five studies were published in 2018
and only one study was published in 2017. A total of
27 countries contributed to the studies. Around one-
third of the studies (n=53) were published in China.
The only two other countries that published more than
ten studies were the USA (n=21) and Japan (n=12).
Table 2 summarizes the demographics of the included
studies. Figure 2 shows a visualization of the year-wise
and country-wise distribution of the included studies.

Applications of GANs in brain MRI

GANs have been used for many applications of brain
MRI data. The included studies used GAN-based meth-
ods as a sub-module of their deep learning frame-
works for different applications, as shown in Table 2.
The majority of the included studies targeted applica-
tions, namely the generation of synthetic data (n=43),
the segmentation of area of interest in brain MRI
(n=32), and the diagnosis of neurological diseases
(n=22). Other common applications of the studies
were super-resolution to improve the quality of the
images as reported in ten studies and reconstruction
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Pubmed Scopus IEEE Google ACM
337 studies 171 studies 110 studies 100 studies 71 studies
5 789 studies retrieved through
= searching of five databases
o
=
3
= —> 185 duplicates removed
Y
304 unique titles and abstracts
o
£
§ 446 excluded after screening of titles and
‘g abstract
- Wrong intervention: n = 308
> Wrong population: n = 105
- Publication type (poster, survey): n = 33
\ 4
158 unique full text studies
2
2 19 excluded after reading full text.
i — Non Er)glish:'n =1
- Inconsistent information: n = 2
- Wrong population: n =9
- Wrong intervention: n =7
Y
139 studies
b No studies included
B | [through reference list
e checking
139 studies included in the
narrative synthesis
Fig. 1 The PRISMA-ScR flowchart for the selection of the included studies
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Table 2 Demographics of the included studies

Number
of
studies

Year
Year
2022 1
2021 44
2020 60
2019 28
2018 5
2017 1
Countries
Country
China
USA

Japan

N
- N W

Germany

India

South Korea
France

Sweden

Israel

Canada
Australia

UK

Singapore

The Netherlands
Italy

United Arab Emirates
Turkey
Switzerland
Spain

Russia

Malaysia

Jordan

Ireland

Iran

e L S ) S ) SR N R SRR UV R VU R UV R NN e ) W N N

Malaysia
Type of publication
Venue
Conference 52
Journal 87

of high-quality images (which can be considered a sub-
category of super-resolution) reported in 13 studies.
Few studies also reported applications such as noise
removal (n=5), prognosis (n=4), and image registra-
tion (n=2). Only one study reported the generation of
3D synthetic volumes of MRI data (see Fig. 3).
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The included studies used GANs for many different
applications, namely synthesis (generation of synthetic
data), segmentation (generation of the segmentation
mask), diagnosis, and translation of data from one modal-
ity to another (e.g., translation from CT to MRI and vice
versa, or translation form normal MRI to infected MRI).
Almost one-third of the studies (#=45) reported the use
of GANSs for the synthesis of data. Around one-sixth of
the studies (n=26) reported GANs to perform segmen-
tation. Other popular use cases of GANs were diagno-
sis reported in 16 studies, reconstruction reported in
15 studies, and translation reported in 12 studies. The
reconstruction may also be regarded as a particular case
of image synthesis. Only a few studies reported use cases
of GANs for other applications, such as super-resolution
reported in seven studies, noise removal reported in five
studies, prediction reported in five studies, and prognosis
reported in four studies. Table 3 provides a summary of
the use cases of GANs.

Types of GANs methods

While there are many different types of GANs usually
named based on their architectures, there is a tendency
to assign a new name to every GAN even if the funda-
mental changes in the architecture are not significant.
This review found that the most common types of GANs
used were the cycleGAN used by 12 studies [15, 17, 48,
51, 55-57, 65, 66, 79, 84, 110, 133] followed by condi-
tional GAN used by 8 studies [53, 54, 71, 72, 101, 112,
118, 119], and Wasserstein GAN used by 7 studies [13,
14, 19, 39, 116, 131, 132]. Other types of GANs reported
in more than one study were deep convolutional GAN,
reported in three studies [20, 93, 140], unified GAN [21,
49] reported in two studies, and Pix2Pix GAN, reported
in two studies [32, 133].

