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A B S T R A C T   

Metaheuristics are popularly used in various fields, and they have attracted much attention in the scientific and 
industrial communities. In recent years, the number of new metaheuristic names has been continuously growing. 
Generally, the inventors attribute the novelties of these new algorithms to inspirations from either biology, 
human behaviors, physics, or other phenomena. In addition, these new algorithms, compared against basic 
versions of other metaheuristics using classical benchmark problems, show competitive performances. However, 
many new metaheuristics are not rigorously tested on challenging benchmark suites and are not compared with 
state-of-the-art metaheuristic variants. Therefore, in this study, we exhaustively tabulate more than 500 meta
heuristics. In particular, several representative metaheuristics are introduced from two aspects, namely, the 
inspirational source and the essential operators for generating solutions. To comparatively evaluate the per
formance of the state-of-the-art and newly proposed metaheuristics, 11 newly proposed metaheuristics (generally 
with high numbers of citations) and 4 state-of-the-art metaheuristics are comprehensively compared on the 
CEC2017 benchmark suite. For fair comparisons, a parameter tuning tool named irace is used to automatically 
configure the parameters of all 15 algorithms. In addition, whether these algorithms have a search bias to the 
origin (i.e., the center of the search space) is investigated. All the experimental results are analyzed by several 
nonparametric statistical methods, including the Bayesian rank-sum test, Friedman test, Wilcoxon signed-rank 
test, critical difference plot and Bayesian signed-rank test. Moreover, the convergence, diversity, and the 
trade-off between exploration and exploitation of these 15 algorithms are also analyzed. The results show that 
the performance of the newly proposed EBCM algorithm performs similarly to the 4 compared algorithms and 
has the same properties and behaviors, such as convergence, diversity, exploration and exploitation trade-offs, in 
many aspects. However, the other 10 recent metaheuristics are less efficient and robust than the 4 state-of-the-art 
metaheuristics. The performance of all 15 of the algorithms is likely to deteriorate due to certain transformations, 
while the 4 state-of-the-art metaheuristics are less affected by transformations such as the shifting of the global 
optimal point away from the center of the search space. It should be noted that, except EBCM, the other 10 new 
algorithms are inferior to the 4 state-of-the-art algorithms in terms of convergence speed and global search ability 
on CEC 2017 functions. Moreover, the other 10 new algorithms are rougher (i.e., present in their behavior with 
high oscillations) in terms of the trade-off between exploitation and exploration and population diversity 
compared with the 4 state-of-the-art algorithms. Finally, several important issues relevant to the metaheuristic 
research area are discussed and some potential research directions are suggested.   

1. Introduction 

Optimization algorithms play an important role in the economy, 
engineering, management, and medicine because many real-world 

problems can be modeled as optimization problems. Optimization al
gorithms attempt to reach the optimal objective values (i.e., minimum 
or maximum) and satisfy the related constraints. Very complex problems 
are highly constrained, multimodal, discontinuous, noisy and of high 
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dimension, all of which can make the traditional exact algorithms (e.g., 
mathematical programming) ineffective. 

As an alternative method, approximate algorithms have attracted 
much attention in recent decades. Approximate algorithms can be 
roughly divided into heuristic algorithms and metaheuristic algorithms. 
Heuristic algorithms generally need to be elaborately designed for spe
cific optimization problems and may have weak flexibility in solving 
other types of problems. In contrast, metaheuristics provide a general 
optimization framework for solving various optimization problems and 
benefit from the randomness embedded into the operators, which makes 
it possible to find a satisfactory, or near-optimal solution, in a reasonable 
time, however, they cannot guarantee the optimum solution for complex 
problems [1]. The merits of simplicity, less problem dependence, flexi
bility, derivative-free mechanism, and local optima avoidance make 
metaheuristics user-friendly [2]. 

Metaheuristics can be defined as high-level methodologies that 
embody the underlying heuristics to solve optimization problems [3]. 
The term metaheuristic was first proposed by Glover in 1986 [4], and 
most modern nature-inspired algorithms can be considered meta
heuristics [5]. The concept of nature-inspired is about creating algo
rithms by mimicking natural phenomena or biological behaviors to solve 
optimization problems. For example, simulated annealing (SA) [6] is 
inspired by the idea of the solid annealing principle. Particle swarm 
optimization (PSO) [7] is derived from the interaction behaviors of birds 
in the flock. Ant colony optimization (ACO) [8] mimics the behaviors of 
ants in finding the shortest path between a nest and a food source. The 
classification criteria of metaheuristics can be varied. For instance, ac
cording to the number of candidate solutions at each iteration, meta
heuristics can be further divided into population-solution based 
metaheuristics and single-solution based metaheuristics [9]. Popular 
single-solution based metaheuristics include SA, tabu search (TS) [4], 
iterated local search (ITS) [10], guided local search (GLS) [11], random 
search (RS) [12], variable neighborhood search (VNS) [13], and large 
neighborhood search (LNS) [14]. Population-solution based meta
heuristics include the genetic algorithm (GA) [15], differential evolution 
(DE) [16], pattern search (PS) [17], and others. 

There are still some issues in the field of metaheuristics. With the 
increase in the number of recent metaheuristics, the necessity of irra
tionally introducing new metaheuristic algorithms is questioned [18]. 
Molina et al. [19] found that there is no necessary significant relation
ship between the inspiration sources of algorithms and their perfor
mance. However, some researchers expect to improve the performance 
of metaheuristics through the inspiration source, which is still 
misleading. There is no work that comprehensively evaluates and 
compares the efficiency and effectiveness of the newly proposed and the 
state-of-the-art metaheuristics [20,21]. Furthermore, some algorithms 
perform well on problems with the optimal solution located at the origin 
(i.e., center of the search space) but are less efficient when the optimal 
solutions are shifted [22–24]. This issue may affect the fair evaluation of 
the algorithms. 

Motivated by the issues mentioned above, in this paper, we first 
summarize and analyze the related metaheuristics studies. Then, 
extensive experiments are conducted by using representative bench
mark functions, to fairly evaluate and understand the performances and 
characteristics of the state-of-the-art and the recent metaheuristics with 
a unified parameter tuning method. Furthermore, we test whether the 
algorithms have a search bias to the origin. Therefore, the main research 
contributions of our paper are outlined as follows:  

• More than 500 metaheuristics are collected and a taxonomy of the 
metaheuristics is proposed. In particular, several representative al
gorithms are introduced from two aspects, including the inspiration 
sources and the essential operators for generating solutions.  

• We perform extensive experiments to evaluate and understand the 
performances of the state-of-the-art and the recent metaheuristics. 
Eleven representative metaheuristics with new names (generally 

with high numbers of citations) and 4 state-of-the-art metaheuristics 
are selected to be comprehensively compared on the CEC2017 
benchmark suite. In addition, whether these algorithms have a 
search bias to the origin is investigated. For fair comparisons, a 
unified framework named irace is used to tune the parameters of all 
the comparative algorithms.  

• We use multiple nonparametric statistical methods to analyze the 
experimental results in depth. The statistical results show that the 
newly proposed EBCM algorithm performs similarly to the 4 
compared algorithms and has the same properties and behaviors, 
such as convergence, diversity, exploration and exploitation trade- 
offs, in many aspects. However, the other 10 recent metaheuristics 
are less efficient and robust than the 4 state-of-the-art meta
heuristics. All 15 algorithms show certain degrees of search bias 
toward the origin, but the 4 state-of-the-art metaheuristics are less 
affected by the shift operator on the functions. Furthermore, we find 
that the other 10 new algorithms (i.e., except for EBCM) are inferior 
to the 4 state-of-the-art algorithms in terms of convergence speed 
and global search ability on most of the CEC2017 functions. The 
other 10 new algorithms show a rougher trade-off and diversity 
compared with the 4 state-of-the-art algorithms. Finally, several 
important issues that should be considered in the metaheuristic 
research area are discussed and some potential research directions 
are suggested. 

The paper is organized as follows: Section 2 presents a taxonomy of 
the metaheuristics and some representative metaheuristics are further 
introduced and investigated by explaining the inspiration sources and 
the essential operators for generating solutions. Extensive experiments 
are conducted to evaluate the performance of the 15 comparative al
gorithms in Section 3, and some properties of these algorithms are 
further studied, including convergence, diversity, and the exploration 
and exploitation trade-offs. Section 4 engages with some metaheuristics 
research issues and suggests several potential research directions. Sec
tion 5 draws the conclusion. 

2. Literature overviews 

In the last few decades, not only various improved versions of met
aheuristics, but also many metaheuristics with new names mimicking 
the behaviors of humans, animals and plants, and the phenomena of 
physics and chemistry have been proposed. We selected some of the 
popular metaheuristics (i.e., 47 metaheuristics) to search for publica
tions of these algorithms in the Web of Science updates to November 
2021. Fig. 1 shows that the number of publications for DE, PSO, SA, 
ACO, and the artificial immune system all exceeded 10,000. It can be 
observed that many newly proposed metaheuristics have also received 
many citations and substantial attention. Therefore, metaheuristics are 
still among the hot research topics and it is expected that the number of 
publications of new metaheuristics and state-of-the-art metaheuristics 
will continue to increase in the future. Table 71 summarizes more than 
500 metaheuristics, in which “B#” corresponds to reference [#] in 
Appendix B of the related supplemental material. For details on the full 
list of metaheuristics, please refer to the supplementary materials. 

2.1. Taxonomy of metaheuristics 

There are various taxonomy methods for metaheuristics in the 
literature, and the most popular taxonomy is based on the source of 
inspiration [19,20,25]. Fig. 2 illustrates a rough metaheuristics classi
fication, in which the metaheuristics are divided into population-based 

1 If a metaheuristic algorithm is not included in Table 7, please inform the 
authors. Table 7 will be updated online at: https://github.com/P-N-Suganth 
an/MHA-500Plus 
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optimization algorithms (POAs) and single-solution based optimization 
algorithms (SOAs) according to the number of solutions generated in 
each iteration. SOAs generally require only one individual to search the 
solution space. In contrast, POAs contain multiple individuals that 
search the solution space cooperatively and globally with some opera
tors and mechanisms, such as mutation, crossover, selection, informa
tion sharing, and search behavior learning. 

We mainly focus on the POAs in this paper. Compared with SOAs, the 
most important characteristics of POAs are three-fold [1]. First, multiple 
points (i.e., solutions or individuals) are employed to search the solution 
space cooperatively. Second, mechanisms for information sharing and 
interactive learning among the individuals are adopted. Third, POAs are 
stochastic, as randomness is usually incorporated into search operators 
such as mutation and crossover. In Fig. 2, the POAs can be further 
roughly divided into evolutionary algorithms (EAs), swarm intelligence 
algorithms (SIAs) and physics or chemistry-based algorithms (P/CBAs). 

2.1.1. Evolutionary algorithms 
EAs are inspired by Darwinian evolutionary theory and mimic the 

behavior of evolution in nature, such as recombination, mutation, and 
selection [26], which fully embodies the idea of survival of the fittest. 
The first computer simulation of evolution can be traced back to 1954 by 
the work of Barricelli [27] but his publication did not attract widespread 
attention [28]. Until the 1960s and early 1970s, optimization methods 
could be designed via artificial simulated evolution after the use of 
evolutionary strategies (ES) to solve complex engineering problems in 
Rechenberg’s work [29,30]. Currently, many variants of ES have been 
proposed in the literature, such as (1+1)-ES, (μ+1)-ES, (μ+λ)-ES, and (μ, 
λ)-ES [31]. In 1960, evolutionary programming (EP) was first proposed 
by Fogel to achieve artificial intelligence [32,33]. Originally EP used 
finite state machines as predictors to predict environments. Currently, 
EP is a popular evolutionary algorithm and has many different versions 
including FEP (Fast EP) [34], AEP (Adaptive EP) [35], RLEP 

Fig. 1. The number of publications about some popular metaheuristics.  

Fig. 2. A classification of metaheuristics.  
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(Evolutionary Programming based on Reinforcement Learning) [36], 
and ENAEP (Ensemble algorithm of Gaussian and Cauchy mutation 
operators using AEP) [37]. In the early 1970s, genetic algorithms 
became popular through the work of Holland [15], and their perfor
mance mainly depended on the efficient encoding and decoding of the 
solution, appropriate parameter configuration and operators, including 
crossover, mutation and selection. GA and its variants are popular in a 
wide range of fields, such as planning [38] and scheduling [39], bio
logical [40] and chemical [41] engineering, and data mining [42]. Later, 
genetic programming (GP) appeared and gradually became popular 
starting from the early 1990s. The variants of GP include MGP (multi
gene genetic programming) [43], and GGP (grammatical genetic pro
gramming) [44]. Subsequently, differential evolution introduced by 
Storn and Price in 1995 [16,45], emerged as a very competitive evolu
tionary algorithm, especially in dealing with continuous optimization 
problems. There are many powerful and efficient variants of DE pro
posed in the literature, such as MPEDE [46] (multi-population ensemble 
DE), EDEV [47] (ensemble of multiple DE variants), SaDE [48] (with 
adapted mutation strategies and parameters), jDE [49] (with 
self-adapted parameters) and CoDE [50] (composition of multiple stra
tegies and parameter settings). 

2.1.2. Swarm intelligence algorithms 
SIAs mimic the behaviors of animals, plants, and human groups in 

nature to optimize problems. Decentralized control and self- 
organization are two important features of SIAs [51], which can be 
understood as a group of individuals achieving common goals through 
cooperation. In other words, each individual of the swarm has its own 
intelligence and behaviors, and the integration of multiple individuals 
has more power to solve complex problems [52]. Particularly, the 
following advantages of SIAs make them user-friendly optimizers [53]: 
1) The general framework can be applied to various fields with only a 
few modifications; 2) The information of the solution space and search 
states is reserved and used to guide the search during the optimization 
process; 3) Relatively fewer parameters make SIAs require less tuning 
effort to cater to different optimization problems. However, there still 
exist some critical issues that have not been well addressed in SIAs, such 
as premature convergence, being stuck in a local optimum, and lack of 
good trade-offs between exploitation and exploration [54]. Compared 
with EAs, SIAs do not have crossovers, while evolutionary algorithms 
usually have crossovers. SIAs do not include competitive selections, but 
EAs usually have selections. In addition, SIAs can be hybridized with EAs 
to include crossovers/selections. SIAs can be further categorized into 
human-related algorithms and nonhuman algorithms according to the 
inspiration source.  

(1) Human-related algorithms 

Human-related algorithms (HRAs) are inspired by the behaviors of 
humans in society, such as learning, competition, political campaigns, 
and cultural influence [55]. For example, inspired by the behavior of 
human learning, the teaching-learning-based optimization (TLBO) al
gorithm works on the effect of a teacher on learners [56]. The 
gaining-sharing knowledge-based algorithm (GSK) simulates the process 
of obtaining and sharing knowledge during the human lifespan [52]. 
The group teaching optimization algorithm (GTOA) mimics the mech
anism of group teaching [57]. In terms of society competition, the soccer 
league competition algorithm (SLCA) is inspired by teams competing 
during a season in a soccer league [58] and the imperialist competitive 
algorithm (ICA) simulates the competition among imperialists [59]. 
Inspired by political campaigns, Askari et al. [5] conducted a compre
hensive analysis of political mechanisms and proposed a new algorithm 
called the political optimizer (PO). In addition, the greedy reedy politics 
optimization (GPO) [60] and the parliamentary optimization algorithm 
(POA) [61] are also inspired by political mechanisms. There are many 
algorithms inspired by other human society inspiration sources, such as 

the poor and rich optimization algorithm (PRO) [62], human urbani
zation algorithm (HUS) [63], life choice-based optimizer (LCBO) [64] 
and queuing search algorithm (QS) [65].  

