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ARTICLE INFO ABSTRACT
Keywords: Metaheuristics are popularly used in various fields, and they have attracted much attention in the scientific and
Metaheuristics industrial communities. In recent years, the number of new metaheuristic names has been continuously growing.
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Generally, the inventors attribute the novelties of these new algorithms to inspirations from either biology,
human behaviors, physics, or other phenomena. In addition, these new algorithms, compared against basic
versions of other metaheuristics using classical benchmark problems, show competitive performances. However,
many new metaheuristics are not rigorously tested on challenging benchmark suites and are not compared with
state-of-the-art metaheuristic variants. Therefore, in this study, we exhaustively tabulate more than 500 meta-
heuristics. In particular, several representative metaheuristics are introduced from two aspects, namely, the
inspirational source and the essential operators for generating solutions. To comparatively evaluate the per-
formance of the state-of-the-art and newly proposed metaheuristics, 11 newly proposed metaheuristics (generally
with high numbers of citations) and 4 state-of-the-art metaheuristics are comprehensively compared on the
CEC2017 benchmark suite. For fair comparisons, a parameter tuning tool named irace is used to automatically
configure the parameters of all 15 algorithms. In addition, whether these algorithms have a search bias to the
origin (i.e., the center of the search space) is investigated. All the experimental results are analyzed by several
nonparametric statistical methods, including the Bayesian rank-sum test, Friedman test, Wilcoxon signed-rank
test, critical difference plot and Bayesian signed-rank test. Moreover, the convergence, diversity, and the
trade-off between exploration and exploitation of these 15 algorithms are also analyzed. The results show that
the performance of the newly proposed EBCM algorithm performs similarly to the 4 compared algorithms and
has the same properties and behaviors, such as convergence, diversity, exploration and exploitation trade-offs, in
many aspects. However, the other 10 recent metaheuristics are less efficient and robust than the 4 state-of-the-art
metaheuristics. The performance of all 15 of the algorithms is likely to deteriorate due to certain transformations,
while the 4 state-of-the-art metaheuristics are less affected by transformations such as the shifting of the global
optimal point away from the center of the search space. It should be noted that, except EBCM, the other 10 new
algorithms are inferior to the 4 state-of-the-art algorithms in terms of convergence speed and global search ability
on CEC 2017 functions. Moreover, the other 10 new algorithms are rougher (i.e., present in their behavior with
high oscillations) in terms of the trade-off between exploitation and exploration and population diversity
compared with the 4 state-of-the-art algorithms. Finally, several important issues relevant to the metaheuristic
research area are discussed and some potential research directions are suggested.

1. Introduction problems can be modeled as optimization problems. Optimization al-
gorithms attempt to reach the optimal objective values (i.e., minimum

Optimization algorithms play an important role in the economy, or maximum) and satisfy the related constraints. Very complex problems
engineering, management, and medicine because many real-world are highly constrained, multimodal, discontinuous, noisy and of high
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dimension, all of which can make the traditional exact algorithms (e.g.,
mathematical programming) ineffective.

As an alternative method, approximate algorithms have attracted
much attention in recent decades. Approximate algorithms can be
roughly divided into heuristic algorithms and metaheuristic algorithms.
Heuristic algorithms generally need to be elaborately designed for spe-
cific optimization problems and may have weak flexibility in solving
other types of problems. In contrast, metaheuristics provide a general
optimization framework for solving various optimization problems and
benefit from the randomness embedded into the operators, which makes
it possible to find a satisfactory, or near-optimal solution, in a reasonable
time, however, they cannot guarantee the optimum solution for complex
problems [1]. The merits of simplicity, less problem dependence, flexi-
bility, derivative-free mechanism, and local optima avoidance make
metaheuristics user-friendly [2].

Metaheuristics can be defined as high-level methodologies that
embody the underlying heuristics to solve optimization problems [3].
The term metaheuristic was first proposed by Glover in 1986 [4], and
most modern nature-inspired algorithms can be considered meta-
heuristics [5]. The concept of nature-inspired is about creating algo-
rithms by mimicking natural phenomena or biological behaviors to solve
optimization problems. For example, simulated annealing (SA) [6] is
inspired by the idea of the solid annealing principle. Particle swarm
optimization (PSO) [7] is derived from the interaction behaviors of birds
in the flock. Ant colony optimization (ACO) [8] mimics the behaviors of
ants in finding the shortest path between a nest and a food source. The
classification criteria of metaheuristics can be varied. For instance, ac-
cording to the number of candidate solutions at each iteration, meta-
heuristics can be further divided into population-solution based
metaheuristics and single-solution based metaheuristics [9]. Popular
single-solution based metaheuristics include SA, tabu search (TS) [4],
iterated local search (ITS) [10], guided local search (GLS) [11], random
search (RS) [12], variable neighborhood search (VNS) [13], and large
neighborhood search (LNS) [14]. Population-solution based meta-
heuristics include the genetic algorithm (GA) [15], differential evolution
(DE) [16], pattern search (PS) [17], and others.

There are still some issues in the field of metaheuristics. With the
increase in the number of recent metaheuristics, the necessity of irra-
tionally introducing new metaheuristic algorithms is questioned [18].
Molina et al. [19] found that there is no necessary significant relation-
ship between the inspiration sources of algorithms and their perfor-
mance. However, some researchers expect to improve the performance
of metaheuristics through the inspiration source, which is still
misleading. There is no work that comprehensively evaluates and
compares the efficiency and effectiveness of the newly proposed and the
state-of-the-art metaheuristics [20,21]. Furthermore, some algorithms
perform well on problems with the optimal solution located at the origin
(i.e., center of the search space) but are less efficient when the optimal
solutions are shifted [22-24]. This issue may affect the fair evaluation of
the algorithms.

Motivated by the issues mentioned above, in this paper, we first
summarize and analyze the related metaheuristics studies. Then,
extensive experiments are conducted by using representative bench-
mark functions, to fairly evaluate and understand the performances and
characteristics of the state-of-the-art and the recent metaheuristics with
a unified parameter tuning method. Furthermore, we test whether the
algorithms have a search bias to the origin. Therefore, the main research
contributions of our paper are outlined as follows:

e More than 500 metaheuristics are collected and a taxonomy of the
metaheuristics is proposed. In particular, several representative al-
gorithms are introduced from two aspects, including the inspiration
sources and the essential operators for generating solutions.

e We perform extensive experiments to evaluate and understand the
performances of the state-of-the-art and the recent metaheuristics.
Eleven representative metaheuristics with new names (generally
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with high numbers of citations) and 4 state-of-the-art metaheuristics
are selected to be comprehensively compared on the CEC2017
benchmark suite. In addition, whether these algorithms have a
search bias to the origin is investigated. For fair comparisons, a
unified framework named irace is used to tune the parameters of all
the comparative algorithms.

We use multiple nonparametric statistical methods to analyze the
experimental results in depth. The statistical results show that the
newly proposed EBCM algorithm performs similarly to the 4
compared algorithms and has the same properties and behaviors,
such as convergence, diversity, exploration and exploitation trade-
offs, in many aspects. However, the other 10 recent metaheuristics
are less efficient and robust than the 4 state-of-the-art meta-
heuristics. All 15 algorithms show certain degrees of search bias
toward the origin, but the 4 state-of-the-art metaheuristics are less
affected by the shift operator on the functions. Furthermore, we find
that the other 10 new algorithms (i.e., except for EBCM) are inferior
to the 4 state-of-the-art algorithms in terms of convergence speed
and global search ability on most of the CEC2017 functions. The
other 10 new algorithms show a rougher trade-off and diversity
compared with the 4 state-of-the-art algorithms. Finally, several
important issues that should be considered in the metaheuristic
research area are discussed and some potential research directions
are suggested.