Types of datasets

Most of the studies (n=97) reported the use of public
datasets for brain MRI for the training of GAN models.
Thirty-five studies reported the use of privately collected
data. A few studies (n=7) reported using both public and
privately collected data. This review identified many dif-
ferent datasets used in the included studies. Table 4 pro-
vides a list of publicly available datasets and the access
link. In the included studies, the most commonly used
dataset was the Alzheimer’s Disease Neuroimaging Initia-
tive dataset reported in 16 studies (also see Table 4). The
BRaTs 2018 dataset was reported in eight studies, while
the use of the IXI dataset of MR images from three dif-
ferent hospitals in London was reported in seven studies.
The accumulative number of studies using the various
versions of the BRaTs dataset was 20.



Ali et al. Insights into Imaging (2022) 13:98 Page 7 of 15
Number of records
0.0
% 2
<, c 38 = g =&
2 % £
450 Py 9% m‘; ._s. - 5 - 5 é’ 'S 2 150
R/ ) 5. & &
7, ® o o9 & £ a
“ % B 0ol ¢
S, %, * ® %~ &
% > ‘ @) < ty
% © ~ 00 S pe
4 > @ o ¢ &
/b F N
2, o © O 00\ S . conference
e s, ~ @ o
“, g 0\ M joumai
% " @ % ® 9 o
Y 7 [ -
a0, ” @ o g 5 £ &. o’ o
'@ %, e A ; >
iy 2 &
2 b 9‘“
A § 3
@ A
« gett
Usy ) o swe
3 . £ o @
&8¢ Japa®
Japan @
2 A
<0z, PRt
India 2019 1 gi
2 @conferonce (=] |1n ?
Germany German
2 . conference @ © 1 4
ce
Fran . @] @ ;‘"”’C"a
5\“9ap°‘.\ ® 'é O f"nco
wy @ e ® Swy,,
A . 1 Mang
> i
0“\“\'1. - 9%
ég ® Cry,
g o,
\ o €]
\3% ) . . IQ‘IO.é
&, ® 7%,
g > = <, 7
x° PN (@) ® T
A v e 0 ®_-%
QQO & . . /,' *
& £° )
& S AN @ g ¥
g © =% %
< \Q ~ e 7 . 2 © %' %
L 7" a~ ~0”3 3
P d £ Evpeaz-0-9% 5
S o g 3 5 8 8 g 2
N §F £ 2 S 3%
¢ = £ ® 32
$
Fig. 2 Year-wise and country-wise distribution of the included studies. The numbers at the terminal node show the number of publications in each
country

o 35

Private

Public
Fig. 3 Venn diagram for the number of studies using public vs.
privately collected datasets. Some of the studies (n =7) reported
using both public and private datasets

Evaluation procedure

The number of patients was reported in some studies,
while other studies reported the number of images. The
maximum number of patients for whom the data were
used was 2175 [92]. Two studies reported the use of more
than 100,000 thousand images [23, 106], and one study
reported the use of more than 10,000 images. In 25 stud-
ies, the number of images used was between 1000 and
10,000. In 33 studies, the number of images used was
between 100 and 1000. Other studies either used less
than 100 images or did not include information on the
number of images. In the included studies, 38 reported
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Table 3 Applications of the use of GANs in brain MRI

Applications of studies  No. of studies  Reference of the study

Applications of studies

Synthesis 43 [6-37,39-49]

Segmentation 32 [50-81]

Diagnosis 22 [82-103]

Reconstruction 13 [119- 1311

Super-resolution 10 [104-112,118]

Prediction 7 [132- 138}

Noise removal 5 [113-117]

Prognosis 4 [139- 142}

Image registration 2 [143, 144]

3D synthesis 1 [38]

Purpose of using GANs

Synthesis 45 [6-35, 53-59, 96-100, 120,
132,133]

Segmentation 26 [60-81, 101, 102, 104, 104]

Diagnosis 16 [50-52, 82-93, 106]