(2) Nonhuman algorithms 

Nonhuman algorithms (NHAs) include animal-based algorithms 
(AAs) and plant-based algorithms (PAs). AAs are inspired by the 
behavior of different animals, such as foraging, flocking, mating, and 
other behaviors [66]. For example, PSO is inspired by the behavior of a 
flock of birds or a school of fish, in which each particle can move 
throughout the solution space and update its current position in terms of 
a current best solution and a global best solution [53]. An artificial bee 
colony (ABC) is a metaheuristic based on the intelligent behavior of a 
honey bee swarm. The bee colony consists of three types of bees, 
employed bees, onlooker bees, and scout bees, and the search phases can 
be divided into search, recruit, and abandon [67]. The bat algorithm 
(BA) [68] and cuckoo search (CS) [69] are inspired by the echolocation 
behavior of bats and the brood parasitism of some cuckoo species, 
respectively. Other popular AAs include the firefly algorithm (FA) [70], 
gray wolf optimizer (GWO) [71] and grasshopper optimization algo
rithm (GOA) [72]. PAs are inspired by plant behavior such as growth, 
root expansion, weed invasion and flower pollinatio [65,73]. For 
instance, the invasive weed optimization (IWO) algorithm [74] mimics 
the process of weed invasion, and the flower-pollinating algorithm 
(FPA) [75] simulates the characteristics of flower pollination. 

2.1.3. Physics/chemistry-based algorithms 
P/CBAs are mostly created by imitating the physical and chemical 

law phenomena in nature, including electromagnetic force, inertia force, 
gravity, electrical charges, river systems, movement, chemical changes 
of material, and others [73,76–79]. For instance, the gravitational 
search algorithm (GSA) [80] is inspired by the law of gravity and mass 
interactions, where the search individuals are a collection of masses. 
According to the concepts of the white hole, black hole and wormhole in 
cosmology, multi-verse optimization (MVO) [81] has been designed to 
solve complex problems. In MVO, white holes and black holes are 
correlated with explorations, and wormholes are responsible for sharing 
and exploiting the information of the solution space. In addition, har
mony search (HS) [82] mimics the behavior of an orchestra to create the 
most harmonious melody and measure it by aesthetic standards. 
Detailed information about HS is described in the literature [83]. Other 
typical P/CBAs include water evaporation optimization (WEO) [84], 
transient search optimization (TSO) [85], chemical reaction optimiza
tion (CRO) [86], and charged system search (CSS) [87]. 

2.2. Optimization mechanisms of metaheuristics 

In this section, the optimization frameworks of single-solution based 
and population-based metaheuristics are presented. After that, several 
representative metaheuristics are reviewed from two different aspects, 
the inspiration sources and the essential operators for generating 
solutions. 

2.2.1. Optimization framework of metaheuristics 
As Algorithm 1 [88,89] shows, typical single-solution based meta

heuristics start from a single initial solution. It iteratively performs a 
generation and selection procedure for a single solution until a termi
nation condition is met; then, a best-so-far solution will be returned. In 
each iteration, a candidate solution set, C(st), is generated based on the 
incumbent solution, st, in the generation procedure. In the selection 
phase, a selection operation is performed on the set C(st) to choose a new 
solution st+1 to replace the current solution. 

Population-based metaheuristics begin with an initial population 
solution P0, as shown in Algorithm 2 [88,90]. Afterward, the generation 
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and selection are iteratively executed to generate a new population P′

t, 
and selects promising individuals to form a new population Pt+1 to 
replace the current population. Finally, the best-so-far solution, P∗, is 
returned when a given stopping criterion is met. Moreover, the historical 
information can be memorized in Algorithm 1 and Algorithm 2 to better 
generate candidate solutions and to select promising solutions. 

Regardless of the kinds of optimization frameworks and classifica
tion criteria used, exploration and exploitation play crucial roles in 
improving the performance of metaheuristics [47,91,92]. Exploration 
refers to the ability to globally search the solution space and find a 
promising region, which is associated with escaping from the local op
timum and avoiding a premature convergence (i.e., increasing popula
tion diversity). Exploitation denotes the capability of locally searching 
the promising region found by the exploration operators. The 
well-known trade-off between exploration and exploitation is critical. In 
regards to the trade-offs of the exploration and exploitation of meta
heuristics, Morales-Castañeda et al. [93] and Črepinšek et al.[94] con
ducted an in-depth investigation. 

2.2.2. Introduction of representative metaheuristics 
In this section, several representative state-of-the-art and new met

aheuristics are reviewed from two aspects: (1) the inspiration source for 
proposing the algorithm, and (2) the essential operators for generating 
solutions in each algorithm. These representative metaheuristics include 
some popular and competitive algorithms and the recently proposed 
algorithms.  

(1) Differential Evolution (DE) [16] 

DE is a competitive metaheuristic inspired by the principle of sur
vival of the fittest. In DE, the population evolves through mutation, 
crossover, and selection in each generation, and the most frequently 
used mutation operator of DE is called DE/rand/1, which can be 
formulated as 

v→i,G = x→ri
1 ,G

+ F⋅

(

x→ri
2 ,G

− x→ri
3 ,G

)

(1)  

where v→i,G is the mutation vector, x→ri
1 ,G

, x→ri
2 ,G

, and x→ri
3 ,G are three 

randomly generated distinct vectors, and F is a mutation factor among [0,
1]. 

The other popular mutation schemes are summarized as follows [95, 
96]: 

DE

/

best

/

1 : v→i,G = x→best,G + F⋅

(

x→ri
1 ,G

− x→ri
2 ,G

)

(2)  

DE

/

best

/

2 : v→i,G = x→best,G + F⋅

(

x→ri
1 ,G

− x→ri
2 ,G

)

+ F⋅

(

x→ri
3 ,G

− x→ri
4 ,G

)

(3)  

DE

/

rand

/

2 : v→i,G = x→ri
1 ,G

+ F⋅

(

x→ri
2 ,G

− x→ri
3 ,G

)

+ F⋅

(

x→ri
4 ,G

− x→ri
5 ,G

)

(4)  

DE

/

target − to − best

/

1 : v→i,G

= x→i,G + F⋅
(

x→best,G − x→i,G

)

+ F⋅

(

x→ri
1 ,G

− x→ri
2 ,G

)

(5)  

DE

/

current − to − rand

/

1 : v→i,G

= x→i,G + F⋅

(

x→ri
1 ,G

− x→i,G

)

+ F⋅

(

x→ri
2 ,G

− x→ri
3 ,G

)

(6)  

where x→ri
1 ,G

, x→ri
2 ,G

, x→ri
3 ,G

, x→ri
4 ,G

, and x→ri
5 ,G are mutually different vec

tors, which are randomly chosen from the population at generation G. 
x→i,G is the target vector at generation G. x→best,G is the vector with the 
best fitness in the population at generation G. F is the scaling factor 
within [0,1]. 

Two widely used crossover methods in DE are the binomial crossover 
and exponential crossover, and their formulas are shown as follows [97, 
98]. 

Binomial crossover: 

ui,j,G= {
vi,j,G if randi(0, 1) ≤ CR or j = jrand
xi,j,G otherwise (7)  

Exponential crossover: 

ui,j,G= {
vi,j,G for j = 〈l〉D, 〈l + 1〉D,…, 〈l + L − 1〉D
xi,j,G otherwise (8)  

where ui,j,G, xi,j,G, and vi,j,G are the j-th components of vectors u→i,G, x→i,G, 
and v→i,G, respectively, i = {1,2,…,NP}, and j = {1,2,…,D}. jrand is an 
integer, that is randomly generated in the range of [1,D]. randi(0,1) is a 
number randomly generated from a uniform distribution in the range of 
[0,1]. The notation < >D denotes the modulo function with modulus D 
and L is an integer number ranging in [1,D]. 

The selection operation can be completed by comparing the fitness 
values of the target vector and the trial vector that determines which 
vectors can survive to the next generation. 

x→i,G+1= {
u→i,G if f

(

u→i,G

)

≤ f
(

x→i,G

)

x→i,G otherwise
(9)  

where x→i,G+1 and x→i,G are target vectors at the generations G and G+ 1, 
respectively, u→i,G+1 is the trial vector at generation G and f(∗) is the 
objective function considered. 

There exist many variants of DE in the literature. Some variants show 
competitive performance in solving complex problems. For example, 
LSHADE-cnEpSin [99] combines a sinusoidal approach based on per
formance adaptation and a covariance matrix learning method for the 
crossover operator into LSHADE-EpSin, which achieved a competitive 
performance at the 2017 IEEE CEC. Mohamed et al. [100] proposed a 
new version of DE named LSHADE-SPACMA by integrating 
LSHADE-SPA and a modified version of CMA-ES. Furthermore, 
Mohamed et al. [97] proposed two new DE variants named EDE and 
EBDE, where EDE had a less greedy mutation strategy named 
DE/current-to-ord_best/1, and EBDE introduced a more greedy muta
tion strategy named DE/current-to-ord_pbest/1. We named this newly 
proposed algorithm EDE-EBDE in our paper. MPEDE [46] and EDEV 
[47] are two powerful variants proposed by Wu. In MPEDE [46], three 
mutation strategies simultaneously coexisted, i.e., “current-to-pbest/1” 
and “current-to-rand/1” and “rand/1”. EDEV [47] consists of three 
highly popular and efficient DE variants, namely JADE, CoDE, and 
EPSDE. The entire population of EDEV is partitioned into four sub
populations to coevolve to obtain better results. In the latest research, 
Ghosh et al. [101] combined SHADE and LSHADE with the nearest 
spatial neighborhood-based parameter adaptive process modification 
method to propose NSHADE and NLSHADE. 
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(2) Hybrid sampling evolution strategy (HSES) [102] 

HSES is a new version of ES that combines the covariance matrix 
adaptation-evolution strategy (CMA-ES) and the univariate sampling 
method, it achieved the best performance at the 2018 IEEE CEC. In the 
HSES, the CMA-ES is mainly used for unimodal problems and the uni
variate sampling method is used for multimodal nonseparable problems. 
In particular, the method for calculating the mean value and the stan
dard deviation of UMDAc (i.e., univariate marginal distribution algo
rithm continuous) is modified in the HSES. For detailed information 
about the HSES, please refer to [102].  

(3) EBOwithCMAR [103] 

EBOwithCMAR (Effective Butterfly Optimizer with Covariance Ma
trix Adapted Retreat Phase) is an improved variant of the butterfly 
optimizer, which combines a self-adaptive butterfly optimizer and a 
covariance matrix adapted retreat phase. The solution modification Eq.s 
are shown as follows. 

Criss − cross modification : vz = x1ccz + F ∗
(

x1r1z − (X1 ∪ X2)r2z

)
(10)  

Toward − best modification : vz = x1bestz + F ∗
(

x1ccz − (X1 ∪ X2)r2z

)
(11)  

where vz is a new vector, and x1ccz , x1r1z and (X1 ∪ X2)r2z 
are three 

distinct individual vectors. x1bestz is the best neighbor of the z-th vector. F 
is a positive real number that controls the population evolution 
rate. X1 ∪ X2 is the combination of both populations. In particular, the 
crossover operator of EBOwithCMAR is based on the Eq. (9).  

(4) Snap-drift cuckoo search (SDCS) [104] 

SDCS is a new version of CS [69] proposed by Rakhshani, that in
tegrates the snap and drift modes into CS to establish the trade-off be
tween exploration and exploitation. Moreover, a pair of new crossover 
and mutation operators are employed to improve the search capability. 
The updated rules of the SDCS are shown below. 

Snap and drift modes: pa =

{
max(0, pm − ω) if μ = snap

min(1, pm + ω) if μ = drift
(12)  

Crossover operator: xt+1
i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xt
i +a0 ⊗

(
xt

j ⊗Lévy(β) − xt
i

)
if p< J

xt
i +a0 ⊗

(
xt

j − xt
i ⊗Lévy(β)

)
if J ≤ p≤ 1 − J

xt
i +a0 ⊗

(
xt

j − xt
i

)
⊗Lévy(β) if p≥ 1 − J

(13)  

Mutation operator: xt+1
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xt
i +H(pa − ε)⊗

(
xt

j ⊗ r − xt
i

)
if p< J

xt
i +H(pa − ε)⊗

(
xt

j − xt
i ⊗ r

)
if J ≤ p≤ 1 − J

xt
i +H(pa − ε)⊗

(
xt

j − xt
i

)
if p≥ 1 − J

(14)  

where pa is known as a switching parameter [105], which is applied to 
trade-off the snap mode and drift mode. pm is the performance measure, 
and ω is the increase (or decrease) rate of pa. μ is an auxiliary parameter 
that equals snap if 0 ≤ pm ≤ 0.5; otherwise, μ = drift. xt

i and xt
j are two 

mutually different positions at time t, and xt+1
i is the i-th position at time 

t+ 1. a0 and β are the Lévy flight exponent and step size scaling factor, 
respectively. H refers to the Heaviside step function. r, p, and ε are three 
randomly generated numbers with uniform distributions, and J ∈ [0, 1]
is a possibility value. The notation ⊗ indicates entrywise 

multiplications.  

(5) Multi-strategy enhanced sine cosine algorithm (MSCA) [106] 

MSCA is an improved version of SCA [107], which is based on sine 
and cosine functions and randomly generates multiple initial individuals 
to fluctuate outward or toward the best solution. In MSCA, multiple 
control mechanisms and operators are embedded into SCA, including 
the Cauchy mutation operator, chaotic local search mechanism, and 
opposition-based learning strategy, and two differential evolution op
erators are used to achieve a better trade-off between exploration and 
exploitation. The position update Eq.s of MSCA are the same as those of 
SCA and can be expressed as follows. 

Xt+1
i = {

Xt
i + r1 × sin(r2) ×

⃒
⃒r3Pt

i − Xt
i

⃒
⃒ r4 < 0.5

Xt
i + r1 × cos(r2) ×

⃒
⃒r3Pt

i − Xt
i

⃒
⃒ r4 ≥ 0.5

(15)  

r1 = a − t
a
T

(16)  

where Xt
i is the position of the current solution in the i-th dimension at 

the t-th iteration, and Pt
i is the position of the destination point in the i-th 

dimension at the t-th iteration. r1 is a random variable that is calculated 
by Eq. (16), which is a constant, t is the current iteration, and T is the 
maximum number of iterations. r2 is a random variable responsible for 
the movement (i.e., toward or outward Pt

i) of the next solution (i.e., 
Xt+1

i ). r3 is a random variable that gives random weights for Pt
i . r4 is a 

random number within [0,1]. For detailed information on the mecha
nisms and operators adopted in MSCA please refer to [106].  