The paper is organized as follows: Section 2 presents a taxonomy of
the metaheuristics and some representative metaheuristics are further
introduced and investigated by explaining the inspiration sources and
the essential operators for generating solutions. Extensive experiments
are conducted to evaluate the performance of the 15 comparative al-
gorithms in Section 3, and some properties of these algorithms are
further studied, including convergence, diversity, and the exploration
and exploitation trade-offs. Section 4 engages with some metaheuristics
research issues and suggests several potential research directions. Sec-
tion 5 draws the conclusion.

2. Literature overviews

In the last few decades, not only various improved versions of met-
aheuristics, but also many metaheuristics with new names mimicking
the behaviors of humans, animals and plants, and the phenomena of
physics and chemistry have been proposed. We selected some of the
popular metaheuristics (i.e., 47 metaheuristics) to search for publica-
tions of these algorithms in the Web of Science updates to November
2021. Fig. 1 shows that the number of publications for DE, PSO, SA,
ACO, and the artificial immune system all exceeded 10,000. It can be
observed that many newly proposed metaheuristics have also received
many citations and substantial attention. Therefore, metaheuristics are
still among the hot research topics and it is expected that the number of
publications of new metaheuristics and state-of-the-art metaheuristics
will continue to increase in the future. Table 7' summarizes more than
500 metaheuristics, in which “B#” corresponds to reference [#] in
Appendix B of the related supplemental material. For details on the full
list of metaheuristics, please refer to the supplementary materials.

2.1. Taxonomy of metaheuristics

There are various taxonomy methods for metaheuristics in the
literature, and the most popular taxonomy is based on the source of
inspiration [19,20,25]. Fig. 2 illustrates a rough metaheuristics classi-
fication, in which the metaheuristics are divided into population-based

1 If a metaheuristic algorithm is not included in Table 7, please inform the
authors. Table 7 will be updated online at: https://github.com/P-N-Suganth
an/MHA-500Plus
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Fig. 1. The number of publications about some popular metaheuristics.
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2.1.1. Evolutionary algorithms
EAs are inspired by Darwinian evolutionary theory and mimic the
behavior of evolution in nature, such as recombination, mutation, and
selection [26], which fully embodies the idea of survival of the fittest.
The first computer simulation of evolution can be traced back to 1954 by
the work of Barricelli [27] but his publication did not attract widespread
attention [28]. Until the 1960s and early 1970s, optimization methods
could be designed via artificial simulated evolution after the use of
evolutionary strategies (ES) to solve complex engineering problems in
Rechenberg’s work [29,30]. Currently, many variants of ES have been
proposed in the literature, such as (1+1)-ES, (u+1)-ES, (u+4)-ES, and (u,
A)-ES [31]. In 1960, evolutionary programming (EP) was first proposed
by Fogel to achieve artificial intelligence [32,33]. Originally EP used
finite state machines as predictors to predict environments. Currently,
EP is a popular evolutionary algorithm and has many different versions
including FEP (Fast EP) [34], AEP (Adaptive EP) [35], RLEP

optimization algorithms (POAs) and single-solution based optimization
algorithms (SOAs) according to the number of solutions generated in
each iteration. SOAs generally require only one individual to search the
solution space. In contrast, POAs contain multiple individuals that
search the solution space cooperatively and globally with some opera-
tors and mechanisms, such as mutation, crossover, selection, informa-
tion sharing, and search behavior learning.

We mainly focus on the POAs in this paper. Compared with SOAs, the
most important characteristics of POAs are three-fold [1]. First, multiple
points (i.e., solutions or individuals) are employed to search the solution
space cooperatively. Second, mechanisms for information sharing and
interactive learning among the individuals are adopted. Third, POAs are
stochastic, as randomness is usually incorporated into search operators
such as mutation and crossover. In Fig. 2, the POAs can be further
roughly divided into evolutionary algorithms (EAs), swarm intelligence
algorithms (SIAs) and physics or chemistry-based algorithms (P/CBAs).
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(Evolutionary Programming based on Reinforcement Learning) [36],
and ENAEP (Ensemble algorithm of Gaussian and Cauchy mutation
operators using AEP) [37]. In the early 1970s, genetic algorithms
became popular through the work of Holland [15], and their perfor-
mance mainly depended on the efficient encoding and decoding of the
solution, appropriate parameter configuration and operators, including
crossover, mutation and selection. GA and its variants are popular in a
wide range of fields, such as planning [38] and scheduling [39], bio-
logical [40] and chemical [41] engineering, and data mining [42]. Later,
genetic programming (GP) appeared and gradually became popular
starting from the early 1990s. The variants of GP include MGP (multi-
gene genetic programming) [43], and GGP (grammatical genetic pro-
gramming) [44]. Subsequently, differential evolution introduced by
Storn and Price in 1995 [16,45], emerged as a very competitive evolu-
tionary algorithm, especially in dealing with continuous optimization
problems. There are many powerful and efficient variants of DE pro-
posed in the literature, such as MPEDE [46] (multi-population ensemble
DE), EDEV [47] (ensemble of multiple DE variants), SaDE [48] (with
adapted mutation strategies and parameters), jDE [49] (with
self-adapted parameters) and CoDE [50] (composition of multiple stra-
tegies and parameter settings).

2.1.2. Swarm intelligence algorithms

SIAs mimic the behaviors of animals, plants, and human groups in
nature to optimize problems. Decentralized control and self-
organization are two important features of SIAs [51], which can be
understood as a group of individuals achieving common goals through
cooperation. In other words, each individual of the swarm has its own
intelligence and behaviors, and the integration of multiple individuals
has more power to solve complex problems [52]. Particularly, the
following advantages of SIAs make them user-friendly optimizers [53]:
1) The general framework can be applied to various fields with only a
few modifications; 2) The information of the solution space and search
states is reserved and used to guide the search during the optimization
process; 3) Relatively fewer parameters make SIAs require less tuning
effort to cater to different optimization problems. However, there still
exist some critical issues that have not been well addressed in SIAs, such
as premature convergence, being stuck in a local optimum, and lack of
good trade-offs between exploitation and exploration [54]. Compared
with EAs, SIAs do not have crossovers, while evolutionary algorithms
usually have crossovers. SIAs do not include competitive selections, but
EAs usually have selections. In addition, SIAs can be hybridized with EAs
to include crossovers/selections. SIAs can be further categorized into
human-related algorithms and nonhuman algorithms according to the
inspiration source.