Reconstruction 15 [12-123,125-131]

Translation 12 [37,41-49, 95,118, 143]

Super-resolution 7 [38,107-112]

Noise removal 5 [113 117]

Prediction 5 [134-138]

Prognosis 4 [139-142]

Features extraction 1 [39]

Translation 1 [37,41-45,47-49,95, 118,
143]

Anomaly detection 1 [94]

Image registration 1 [144]

splitting the data into independent training and test sets,
while 17 reported splitting the data into training, valida-
tion, and test sets. Many other studies used the k-fold
cross-validation method for evaluation; for example, two-
fold cross-validation was reported in three studies and
sevenfold cross-validation was reported in two studies
(see Table 5). External evaluation by human experts was
reported in seven studies only.

The different metrics used for the evaluation of the
quality of the generated images using GANs were SSIM
(n=53 studies), PSNR (n=49 studies), and FID (n=8
studies). Other metrics for evaluation of performance for
diagnosis, segmentation, or classification were Dice score
used in 31 studies, mean absolute error used in 16 stud-
ies, and mean square error used in 16 studies. Table 6
summarizes the different evaluation metrics used in the
studies.

Focal diseases in the studies
We also identify the diseases that were the focus of the
included studies. In the included studies, 44 studies
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reported their methods for addressing challenges related
to brain tumors, such as tumor segmentation, tumor
classification, or tumor growth prediction. Similarly, 20
studies reported the use of their methods for diagnosis,
prognosis, or analysis of neurodegenerative disorders, for
example, Alzheimer’s disease, autism spectrum disorder
(ASD), multiple sclerosis, and Parkinson’s disease. The
remaining 75 studies did not focus on a particular dis-
ease. A summary of the disease-based categorization of
the studies is given in Table 7.

Discussion

Principal results

In this study, we conducted a scoping review of the use
of GANs in brain MRI data. We found that most of the
studies were published in the years 2020 and 2021, while
very few (only six) were published in 2016 and 2017
combined. This is not surprising as the interest in using
GAN:Ss for medical imaging in general and brain MRI, in
particular, gained momentum only recently. More than
one-third of the studies were published in China (n=53).
The second-largest number of studies were published in
the USA (n=21), although less than half of those pub-
lished in China. In comparison, only seven studies were
published in India and Germany each. The rest of the
countries published less than five studies each.

In almost one-third of the studies, the main applica-
tion of using GANs was the synthesis/generation of data
to achieve data augmentation. However, many studies
also used GANs for the segmentation of tissues of inter-
est, for example, the segmentation of tumors in brain
MRI. Another popular use case of GAN was translating
images from one modality to another or translating from
normal to cancerous images. Furthermore, GANs can
enhance the quality of images and hence were used for
super-resolution of images as reported in seven studies
and noise removal as reported in five studies. Less com-
mon use cases of GANs on brain MRI data were progno-
sis and image registration reported only in 4 studies and
1 study, respectively. While GANs are more popular for
data synthesis, addressing a particular clinical disease is
usually not the focus of using GANs. Nevertheless, some
studies have demonstrated the effectiveness of GANs by
demonstrating the use of the generated data to improve
the diagnosis or prognosis of different diseases.

The term synthesis in this review is used in a broader
sense and covers the synthesis of brain MRI sequences
as well as the synthesis of missing sequences from exist-
ing sequences. The synthesized data were then used to
enhance the diagnosis, such as detecting Alzheimer’s dis-
ease or segmentation of brain tumors.