(6) Improved moth-flame optimization algorithm (IMFO) [108] 

IMFO is a newly improved algorithm that introduces a hybrid phase, 
dynamic crossover mechanism, and fitness-dependent weight factor into 
MFO [109] to overcome the degeneration of the global search capability 
and convergence speed. The main inspiration of IMFO is also the navi
gation behavior of moths in nature, which is referred to as a transverse 
orientation. The position update Eq.s of moths in IMFO are shown as 
follows. 

w =

⃒
⃒
⃒
⃒
⃒

f (Mbest)

f
(
Mk

i
)

⃒
⃒
⃒
⃒
⃒

(17)  

Mk
i = Dk− 1

i ebtcos(2πt) + w⋅Fk− 1
i + (1 − w)⋅Mbest (18)  

where w is a weight factor that depends on fitness, f(Mbest) is the fitness 
value of the best solution Mbest and f(Mk

i ) represents the fitness values of 
the i-th moth at iteration k. Mk

i and Fk− 1
i are the positions of the i-th moth 

and the j-th flame at iterations k and k − 1, respectively. Dk− 1
i is the 

distance between the i-th moth and the j-th flame at iteration k − 1, b is a 
constant used to define the shape of the logarithmic spiral and t is a 
random number within [-1,1].  

(7) Aquila optimizer (AO) [110] 

AO is inspired by Aquila’s behavior in nature during the process of 
catching prey. The optimization procedures of the proposed AO algo
rithm are represented in four methods, selecting the search space by a 
high soar with a vertical stoop, exploring within a divergent search 
space by a contour flight with a short glide attack, exploiting within a 
convergent search space by a low flight with a slow descent attack, and 
swooping by walking and grabbing the prey. In AO, the different steps 
(four methods) have different mathematical expressions for solution 
position updating and are shown as follows. 
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Step 1 : X1(t+ 1) = Xbest(t) ×
(

1 −
t
T

)
+ (XM(t) − Xbest(t) ∗ rand) (19)  

Step 2 : X2(t+ 1) = Xbest(t) × Levy(D) + XR(t) + (y − x) ∗ rand (20)  

Step 3 : X3(t+ 1)

= (Xbest(t) − XM(t)) × α − rand + (UB − LB) × rand+ LB) × δ
(21)  

Step 4 : X4(t+ 1)

= QF × Xbest(t) − (G1 ×X(t)× rand) − G2 × Levy(D) + rand × G1

(22)  

where Xi(t+1) is the solution of the next iteration of t, which is gener
ated by each search method (XI) and i = 1, 2, 3, 4. Xbest(t) is the best- 
obtained solution until the tth iteration, XM(t) denotes the location 
mean value of the current solutions at the tth iteration, Levy(D) is the levy 
flight distribution function, XR(t) is a random solution taken in the range 
of [1,N] at the tth iteration, y = r × cos(θ) and x = r × sin(θ) are used to 
present the spiral shape in the search and α and δ are the exploitation 
adjustment parameters fixed at 0.1. LB and UB are the lower bound and 
upper bound of the given problem, respectively. QF denotes a quality 
function used to establish the equilibrium of the search strategies, G1 
denotes various motions of the AO, G2 denotes the flight slope of the AO 
that is used to follow the prey during the slope from the first location (1)
to the last location (t), rand is a random value between 0 and 1, and t and 
T represent the current iteration and the maximum number of iterations, 
respectively. For detailed parameter information calculations and the 
AO, please refer to [110].  

(8) Improved grasshopper optimization algorithm (IGOA) [111] 

The grasshopper optimization algorithm (GOA) [71] is a recently 
proposed metaheuristic algorithm that is inspired by the swarming 
behavior of grasshoppers. IGOA improves GOA through the integration 
of multiple mechanisms including Gaussian mutation, Levy-flight 
strategy and opposition-based learning. The improvement method in 
IGOA is similar to that of the MSCA. The mathematical expression of the 
solution position update is as follows. 

Xd
i = c

⎛

⎜
⎜
⎜
⎜
⎝

∑N

j=1

j∕=i

c
ubd − lbd

2
s
(⃒
⃒
⃒xd

j − xd
i

⃒
⃒
⃒

) xj − xi

dij

⎞

⎟
⎟
⎟
⎟
⎠

⊕ G(α) + T̂ d (23)  

Xlevy
i = X∗

i + rand(d) ⊕ levy(β) (24)  

Xt+1
i = {

Xlevy
i fitness

(
Xlevy

i
)〉

fitness
(
X∗

i

)

X∗
i otherwise

(25) 

In Eq. (23), Xd
i represents the updated position of grasshopper i in the 

d-th dimension. xd
j and xd

i are two different grasshoppers in the d-th 
dimension. N is the number of grasshoppers, and c is a parameter 
calculated by the Eq. c = cmax − l(cmax − cmin)/L. ubd and lbd are the 
upper bound and lower bound in the d-th dimension, respectively. s(∗) is 
the function that defines the social forces, and dij is the distance between 
the i-th and j-th grasshoppers. G(∗) and T̂d are the Gaussian step vector 
and the value of the best-so-far solution in the d-th dimension, 
respectively. α is a Gaussian random number generated in the range of 
[0,1]. The generation and selection of the new solution are based on Eq. 
s (24) and (25). Xlevy

i is a new solution generated based on the Levy flight 
mechanism, and X∗

i is the new position of the i-th grasshopper after 
updating. Xt+1

i is a selected solution based on the fitness value between 
Xlevy

i and X∗
i . rand(d) and levy(∗) are the d-th dimension random vectors in 

[0,1] and the Levy distribution, respectively. β is the Levy index. The 
notation ⊕ in all the Eq.s represents the dot product operation.  

(9) Hyperbolic gravitational search algorithm (HGSA) [112] 

GSA is a physically inspired population-based algorithm that solves 
problems based on the law of gravity and mass interactions [80]. HGSA 
is a new version of GSA, in which the hyperbolic acceleration coefficient, 
dynamic regulation, and decreasing hyperbolic function are adopted to 
achieve a better trade-off between exploration and exploitation. The 
positions and velocities of the individuals in HGSA can be calculated as 
follows. 

vd
i (t+ 1) = randi × vd

i (t) + c1(t) × ad
i (t)Δt + c2(t) ×

(
gbest − xd

i (t)
)/

Δt
(26)  

xd
i (t+ 1) = xd

i (t) + vd
i (t+ 1) (27)  

where xd
i (t) and vd

i (t) are the position and velocity of the i-th individual 
in the d-th dimension at iteration t, ad

i (t) is the acceleration of individual 
i at time t and c1(t) and c2(t) are the acceleration coefficients at time t. 
randi is a uniform random variable in the interval [0,1]. gbest is the 
position of the best-so-far solution. Δt is the time increment. For 
detailed information about HGSA, please refer to [112].  

(10) Memetic frog leaping algorithm (MFLA) 

MFLA is an improved version of the shuffled frog leaping algorithm 
(SFLA) that was first proposed by Eusuff et al. [113]. SFLA is a meta
heuristic search approach that mimics the foraging behavior of frogs, 
which is similar to PSO. In the frog population, each frog can commu
nicate with each other and the worst frog can jump to find the best food 
source guided by the best frog. MFLA improves SFLA by integrating a 
memetic mechanism and a new search leaping rule. The mathematical 
formulas are shown below. 

Qm= {
Qg if rand < 0.5
QC else (28)  

Q′

w = Qw + rand(Qbest − Qw) + rand(Qm − Qw) (29)  

where Qw and Qbest are the worst and best frog, respectively. Qm is an 
auxiliary variable. Qg and QC represent the geometric center and grav
itational center, respectively. For the Eq.s for calculating Qg and QC, 
please refer to [114].  

(11) Gaining‑sharing knowledge-based algorithm (GSK) [52] 

GSK is inspired by the human behaviors of gaining and sharing 
knowledge, which can be divided into two phases: (1) the junior gaining 
and sharing phase and (2) the senior gaining and sharing phase. The 
differential Eq.s for generating the new solutions are proposed in two 
phases and described as follows: 

xnew
ij = {

xi + kf ∗ [(xi− 1 − xi+1) + (xr − xi)] f (xi) > f (xr)

xi + kf ∗ [(xi− 1 − xi+1) + (xi − xr)] f (xi) ≤ f (xr)
(30)  

xnew
ij = {

xi + kf ∗
[(

xp− best − xp− worst
)
+ (xm − xi)

]
f (xi) > f (xm)

xi + kf ∗
[(

xp− best − xp− worst
)
+ (xi − xr)

]
f (xi) ≤ f (xm)

(31)  

where xi is the i-th individual. Compared with the current individual xi, 
xi− 1 and xi+1 are the nearest better and worse individuals respectively, to 
constitute the gain source of knowledge. xp− best and xp− worst are the best 
individual and worst individual, respectively, among all the individuals. 
xr and xm are individuals randomly selected from the population, kf is a 
real number greater than 0 and f(∗) is the objective function. 
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(12) Marine predators algorithm (MPA) [115] 

MPA mimics marine predators and uses the predation behavior of the 
Lévy and Brownian movements to optimize problems. The optimal 
encounter rate policy in the interaction between predator and prey is 
also considered. In MPA, the optimization process is divided into three 
phases due to different velocity ratios. 

Phase 1: When the velocity ratio is high or the prey is moving faster 
than the predator 

stepsize̅̅̅̅ →
i = R→B ⊗

(

Elite
̅̅→

i − R→B ⊗ Prey̅̅→
i

)

i = 1,⋯n (32)  

Prey̅̅→
i = Prey̅̅→

i + P⋅ R→⊗ stepsize̅̅̅̅ →
i (33) 

Phase 2: In the unit velocity ratio or when both predator and prey are 
moving at almost the same pace  

• For the first half of the population (i = 1,⋯n/2) 

stepsize̅̅̅̅ →
i = R→L ⊗

(

Elite
̅̅→

i − R→L ⊗ Prey̅̅→
i

)

i = 1,⋯n
/

2 (34)  

Prey̅̅→
i = Prey̅̅→

i + P⋅ R→⊗ stepsize̅̅̅̅ →
i (35)    

• For the second half of the population (i = n/2,⋯n) 

stepsize̅̅̅̅ →
i = R→B ⊗

(

R→B ⊗ Elite
̅̅→

i − Prey̅̅→
i

)

i = n
/

2,⋯n (36)  

Prey̅̅→
i = Elite

̅̅→
i + P⋅CF ⊗ stepsize̅̅̅̅ →

i (37)   

Phase 3: In a low-velocity ratio when the predator is moving faster 
than the prey 

stepsize̅̅̅̅ →
i = R→L ⊗

(

R→L ⊗ Elite
̅̅→

i − Prey̅̅→
i

)

i = 1,⋯n (38)  

Prey̅̅→
i = Elite

̅̅→
i + P⋅CF ⊗ stepsize̅̅̅̅ →

i (39)  

where stepsize
̅̅̅̅ →

i is the step size matrix of the search individuals (predator 

and prey) and Elite
̅̅→

i is the matrix that oversees the searching and finding 
of the prey based on the information of the prey’s positions. Prey̅̅→

i is the 
function matrix based on which the predators update their positions. R→B 
is a vector containing random numbers that represents a Brownian 
motion. P is the constant number, and R→ is a vector that contains a 
random number in the interval [0,1]. R→L is a vector that contains 
random numbers following the Lévy distribution. CF is an adaptive 
parameter used to control the predator step size.  

(13) Equilibrium optimizer (EO) [91] 

EO is inspired by the control volume mass balance models that are 
used to estimate both the dynamic and equilibrium states. In EO, each 
individual has its concentration (position), and the best-so-far solution is 
named the equilibrium candidate. Each individual randomly updates 
their concentration around the equilibrium candidates to finally reach 
the equilibrium state (optimal result). The updating rule of the in
dividuals is shown as follows. 

C→= C→eq +

(

C→− C→eq

)

⋅ F→+
G→

λ
→

V

(
1 − F→

)
(40)  

where C→ is a concentration vector of the individuals, C→eq is a vector that 

contains the candidates in the equilibrium pool, F→ is an exponential 
term that includes an exponential function, V is considered a unit, and λ

→

is a random vector in the range of [0,1]. In EO, the selection process is 
completed by comparing the fitness value of C→i with the fitness values of 
C→eq1, C→eq2, C→eq3, and C→eq4 and selecting the best one to replace the 
worst one. 

As mentioned above, we can summarize the general mathematical 
model of the essential operators that generate solutions in the 
population-based metaheuristics, which can be described as the new 
solution xt+1

i being equal to the sum of the current solution xt
i and the 

modification increment or mutation vector Δxt
i [78], i.e., 

xt+1
i = xt

i + Δxt
i (41)  

The ways to determine Δxt
i reflect the essential differences among the 

different metaheuristics. 

3. Experimental analyses 

To evaluate the performance and properties of the newly proposed 
algorithm, 11 newly named metaheuristics and 4 state-of-the-art meta
heuristics are selected in this section. We first use a unified framework 
named irace to automatically configure the parameters of all 15 
comparative algorithms. Then, whether these algorithms have a search 
bias to the origin is investigated. For detailed description, the conver
gence, diversity, and trade-off between the exploration and exploitation 
of all 15 algorithms are also analyzed. All the experimental results were 
analyzed by nonparametric statistical methods, including the Friedman 
test, Wilcoxon signed-ranks test, and Bayesian signed-rank test. 

3.1. Experiment setup 

In this section, 11 newly proposed representative metaheuristics that 
are popular and highly cited and 4 state-of-the-art metaheuristics are 
selected for the comparison experiments. The 15 algorithms are 

Table 1 
Summary of the 15 comparison algorithms.  

Algorithm Year Abbreviation  

• 11 new algorithms 
Aquila optimizer [110] 2017 AO 
Effective butterfly optimizer with covariance 

matrix adapted retreat phase [103] 
2017 EBOwithCMAR 

(EBCM)a 

Snap-drip cuckoo search [104] 2017 SDCS 
Improved grasshopper optimization algorithm  

[111] 
2018 IGOA 

Hyperbolic gravitational search algorithms [112] 2019 HGSA 
Memetic frog leaping algorithm [114] 2019 MFLA 
Improved moth-flame optimization algorithm  

[108] 
2020 IMFO 

Multi-strategy enhanced Sine Cosine Algorithm  
[106] 

2020 MSCA 

Gaining-sharing knowledge-based algorithm [52] 2019 GSK 
Marine predators algorithm [115] 2020 MPA 
Equilibrium optimizer [91] 2020 EO  
• 4 state-of-the-art algorithms 
L-SHADE with nearest spatial neighborhood- 

based modification [101] 
2017 NLSHADE 

LSHADE with semi-parameter adaptation hybrid 
with CMA-ES [100] 

2017 LSHADE-SPACMA 
(LS-SPA) 

Hybrid sampling evolution strategy [102] 2018 HSES 
Two enhanced DE variants EDE and EBDE [97] 2019 EDE-EBDE (ED-EB) 

Note: In the rest of this paper, we use EBCM, LS-SPA, and ED-EB to represent 
EBOwithCMAR, LSHADE-SPACMA, and EDE-EBDE, respectively. 

a As a top performer in a CEC competition, it was initially selected as a state- 
of-the-art algorithm. But, a reviewer asked us to classify it under newer 
algorithms. 
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summarized in Table 1. 
We select 2017 CEC bound-constrained numerical optimization 

problems as the benchmark problems [116], which contain thirty 
functions that can be divided into four categories, unimodal functions 
(F1-F3), multimodal functions(F4-F10), hybrid functions (F11-F20) and 
composition functions (F21-F30). These functions have the same upper 
bound (100) and lower bound (-100). The global minimum value of each 
function is the product of the function index and 100. In this paper, the 
maximum number of function evaluations is set to 10000 ∗D, and all the 
experimental results are obtained from average values over 31 runs. 