(1) Human-related algorithms

Human-related algorithms (HRAs) are inspired by the behaviors of
humans in society, such as learning, competition, political campaigns,
and cultural influence [55]. For example, inspired by the behavior of
human learning, the teaching-learning-based optimization (TLBO) al-
gorithm works on the effect of a teacher on learners [56]. The
gaining-sharing knowledge-based algorithm (GSK) simulates the process
of obtaining and sharing knowledge during the human lifespan [52].
The group teaching optimization algorithm (GTOA) mimics the mech-
anism of group teaching [57]. In terms of society competition, the soccer
league competition algorithm (SLCA) is inspired by teams competing
during a season in a soccer league [58] and the imperialist competitive
algorithm (ICA) simulates the competition among imperialists [59].
Inspired by political campaigns, Askari et al. [5] conducted a compre-
hensive analysis of political mechanisms and proposed a new algorithm
called the political optimizer (PO). In addition, the greedy reedy politics
optimization (GPO) [60] and the parliamentary optimization algorithm
(POA) [61] are also inspired by political mechanisms. There are many
algorithms inspired by other human society inspiration sources, such as
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the poor and rich optimization algorithm (PRO) [62], human urbani-
zation algorithm (HUS) [63], life choice-based optimizer (LCBO) [64]
and queuing search algorithm (QS) [65].

(2) Nonhuman algorithms

Nonhuman algorithms (NHAs) include animal-based algorithms
(AAs) and plant-based algorithms (PAs). AAs are inspired by the
behavior of different animals, such as foraging, flocking, mating, and
other behaviors [66]. For example, PSO is inspired by the behavior of a
flock of birds or a school of fish, in which each particle can move
throughout the solution space and update its current position in terms of
a current best solution and a global best solution [53]. An artificial bee
colony (ABC) is a metaheuristic based on the intelligent behavior of a
honey bee swarm. The bee colony consists of three types of bees,
employed bees, onlooker bees, and scout bees, and the search phases can
be divided into search, recruit, and abandon [67]. The bat algorithm
(BA) [68] and cuckoo search (CS) [69] are inspired by the echolocation
behavior of bats and the brood parasitism of some cuckoo species,
respectively. Other popular AAs include the firefly algorithm (FA) [70],
gray wolf optimizer (GWO) [71] and grasshopper optimization algo-
rithm (GOA) [72]. PAs are inspired by plant behavior such as growth,
root expansion, weed invasion and flower pollinatio [65,73]. For
instance, the invasive weed optimization (IWO) algorithm [74] mimics
the process of weed invasion, and the flower-pollinating algorithm
(FPA) [75] simulates the characteristics of flower pollination.

2.1.3. Physics/chemistry-based algorithms

P/CBAs are mostly created by imitating the physical and chemical
law phenomena in nature, including electromagnetic force, inertia force,
gravity, electrical charges, river systems, movement, chemical changes
of material, and others [73,76-79]. For instance, the gravitational
search algorithm (GSA) [80] is inspired by the law of gravity and mass
interactions, where the search individuals are a collection of masses.
According to the concepts of the white hole, black hole and wormhole in
cosmology, multi-verse optimization (MVO) [81] has been designed to
solve complex problems. In MVO, white holes and black holes are
correlated with explorations, and wormholes are responsible for sharing
and exploiting the information of the solution space. In addition, har-
mony search (HS) [82] mimics the behavior of an orchestra to create the
most harmonious melody and measure it by aesthetic standards.
Detailed information about HS is described in the literature [83]. Other
typical P/CBAs include water evaporation optimization (WEO) [84],
transient search optimization (TSO) [85], chemical reaction optimiza-
tion (CRO) [86], and charged system search (CSS) [87].

2.2. Optimization mechanisms of metaheuristics

In this section, the optimization frameworks of single-solution based
and population-based metaheuristics are presented. After that, several
representative metaheuristics are reviewed from two different aspects,
the inspiration sources and the essential operators for generating
solutions.

2.2.1. Optimization framework of metaheuristics

As Algorithm 1 [88,89] shows, typical single-solution based meta-
heuristics start from a single initial solution. It iteratively performs a
generation and selection procedure for a single solution until a termi-
nation condition is met; then, a best-so-far solution will be returned. In
each iteration, a candidate solution set, C(s;), is generated based on the
incumbent solution, s;, in the generation procedure. In the selection
phase, a selection operation is performed on the set C(s;) to choose a new
solution s.,; to replace the current solution.

Population-based metaheuristics begin with an initial population
solution Py, as shown in Algorithm 2 [88,90]. Afterward, the generation
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and selection are iteratively executed to generate a new population P;,
and selects promising individuals to form a new population P;;; to
replace the current population. Finally, the best-so-far solution, P*, is
returned when a given stopping criterion is met. Moreover, the historical
information can be memorized in Algorithm 1 and Algorithm 2 to better
generate candidate solutions and to select promising solutions.

Regardless of the kinds of optimization frameworks and classifica-
tion criteria used, exploration and exploitation play crucial roles in
improving the performance of metaheuristics [47,91,92]. Exploration
refers to the ability to globally search the solution space and find a
promising region, which is associated with escaping from the local op-
timum and avoiding a premature convergence (i.e., increasing popula-
tion diversity). Exploitation denotes the capability of locally searching
the promising region found by the exploration operators. The
well-known trade-off between exploration and exploitation is critical. In
regards to the trade-offs of the exploration and exploitation of meta-
heuristics, Morales-Castaneda et al. [93] and Crepinéek et al.[94] con-
ducted an in-depth investigation.

2.2.2. Introduction of representative metaheuristics

In this section, several representative state-of-the-art and new met-
aheuristics are reviewed from two aspects: (1) the inspiration source for
proposing the algorithm, and (2) the essential operators for generating
solutions in each algorithm. These representative metaheuristics include
some popular and competitive algorithms and the recently proposed
algorithms.

(1) Differential Evolution (DE) [16]

DE is a competitive metaheuristic inspired by the principle of sur-
vival of the fittest. In DE, the population evolves through mutation,
crossover, and selection in each generation, and the most frequently
used mutation operator of DE is called DE/rand/1, which can be
formulated as

7,“(; = ?,1} G + F- <?r§'6 - ?r‘}G> (l)

where Vg is the mutation vector, X, g, X g, and X, g are three

randomly generated distinct vectors, and F is a mutation factor among [0,
1].
The other popular mutation schemes are summarized as follows [95,

96]:
DE/best/l Vi = Xpewc + F <7r3,6 - ?r‘z‘G> @
DE/bESt/Z :Vi6 = Xpesc + F- <?r’1-G - 7@‘1‘) +F (7’9-0 - ?’?G)

@
DE/target —to — best/l Vi
=Xig+F (?hesl.G - ?i‘G)
+F- (7,,].0 - ?,..Z.G) 6
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DE/current —to — rand/l : 7,»70
+F <7r5,c - 7@,6) ©

where X 6, X 6 Xpi 6> Xri g and X, g are mutually different vec-
tors, which are randomly chosen from the population at generation G.
X'ic is the target vector at generation G. X pes iS the vector with the
best fitness in the population at generation G. F is the scaling factor
within [0,1].

Two widely used crossover methods in DE are the binomial crossover
and exponential crossover, and their formulas are shown as follows [97,
98].

Binomial crossover:

vijo if rand;(0,1) < CR or j = jrana

UijG= {x,;j,G otherwise @
Exponential crossover:

o _ qViiG Jorj=(Dp, I+ 1)p, ..., I+ L—1),
UijG= {x,;j,G otherwise (®)

where u;j g, Xij¢, and v;j ¢ are the j-th components of vectors 71-‘(;, Xig,
and V';g, respectively, i = {1,2,...,NP}, andj = {1,2,...,D}. jranq is an
integer, that is randomly generated in the range of [1,D]. rand;(0,1) is a
number randomly generated from a uniform distribution in the range of
[0,1]. The notation < >p denotes the modulo function with modulus D
and L is an integer number ranging in [1,D].