The cycleGAN architecture that uses two GANs for
generating synthetic data was the most popular choice
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Table 4 Publicly available datasets used in the included studies. Sorting is done on the basis of the number of studies using the

dataset

Dataset name

URL

No. of studies

IDs of studies

Alzheimer's Disease http://adni.loni.usc.edu/ 16 [19,27,42,51,65,69, 73,

Neuroimaging Initiative 84,85, 87,92, 95,96, 139,

(ADNI) 140, 143]

BRATS2018 https://www.med.upenn.edu/sbia/brats2018/data.html 8 [8,10, 11, 22,55, 56,58, 78]

IXI dataset http://brain-development.org/ixi-dataset/ 7 [9,13,86,106, 108,110, 116]

BRATS2016 https://sites.google.com/site/braintumorsegmentation/home/brats_2016 4 [6,7,14,50]

Connectome https://sites.google.com/view/calgary-campinas-dataset/home 3 [36, 123, 128}

BrainWeb https://brainweb.bic.mni.mcgill.ca/ 3 [47,113,116]

Decathlon http://medicaldecathlon.com/ 3 [52, 63, 77]

Figshare https://figshare.com/articles/dataset/brain_tumor_dataset/1512427 3 [35 90, 103]
http://www.developingconnectome.org 3 [10 ,107]

BRATS 2013 https://www.smir.ch/BRATS/Start2013 2 [21 91 ]

BraTS 2015 https://sites.google.com/site/braintumorsegmentation/home/brats2015 2 [16,53]

BraTS 2017 https://www.med.upenn.edu/sbia/brats2017/data.html 2 [71, 98]

HCP https://www.humanconnectome.org/study/hcp-young-adult 2 [12,110]

Cancer Imaging https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageld= 2 [37 83]
24282666

PPMI www.ppmi-info.org/data 2 [39, 97]
http://epipage2.inserm.fr 2 [105,107]

Brats 2014 https://www.virtualskeleton.ch/BRATS/Start2014 1 M4 ]

Brats 2019 https://www.med.upenn.edu/cbica/brats2019/data.html 1 [76]

ISLES http://www.isles-challenge.org/ISLES2015/ 1 [8]

NAMIC dataset http//hdl.handle.net/1926/1687 1 [9]

MIT http://twinsetfusion.csail.mitedu/ 1 [23]

MRIdata http://mridata.org/ 1 [36]

Harvard http://www.med.harvard.edu/aanlib 1 [82]

VIM http://crcns.org/data-sets/vc/vim-1 1 [40]

BIT China https:/isip.bitedu.cn/ 1 [60]

CIND https://cind.ucsf.edu/ 1 [80]

IBSR https://www.nitrc.org/projects/ibsr 1 [113]

Hisub http://www.nitrc.org/projects/mni-hisub25 1 [25]

ATAG https://www.nitrc.org/projects/atag_mri_scans/ 1 [115]

Cabal https://github.com/cabal-cmu/Feedback-Discovery 1 [135]

John Hopkins University  http://iacl.ece jhu.edu/index.php/MSChallenge 1 [125]

CSIRO https://aibl.csiro.au/ 1 [132]

NIFD http://memory.ucsf.edu/research/studies/nifd 1 [6]

GDC https://portal.gdc.cancer.gov/ 1 [98]

UK Data Service https://reshare.ukdataservice.ac.uk/851861/ 1 [102]

NFB http://preprocessed-connectomes-project.org/NFB_skullstripped/ 1 [102]

ISEG2017 https://iseg2017.web.unc.edu/ 1 [113]

OpenNeuro https://openneuro.org/datasets/ds001506 1 [127]

ATLAS dataset http://fcon_1000.projects.nitrc.org/indi/retro/atlas.html 1 [54]

OpenNeuro2 https://openneuro.org/datasets/ds001246/ 1 [122]

The names of the dataset are assigned only for identification purposes and do not follow any specific convention

of architecture in the included studies. Other popu-
lar choices were the Wasserstein GAN and the deep
convolutional GAN. For many studies, the fundamen-
tal changes in the architecture were only minor, or the

details on the changes introduced were insufficient;
it is beyond the scope of this review to analyze all the
architectures.
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https://sites.google.com/view/calgary-campinas-dataset/home
https://brainweb.bic.mni.mcgill.ca/
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Table 5 Evaluation mechanisms used in different studies

Evaluation mechanism Number of studies IDs of studies

Train, validate, test split 17 [6,16,17,22,37,58,59,65,76,81,89,97-99, 106, 121, 126]