To make fair comparisons [117,118], we first tuned the parameters 
of all 15 comparative algorithms on all the CEC 2017 functions with 10, 
30, and 50 variables. The tuned parameter values are presented in 
Table 2. Afterward, further experiments are conducted from two aspects: 
performance evaluation and verification of whether these comparison 
algorithms have a search bias to the origin. In the performance evalu
ation experiments, all the CEC 2017 functions with 10, 30, and 50 
variables are used. To evaluate whether these comparative algorithms 
have a search bias to the origin, all the shifted and nonshifted CEC 2017 

functions with 10 and 30 variables are used. 
All experimental results are analyzed by several nonparametric sta

tistical methods including the Bayesian rank-sum test, Friedman test, 
Wilcoxon signed-rank test, and Bayesian signed-rank test to verify 
whether the performance of two or more algorithms differs from each 
other statistically. If the p value obtained by any two algorithms is equal 
to or less than 0.05, it indicates that there is a significant difference in 
the performance of the two algorithms. Otherwise, the opposite is true. 
Details of the statistical results are summarized in the supplementary 
file, where the result tables (or figures) are denoted as “TableS# (Fig. 
S#)” and “#” is the table number. All the algorithms are coded in 
MATLAB software and run on a Windows 10 operating system with a 
Core i7–10700CPU and 32 G RAM. The codes of this paper have been 
published online (http://faculty.csu.edu.cn/guohuawu/zh_CN/zdylm/ 
193832/list/index.htm). 

3.2. Automatic parameter tuning 

For a fair comparison, we employed the iterated racing (irace) 

Table 2 
Parameter tuning results of the 15 algorithms.  

Algorithm Default parameters Tuned parameters 
10 variables 30 variables 50 variables 

AO [110] Population size n=25; number of 
clusters m= 5; 

Population size n=34; Exploitation 
adjustment parameters α=0.9161; 
δ=0.3806 

Population size n=10; Exploitation 
adjustment parameters α=0.4207; 
δ=09379 

Population size n=69; Exploitation 
adjustment parameters α=0.186; 
δ=0.6773 

SDCS  
[104] 

Population size n={15, 25, 35}; 
Increase/decrease rate of 
pa={0.005, 0.5, 1}; Movement 
variability parameter J={0.1, 0.2, 
0.3}; Step size scaling factor 
a0={0.01, 0.1, 1} 

Population size n=10; Increase/decrease 
rate of pa=0.3413; Movement variability 
parameter J=0.8281; Step size scaling 
factor a0=0.9491 

Population size n=24; Increase/ 
decrease rate of pa=0.1854; Movement 
variability parameter J=0.9618; Step 
size scaling factor a0=0.5973 

Population size n=10; Increase/ 
decrease rate of pa=0.9137; 
Movement variability parameter 
J=0.9316; Step size scaling factor 
a0=0.5201 

IGOA  
[111] 

Population size n =30 Population size n=34 Population size n=35 Population size n=25 

HGSA  
[112] 

Population size n=30; 
Gravitational constant G0=100 

Population size n=37; Gravitational 
constant G0=89 

Population size n=23; Gravitational 
constant G0=118 

Population size n=24; Gravitational 
constant G0=116 

MFLA  
[114] 

Number of memeplexes m={2, 4, 
5}; Number of frogs in a memeplex 
n={4, 5, 10}; beta=0.6 

Number of memeplexes m=5; Number of 
frogs in a memeplex n=5; beta=0.7563 

Number of memeplexes m=4; Number 
of frogs in a memeplex n=6; 
beta=0.5867 

Number of memeplexes m=4; Number 
of frogs in a memeplex n=5; 
beta=1.4742 

IMFO  
[108] 

Population size n=100; Spiral 
shape parameter b=1; Iteration 
ratio P=0.5 

Population size n=119; Spiral shape 
parameter b=4; Iteration ratio P=0.0199 

Population size n=118; Spiral shape 
parameter b=4; Iteration ratio 
P=0.2963 

Population size n=93; Spiral shape 
parameter b=3; Iteration ratio 
P=0.3593 

MSCA  
[106] 

Population size n =30; Probability 
factor Pc=0.8; Constant number 
a=2; μ=4 is a parameter that 
controls the degree of chaotic 
function. 

Population size n=27; Probability factor 
Pc=0.0659; Constant number a=1; μ=3 
is a parameter that controls the degree of 
chaotic function. 

Population size n=31; Probability factor 
Pc=0.0319; Constant number a=1; μ=4 
is a parameter that controls the degree 
of chaotic function. 

Population size n=31; Probability 
factor Pc=0.0116; Constant number 
a=1; μ=4 is a parameter that controls 
the degree of chaotic function. 

GSK [52] Population size n=100; Top and 
bottom percentage of individuals 
P=0.1; Knowledge factor kf=0.5; 
Knowledge ratio kr=0.9; 
Knowledge rate K=10 

Population size n =101; Top and bottom 
percentage of individuals P=0.1353; 
Knowledge factor kf=0.4822; 
Knowledge ratio kr=0.9797; Knowledge 
rate K=12 

Population size n =93; Top and bottom 
percentage of individuals P=0.052; 
Knowledge factor kf=0.485; Knowledge 
ratio kr=0.991; Knowledge rate K=10 

Population size n =100; Top and 
bottom percentage of individuals 
P=0.0521; Knowledge factor 
kf=0.4581; Knowledge ratio 
kr=0.9309; Knowledge rate K=9 

MPA [115] Population size n=25; Probability 
factor FADs={0.1, 0.2, 0.5, 0.7, 
0.9}; Constant number P={0.1, 0.5, 
1, 1.5, 2} 

Population size n=21; Probability factor 
FADs=0.8297; Constant number 
P=0.6737 

Population size n=31; Probability factor 
FADs=0.1014; Constant number 
P=0.1949 

Population size n=25; Probability 
factor FADs=0.3425; Constant 
number P=0.5076 

EO [91] Population size n=30; Constant 
number a1=2; Constant number 
a2=1; Generation Probability 
GP=0.5 

Population size n=33; Constant number 
a1=1.8876; Constant number 
a2=0.9305; Generation Probability 
GP=0.2999 

Population size n=31; Constant number 
a1=1.9447; Constant number 
a2=0.95021; Generation Probability 
GP=0.5871 

Population size n=20; Constant 
number a1=1.8587; Constant number 
a2=1.1681; Generation Probability 
GP=0.7087 

EBCM  
[103] 

probls=0.1;σ=0.3; arch_rate=2.6; 
Memory size H=6 

probls=0.9209;σ=0.2997; 
arch_rate=2.3947; Memory size H=5 

probls=0.4149;σ=0.9267; 
arch_rate=3.2152; Memory size H=8 

probls=0.818;σ=0.019; 
arch_rate=3.0527; Memory size H=4 

NLSHADE  
[101] 

Population size Np= {50,100}; MF 

and MCr are memory archive 
values, MF = 0.5, MCr = 0.5. 

Population size Np= 140; MF and MCr are 
memory archive values, MF = 0.8404, 
MCr = 0.9969. 

Population size Np= 138; MF and MCr 

are memory archive values, MF = 0.897, 
MCr = 0.7163. 

Population size Np= 164; MF and MCr 

are memory archive values, MF =

0.9039, MCr = 0.792. 
HSES  

[100] 
Population size M=200; N=100 Population size M=182; N=90 Population size M=181; N=98 Population size M=214; N=92 

LS-SPA  
[102] 

pbest =0.3; pbestmin=0.15 pbest =0.416; pbestmin=0.1732 pbest =0.4765; pbestmin=0.1459 pbest =0.2438; pbestmin=0.1749 

ED-EB  
[97] 

L_Rate=0.8; EDE_best_rate=0.1; 
Memory size=5 

L_Rate=0.;0.2797 EDE_best_rate=0.4957; 
Memory_size=5 

L_Rate=0.7763; EDE_best_rate=0.1264; 
Memory_size=6 

L_Rate=0.5034; 
EDE_best_rate=0.2124; Memory_size=4 

Note: The adjustment parameters of each algorithm are determined based on the published paper and the codes are obtained from the authors’ websites. 
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method to automatically configure the main parameters. The iterated 
racing method repeats three steps until it meets a termination criterion: 
(1) Sampling new configurations according to a particular distribution; 
(2) Selecting the best configurations from the newly sampled configu
rations by means of racing, and (3) Updating the sampling distribution 
to bias the sampling toward the best configurations [119]. 

The following issues are interacting: (1) Different algorithms have a 
different number of parameters requiring different number of function 
evaluations; (2) Having too few tuneable parameters may make an al
gorithm to have a fixed characteristic. According to the "No Free Lunch" 
theorem, algorithms with fixed characteristic may not be efficient for 
solving diverse types of optimization problems; (3) Allocating a single 
fixed number of function evaluations for all algorithms may result in too 
few or too many function evaluations for tuning each algorithm. 
Considering all these, we tuned the main parameters of each algorithm 
independently. This approach offers different tuning budgets for 
different algorithms. This is acceptable for offline applications. Param
eter adjustment results of the 15 algorithms are shown in Table 2. 

The irace method is implemented through an R package named irace, 
developed by López-Ibáñez et al. [119]. Irace receives as input a 
parameter space definition corresponding to the parameters of our 15 
algorithms that will be tuned, a set of training instances for which the 
parameters must be tuned, and a set of options for the irace that define 
the configuration scenario. For example, we tune the AO parameters, 
and the training instances are eight functions covering all types of the 
CEC 2017 functions. Then, the irace searches in the parameter search 
space for good-performing algorithm configurations by executing AO on 
different functions with different parameter configurations. In other 
words, all the parameter configurations will be tested on all the func
tions to verify which is the best performing configuration. For a detailed 
implementation of the irace method, please refer to [119–123]. 

3.3. Experimental results and discussion 

In this section, 11 recent algorithms and 4 state-of-the-art algorithms 
are compared on CEC 2017 functions with 10, 30, and 50 variables, 
respectively. The experimental results of the 15 algorithms are sum
marized in Tables S1-S3. Nonparametric statistical methods, including 
Friedman test, Bayesian signed-rank, and Wilcoxon signed-rank test. 
The detailed statistical results can be found in Tables S4-S22 of the 
supplemental materials. Due to space limitations, we only show the 
analysis results on functions with 30 variables in the text. For more in
formation about the analysis results on functions with 10 and 50 vari
ables, please refer to Sections 3 and 4 of Appendix A in the 
supplementary material. 

3.3.1. Benchmark functions with 30 variables 

3.3.1.1. Comparison of each function. Some interesting observations can 
be obtained from the statistical results of the functions with 30 variables 
reported in Table S2. It is observed that MFLA, GSK, IMFO, MPA, AO, 
and EBCM exhibit competitive performance among the 11 recent algo
rithms as compared with the 4 state-of-the-art algorithms. In particular, 
EBCM has the best performance among the 11 newly proposed algo
rithms. EBCM outperforms HSES, ED-EB, LS-SPA and NLSHADE on 
twenty-one (F2, F5-F6, F7-F9, F11, F13, F15, F16-F17, F20-F21 and F23- 
F30), fourteen (F2, F4, F5, F7-F8, F11-F13, F16-F17, F21, F25-F26, and 
F28), fourteen (F5, F7-F8, F10-F11, F13, F16, F21, F23-F26, F28 and 
F30), and five (F5-F6, F8, F13 and F25) functions, respectively. 

MFLA is superior to HSES, ED-EB, LS-SPA and NLSHADE on eight 
(F1-F2, F6, F20, and F25-F28), four (F4 and F25-F26), four (F4 and F25- 
F26), and two (F22 and F25) functions. Moreover, MFLA exhibits high 
efficiency in dealing with the composition function F25. 

GSK is superior to HSES, ED-EB, LS-SPA and NLSHADE on fifteen 
(F1-F4, F6, F11, F13, F15-F16, F20, F23, and F26-F29), three (F4, F11, 

and F28), five (F4, F23-F24, F26, and F28), and two (F22 and F25) 
functions. Particularly, the performance of GSK is equivalent to the 4 
state-of-the-art algorithms (except NLSHADE) in solving the composi
tion function F22. Moreover, GSK is superior or similar to all 5 compe
tition algorithms on multimodal function F4 and composition function 
F28. 

IMFO outperforms HSES, ED-EB, LS-SPA, and NLSHADE on five (F1- 
F2, F6, F20, and F25), two (F4 and F25), two (F4 and F25), and one 
(F25) functions. 

The MPA achieves better results than the HSES, ED-EB, LS-SPA, and 
NLSHADE on seven (F2, F6, F20-F21, F23, F26, and F28), three (F4, F26, 
and F28), five (F4, F21, F23, F26, and F28), and one (F25) functions. 
Particularly, MPA yields promising performance on the composition 
function F26 by surpassing all 4 state-of-the-art algorithms. 

In contrast, EO, AO, HGSA, IGOA, MSCA, and SDCS demonstrate less 
efficiency than the 4 state-of-the-art algorithms. For instance, these 6 
recent algorithms are only superior to the 4 state-of-the-art algorithms in 
less than 3 functions. In particular, AO is almost inferior to the 4 state-of- 
the-art algorithms on all thirty functions. 

In conclusion, EBCM shows competitive performance compared with 
4 state-of-the-art algorithms. The performance of EBCM completely 
surpasses HSES and is comparable to ED-EB and LS-SPA on the CEC 2017 
functions with 30 variables. However, MFLA, GSK, IMFO, and MPA are 
inferior to the 4 state-of-the-art algorithms in most functions. EO, AO, 
HGSA, IGOA, MSCA, and SDCS have less efficiency in dealing with CEC 
2017 functions with 30 variables since they are only superior to or 
comparable to the 4 state-of-the-art algorithms in a few functions. The 
results show that MFLA/GSK/IMFO/MPA/EBCM is superior to HSES, 
ED-EB, LS-SPA, and NLSHADE on 8/4/4/2/21, 15/3/5/2/14, 5/2/2/1/ 
14, and 7/3/3/1/5 functions, respectively. In addition, MFLA and GSK 
are comparable to these 3 comparative algorithms (except NLSHADE) 
on function F22. EO, AO, HGSA, IGOA, MSCA, and SDCS only perform 
better than HSES, ED-EB, LS-SPA, and NLSHADE on 2/1/1/0, 0/0/0/1, 
1/1/2/1, 0/0/0/1, 2/0/1/1, and 0/1/1/1 function(s). It is worth noting 
that 11 recent algorithms become less efficient as the dimension of the 
functions increases (i.e., from 10 variables to 30 variables). 

3.3.1.2. Results of Wilcoxon signed-rank test. As seen from Table 3, 
EBCM performs competitively with 4 state-of-the-art algorithms on the 
CEC 2017 functions with 30 variables. In addition, GSK exhibits signif
icantly similar performance to HSES in solving functions with 30 vari
ables which is consistent with the conclusion of the Bayesian rank-sum 
test and the Friedman test. In contrast, the performances of EO, AO, 
HGSA, IGOA, IMFO, MFLA, MPA, MSCA, SDCS, and HSES are signifi
cantly different from those of the 4 state-of-the-art algorithms. In other 
words, these 9 recent algorithms are not efficient in dealing with the 
CEC 2017 functions with 30 variables. It is worth noting that some 
recent algorithms, such as MPA, SDCS and MFLA, demonstrate high 
efficiency on functions with 10 variables but have a deteriorated per
formance in solving functions with 30 variables. 