The selection operation can be completed by comparing the fitness
values of the target vector and the trial vector that determines which
vectors can survive to the next generation.

— . — < -
7:’.0“: { Uic lff< Mz.G) _f(qu> 9)
_ ,
Xic otherwise

where ?LGH and ?i,G are target vectors at the generations G and G+ 1,
respectively, ;41 is the trial vector at generation G and f(x) is the
objective function considered.

There exist many variants of DE in the literature. Some variants show
competitive performance in solving complex problems. For example,
LSHADE-cnEpSin [99] combines a sinusoidal approach based on per-
formance adaptation and a covariance matrix learning method for the
crossover operator into LSHADE-EpSin, which achieved a competitive
performance at the 2017 IEEE CEC. Mohamed et al. [100] proposed a
new version of DE named LSHADE-SPACMA by integrating
LSHADE-SPA and a modified version of CMA-ES. Furthermore,
Mohamed et al. [97] proposed two new DE variants named EDE and
EBDE, where EDE had a less greedy mutation strategy named
DE/current-to-ord_best/1, and EBDE introduced a more greedy muta-
tion strategy named DE/current-to-ord_pbest/1. We named this newly
proposed algorithm EDE-EBDE in our paper. MPEDE [46] and EDEV
[47] are two powerful variants proposed by Wu. In MPEDE [46], three
mutation strategies simultaneously coexisted, i.e., “current-to-pbest/1”
and “current-to-rand/1” and “rand/1”. EDEV [47] consists of three
highly popular and efficient DE variants, namely JADE, CoDE, and
EPSDE. The entire population of EDEV is partitioned into four sub-
populations to coevolve to obtain better results. In the latest research,
Ghosh et al. [101] combined SHADE and LSHADE with the nearest
spatial neighborhood-based parameter adaptive process modification
method to propose NSHADE and NLSHADE.
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(2) Hybrid sampling evolution strategy (HSES) [102]

HSES is a new version of ES that combines the covariance matrix
adaptation-evolution strategy (CMA-ES) and the univariate sampling
method, it achieved the best performance at the 2018 IEEE CEC. In the
HSES, the CMA-ES is mainly used for unimodal problems and the uni-
variate sampling method is used for multimodal nonseparable problems.
In particular, the method for calculating the mean value and the stan-
dard deviation of UMDACc (i.e., univariate marginal distribution algo-
rithm continuous) is modified in the HSES. For detailed information
about the HSES, please refer to [102].

(3) EBOWithCMAR [103]

EBOwithCMAR (Effective Butterfly Optimizer with Covariance Ma-
trix Adapted Retreat Phase) is an improved variant of the butterfly
optimizer, which combines a self-adaptive butterfly optimizer and a
covariance matrix adapted retreat phase. The solution modification Eq.s
are shown as follows.

Criss — cross modification : v, = X1, + F * <Xl,<lf - (X UXZ)rzj) (10)

Toward — best modification : v, = X1y, + F * ()’cl“z —(X; UXZ),2:> (11

where V, is a new vector, and X1, X1,, and (X3 UXZ)rzz are three
distinct individual vectors. X1, is the best neighbor of the z-th vector. F
is a positive real number that controls the population evolution
rate. X; UX, is the combination of both populations. In particular, the
crossover operator of EBOwithCMAR is based on the Eq. (9).

(4) Snap-drift cuckoo search (SDCS) [104]

SDCS is a new version of CS [69] proposed by Rakhshani, that in-
tegrates the snap and drift modes into CS to establish the trade-off be-
tween exploration and exploitation. Moreover, a pair of new crossover
and mutation operators are employed to improve the search capability.
The updated rules of the SDCS are shown below.

{ max (0, p,, — @)

min(1,p, + w)

if 4= snap
if p = drift

Snap and drift modes: p, = 12)

Xi+ay® (xj’.®Lévy(ﬁ) 7xf) ifp<J
Crossover operator: X' = { xl +a,® (x/‘ —xi ®Lévy(/})> ifJ<p<1-J
Xi4ap® (xj’ —xﬁ) ®Lévy(B) ifp>1-J
13)

ifp<J
Mutation operator: xi™' = ¥/ +H(p, — ) ® (¥ —x' ® r) ifJ<p<1-J

J
X+ H(p,—€)® (xj’.fx;)

X+Hp,—€)® (xf@r—xﬁ)

7

ifp>1-J
14)

where p, is known as a switching parameter [105], which is applied to
trade-off the snap mode and drift mode. py, is the performance measure,
and w is the increase (or decrease) rate of p,. y is an auxiliary parameter
that equals snap if 0 < py, < 0.5; otherwise, y = drift. x{ and x; are two

mutually different positions at time t, and x!*! is the i-th position at time
t+ 1. ap and g are the Lévy flight exponent and step size scaling factor,
respectively. H refers to the Heaviside step function. r, p, and ¢ are three
randomly generated numbers with uniform distributions, and J € [0, 1]
is a possibility value. The notation & indicates entrywise
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(5) Multi-strategy enhanced sine cosine algorithm (MSCA) [106]

MSCA is an improved version of SCA [107], which is based on sine
and cosine functions and randomly generates multiple initial individuals
to fluctuate outward or toward the best solution. In MSCA, multiple
control mechanisms and operators are embedded into SCA, including
the Cauchy mutation operator, chaotic local search mechanism, and
opposition-based learning strategy, and two differential evolution op-
erators are used to achieve a better trade-off between exploration and
exploitation. The position update Eq.s of MSCA are the same as those of
SCA and can be expressed as follows.

o X!+ xsin(ry) x [P = Xi| 1y <05 as)
i X!+ 1y x cos(ra) x |rsPL—X!| 74 >05
n=a-iz (16)

T

where X is the position of the current solution in the i-th dimension at
the t-th iteration, and P! is the position of the destination point in the i-th
dimension at the t-th iteration. r; is a random variable that is calculated
by Eq. (16), which is a constant, t is the current iteration, and T is the
maximum number of iterations. r; is a random variable responsible for
the movement (i.e., toward or outward P!) of the next solution (i.e.,
X1, r3 is a random variable that gives random weights for Pt ry is a
random number within [0,1]. For detailed information on the mecha-
nisms and operators adopted in MSCA please refer to [106].

(6) Improved moth-flame optimization algorithm (IMFO) [108]

IMFO is a newly improved algorithm that introduces a hybrid phase,
dynamic crossover mechanism, and fitness-dependent weight factor into
MFO [109] to overcome the degeneration of the global search capability
and convergence speed. The main inspiration of IMFO is also the navi-
gation behavior of moths in nature, which is referred to as a transverse
orientation. The position update Eq.s of moths in IMFO are shown as
follows.

M €S|

w= L bk’) a7
F()

Mf = D' e"cos(2nt) + wFE ! + (1= w)-Mpey 18

where w is a weight factor that depends on fitness, f(Mp,) is the fitness
value of the best solution Mj, and f (M{F) represents the fitness values of
the i-th moth at iteration k. M¥ and F<~! are the positions of the i-th moth
and the j-th flame at iterations k and k — 1, respectively. DX! is the
distance between the i-th moth and the j-th flame at iterationk — 1, bisa
constant used to define the shape of the logarithmic spiral and t is a
random number within [-1,1].