Training, test split 38 [10,11,13,14, 20, 24, 33, 35, 36, 40, 45, 47, 50, 52,53, 57, 66, 68, 69, 77, 87,
92,98, 100, 103, 104, 107, 108,110, 112, 115-117,122, 125,127,128, 130]

Twofold cross-validation 3 [9,75,114]

Threefold cross-validation 2 [134,137]

Fourfold cross-validation 2 (56, 70]

Fivefold cross-validation method 12 [7,8,21,25,29,41,46,62,90, 113,120, 129]

Sevenfold cross-validation 2 [79,139]

Tenfold cross-validation 6 [42, 80, 84, 95, 96, 101]

External 7 [31,32,43,45,48,118, 135]

Table 6 Most popular evaluation metrics used in different studies

Evaluation metric Number of studies IDs of studies

SSIM 53 [7-12,15,16,18, 21, 25,27, 36,40, 42,43,45,47,48, 55, 56, 58, 62, 66, 69, 72, 85,
86, 103-110,112,113,115-117,120-123, 125-131]

PSNR 49 [7-11,15-17,21, 25, 36, 38,42, 43,45-48, 53, 55, 56, 58, 62, 66, 72, 85, 86, 97,
WO4 110 112,113,115-118,120, 121,123,124, 128,129, 131]

DSC 31 [9, 20, 29, 45, 50-56, 59-61, 68, 72-77,79-81, 102, 105, 114, 125, 136, 142-144]

Accuracy 22 [6,13,14,19,34, 35,37, 39, 64, 83, 84, 89, 90, 92, 93, 95, 96, 98, 122, 132,135, 139]

MAE 16 [7,17,21,23,29,42,46,53,58,69,85,100, 115, 120, 129, 134]

MSE 16 [11,16,40,45,48,58,72,117,118,122,123,128,130, 131, 142]

Sensitivity 11 [75,76,81,84,92,95,96, 98,99, 142]

Precision 9 [19,26,54,64,75,132,135,138,139]

Recall 9 [19,26, 39, 54,64,132,135,138,139]

F1 score 8 [19,24,64,92,93,135,138,139]

FID 8 [21,22,42,59,109, 130]

Specificity 8 [68, 76, 84,92, 95,98, 142]

The numbers do not sum up as many studies used more than one evaluation metric, while some studies lack details on evaluation metrics

SSIM structural similarity index measure, PSNR peak signal-to-noise ratio, DSC Dice similarity coefficient, MAE mean absolute error, MSE mean square error, FID Frechet
inception distance

Table 7 Focal diseases in the studies

Focal disease Number of IDs of studies
studies (n)
Brain tumor 44 [5,10, 20], [22], 25, 32, 35, 37,44, 50-58, 61-64, 66-69, 71, 74-78, 83, 89, 90, 93,98-101, 107, 133, 136, 142]
Neurodegenerative 20 [19, 26,31, 33,39, 45,84, 85,87,88,91,92,94-97, 132, 137, 139, 140]
disorders
None 75 [7-9,11-18, 21,23, 24, 27-29, 31, 34, 36, 38, 40-43, 46-49, 59, 60, 65, 70, 72, 73, 79-82, 86, 102-106,

108-131, 134,135,138, 141, 143, 144]

While testing the models on individual test sets or
using k-fold cross-validation methods was reported in
most of the studies, external validation of the perfor-
mance is still limited and should be encouraged in future
work.

Research and practical implications

The majority of the included studies reported results
on publicly available datasets. Among these, the BRaTS
dataset and the Alzheimer’s Disease Neuroimaging Ini-
tiative dataset were the most popular datasets among the
researchers. Since these datasets can be accessed pub-
licly, it would be of great help to provide the associated
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computer code/software for the results reported in the
included studies. This would encourage other research-
ers to reproduce the results and build upon the existing
models/methods. However, some studies reported results
on privately collected data. Hence, the opportunity for
external validation of the claims made in the research
studies or building upon those results is limited.

We did not find any framework implemented on
mobile devices in the included studies. The computa-
tional requirements of GANs and the memory resources
for MRI data can be the possible reasons for the limited
transformation of these models to mobile devices. It is
only hoped that future research might enable the imple-
mentation of these methods on mobile devices.