3.3.1.3. Results of the CD plot. In the cases of the functions with 30 
variables, EBCM exhibits similar performance to the 4 state-of-the-art 
algorithms in Fig. 3, and the performance of GSK and MFLA are signif
icantly similar to HSES, LS-SPA, and ED-EB. In addition, there was no 
significant difference between MPA and HSES. In contrast, the perfor
mance of the other 7 recent algorithms (i.e., AO, IMFO, EO, SDCS, 
HGSA, MSCA, and IGOA) is significantly different from that of the 4 
state-of-the-art algorithms. The conclusions drawn in this case are 
similar to the observation results of the Bayesian rank-sum test, the 
Friedman test, and the Wilcoxon signed-rank test. 

3.3.1.4. Convergence analysis. The convergence plots of the 15 algo
rithms on functions F1, F3, F4, F10, F11, F19, F21 and F24 with 30 
variables are shown in Fig. 4. According to Fig. 4, EBCM and 4 state-of- 
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the-art algorithms have a fast convergence speed and can obtain better 
solutions on these selected functions compared with the other 10 new 
algorithms. Compared with the 4 state-of-the-art algorithms, AO, MFLA, 
HGSA, IGOA, and MSCA have a slower convergence speed and the worst 
global search ability (i.e., less efficient) on these selected functions. The 
other algorithms, such as EO, GAK, IMFO, MPA and SDCS, have a similar 
convergence speed to the 4 state-of-the-art algorithms, but they are 
inferior to the 4 state-of-the-art algorithms on most of these select 
functions. Particularly, there is a clear gap between the 4 state-of-the-art 
algorithms and the 11 new algorithms on functions F3, F7, F11, F21 and 
F24. These results suggest that the 4 state-of-the-art algorithms have a 
faster convergence speed and a stronger global search ability on most of 
the selected functions. 

3.3.1.5. The trade-off of exploration and exploitation analysis. We 
consider the method proposed in Ref. [93] to evaluate the trade-off 
between exploration and exploitation of the 15 algorithms. In partic
ular, the percentage of exploration (i.e., XPL%) and the percentage of 
exploitation (i.e., XPT%) are used to evaluate the trade-off response. XPL 
% represents the level of exploration as a relationship betwee1111n the 
diversity in each iteration and the maximum reached diversity. XPT% 
corresponds to the level of exploitation. Both elements, XPL% and XPT% 

are mutually conflicting and complementary. For more information 
about how to evaluate the trade-off of algorithms, please refer to [93]. 

Fig.S8 shows the experimental results of the exploration and 
exploitation trade-off of the 15 algorithms on functions F1, F3, F4, F7, 
F11, F19, F22 and F24 with 30 variables. Due to space limitations, we 
only analyze the results on functions F1, F7, F11 and F22. For more 
information about the trade-off analysis of the 15 algorithms on other 
functions, please read the supplementary material. The analysis results 
of Fig. S8 and Table S2 are summarized as follows.  

• Unimodal function F1: In terms of the 4 state-of-the-art algorithms, 
LS-SPA and NLSHADE are the two most prominent algorithms on 
function F1, with an exploitation of 98.55% and 98.30%, and an 
exploration of 1.45% and 1.70%, respectively. ED-EB and HSES 
perform slightly worse than LS-SPA and NLSHADE and have trade- 
off behaviors of exploitation and exploration similar to these of 
two top algorithms. They exploited the search space 99.19% and 
97.82% of the time, respectively. In terms of the 10 new algorithms, 
EBCM performs slightly worse than LS-SPA and NLSHADE but has 
similar trade-off exploitation and exploration behaviors as LS-SPA 
and NLSHADE. Meanwhile, the search space is exploited 96.95% of 
the time. MFLA, GSK, and IMFO also perform better among the 11 
newly proposed algorithms, and they spent 85.58%, 99.13%, and 
99.15% of the time exploiting the search space. Although MFLA 
employs a different exploration and exploitation rate compared with 
LS-SPA and NLSHADE, it benefits from multiple exploration peaks 
appearing during the optimization process to jump into different 
search zones and find better solutions. The other new algorithms 
including EO, AO, MPA, HGSA, IGOA, MSCA and SDCS, are less 
efficient in terms of solution quality and exploit the search space 
96.78%, 93.31%, 98.84%, 99.56%, 79.76%, 66.20%, and 0.00% of 
the time, respectively. In particular. SDCS uses excessive exploration 
(i.e., 100% of the time) in its search process. EO, AO, MPA, and 
HGSA maintain a behavior very close to the one used by the top two 
algorithms but the reason for finding different solutions is because of 
the search mechanism used for exploration and exploitation. More
over, MPA, IGOA and MSCA produce a very rough trade-off response. 
In all cases, the incremental-decremental graph shows that the 
exploration effect is very short, while the exploitation action is 
prolonged during most of the search time. The best trade-off can be 
found to be more than 98% exploitation and less than 2% exploration 
on function F1.  

• Multimodal function F7: The 4 state-of-the-art algorithms and EBCM 
are the top five best-performing algorithms for solving function F7, 
where NLSHADE achieves the best results with 90.49% exploitation 
and 9.52% exploration. Moreover, HSES, ED-EB, and LS-SPA spent 
98.20%, 93.69% and 96.26% of the time exploiting respectively. In 
terms of the 11 new algorithms, EBCM shows competitive perfor
mance with 89.52% exploitation and 110.49% exploration. EO, 
MPA, IMFO, and HGSA perform slightly worse than the 4 state-of- 
the-art algorithms but their trade-off levels between exploration 
and exploitation are close to the 4 state-of-the-art algorithms. The 
performance of AO, IGOA, MFLA, GSK, SDCS, and MSCA widens the 
gap with the 4 state-of-the-art algorithms and has different trade-off 
levels. They spent 97.01%, 78.41%, 83.98%, 92.54%, 98.40%, and 
76.86% of the time exploring the search space, respectively. Partic
ularly, IGOA, MFLA, and MSCA focus less on exploitation compared 
with the 4 state-of-the-art algorithms. On the contrary, SDCS has a 
slightly higher exploitation rate. Moreover, AO, GSK, and SDCS have 
similar trade-off levels between exploration and exploitation 
compared with the 4 state-of-the-art algorithms but have different 
solution qualities. Once again, it is a good example of how the dif
ference in the quality of the specific search mechanism of each al
gorithm greatly affects the performance. According to the 
incremental-decremental graph, all 15 algorithms focused on 

Table 3 
The results with significant differences of the Wilcoxon signed-rank test in 10, 
30, and 50 variables.  

Algorithms 30 variables 
R+ R− p-value 

HSES VS EO 444.0 21.0 0.000013 
HSES VS AO 465.0 0.0 0.000002 
HSES VS GSK 230.0 205.0 0.778632 
HSES VS HGSA 449.0 16.0 0.000008 
HSES VS IGOA 465.0 0.0 0.000002 
HSES VS IMFO 436.0 29.0 0.000027 
HSES VS MFLA 346.0 89.0 0.005281 
HSES VS MPA 375.0 90.0 0.003269 
HSES VS MSCA 458.0 7.0 0.000003 
HSES VS SDCS 465.0 0.0 0.000002 
HSES VS EBCM 53.0 412.0 1 
ED-EB VS EO 460.0 5.0 0.000003 
ED-EB VS AO 465.0 0.0 0.000002 
ED-EB VS GSK 388.0 47.0 0.000218 
ED-EB VS HGSA 449.0 16.0 0.000008 
ED-EB VS IGOA 465.0 0.0 0.000002 
ED-EB VS IMFO 454.0 11.0 0.000005 
ED-EB VS MFLA 386.0 49.0 0.000258 
ED-EB VS MPA 426.0 39.0 0.000066 
ED-EB VS MSCA 465.0 0.0 0.000002 
ED-EB VS SDCS 458.0 7.0 0.000003 
ED-EB VS EBCM 153.0 282.0 1 
LS-SPA VS EO 460.0 5.0 0.000003 
LS-SPA VS AO 465.0 0.0 0.000002 
LS-SPA VS GSK 347.0 88.0 0.004939 
LS-SPA VS HGSA 448.0 17.0 0.000009 
LS-SPA VS IGOA 465.0 0.0 0.000002 
LS-SPA VS IMFO 454.0 11.0 0.000005 
LS-SPA VS MFLA 385.0 50.0 0.00028 
LS-SPA VS MPA 410.0 55.0 0.000251 
LS-SPA VS MSCA 461.0 4.0 0.000002 
LS-SPA VS SDCS 458.0 7.0 0.000003 
LS-SPA VS EBCM 184.0 251.0 1 
NLSHADE VS EO 435.0 0.0 0.000002 
NLSHADE VS AO 463.0 2.0 0.000002 
NLSHADE VS GSK 417.0 18.0 0.000015 
NLSHADE VS HGSA 460.0 5.0 0.000003 
NLSHADE VS IGOA 462.0 3.0 0.000002 
NLSHADE VS IMFO 459.0 6.0 0.000003 
NLSHADE VS MFLA 450.0 15.0 0.000007 
NLSHADE VS MPA 428.0 7.0 0.000005 
NLSHADE VS MSCA 463.0 2.0 0.000002 
NLSHADE VS SDCS 460.0 5.0 0.000003 
NLSHADE VS EBCM 121.0 314.0 1  
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exploitation, with a trade-off of more than 90% of the time exploring 
and less than 10% exploiting.  

• Hybrid function F11: The top six best-performing algorithms for 
solving function F11 are the 4 state-of-the-art algorithms, EBCM and 
GSK. NLSHADE achieves the best results that exploited the search 
space 90.58% of the time and explored 9.42% of the time. HSES, ED- 
EB and LS-SPA exploited the search space 96.89%, 96.95%, and 
95.14% of the time, respectively. GSK is slightly better than HSES 
and ED-EB with an exploitation of 95.03% and 4.97% exploration, 
respectively. Regarding the other new algorithms, EBCM obtains 
similar results to the 4 state-of-the-art algorithms and exploited the 
search space 88.99% of the time. MPA, MFLA, IMFO, and SDCS are 
inferior to the 4 state-of-the-art algorithms on function F11. They 
explored the search space 97.00%, 54.36%, 96.86%, and 97.04% of 
the time, respectively. The worst five algorithms are AO, EO, IGOA, 
HGSA, and MSCA, which achieve the exploitation of 53.31%, 
97.88%, 79.10%, 99.59%, and 60.31%, respectively. These results 

show that MFLA, AO, and MSCA focused less on exploitation 
compared with the 4 state-of-the-art algorithms. In other words, their 
exploitation and exploration rates are not much different. In 
contrast, EO, MPA, and HGSA seem to focus slightly more on 
exploitation compared with the 4 state-of-the-art algorithms. More
over, IGOA, HGSA and MSCA once again produce a rough trade-off 
response, and always seem inefficient. The incremental- 
decremental graph shows that the best-performing algorithms that 
prefer exploitation to exploration, and are closer to 90% exploitation 
and 10% exploration, are used in their search process.  

• Composition function F22: The results in Table S2 suggest that the 
most prominent algorithms for solving function F22 are 4 state-of- 
the-art algorithms and EBCM. In addition, GSK, MFLA, and SDCS 
are the distant seconds. In terms of the 4 state-of-the-art algorithms, 
HSES, ED-EB, and LS-SPA exploited the search space 98.08%, 
98.87%, and 98.55 of the times, respectively. On the contrary, they 
spent 1.92%, 1.13%, and 1.45% of their time exploring, respectively. 

Fig. 3. The CD plot of algorithms on the CEC 2017 functions with 30 variables.  

Fig. 4. Convergence plots on functions with 30 variables.  
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NLSHADE focused less on exploitation than the other four state-of- 
the-art algorithms, with an exploitation of 96.82% and an explora
tion of 3.182%. In terms of the 11 new algorithms, EBCM attains 
similar results to the 4 state-of-the-art algorithms, which exploited 
the search space 99.27% of the time and explored 0.735% of the 
time. GSK and MFLA have a better performance that achieves an 
exploitation of 97.57% and 81.69%, respectively. AO, MPA, SDCS, 
MSCA, and HGSA are slightly inferior to the seven top algorithms and 
have different trade-off levels. They spent 87.53%, 97.82%, 99.00%, 
59.21% and 99.54% on exploitation, respectively. Moreover, EO, 
IGOA, and IMFO are the three worst algorithms for solving function 
F22. Although EO, GSK, MPA, HGSA, and SDCS obtain trade-off 
levels that are very similar to those of the best seven algorithms, 
they present bad performance in terms of the solution quality. This 
once again shows the importance of the search mechanisms to obtain 
a better performance. It is important to note that the 4 state-of-the- 
art algorithms, GSK and SDCS, produce the smoothest trade-off 
response, but EO, MPA, HGSA, IGOA, MPLA, and MSCA produce a 
rough trade-off response. According to the incremental-decremental 
graph, all the algorithms focused more time on exploitation, and the 
best trade-off for function F22 is closer to 99% exploitation and 1% 
exploration. 

In summary, EBCM has a similar performance and trade-off behavior 
of exploitation and exploration compared with the 4 state-of-the-art 
algorithms. Furthermore, GSK, MPA, MFLA, and IMFO are slightly 
inferior to the 4 state-of-the-art algorithms but demonstrate better 
performance than the other 6 new algorithms (i.e., except for EBCM). 
Although each algorithm has different exploitation and exploration 
behaviors on each function, all the algorithms focus more time on 
exploitation, especially the better-performing algorithms. Due to 
space limitations, we only show the balancing behavior of GSK and 
EBCM on functions F1, F7, F11 and F22, as shown in Fig. 5. 

3.3.1.6. Diversity analysis. To complement the analysis, an experiment 
of diversity on functions F3, F7, F11 and F24 with 30 variables is con
ducted and the results are presented in Fig. 6. In the experiments, we 
consider Eq.s (1) and (2) defined in Ref. [93] for a diversity assessment 
and these two Eq.s are shown below. 

Divj =
1
n

∑n

i=1

⃒
⃒median

(
xj) − xj

i

⃒
⃒ (42)  

Div =
1
m

∑m

j=1
Divj (43)  

where median(xj) represents the median of dimension j in the whole 
population. xij is the dimension j of search agent i. n corresponds to the 
number of search agents in the population while m symbolizes the 
number of design variables of the optimization problem. 

According to Fig. 6, it is clear that all 13 algorithms (i.e., except for 
AO and MSCA) begin with a large diversity as a consequence of their 
random initialization. As the number of iterations increase, the popu
lation diversity diminishes. AO and MSCA also begin with a large di
versity but they have a certain population diversity at the final stage of 
iteration. Especially the diversity of AO on functions F11 and F24 first 
decreases and then increases gradually with the iterations. Most of the 
11 new algorithms show a rough trade-off response, especially MPA, 
MSCA, MFLA, IGOA and HGSA, which exhibit high oscillation behavior. 
Compared with the 11 new algorithms, the 4 state-of-the-art algorithms 
show the smoothest diversity responses. 