(7) Aquila optimizer (AO) [110]

AO is inspired by Aquila’s behavior in nature during the process of
catching prey. The optimization procedures of the proposed AO algo-
rithm are represented in four methods, selecting the search space by a
high soar with a vertical stoop, exploring within a divergent search
space by a contour flight with a short glide attack, exploiting within a
convergent search space by a low flight with a slow descent attack, and
swooping by walking and grabbing the prey. In AO, the different steps
(four methods) have different mathematical expressions for solution
position updating and are shown as follows.
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t
Step 12 X, (14 1) = Xy (1) x (1 - T) (X (1) — Xpeut (1) * rand) (19)

Step 2 : X5(t+ 1) = Xpest (1) X Levy(D) + X&(t) + (y — x) * rand (20)

Step 3 : X5(r+1)
= (Xpest (t) —Xm(t)) x a —rand + (UB—LB) x rand+LB) x§
@1

Step 4 : X4(t+1)
= QF X Xpest (1) — (G1 x X(t) X rand) — G, x Levy(D) + rand x G,
(22)

where X;(t+1) is the solution of the next iteration of t, which is gener-
ated by each search method (X;) and i = 1,2, 3, 4. Xpes(t) is the best-
obtained solution until the t* iteration, Xy(t) denotes the location
mean value of the current solutions at the ¢ iteration, Levy(D) is the levy
flight distribution function, Xz (t) is a random solution taken in the range
of [1,N] at the ™ iteration, y = r x cos(#) and x = r x sin(6) are used to
present the spiral shape in the search and a and § are the exploitation
adjustment parameters fixed at 0.1. LB and UB are the lower bound and
upper bound of the given problem, respectively. QF denotes a quality
function used to establish the equilibrium of the search strategies, Gy
denotes various motions of the AO, G, denotes the flight slope of the AO
that is used to follow the prey during the slope from the first location (1)
to the last location (t), rand is a random value between 0 and 1, and t and
T represent the current iteration and the maximum number of iterations,
respectively. For detailed parameter information calculations and the
AO, please refer to [110].

(8) Improved grasshopper optimization algorithm (IGOA) [111]

The grasshopper optimization algorithm (GOA) [71] is a recently
proposed metaheuristic algorithm that is inspired by the swarming
behavior of grasshoppers. IGOA improves GOA through the integration
of multiple mechanisms including Gaussian mutation, Levy-flight
strategy and opposition-based learning. The improvement method in
IGOA is similar to that of the MSCA. The mathematical expression of the
solution position update is as follows.

N
d_ . uby — by d X~ X T
X =c ZC#S(X/' *xf]D Id[j ®Gla)+ Ty (23)
=1
J#i
Xf”" =X; + rand(d) @ levy(f) 24

XH— X fitness(X™) \fimess (x)
' X; otherwise

i

(25)

In Eq. (23), X¢ represents the updated position of grasshopper i in the
d-th dimension. de and x? are two different grasshoppers in the d-th
dimension. N is the number of grasshoppers, and c is a parameter
calculated by the Eq. ¢ = cmax — I(cmax — cmin)/L. ubs and lb, are the
upper bound and lower bound in the d-th dimension, respectively. s(x) is
the function that defines the social forces, and d; is the distance between
the i-th and j-th grasshoppers. G(x) and T, are the Gaussian step vector
and the value of the best-so-far solution in the d-th dimension,
respectively. « is a Gaussian random number generated in the range of
[0,1]. The generation and selection of the new solution are based on Eq.
s (24) and (25). Xfe"y is a new solution generated based on the Levy flight
mechanism, and X; is the new position of the i-th grasshopper after
updating. X! is a selected solution based on the fitness value between
Xfe"y and X;. rand(d) and levy(x) are the d-th dimension random vectors in
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[0,1] and the Levy distribution, respectively. f is the Levy index. The
notation @ in all the Eq.s represents the dot product operation.

(9) Hyperbolic gravitational search algorithm (HGSA) [112]

GSA is a physically inspired population-based algorithm that solves
problems based on the law of gravity and mass interactions [80]. HGSA
is a new version of GSA, in which the hyperbolic acceleration coefficient,
dynamic regulation, and decreasing hyperbolic function are adopted to
achieve a better trade-off between exploration and exploitation. The
positions and velocities of the individuals in HGSA can be calculated as
follows.

VI(t+1) = rand; x v (1) + ¢ (1) x af (A1 + c2(t) x (gbest — x4 (1)) / At
(26)

e+ 1) =x(0)+vi(e+1) @7

where x{(t) and v{(t) are the position and velocity of the i-th individual
in the d-th dimension at iteration t, a’(t) is the acceleration of individual
iat time t and c; (t) and cx(t) are the acceleration coefficients at time t.
rand; is a uniform random variable in the interval [0,1]. gbest is the
position of the best-so-far solution. At is the time increment. For
detailed information about HGSA, please refer to [112].

(10) Memetic frog leaping algorithm (MFLA)

MFLA is an improved version of the shuffled frog leaping algorithm
(SFLA) that was first proposed by Eusuff et al. [113]. SFLA is a meta-
heuristic search approach that mimics the foraging behavior of frogs,
which is similar to PSO. In the frog population, each frog can commu-
nicate with each other and the worst frog can jump to find the best food
source guided by the best frog. MFLA improves SFLA by integrating a
memetic mechanism and a new search leaping rule. The mathematical
formulas are shown below.

if rand < 0.5

(28)
else

_9
Q=1

0, = 0, + rand(Qpess — Q) + rand(Q,, — ) (29)

where Q, and Q. are the worst and best frog, respectively. Q,, is an
auxiliary variable. Q; and Q¢ represent the geometric center and grav-
itational center, respectively. For the Eq.s for calculating Q; and Qc,
please refer to [114].

(11) Gaining-sharing knowledge-based algorithm (GSK) [52]

GSK is inspired by the human behaviors of gaining and sharing
knowledge, which can be divided into two phases: (1) the junior gaining
and sharing phase and (2) the senior gaining and sharing phase. The
differential Eq.s for generating the new solutions are proposed in two
phases and described as follows:

ow_ X Fkpx [y — X)) + (6 — X)) () > f(x)

YT {xi + ke (i = xi0) + (6 — %)) flx) <f(x) (30)
new__ g Xi + Ky ® (x)—best - x}—worsl) + (o —xi)] f(x) > f ()

Y= {x,- + ky % (xlp—he.\r - xl,,fm\r) + o —x)] fl) < flxm) GD

where x; is the i-th individual. Compared with the current individual x;,
X;—1 and x;;; are the nearest better and worse individuals respectively, to
constitute the gain source of knowledge. x,_pess and Xp_wors: are the best
individual and worst individual, respectively, among all the individuals.
X, and x;, are individuals randomly selected from the population, kf is a
real number greater than 0 and f(x) is the objective function.
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(12) Marine predators algorithm (MPA) [115]

MPA mimics marine predators and uses the predation behavior of the
Lévy and Brownian movements to optimize problems. The optimal
encounter rate policy in the interaction between predator and prey is
also considered. In MPA, the optimization process is divided into three
phases due to different velocity ratios.