No studies were found on the transformation of these
methods into clinical applications, which shows that their
acceptance for clinical use is still limited. Many stud-
ies claim the value of their methods for use in clinical
tasks; however, they lack reporting of testing for clinical
purposes.

GANs were initially popular for generating synthetic
image data similar to the original data. However, the
perception of realistic-looking is subjective. Further-
more, though some quantitative measures such as peak
signal-to-noise ratio (PSNR) and structural similarity
index measure (SSIM) are reported in many included
studies, these metrics are principally borrowed from the
computer vision literature. Hence, how efficiently these
metrics quantify the complex physiological information
within the MRI images data is not well understood. Thus,
there is a dire need to develop uniform methods to evalu-
ate the performance of GANs on how well they capture
complex features within MRI image data.

As used in many of the studies, the publicly available
data for MRI are primarily from developed economies.
However, there is a lack of medical imaging data from
developing economies. Hence, computer models for
diagnosis trained on such data may not necessarily gen-
eralize well for a population of different geoeconomics
characteristics due to a lack of representation in the data.
Including MRI data from diverse locations is needed and
will help develop better AI methods for clinical applica-
tions such as diagnosis, prognosis, and tumor detection
in brain MRI.

Strengths and limitations

Strengths

While many reviews have been published on the appli-
cations of GANs in medical imaging, to the best of our
knowledge, this is the first review on the applications of
GANSs in brain MRI images. This review includes all the
studies that used GANSs for brain MRI; hence, this is the
most comprehensive review on the topic. This review
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helps the readers to know the potential of the GANs
for the synthesis of brain MRI data and the potential to
improve the diagnosis and segmentation of brain tumors
within brain MRI. Unlike reviews as [1-3] that covered
a broad scope of different deep learning methods, this
review focuses specifically on the applications of GANs
in brain MRIL

In this review, we followed the scientific review guide-
lines of the PRISMA-ScR [4]. In addition, we covered
the major databases in health sciences, engineering, and
technology fields to identify as many as possible pub-
lished studies. Hence, the number of studies included in
this review is high. We devised a strategy to avoid bias
in study selection by employing two independent review-
ers for study selection and data extraction and a third
reviewer to validate the screening and the data extrac-
tion. This review provides a comprehensive list of the
publicly accessible datasets for brain MRI. Hence, it can
be considered a rich resource for the readers to identify
valuable datasets of brain MRI.

Limitations

In this review, we included studies from five major data-
bases. So, some studies might have been left out if they
were not covered in the included databases. In addition,
due to practical limitations, the review only consists of
studies published in English. Hence, relevant studies pub-
lished in other languages might have been left out. This
review lists the studies into major applications such as
synthesis, segmentation, diagnosis, super-resolution, and
noise removal. The definition of some applications may
overlap partly with others; for example, super-resolution
may be considered as a sub-category of synthesis, and the
categorization of super-resolution studies as synthesis
studies will then increase the number of the studies in the
synthesis category. However, we believe that the catego-
rization in this review will better reflect the notion of the
applications. We did not perform validation and assess-
ment of the claims on the diagnosis of a brain tumor
or the quality of the synthesized MRI data, as this was
beyond the scope of this review.

Conclusion

In this scoping review, we included 139 studies that
reported the use of GANSs for brain MRI data. We iden-
tified the most common applications of GANs. We also
identified the most commonly used datasets publicly
available for brain MRI. We also summarized the most
common architectures of GANs and the evaluation met-
rics that are widely adopted to evaluate the performance
of GANs in brain MRI. It will be most rewarding if these
studies find their way into clinical transformations. To
achieve this, we remark that encouraging the availability
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of the software and codes for these studies will facili-
tate the reproducibility of the results. Eventually, more
research progress will be possible. In addition, the need
to bridge the gap between the computer scientists and
clinicians is widely felt as the input and feedback of clini-
cians and radiologists is vital for the research outcomes
to find their way into clinical uses. Similarly, there is a
need to follow standardized comparison protocols for the
different architectures of GANs used for brain MRI.
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