3.3.2. Results of CEC 2017 functions considering nonshifted and shifted 

3.3.2.1. Evaluate the search bias toward the origin. In the literature, some 

algorithms perform well when solving problems whose optimal solu
tions are located at the origin/center of the search space, but they are 
less efficient when dealing with the same functions whose optimal so
lutions deviate from the origin. Liang et al. [124] first evaluated the 
performance of the multiagent genetic algorithm by considering the 
searches biased to the origin. In addition, some newly proposed algo
rithms, such as TLBO [22,23] and GWO [24], have also been verified to 
have a search bias to the origin. In this section, extensive experiments 
are carried out on the shifted and non-shifted CEC 2017 functions and 
consider 10 and 30 variables to evaluate whether the 15 algorithms (11 
recent algorithms and 4 state-of-the-art algorithms) have a search bias to 
the origin. Detailed information on the experimental results is shown in 
Tables S23-S24. Nonparametric methods, such as the Friedman test and 
the Wilcoxon signed-ranks test are used to further analyze the experi
mental data. 

The results of the Friedman test in Table 4 show that SDCS, MSCA, 
MFLA, and MPA have a better performance compared with the 4 state- 
of-the-art algorithms for solving the nonshifted and shifted functions 
with 10 and 30 variables. Particularly, the SDCS achieves the lowest 
rank with scores of 3.4 and 3.6, respectively. Compared with the results 
obtained on the shifted functions, the performance of AO, SDCS, MSCA, 
and MFLA are significantly improved for solving the nonshifted func
tions with 10 and 30 variables. The performance of SDCS, MSCA and 
MFLA are significantly affected by the shift operator on the functions. In 
other words, these algorithms have search that are biased to the origin. 
The performance of the other recent algorithms (i.e., EO, IGOA, and 
HGSA) is slightly improved for solving the nonshifted functions 
compared with the algorithms dealing with the shifted functions. In 
addition, the performance of the 4 state-of-the-art algorithms has no 
significant difference in the solution between the nonshifted functions 
and the shifted functions. 

The results of the Wilcoxon Signed Ranks test are shown in Tables 5- 
6. It can be found that the values of R+ are generally greater than the 
values of R− , which means that the 15 algorithms can obtain better 
performances in solving the nonshifted functions. In other words, all 15 
algorithms have searches biased to the origin and are affected to varying 
degrees. For example, the 4 state-of-the-art algorithms are less affected 
by the shift operator on the functions compared with the 11 recent al
gorithms. In contrast, AO, SDCS, MFLA, MSCA, HGSA, and IGOA among 
the 11 recent algorithms are greatly affected. In addition, we draw the 
CD plots for the experimental results as shown in Figs. 7-8, which have 
similar conclusions to the observations from the Friedman test and the 
Wilcoxon signed ranks test. 

In conclusion, all 15 comparative algorithms suffer from search 
biases to the origin to varying degrees. In particular, the 4 state-of-the- 
art algorithms are less affected by the shift operator on the functions 
compared with the 11 recent algorithms. 

3.3.2.2. The trade-off response of AO, MFLA, MSCA, and SDCS on the 
nonshifted functions. Because AO, MFLA, MSCA, and SDCS maintain 
good performance in problems where the optimal point is in the origin, 
we conduct experiments to investigate the trade-off response of these 
four algorithms on functions F7 and F24 with 10 and 30 variables, and 
the results are presented in Figures S13-S14. As can be seen from Fig. 
S13, the evolution of the trade-off in the nonshifted functions for AO 
demonstrates consistency with the trade-off made by them on the shifted 
functions. MFLA focuses slightly less on exploration when considering 
functions that are shifted. It exploited the search space 83.53% of the 
time on the nonshifted function F7 while 72.68% of the time exploiting 
on the shifted function F7. Moreover, MFLA spent 46.87% and 42.70% 
of the time exploiting the search space of the nonshifted and shifted 
function F24, respectively. In contrast, MSCA and SDCS focused slightly 
more exploration on the nonshifted functions than the shifted functions. 
According to Fig.S14, MFLA, MSCA, and SDCS present consistent trade- 
off responses between nonshifted and shifted functions. The case of AO 
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Fig. 5. The balancing behavior of GSK and EBCM on functions F1, F7, F11, and F22.  
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Fig. 6. Diversity analysis on functions F3, F7, F11, and F24 with 30 variables.  
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on function F24 is interesting. AO produces a rougher trade-off response 
on the shifted F24 than on the nonshifted F24. In particular, AO 
employed a trade-off of 96.91% exploitation and 3.09% exploration on 
the problem where the optimal solution is in the origin. On the shifted 
function F24, AO spent 76.94% on exploiting and 23.07% on exploring. 
Especially the SDCS maintains the same trade-off response between 
nonshifted and shifted. Nevertheless, its performance in terms of quality 
is significantly better than the nonshifted functions. This seems to 
indicate that the SDCS maintains a fixed trade-off without considering 
the function type. In a word, it is important to point out that these four 
algorithms present a rough trade-off response on non-shifted and shifted 
functions F7 and F24. These results suggest that the search mechanisms 
used by these algorithms seem to have a significant impact on their 
performance, which we will investigate in our future work. 

4. Issues and suggestions for future research 

Despite the fruitful results of metaheuristic research in the past few 
decades, there are still some suggestions and interesting open problems 
that need to be investigated in future research.  

• Fair and comprehensive comparisons: For a fair comparison, it is 
necessary to configure the parameters of all the comparative algo
rithms using the same satisfactory parameter tuning approach, as the 
performance of metaheuristics is severely affected by the parameter 
settings. In addition, when evaluating the performance of a newly 
proposed algorithm, it is required to compare with state-of-the-art 
algorithms on comprehensive and representative benchmark suits. 
Almost all the metaheuristic algorithms are stochastic, which means 
that they may obtain results of different quality in different runs. 
Therefore, rigorous statistical tests are useful in comparing different 
metaheuristic algorithms [125,126]. In some cases, the details of an 
algorithm are not fully explained due to space limitations, which 
may result in inaccurate replication and inconsistent computation 
results. Thus, it is highly recommended that the authors make the 
source codes publicly available.  

• Improve and propose metaheuristics from search behavior and 
optimization mechanisms perspectives: Recent metaheuristics are 
proposed according to phenomena from biology, nature, physics, and 
so on. However, the effective performance of metaheuristics essen
tially depends on the search behaviors and optimization mecha
nisms. For example, the neighborhood structures (e.g., one-point 
exchange and multiple-point exchange) in single-solution based 
metaheuristics, and the operators (e.g., crossover, mutation, and 
recombination) in population-solution based metaheuristics play 
crucial roles in the high performance of the optimizers. Besides, how 

Table 4 
The results of the Friedman test on the nonshifted and shifted CEC2017 
functions.  

Algorithms Average ranking on functions 
with 10 variables 

Average ranking on functions 
with 30 variables 

nonshifted shifted nonshifted shifted 

EO 9.3333 (9) 11.0333 (12) 8.6 (8) 8.1167 (10) 
MPA 5.9833 (5) 3.85 (1) 6.3667 (6) 7.55 (9) 
GSK 10.1 (11) 7.75 (9) 11.2333 (13) 7.3667 (4) 
MSCA 4.2833 (2) 10.4333 (11) 4.35 (3) 9.55 (14) 
IMFO 11.6167 (14) 8.7667 (10) 13.7667 (15) 7.5 (8) 
MFLA 4.5333 (3) 5.5667 (5) 4.3833 (4) 7.3667 (4) 
HGSA 11.75 (15) 12 (13) 12.3833 (14) 8.5333 (12) 
IGOA 11.6 (13) 12.4667 (14) 9.4833 (11) 9.0833 (13) 
SDCS 3.9333 (1) 7.65 (8) 4 (2) 8.25 (11) 
AO 5.0333 (4) 13.8667 (15) 3.8167 (1) 9.85 (15) 
NLSHADE 9.3833 (10) 5.7 (6) 6.3 (5) 7.3667 (4) 
EBCM 7.7667 (7) 4.1833 (2) 8.733 (9) 7.3667 (4) 
HSES 10.1667 (12) 7.4333 (7) 10.1667 (12) 7.3667 (4) 
LS-SPA 6.4333 (6) 4.75 (4) 7.45 (7) 7.3667 (4) 
ED-EB 8.0833 (8) 4.55 (3) 8.9167 (10) 7.3667 (4)  
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to guide the search directions to a promising region in the solution 
space is another promising optimization mechanism. In particular, 
balancing exploration and exploitation to improve the performance 
of metaheuristics is significant. Therefore, we appeal to researchers 
to improve and propose metaheuristics not only from the inspiration 
source but also from the perspectives of the essential search behav
iors and optimization mechanisms.  

• Automatic design and configuration of metaheuristics: The 
design and configuration of metaheuristics can be considered an 
optimization problem. Traditional methods depend on prior knowl
edge and trial-and-error methods to obtain a configuration. Auto
matic design and configuration methods are attracting attention in 
the fields of metaheuristics [127]. It not only saves a substantial 
amount of human effort during the empirical analysis and design of 
metaheuristics but also leads to high-performance optimizers [128]. 
Therefore, it is worth using automatic methods to design and 
configure metaheuristics. For example, there are many operators, 
neighborhood structures, parameters, and mechanisms of informa
tion sharing and learning in the component pool. These components 
may be adaptively automatically selected from the component pool 
based on the features of the problems, and can be effectively com
bined to design efficient algorithms for solving the specific problems. 
With regard to metaheuristic design, LaTorre et al. [117] suggested 
that simplicity should be considered one of the preferential aspects in 
the design of new optimization techniques. Particularly, some new 
algorithms are improved on previous algorithms by updating or 
adding new strategies to their search procedure. Each improve
ment/component that affects the performance of the new algorithm 
needs to be further analyzed [129].  

• Combining machine learning techniques with metaheuristics: 
Machine learning (ML) has achieved fruitful results in recent de
cades. ML’s powerful learning, prediction, and decision-making ca
pabilities have opened a new horizon for metaheuristic research. It is 
promising to combine ML and metaheuristics in the following as
pects: 1) A combination of meta-heuristics and deep learning, rein
forcement learning, ensemble learning, etc., and reasonable 
recommendation of optimization algorithms for specific problems 
[130,131]. 2) Using ML techniques to help to model optimization 
problems, analyze the solution space, and perform problem decom
position [132,133]. 3) ML can use historical data to dynamically 
adjust parameter values during the optimization process of meta
heuristics. Besides, when metaheuristics have multiple operators and 
search mechanisms, ML is a prevalent and effective method for 
learning the characteristics of these operators and mechanisms, and 
for generating the appropriate algorithmic configuration [134,135].  

• Integrate problem domain knowledge into metaheuristics: 
Integrating algorithms with problem domain knowledge can 
improve the performance of the algorithms. For instance, designing 
the operators and search mechanisms of metaheuristics based on the 
problem characteristics leads to having the search directions of the 
algorithms based on the landscapes of the problem. In addition, the 
optimality conditions of the problems can also be used to reduce the 
variables and the difficulty of the problems considered [136].  

• Application to complex real-world optimization problems: Most 
real-world optimization problems are large-scale, with complex 
constraints, high-dimensional objectives, continuous variables and 
discrete variables. However, metaheuristics also face quite a few 
challenges when solving these complex real-world optimization 
problems. It is efficient to combine metaheuristics with surrogate 
models [1] such as parallel acceleration and simulation optimization 
to solve complex real-world optimization problems. 

5. Conclusions 

In this paper, we provide a comprehensive review of metaheuristics. 
More than 500 newly proposed and improved metaheuristics are Ta
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Table 7 
List of metaheuristics (This list will be posted at: https://github.com/P-N-Suganthan).  