Phase 1: When the velocity ratio is high or the prey is moving faster
than the predator

_— — — — —_—

stepsize; = Rp @ <Elite[ —Rz® Preyl-> i=1,-n (32)
e — - —

Prey, = Prey;, + P-R @ stepsize,; (33)

Phase 2: In the unit velocity ratio or when both predator and prey are
moving at almost the same pace

e For the first half of the population (i = 1,---n/2)

—_— — — — —

stepsize; = R ® <Elile, —R.® Prey,) i=1, ~--n/2 (34)
P — —  —

Prey; = Prey; + P-R ® stepsize; (35)

e For the second half of the population (i = n/2,---n)

—— — — — —

stepsize; = Rp @ <RB ® Elite; — Prey,) i= n/2., —en (36)
= = —

Prey, = Elite; + P-CF ® stepsize; (37)

Phase 3: In a low-velocity ratio when the predator is moving faster
than the prey

_— — — _— —

stepsize; = R ® <RL ® Elite; — Prey[) i=1,-n (38)
—_— — _—

Prey; = Elite; + P-CF Q stepsize; (39)

where stT)sizei is the step size matrix of the search individuals (predator
and prey) and ﬁEéi is the matrix that oversees the searching and finding
of the prey based on the information of the prey’s positions. ITe})/i is the
function matrix based on which the predators update their positions. ?B
is a vector containing random numbers that represents a Brownian
motion. P is the constant number, and R is a vector that contains a
random number in the interval [0,1]. ?L is a vector that contains

random numbers following the Lévy distribution. CF is an adaptive
parameter used to control the predator step size.

(13) Equilibrium optimizer (EO) [91]

EO is inspired by the control volume mass balance models that are
used to estimate both the dynamic and equilibrium states. In EO, each
individual has its concentration (position), and the best-so-far solution is
named the equilibrium candidate. Each individual randomly updates
their concentration around the equilibrium candidates to finally reach
the equilibrium state (optimal result). The updating rule of the in-
dividuals is shown as follows.

-
- = — G —
C:ng+<C7Ceq>~F+_,—<lfF) (40)
p

Swarm and Evolutionary Computation 77 (2023) 101248

- . . . .o . =4 .
where C is a concentration vector of the individuals, C.q is a vector that
contains the candidates in the equilibrium pool, F is an exponential

term that includes an exponential function, V is considered a unit, and 7
is a random vector in the range of [0,1]. In EO, the selection process is

completed by comparing the fitness value of C; with the fitness values of

6eq1, 63(12, 6eq3, and 66,14 and selecting the best one to replace the
worst one.

As mentioned above, we can summarize the general mathematical
model of the essential operators that generate solutions in the
population-based metaheuristics, which can be described as the new
solution x!™! being equal to the sum of the current solution x! and the
modification increment or mutation vector Axf [78], i.e.,

x?“ = x; + A)(j,. (41)

The ways to determine Ax} reflect the essential differences among the
different metaheuristics.

3. Experimental analyses

To evaluate the performance and properties of the newly proposed
algorithm, 11 newly named metaheuristics and 4 state-of-the-art meta-
heuristics are selected in this section. We first use a unified framework
named irace to automatically configure the parameters of all 15
comparative algorithms. Then, whether these algorithms have a search
bias to the origin is investigated. For detailed description, the conver-
gence, diversity, and trade-off between the exploration and exploitation
of all 15 algorithms are also analyzed. All the experimental results were
analyzed by nonparametric statistical methods, including the Friedman
test, Wilcoxon signed-ranks test, and Bayesian signed-rank test.

3.1. Experiment setup

In this section, 11 newly proposed representative metaheuristics that
are popular and highly cited and 4 state-of-the-art metaheuristics are
selected for the comparison experiments. The 15 algorithms are

Table 1

Summary of the 15 comparison algorithms.
Algorithm Year Abbreviation
e 11 new algorithms
Aquila optimizer [110] 2017 AO
Effective butterfly optimizer with covariance 2017  EBOwithCMAR

matrix adapted retreat phase [103] (EBCM)"

Snap-drip cuckoo search [104] 2017  SDCS
Improved grasshopper optimization algorithm 2018 IGOA

[111]
Hyperbolic gravitational search algorithms [112] 2019  HGSA

Memetic frog leaping algorithm [114] 2019 MFLA

Improved moth-flame optimization algorithm 2020 IMFO
[108]

Multi-strategy enhanced Sine Cosine Algorithm 2020 MSCA
[106]

Gaining-sharing knowledge-based algorithm [52] 2019 GSK

Marine predators algorithm [115] 2020 MPA

Equilibrium optimizer [91] 2020 EO

o 4 state-of-the-art algorithms

L-SHADE with nearest spatial neighborhood- 2017 NLSHADE

based modification [101]

LSHADE with semi-parameter adaptation hybrid 2017  LSHADE-SPACMA
with CMA-ES [100] (LS-SPA)

Hybrid sampling evolution strategy [102] 2018  HSES

Two enhanced DE variants EDE and EBDE [97] 2019 EDE-EBDE (ED-EB)

Note: In the rest of this paper, we use EBCM, LS-SPA, and ED-EB to represent
EBOwithCMAR, LSHADE-SPACMA, and EDE-EBDE, respectively.

@ As a top performer in a CEC competition, it was initially selected as a state-
of-the-art algorithm. But, a reviewer asked us to classify it under newer
algorithms.
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summarized in Table 1.

We select 2017 CEC bound-constrained numerical optimization
problems as the benchmark problems [116], which contain thirty
functions that can be divided into four categories, unimodal functions
(F1-F3), multimodal functions(F4-F10), hybrid functions (F11-F20) and
composition functions (F21-F30). These functions have the same upper
bound (100) and lower bound (-100). The global minimum value of each
function is the product of the function index and 100. In this paper, the
maximum number of function evaluations is set to 10000 =D, and all the
experimental results are obtained from average values over 31 runs.

To make fair comparisons [117,118], we first tuned the parameters
of all 15 comparative algorithms on all the CEC 2017 functions with 10,
30, and 50 variables. The tuned parameter values are presented in
Table 2. Afterward, further experiments are conducted from two aspects:
performance evaluation and verification of whether these comparison
algorithms have a search bias to the origin. In the performance evalu-
ation experiments, all the CEC 2017 functions with 10, 30, and 50
variables are used. To evaluate whether these comparative algorithms
have a search bias to the origin, all the shifted and nonshifted CEC 2017
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functions with 10 and 30 variables are used.

All experimental results are analyzed by several nonparametric sta-
tistical methods including the Bayesian rank-sum test, Friedman test,
Wilcoxon signed-rank test, and Bayesian signed-rank test to verify
whether the performance of two or more algorithms differs from each
other statistically. If the p value obtained by any two algorithms is equal
to or less than 0.05, it indicates that there is a significant difference in
the performance of the two algorithms. Otherwise, the opposite is true.
Details of the statistical results are summarized in the supplementary
file, where the result tables (or figures) are denoted as “TableS# (Fig.
S#)” and “#” is the table number. All the algorithms are coded in
MATLAB software and run on a Windows 10 operating system with a
Core i7-10700CPU and 32 G RAM. The codes of this paper have been
published online (http://faculty.csu.edu.cn/guohuawu/zh_CN/zdylm/
193832/list/index.htm).

3.2. Automatic parameter tuning

For a fair comparison, we employed the iterated racing (irace)

Table 2

Parameter tuning results of the 15 algorithms.