Refs Year Full name & abbreviation Refs Year Full name & abbreviation 

B1 1960 Evolutionary Programming, EP B257 2016 Water Evaporation Optimization, WEO 
B2 1964 Evolution Strategies, ES B258 2016 Root Tree Optimization Algorithm, RTO 
B3 1971 Genetic Algorithm, GA B259 2016 FIFA World Cup Algorithm, FIFAWC 
B4 1977 Scatter Search Algorithm, SSA B260 2016 Sperm Whale Algorithm, SWA 
B5 1981 Genetic Programming, GP B261 2016 Virus Optimization Algorithm, VOA 
B6 1983 Simulated Annealing, SA B262 2016 Duelist Algorithm, DA 
B7 1986 Tabu Search Algorithm, TSA B263 2016 Raven Roosting Optimization Algorithm, RROA 
B8 1989 Stochastic Search Network, SSN B264 2016 Ring Seal Search, RSS 
B9 1989 Memetic Algorithm, MA B265 2016 Flying Elephant Algorithm, FEA 
B10 1992 Ant Colony Optimization, ACO B266 2016 Camel Algorithm, CA 
B11 1993 Shuffled Complex Evolution, SCE B267 2016 Crystal Energy Optimization Algorithm, CEO 
B12 1993 Great Deluge Algorithm, GDA B268 2016 Passing Vehicle Search, PVS 
B13 1994 Cultural Algorithms, CA B269 2016 Tug Of War Optimization, TWO 
B14 1995 Differential Evolution, DE B270 2016 Dynamic Virtual Bats Algorithm, DVBA 
B15 1995 Particle Swarm Optimization, PSO B271 2016 Lion Optimization Algorithm, LOA 
B16 1995 Old Bachelor Acceptance, OBA B272 2016 Natural Forest Regeneration Algorithm, NFR 
B17 1996 Bacterial Evolutionary Algorithm, BEA B273 2016 Simulated Kalman Filter, SKF 
B18 1997 Variable Neighbourhood Descent Algorithm, VND B274 2016 Shuffled Multi-Swarm Micro-Migrating Birds Optimization, SM2-MBO 
B19 1998 Bee System, BS1 B275 2016 Yin-Yang-Pair Optimization, YYPO 
B20 1998 Photosynthetic Learning Algorithm, PLA B276 2016 Virulence Optimization Algorithm, VOA 
B21 1998 Chaos Optimization Algorithm, COA B277 2017 Artificial Butterfly Optimization, ABO 
B22 1999 Sheep Flocks Heredity Model, SFHD B278 2017 Cyclical Parthenogenesis Algorithm, CPA 
B23 1999 Extremal Optimization, EO B279 2017 Deterministic Oscillatory Search, DOS 
B24 1999 Gravitational Clustering Algorithm, GCA B280 2017 Fractal-based Algorithm, FA 
B25 2000 Clonal Selection Algorithm, CSA B281 2017 Neuronal Communication Algorithm, NCA 
B26 2001 Harmony Search Algorithm, HSA B282 2017 Lightning Attachment Procedure Optimization, LAPO 
B27 2001 Gene Expression Programming, GEP B283 2017 Bison Behavior Algorithm, BBA 
B28 2001 Marriage In Honey Bees Optimization, MBO B284 2017 Drone Squadron Optimization, DSO 
B29 2002 Bacterial Foraging Algorithm, BFA B285 2017 Human Behavior-Based Optimization, HBO 
B30 2002 Bacteria Chemotaxis Algorithm, BCA B286 2017 Vibrating Particles System, VPS 
B31 2002 Bee System, BS2 B287 2017 Spotted Hyena Optimizer, SHO 
B32 2002 Popmusic Algorithm, POPMUSIC B288 2017 Salp Swarm Algorithm, SSA 
B33 2002 Social Cognitive Optimization, SCO B289 2017 Grasshopper Optimisation Algorithm, GOA 
B34 2003 Artificial Fish Swarm Algorithm, AFSA B290 2017 Rain Fall Optimization Algorithm, RFO 
B35 2003 Covariance Matrix Adaptation–Evolution Strategy, CMA-ES B291 2017 Hydrological Cycle Algorithm, HCA 
B36 2003 Society and Civilization, SC B292 2017 Killer Whale Algorithm, KWA 
B37 2003 Artificial Immune System, AIS B293 2017 Camel Herd Algorithm, CHA 
B38 2003 Queen-bee Evolution, QBE B294 2017 Collective Decision Optimization Algorithm, CDOA 
B39 2003 Electromagnetism-Like Mechanism Optimization, EMO B295 2017 Laying Chicken Algorithm, LCA 
B40 2004 Beehive Algorithm, BHA B296 2017 Kidney-Inspired Algorithm, KIA 
B41 2004 Self-Organizing Migrating Algorithm, SOMA B297 2017 Golden Sine Algorithm, Gold-SA 
B42 2005 Artificial Bee Colony Algorithm, ABCA B298 2017 Sperm Motility Algorithm, SMA 
B43 2005 Bee Colony Optimization, BCO B299 2017 Rain Water Algorithm, RWA 
B44 2005 Bees Swarm Optimization Algorithm, BSOA B300 2017 Thermal Exchange Optimization, TEO 
B45 2005 Dendritic Cells Algorithm, DCA B301 2017 Porcellio Scaber Algorithm, PSA 
B46 2005 The Bees Algorithm, BA B302 2017 Selfish Herd Optimizer, SHO 
B47 2005 Wasp Swarm Optimization, WSO B303 2017 Polar Bear Optimization Algorithm, PBO 
B48 2006 Shuffled Frog-Leaping Algorithm, SFLA B304 2017 Social Engineering Optimization, SEO 
B49 2006 Big Bang–Big Crunch, BBC B305 2017 Sonar Inspired Optimization, SIO 
B50 2006 Cat Swarm Optimization, CSO B306 2017 Weighted Superposition Attraction, WSA 
B51 2006 Flocking base Algorithm, FA B307 2017 Satin Bowerbird Optimizer, SBO 
B52 2006 Honey-bees Mating Optimization Algorithm, HBMO B308 2018 Artificial Atom Algorithm, A3 
B53 2006 Small-World Optimization Algorithm, SWOA B309 2018 Artificial Swarm Intelligence, ASI 
B54 2006 Saplings Growing Up Algorithm, SGUA B310 2018 Bees Life Algorithm, BLA 
B55 2006 Seeker Optimization Algorithm, SOA B311 2018 Beetle Swarm Optimization Algorithm, BSOA 
B56 2006 Weed Colonization Optimization, WCO B312 2018 Brunsvigia Optimization Algorithm, BVOA 
B57 2007 Imperialist Competitive Algorithm, ICA B313 2018 Car Tracking Optimization Algorithm, CTOA 
B58 2007 Monkey Search Algorithm, MSA B314 2018 Cheetah Based Algorithm, CBA 
B59 2007 River Formation Dynamics, RFD B315 2018 Cheetah Chase Algorithm, CCA 
B60 2007 Bacterial Swarming Algorithm, BSA B316 2018 Chaotic Crow Search Algorithm, CCSA 
B61 2007 Bacterial-GA Foraging, BF B317 2018 Circular Structures of Puffer Fish Algorithm, CSPF 
B62 2007 Parliamentary Optimization Algorithm, POA B318 2018 Competitive Learning Algorithm, CLA 
B63 2007 Simplex Algorithm, SA B319 2018 Cricket Chirping Algorithm, CCA 
B64 2007 Good Lattice Swarm Algorithm, GLSA B320 2018 Fibonacci Indicator Algorithm, FLA 
B65 2007 Central Force Optimization, CFO B321 2018 Plant Self-Defense Mechanism Algorithm, PSDM 
B66 2008 Fast Bacterial Swarming Algorithm, FBSA B322 2018 Emperor Penguin Optimizer, EPO 
B67 2008 Biogeography-based Optimization, BBO B323 2018 Lion Pride Optimization Algorithm, LPOA 
B68 2008 Bar Systems, BS B324 2018 Multi-Scale Quantum Harmonic Oscillator Algorithm, MQHO 
B69 2008 Catfish Particle Swarm Optimization, CatfishPSO B325 2018 Mushroom Reproduction Optimization, MRO 
B70 2008 Goose Team Optimizer, GTO B326 2018 Tree Growth Algorithm, TGA 
B71 2008 Harmony Element Algorithm, HEA B327 2018 Moth Search Algorithm, MSA 
B72 2008 Fish-School Search, FSF B328 2018 Farmland Fertility, FF 
B73 2008 Roach Infestation Optimization, RIO B329 2018 Pity Beetle Algorithm, PBA 
B74 2008 Viral Search, VS B330 2018 Mouth Brooding Fish Algorithm, MBF 

(continued on next page) 
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Table 7 (continued ) 

Refs Year Full name & abbreviation Refs Year Full name & abbreviation 

B75 2008 Plant Growth Optimization, PGO B331 2018 Artificial Flora Optimization Algorithm, AFOA 
B76 2009 Artificial Beehive Algorithm, ABA B332 2018 Elephant Swarm Water Search Algorithm, ESWS 
B77 2009 Artificial Physics Optimization, APO B333 2018 Sperm Swarm Optimization Algorithm, SSOA 
B78 2009 Bee Colony-inspired Algorithm, BCiA B334 2018 Team Game Algorithm, TGA 
B79 2009 Gravitational Emulation Local Search, GELS B335 2018 Coyote Optimization Algorithm, COA 
B80 2009 Group Search Optimizer, GBO B336 2018 Queuing Search Algorithm, QSA 
B81 2009 Cuckoo Search, CS B337 2018 Supernova Optimizer, SO 
B82 2009 Gravitational Search Algorithm, GSA B338 2018 Spiritual Search, SS 
B83 2009 Firefly Algorithm, FA B339 2018 School Based Optimization, SBO 
B84 2009 Frog Call inspired Algorithm, FCA B340 2018 Weighted Vertices Optimizer, WVO 
B85 2009 Glowworm Swarm Optimization, GSO B341 2018 Volleyball Premier League Algorithm, VPLA 
B86 2009 League Championship Algorithm, LCA B342 2018 Yellow Saddle Goatfish Algorithm, YSGA 
B87 2009 Paddy Field Algorithm, PFA B343 2019 Raccoon Optimization Algorithm, ROA 
B88 2009 Dolphin Partner Optimization, DPO B344 2019 Andean Condor Algorithm, ACA 
B89 2009 Dialectic Search, DS B345 2019 Anglerfish Algorithm, AA 
B90 2009 Human-Inspired Algorithms, HIA B346 2019 Artificial Ecosystem-Based Optimization, AEO 
B91 2009 Artificial Searching Swarm Algorithm, ASSA B347 2019 Atom Search Optimization Algorithm, ASOA 
B92 2009 Bumble Bees Mating Optimization, BBMO B348 2019 Artificial Feeding Birds, AFB 
B93 2009 Group Counseling Optimization, GCO B349 2019 Artificial Coronary Circulation System, ACCS 
B94 2009 Hunting Search Algorithm, HSA B350 2019 Artificial Electric Field Algorithm, AEFA 
B95 2009 Locust Swarm, LS B351 2019 Bus Transportation Algorithm, BTA 
B96 2009 Intelligent Water Drops Algorithm, IWDA B352 2019 Biology Migration Algorithm, BMA 
B97 2009 Water Flow Algorithm, WFA B353 2019 Buzzard Optimization Algorithm, BUZOA 
B98 2010 Asexual Reproduction Optimization, ARO B354 2019 Blue Monkey Algorithm, BM 
B99 2010 Bean Optimization Algorithm, BOA B355 2019 Chaotic Dragonfly Algorithm, CDA 
B100 2010 Bat Algorithm, BA B356 2019 Cultural Coyote Optimization Algorithm, CCOA 
B101 2010 Bee Swarm Optimization, BSO B357 2019 Dice Game Optimizer, DGO 
B102 2010 Charged System Search, CSS B358 2019 Donkey Theorem Optimization, DTO 
B103 2010 Chemical Reaction Optimization Algorithm, CRO B359 2019 Deer Hunting Optimization Algorithm, DHOA 
B104 2010 Gravitational Field Algorithm, GFA B360 2019 Falcon Optimization Algorithm, FOA 
B105 2010 Fireworks Algorithm, FA B361 2019 Find-Fix-Finish-Exploit-Analyze Algorithm, F3EA 
B106 2010 Eagle Strategy, ES B362 2019 Flow Regime Algorithm, FRA 
B107 2010 Grenade Explosion Algorithm, GEA B363 2019 Chaotic Optimal Foraging Algorithm, COFA 
B108 2010 Wind Driven Optimization, WDO B364 2019 Naked Moled Rat, NMR 
B109 2010 Termite Colony Optimization, TCO B365 2019 Xerus Optimization Algorithm, XOA 
B110 2010 Consultant-Guided Search, CGS B366 2019 Nuclear Reaction Optimization, NRO 
B111 2010 Social Emotional Optimization Algorithm, SEOA B367 2019 Hypercube Natural Aggregation Algorithm, HNAA 
B112 2010 Hierarchical Swarm Model, HSM B368 2019 Sailfish Optimizer, SO 
B113 2010 Reincarnation Algorithm, RA B369 2019 The Algorithm of the Innovative Gunner, AIG 
B114 2011 Artificial Plants Optimization Algorithm, APO B370 2019 Supply-Demand-Based Optimization, SDBO 
B115 2011 Brain Storm Optimization, BSO B371 2019 Butterfly Optimization Algorithm, BOA 
B116 2011 Bioluminescent Swarm Optimization Algorithm, BSOA B372 2019 Emperor Penguins Colony, EPC 
B117 2011 Cockroach Swarm Optimization, CSO B373 2019 Electron Radar Search Algorithm, ERSA 
B118 2011 Group Escape Behavior, GEB B374 2019 Henry Gas Solubility Optimization, HGSO 
B119 2011 Group Leaders Optimization Algorithm, GIOA B375 2019 Hitchcock Bird-Inspired Algorithm, HBIA 
B120 2011 Teaching-Learning Base Optimization, TLBO B376 2019 Hammerhead Shark Optimization Algorithm, HOA 
B121 2011 Cuckoo Optimization Algorithm, COA B377 2019 Fitness Dependent Optimizer, FDO 
B122 2011 Artificial Chemical Reaction Optimization Algorithm, ACROA B378 2019 Life Choice-Based Optimizer, LCBO 
B123 2011 Galaxy-Based Search Algorithm, GBSA B379 2019 Parasitism–Predation Algorithm, PPA 
B124 2011 Spiral Dynamics Inspired Optimization, SDIO B380 2019 Pathfinder Algorithm, PA 
B125 2011 Plant Propagation Algorithm, PPA B381 2019 Poor And Rich Optimization Algorithm, PROA 
B126 2011 Eco-Inspired Evolutionary Algorithm, EIEA B382 2019 Seagull Optimization Algorithm, SOA 
B127 2011 Gravitational Interactions Optimization, GIO B383 2019 Sooty Tern Optimization Algorithm, STOA 
B128 2011 Stem Cells Algorithm, SCA B384 2019 Harris Hawks Optimization, HHO 
B129 2011 Water-Flow Algorithm, WFA B385 2019 Bonobo Optimizer, BO 
B130 2012 Anarchic Society Optimization, ASO B386 2019 Spherical Search Optimizer, SSO 
B131 2012 Artificial Tribe Algorithm, ATA B387 2019 Squirrel Search Algorithm, SSA 
B132 2012 Bat Intelligence, BI B388 2019 Flying Squirrel Optimizer, FSO 
B133 2012 Collective Animal Behavior, CAB B389 2019 Bald Eagle Search Optimisation Algorithm, BESO 
B134 2012 Cloud Model-based Differential Evolution Algorithm, CMDE B390 2019 Search And Rescue Optimization Algorithm, SAR 
B135 2012 Flower Pollination Algorithm, FPA B391 2019 Wild Mice Colony Algorithm, WMC 
B136 2012 Flock by Leader, FL B392 2019 Thieves And Police Algorithm, TPA 
B137 2012 Krill Herd Algorithm, KHA B393 2020 Artificial Transgender Longicorn Algorithm, ATLA 
B138 2012 Fruit Fly Optimization Algorithm, FFOA B394 2020 Barnacles Mating Optimizer, BMO 
B139 2012 Water Cycle Algorithm, WCA B395 2020 Black Hole Mechanics Optimization, BHMO 
B140 2012 Differential Search Algorithm, DSA B396 2020 Billiards-Inspired Optimization Algorithm, BIOA 
B141 2012 Ray Optimization, RO B397 2020 Border Collie Optimization, BCO 
B142 2012 Migrating Bird Optimization, MBO B398 2020 Bear Smell Search Algorithm, BSSA 
B143 2012 Wolf Search Algorithm, WSA B399 2020 Buyer Inspired Meta-Heuristic Optimization Algorithm, BIMHO 
B144 2012 Mine Blast Algorithm, MBA B400 2020 Darts Game Optimizer, DGO 
B145 2012 Electro-Magnetism Optimization, EMO B401 2020 Dynamic Differential Annealed Optimization, DDAO 
B146 2012 Bacterial Colony Optimization, BCO B402 2020 Dynastic Optimization Algorithm, DOA 
B147 2012 Great Salmon Run, GSR B403 2020 Forensic Based Investigation, FBI 
B148 2012 Japanese Tree Frogs Calling Algorithm, JTFC B404 2020 Plasma Generation Optimization, PGO 
B149 2012 Community of Scientist Optimization, CSO B405 2020 Newton Metaheuristic Algorithm, NMA 
B150 2012 Quantum-inspired Bacterial Swarming Optimization, QBSO B406 2020 Tunicate Swarm Algorithm, TSA 
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Table 7 (continued ) 