Algorithm Default parameters Tuned parameters
10 variables 30 variables 50 variables

AO [110] Population size n=25; number of Population size n=34; Exploitation Population size n=10; Exploitation Population size n=69; Exploitation
clusters m= 5; adjustment parameters @=0.9161; adjustment parameters a=0.4207; adjustment parameters a=0.186;

6=0.3806 8=09379 8=0.6773

SDCS Population size n={15, 25, 35}; Population size n=10; Increase/decrease Population size n=24; Increase/ Population size n=10; Increase/

[104] Increase/decrease rate of rate of p,=0.3413; Movement variability =~ decrease rate of p,=0.1854; Movement decrease rate of p,=0.9137;
Pa={0.005, 0.5, 1}; Movement parameter J=0.8281; Step size scaling variability parameter J=0.9618; Step Movement variability parameter
variability parameter J={0.1, 0.2, factor ap=0.9491 size scaling factor ap=0.5973 J=0.9316; Step size scaling factor
0.3}; Step size scaling factor ap=0.5201
ap={0.01, 0.1, 1}

IGOA Population size n =30 Population size n=34 Population size n=35 Population size n=25

[111]

HGSA Population size n=30; Population size n=37; Gravitational Population size n=23; Gravitational Population size n=24; Gravitational

[112] Gravitational constant Go=100 constant Go=89 constant Gp=118 constant Gp=116

MFLA Number of memeplexes m={2, 4, Number of memeplexes m=>5; Number of =~ Number of memeplexes m=4; Number Number of memeplexes m=4; Number

[114] 5}; Number of frogs in a memeplex  frogs in a memeplex n=>5; beta=0.7563 of frogs in a memeplex n=6; of frogs in a memeplex n=5;
n={4, 5, 10}; beta=0.6 beta=0.5867 beta=1.4742

IMFO Population size n=100; Spiral Population size n=119; Spiral shape Population size n=118; Spiral shape Population size n=93; Spiral shape

[108] shape parameter b=1; Iteration parameter b=4; Iteration ratio P=0.0199  parameter b=4; Iteration ratio parameter b=3; Iteration ratio
ratio P=0.5 P=0.2963 P=0.3593

MSCA Population size n =30; Probability Population size n=27; Probability factor ~ Population size n=31; Probability factor = Population size n=31; Probability

[106] factor P.=0.8; Constant number P.=0.0659; Constant number a=1; y=3 P.=0.0319; Constant number a=1; y=4 factor P,.=0.0116; Constant number
a=2; y=4 is a parameter that is a parameter that controls the degree of  is a parameter that controls the degree a=1; y=4 is a parameter that controls
controls the degree of chaotic chaotic function. of chaotic function. the degree of chaotic function.
function.

GSK [52] Population size n=100; Top and Population size n =101; Top and bottom  Population size n =93; Top and bottom  Population size n =100; Top and
bottom percentage of individuals percentage of individuals P=0.1353; percentage of individuals P=0.052; bottom percentage of individuals
P=0.1; Knowledge factor k;=0.5; Knowledge factor ky=0.4822; Knowledge factor k;=0.485; Knowledge =~ P=0.0521; Knowledge factor
Knowledge ratio k,=0.9; Knowledge ratio k,=0.9797; Knowledge ratio k,=0.991; Knowledge rate K=10 kf=0.4581; Knowledge ratio
Knowledge rate K=10 rate K=12 k-=0.9309; Knowledge rate K=9

MPA [115] Population size n=25; Probability Population size n=21; Probability factor =~ Population size n=31; Probability factor Population size n=25; Probability
factor FADs={0.1, 0.2, 0.5, 0.7, FADs=0.8297; Constant number FADs=0.1014; Constant number factor FADs=0.3425; Constant
0.9}; Constant number P={0.1, 0.5, P=0.6737 P=0.1949 number P=0.5076
1,1.5, 2}

EO [91] Population size n=30; Constant Population size n=33; Constant number  Population size n=31; Constant number  Population size n=20; Constant
number a;=2; Constant number a;=1.8876; Constant number a;=1.9447; Constant number number a; =1.8587; Constant number
a;=1; Generation Probability a;=0.9305; Generation Probability a;=0.95021; Generation Probability a;=1.1681; Generation Probability
GP=0.5 GP=0.2999 GP=0.5871 GP=0.7087

EBCM prob;;=0.1;6=0.3; arch_rate=2.6; prob;;=0.9209;6=0.2997; prob;;=0.4149;6=0.9267; prob;;=0.818;6=0.019;

[103] Memory size H=6 arch_rate=2.3947; Memory size H=5 arch_rate=3.2152; Memory size H=8 arch rate=3.0527; Memory size H=4

NLSHADE Population size N,= {50,100}; My Population size N,= 140; Mr and M- are ~ Population size N,= 138; My and M, Population size N,= 164; My and Mc,

[101] and M, are memory archive memory archive values, My = 0.8404, are memory archive values, Mr = 0.897,  are memory archive values, My =
values, Mg = 0.5, M¢ = 0.5. M = 0.9969. Mg = 0.7163. 0.9039, M¢r = 0.792.

HSES Population size M=200; N=100 Population size M=182; N=90 Population size M=181; N=98 Population size M=214; N=92

[100]

LS-SPA pbest =0.3; pbestyin=0.15 pbest =0.416; pbesty,in=0.1732 pbest =0.4765; pbestimin=0.1459 pbest =0.2438; pbestinin=0.1749

[102]

ED-EB L_Rate=0.8; EDE best rate=0.1; L_Rate=0.;0.2797 EDE best rate=0.4957; L_Rate=0.7763; EDE_best rate=0.1264; L_Rate=0.5034;

[97]1 Memory size=5 Memory _size=5 Memory._size=6 EDE best rate=0.2124; Memory._size=4

Note: The adjustment parameters of each algorithm are determined based on the published paper and the codes are obtained from the authors’ websites.
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method to automatically configure the main parameters. The iterated
racing method repeats three steps until it meets a termination criterion:
(1) Sampling new configurations according to a particular distribution;
(2) Selecting the best configurations from the newly sampled configu-
rations by means of racing, and (3) Updating the sampling distribution
to bias the sampling toward the best configurations [119].

The following issues are interacting: (1) Different algorithms have a
different number of parameters requiring different number of function
evaluations; (2) Having too few tuneable parameters may make an al-
gorithm to have a fixed characteristic. According to the "No Free Lunch"
theorem, algorithms with fixed characteristic may not be efficient for
solving diverse types of optimization problems; (3) Allocating a single
fixed number of function evaluations for all algorithms may result in too
few or too many function evaluations for tuning each algorithm.
Considering all these, we tuned the main parameters of each algorithm
independently. This approach offers different tuning budgets for
different algorithms. This is acceptable for offline applications. Param-
eter adjustment results of the 15 algorithms are shown in Table 2.

The irace method is implemented through an R package named irace,
developed by Lopez-Ibanez et al. [119]. Irace receives as input a
parameter space definition corresponding to the parameters of our 15
algorithms that will be tuned, a set of training instances for which the
parameters must be tuned, and a set of options for the irace that define
the configuration scenario. For example, we tune the AO parameters,
and the training instances are eight functions covering all types of the
CEC 2017 functions. Then, the irace searches in the parameter search
space for good-performing algorithm configurations by executing AO on
different functions with different parameter configurations. In other
words, all the parameter configurations will be tested on all the func-
tions to verify which is the best performing configuration. For a detailed
implementation of the irace method, please refer to [119-123].