Refs Year Full name & abbreviation Refs Year Full name & abbreviation 

B151 2012 Hoopoe Heuristic Optimization, HH B407 2020 Marine Predators Algorithm, MPA 
B152 2012 Intelligent Gravitational Search Algorithm, IGSA B408 2020 Equilibrium Optimizer, EO 
B153 2012 Lion Pride Optimizer, LPO B409 2020 Electric Fish Optimization, EFO 
B154 2012 Zombie Survival Optimization, ZSO B410 2020 Slime Mould Algorithm, SMA 
B155 2012 Artificial Photosynthesis and Phototropism Mechanism, APPM B411 2020 Black Widow Optimization Algorithm, BWOA 
B156 2012 Superbug Algorithm, SA B412 2020 Manta Ray Foraging Optimization, MRFO 
B157 2013 Artificial Plant Optimization Algorithm, APOA B413 2020 Mayfly Algorithm, MA 
B158 2013 Artificial Reaction Algorithm, ARA B414 2020 Orcas Algorithm, OA 
B159 2013 Adaptive Social Behavior Optimization, ASBO B415 2020 Political Optimizer, PO 
B160 2013 Bat-Inspired Algorithm, BI B416 2020 Group Teaching Optimization Algorithm, GTOA 
B161 2013 Co-Operation Of Biology Related Algorithm, COBRA B417 2020 Turbulent Flow Of Water-Based Optimization, TFWO 
B162 2013 Global Neighborhood Algorithm, GNA B418 2020 Human Urbanization Algorithm, HUA 
B163 2013 Mosquito Host-Seeking Algorithm, MHSA B419 2020 Chimp Optimization Algorithm, COA 
B164 2013 Mobility Aware-Termite, MAT B420 2020 Coronavirus Optimization Algorithm, COA 
B165 2013 Backtracking Search Optimization, BSO B421 2020 COVID-19 Optimizer Algorithm, CVA 
B166 2013 Black Holes Algorithm, BHA B422 2020 Multivariable Grey Prediction Evolution Algorithm, MGPE 
B167 2013 Social Spider Optimization, SSO B423 2020 Sandpiper Optimization Algorithm, SOA 
B168 2013 Dolphin Echolocation, DE B424 2020 Shuffled Shepherd Optimization Method, SSOM 
B169 2013 Artificial Cooperative Search, ACS B425 2020 Red Deer Algorithm, RDA 
B170 2013 Gases Brownian Motion Optimization, GBMO B426 2020 Golden Ratio Optimization Method, GTOM 
B171 2013 Swallow Swarm Optimization Algorithm, SSOA B427 2020 Gaining-Sharing Knowledge Based Algorithm, GSKA 
B172 2013 Penguins Search Optimization Algorithm, PSOA B428 2020 Adolescent Identity Search Algorithm, AISA 
B173 2013 Egyptian Vulture Optimization, EVO B429 2020 Capuchin Search Algorithm, CSA 
B174 2013 Atmosphere Clouds Model Optimization, ACMO B430 2020 Giza Pyramids Construction, GPC 
B175 2013 Magnetotactic Bacteria Optimization Algorithm, MBOA B431 2020 Grand Tour Algorithm, GTA 
B176 2013 Blind, Naked Mole-Rats Algorithm, BNMR B432 2020 Groundwater Flow Algorithm, GFA 
B177 2013 Soccer Game Optimization, SGO B433 2020 Gradient-Based Optimizer, GO 
B178 2013 Seven-Spot Ladybird Optimization, SSLO B434 2020 Interactive Autodidactic School, IAS 
B179 2013 Cuttlefish Algorithm, CA B435 2020 LÉVy Flight Distribution, LFD 
B180 2013 African Wild Dog Algorithm, AWDA B436 2020 Momentum Search Algorithm, MSA 
B181 2013 Mussels Wandering Optimization, MWO B437 2020 Nomadic People Optimizer, NPO 
B182 2013 Swine Influenza Models Based Optimization, SIMB B438 2020 New Caledonian Crow Learning Algorithm, NCCL 
B183 2013 Tree Physiology Optimization, TPO B439 2020 Horse Optimization Algorithm, HOA 
B184 2014 Animal Behavior Hunting, ABH B440 2020 Rao Algorithms, RA 
B185 2014 Artificial Raindrop Algorithm, ARA B441 2020 Rat Swarm Optimizer, RSO 
B186 2014 Grey Wolf Optimizer, GWO B442 2020 Rain Optimization Algorithm, ROA 
B187 2014 Symbiotic Organisms Search, SOS B443 2020 Student Psychology Based Optimization Algorithm, SPOA 
B188 2014 Colliding Bodies Optimization, CBO B444 2020 Seasons Optimization Algorithm, SOA 
B189 2014 Chicken Swarm Optimization, CSO B445 2020 Shell Game Optimization, SGO 
B190 2014 Spider Monkey Optimization, SMO B446 2020 Sparrow Search Algorithm, SSA 
B191 2014 Interior Search Algorithm, ISA B447 2020 Tiki-Taka Algorithm, TTA 
B192 2014 Animal Migration Optimization Algorithm, AMOA B448 2020 Transient Search Optimization, TSO 
B193 2014 Coral Reefs Optimization Algorithm, CROA B449 2020 Vapor-Liquid Equilibrium Algorithm, VLEA 
B194 2014 Bird Mating Optimizer, BMO B450 2020 Virus Spread Optimization, VSO 
B195 2014 Shark Smell Optimization, SSO B451 2020 Wingsuit Flying Search, WFS 
B196 2014 Exchange Market Algorithm, EMA B452 2020 Water Strider Algorithm, WSA 
B197 2014 Forest Optimization Algorithm, FOA B453 2020 Woodpecker Mating Algorithm, WMA 
B198 2014 Golden Ball Algorithm, GBA B454 2020 Solar System Algorithm, SSA 
B199 2014 Keshtel Algorithm, KA B455 2020 Arsh-Fati-Based Cluster Head Selection Algorithm, ARSH-FATI-CHS 
B200 2014 Kaizen Programming, KP B456 2020 Teng-Yue Algorithm, TYA 
B201 2014 Kinetic Gas Molecule Optimization, KGMO B457 2020 Projectiles Optimization, PO 
B202 2014 Strawberry Algorithm, SA B458 2020 Color Harmony Algorithm, CHA 
B203 2014 Heart Algorithm, HA B459 2020 Multi-Objective Beetle Antennae Search, MOBAS 
B204 2014 Artificial Ecosystem Algorithm, AEA B460 2020 Orca Optimization Algorithm, OOA 
B205 2014 The Scientific Algorithms, SA B461 2020 Photon Search Algorithm, PSA 
B206 2014 Worm Optimization, WO B462 2020 Kernel Search Optimization, KSO 
B207 2014 Greedy Politics Optimization, GPO B463 2020 Spherical Search Algorithm, SSA 
B208 2014 Human Learning Optimization, HLO B464 2020 Triple Distinct Search Dynamics, TDSD 
B209 2014 Soccer League Competition Algorithm, SLCA B465 2021 Chaos Game Optimization, CGO 
B210 2014 Hyper-Spherical Search Algorithm, HSSA B466 2021 Chameleon Swarm Algorithm, CSA 
B211 2014 Ecogeography-Based Optimization, EBO B467 2021 Atomic Orbital Search, AOS 
B212 2014 Pigeon-Inspired Optimization, PIO B468 2021 Artificial Jellyfish Search Optimizer, JS 
B213 2015 Ant Lion Optimization, ALO B469 2021 Cooperation Search Algorithm, CSA 
B214 2015 Artificial Algae Algorithm, AAA B470 2021 Material Generation Algorithm, MGA 
B215 2015 Artificial Showering Algorithm, ASA B471 2021 Crystal Structure Algorithm, CryStA1 
B216 2015 Cricket Algorithm, CA B472 2021 Archimedes Optimization Algorithm, AOA 
B217 2015 Gradient Evolution Algorithm, GEA B473 2021 Archerfish Hunting Optimizer, AHO 
B218 2015 Moth-Flame Optimization Algorithm, MFOA B474 2021 Battle Royale Optimization Algorithm, BRO 
B219 2015 Monarch Butterfly Optimization, MBO B475 2021 Artificial Lizard Search Optimization, ALSO 
B220 2015 Water Wave Optimization, WWO B476 2021 Quantum Firefly Algorithm, QFA 
B221 2015 Stochastic Fractal Search, SFS B477 2021 Flow Direction Algorithm, FDA 
B222 2015 Elephant Herding Optimization, EHO B478 2021 Lichtenberg Algorithm, LA 
B223 2015 Vortex Search Algorithm, VSA B479 2021 Pastoralist Optimization Algorithm, POA 
B224 2015 Earthworm Optimization Algorithm, EOA B480 2021 Ebola Optimization Search Algorithm, EOSA 
B225 2015 Lightning Search Algorithm, LSA B481 2021 Elephant Clan Optimization, ECO 
B226 2015 Heat Transfer Search Algorithm, HTSA B482 2021 Red Colobuses Monkey, RCM 
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collected, and a taxonomy of metaheuristics is further proposed to 
describe the metaheuristics from two aspects, including the inspiration 
sources and the essential operators for generating solutions. We find that 
the recent metaheuristics proposed in the literature are neither rigor
ously tested on comprehensive and representative benchmark suites, nor 
compared with the state-of-the-art metaheuristics. Therefore, to eval
uate and understand the performance of the state-of-the-art and recent 
metaheuristics, 11 representative metaheuristics with new names are 
selected as recent algorithms to be compared with the 4 state-of-the-art 
algorithms on the CEC 2017 benchmark suite. 

For fair comparisons, we first use a unified framework named irace to 
automatically configure the parameters of all 15 comparative algo
rithms. Then, whether these algorithms have a search bias to the origin 
is investigated. For a detailed description, the convergence, diversity 
and trade-off between the exploration and exploitation of all 15 algo
rithms are also analyzed. All the experimental results were analyzed by 
nonparametric statistical methods, including the Friedman test, Wil
coxon signed-ranks test, and Bayesian signed-rank test. The results show 
that the performance of EBCM is similar to the 4 compared algorithms, 
and has the same properties and behaviors, such as convergence, di
versity, exploration and exploitation trade-off, etc. But the other 10 
recent algorithms are inferior to the 4 state-of-the-art algorithms for 
solving the CEC 2017 benchmark suite with 10, 30, and 50 variables. 
Besides, all 15 algorithms have searches biased to the origin but with 
different strengths. However, the 4 state-of-the-art algorithms are less 
affected by the shift operator of the functions compared with the 11 
recent algorithms. Except for EBCM, it should be noted that the other 10 
new algorithms are inferior to the 4 state-of-the-art algorithms in terms 
of convergence speed and global search ability on CEC 2017 functions. 
Moreover, the other 10 new algorithms show a rougher trade-off and 
diversity compared to the 4 state-of-the-art algorithms. Finally, several 
issues and suggestions based on the abovementioned review and ex
periments are proposed. 

In the next part of this survey series, we extend our work from the 
following aspects:  

(1) Metaheuristics are a broad field of research. We need to focus on 
comparative studies including examining more newly proposed 
algorithms and state-of-the-art algorithms on benchmarks and 
real-world problems of different sizes, complexes, and categories.  

(2) Due to space limitations, we investigated the performance and 
properties of different metaheuristics in the current study. We 
need a thorough theoretical analysis to confirm why these met
aheuristics perform better or worse.  

(3) We investigated some metaheuristics on whether their search is 
biased toward the origin. However, which parameters or strate
gies influence this property requires further study. 

Table 7 (continued ) 

Refs Year Full name & abbreviation Refs Year Full name & abbreviation 

B227 2015 Ions Motion Algorithm, IMA B483 2021 Golden Eagle Optimizer, GEO 
B228 2015 Optics Inspired Optimization, OIO B484 2021 Group Mean-Based Optimizer, GMBO 
B229 2015 Tree Seed Algorithm, TSA B485 2021 Dingo Optimizer, DO 
B230 2015 Runner-Root Algorithm, RRA B486 2021 Coronavirus Herd Immunity Optimizer, CHIO 
B231 2015 Elephant Search Algorithm, ESA B487 2021 Red Fox Optimization Algorithm, RFO 
B232 2015 Election Algorithm, EA B488 2021 Arithmetic Optimization Algorithm, AOA 
B233 2015 Locust Search, LS B489 2021 African Vultures Optimization Algorithm, AVOA 
B234 2015 Invasive Tumor Growth Optimization Algorithm, ITWO B490 2021 Artificial Gorilla Troops Optimizer, GTO 
B235 2015 Jaguar Algorithm, JA B491 2021 Artificial Hummingbird Algorithm, AHA 
B236 2015 General Relativity Search Algorithm, GRSA B492 2021 Intelligent Ice Fishing Algorithm, IIFA 
B237 2015 Root Growth Optimizer, RGO B493 2021 Komodo Mlipir Algorithm, KMA 
B238 2015 Bull Optimization Algorithm, BOA B494 2021 Linear Prediction Evolution Algorithm, LPE 
B239 2015 Prey-Predator Algorithm, PPA B495 2021 Multi-Objective Trader Algorithm, MOTR 
B240 2015 African Buffalo Optimization, ABO B496 2021 Optimal Stochastic Process Optimizer, OSPO 
B241 2016 Artificial Infectious Disease Optimization, AID B497 2021 Remora Optimization Algorithm, ROA 
B242 2016 Across Neighborhood Search, ANS B498 2021 Ring Toss Game-Based Optimization Algorithm, RTGBO 
B243 2016 Cricket Behavior-Based Algorithm, CBBA B499 2021 RUNge Kutta Optimizer, RUN 
B244 2016 Competitive Optimization Algorithm, COOA B500 2021 Samw 
B245 2016 Cognitive Behavior Optimization Algorithm, COA B501 2021 String Theory Algorithm, STA 
B246 2016 Electromagnetic Field Optimization, EFO B502 2021 Success History Intelligent Optimizer, SHIO 
B247 2016 Football Game Algorithm, FGA B503 2021 Tangent Search Algorithm, TSA 
B248 2016 Intrusive Tumor Growth Inspired Optimization Algorithm, ITGO B504 2021 Tuna Swarm Optimization, TSO 
B249 2016 Galactic Swarm Optimization, GSO B505 2021 Volcano Eruption Algorithm, VCA 
B250 2016 Whale Optimization Algorithm, WOA B506 2021 Smart Flower Optimization Algorithm, SFOA 
B251 2016 Sine Cosine Algorithm, SSA B507 2022 Ali baba and the Forty Thieves Optimization, AFT 
B252 2016 Dragonfly Algorithm, DA B508 2022 Honey Badger Algorithm, HBA 
B253 2016 Crow Search Algorithm, CSA B509 2022 Orca Predation Algorithm, OPA 
B254 2016 Multi-Verse Optimizer, MVO B510 2022 Reptile Search Algorithm, RSA 
B255 2016 Bird Swarm Algorithm, BSA B511 2022 Skip Salp Swam Algorithm, SSSA 
B256 2016 Virus Colony Search, VCS     

Algorithm 1 
The common optimization framework of a single-solution based metaheuristics.  

Input: initial solution s0; parameters 
Output: The best solution 
t←0;

Repeat 
/* Generate candidate solutions (partial or complete neighborhood) from st */ 

Generate(C(st)); 
/* Select a solution from C(s) to replace the current solution st */ 
st+1 = Select(C(st)); 
t = t+ 1;
Until the termination condition is met.  

Algorithm 2 
The common optimization framework of a population-based metaheuristics.  

Input: initial solution P0; parameters 
Output: The best solution 
t←0;
Evaluate the initial solutions and remember the best one as P∗; 
Repeat 
Generate (P′

t); /*Generation a new population */ 
Pt+1 = Select Population(Pt ∪ P′

t); /*Select new population */ 
Record the best solution found so far P∗; 

t←t+ 1;
Until the termination condition is met 
return the best solution found P∗.  
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Overall, we hope that our study provides useful insight to guide 
future designs of more practicable metaheuristics that are capable of 
handling complex, high-dimensional and large-scale real-world 
problems. 

Credit for Authors’ Contributions 

Zhongqiang Ma: Programmed the methods, conducted experiments, 
prepared the draft manuscript. Guohua Wu: Supervised and edited the 
manuscript. P. N. Suganthan: Proposed the overall project, supervised 
and edited the manuscript. Aijuan Song: Assisted in the editing. Qiz
hang Luo: Assisted in the editing. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgement 

Open Access funding provided by the Qatar National Library. 

Fig. 7. The CD plot of algorithms on the nonshifted functions with 10 variables.  

Fig. 8. The CD plot of algorithms on the nonshifted functions with 30 variables.  
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