3.3. Experimental results and discussion

In this section, 11 recent algorithms and 4 state-of-the-art algorithms
are compared on CEC 2017 functions with 10, 30, and 50 variables,
respectively. The experimental results of the 15 algorithms are sum-
marized in Tables S1-S3. Nonparametric statistical methods, including
Friedman test, Bayesian signed-rank, and Wilcoxon signed-rank test.
The detailed statistical results can be found in Tables S4-S22 of the
supplemental materials. Due to space limitations, we only show the
analysis results on functions with 30 variables in the text. For more in-
formation about the analysis results on functions with 10 and 50 vari-
ables, please refer to Sections 3 and 4 of Appendix A in the
supplementary material.

3.3.1. Benchmark functions with 30 variables

3.3.1.1. Comparison of each function. Some interesting observations can
be obtained from the statistical results of the functions with 30 variables
reported in Table S2. It is observed that MFLA, GSK, IMFO, MPA, AO,
and EBCM exhibit competitive performance among the 11 recent algo-
rithms as compared with the 4 state-of-the-art algorithms. In particular,
EBCM has the best performance among the 11 newly proposed algo-
rithms. EBCM outperforms HSES, ED-EB, LS-SPA and NLSHADE on
twenty-one (F2, F5-F6, F7-F9, F11, F13, F15, F16-F17, F20-F21 and F23-
F30), fourteen (F2, F4, F5, F7-F8, F11-F13, F16-F17, F21, F25-F26, and
F28), fourteen (F5, F7-F8, F10-F11, F13, F16, F21, F23-F26, F28 and
F30), and five (F5-F6, F8, F13 and F25) functions, respectively.

MFLA is superior to HSES, ED-EB, LS-SPA and NLSHADE on eight
(F1-F2, F6, F20, and F25-F28), four (F4 and F25-F26), four (F4 and F25-
F26), and two (F22 and F25) functions. Moreover, MFLA exhibits high
efficiency in dealing with the composition function F25.

GSK is superior to HSES, ED-EB, LS-SPA and NLSHADE on fifteen
(F1-F4, F6, F11, F13, F15-F16, F20, F23, and F26-F29), three (F4, F11,
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and F28), five (F4, F23-F24, F26, and F28), and two (F22 and F25)
functions. Particularly, the performance of GSK is equivalent to the 4
state-of-the-art algorithms (except NLSHADE) in solving the composi-
tion function F22. Moreover, GSK is superior or similar to all 5 compe-
tition algorithms on multimodal function F4 and composition function
F28.

IMFO outperforms HSES, ED-EB, LS-SPA, and NLSHADE on five (F1-
F2, F6, F20, and F25), two (F4 and F25), two (F4 and F25), and one
(F25) functions.

The MPA achieves better results than the HSES, ED-EB, LS-SPA, and
NLSHADE on seven (F2, F6, F20-F21, F23, F26, and F28), three (F4, F26,
and F28), five (F4, F21, F23, F26, and F28), and one (F25) functions.
Particularly, MPA yields promising performance on the composition
function F26 by surpassing all 4 state-of-the-art algorithms.

In contrast, EO, AO, HGSA, IGOA, MSCA, and SDCS demonstrate less
efficiency than the 4 state-of-the-art algorithms. For instance, these 6
recent algorithms are only superior to the 4 state-of-the-art algorithms in
less than 3 functions. In particular, AO is almost inferior to the 4 state-of-
the-art algorithms on all thirty functions.

In conclusion, EBCM shows competitive performance compared with
4 state-of-the-art algorithms. The performance of EBCM completely
surpasses HSES and is comparable to ED-EB and LS-SPA on the CEC 2017
functions with 30 variables. However, MFLA, GSK, IMFO, and MPA are
inferior to the 4 state-of-the-art algorithms in most functions. EO, AO,
HGSA, IGOA, MSCA, and SDCS have less efficiency in dealing with CEC
2017 functions with 30 variables since they are only superior to or
comparable to the 4 state-of-the-art algorithms in a few functions. The
results show that MFLA/GSK/IMFO/MPA/EBCM is superior to HSES,
ED-EB, LS-SPA, and NLSHADE on 8/4/4/2/21, 15/3/5/2/14, 5/2/2/1/
14, and 7/3/3/1/5 functions, respectively. In addition, MFLA and GSK
are comparable to these 3 comparative algorithms (except NLSHADE)
on function F22. EO, AO, HGSA, IGOA, MSCA, and SDCS only perform
better than HSES, ED-EB, LS-SPA, and NLSHADE on 2/1/1/0, 0/0/0/1,
1/1/2/1,0/0/0/1,2/0/1/1, and 0/1/1/1 function(s). It is worth noting
that 11 recent algorithms become less efficient as the dimension of the
functions increases (i.e., from 10 variables to 30 variables).

3.3.1.2. Results of Wilcoxon signed-rank test. As seen from Table 3,
EBCM performs competitively with 4 state-of-the-art algorithms on the
CEC 2017 functions with 30 variables. In addition, GSK exhibits signif-
icantly similar performance to HSES in solving functions with 30 vari-
ables which is consistent with the conclusion of the Bayesian rank-sum
test and the Friedman test. In contrast, the performances of EO, AO,
HGSA, IGOA, IMFO, MFLA, MPA, MSCA, SDCS, and HSES are signifi-
cantly different from those of the 4 state-of-the-art algorithms. In other
words, these 9 recent algorithms are not efficient in dealing with the
CEC 2017 functions with 30 variables. It is worth noting that some
recent algorithms, such as MPA, SDCS and MFLA, demonstrate high
efficiency on functions with 10 variables but have a deteriorated per-
formance in solving functions with 30 variables.

3.3.1.3. Results of the CD plot. In the cases of the functions with 30
variables, EBCM exhibits similar performance to the 4 state-of-the-art
algorithms in Fig. 3, and the performance of GSK and MFLA are signif-
icantly similar to HSES, LS-SPA, and ED-EB. In addition, there was no
significant difference between MPA and HSES. In contrast, the perfor-
mance of the other 7 recent algorithms (i.e., AO, IMFO, EO, SDCS,
HGSA, MSCA, and IGOA) is significantly different from that of the 4
state-of-the-art algorithms. The conclusions drawn in this case are
similar to the observation results of the Bayesian rank-sum test, the
Friedman test, and the Wilcoxon signed-rank test.

3.3.1.4. Convergence analysis. The convergence plots of the 15 algo-
rithms on functions F1, F3, F4, F10, F11, F19, F21 and F24 with 30
variables are shown in Fig. 4. According to Fig. 4, EBCM and 4 state-of-
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Table 3
The results with significant differences of the Wilcoxon signed-rank test in 10,
30, and 50 variables.

Algorithms 30 variables

R* R~ p-value
HSES VS EO 444.0 21.0 0.000013
HSES VS AO 465.0 0.0 0.000002
HSES VS GSK 230.0 205.0 0.778632
HSES VS HGSA 449.0 16.0 0.000008
HSES VS IGOA 465.0 0.0 0.000002
HSES VS IMFO 436.0 29.0 0.000027
HSES VS MFLA 346.0 89.0 0.005281
HSES VS MPA 375.0 90.0 0.003269
HSES VS MSCA 458.0 7.0 0.000003
HSES VS SDCS 465.0 0.0 0.000002
HSES VS EBCM 53.0 412.0 1
ED-EB VS EO 460.0 5.0 0.000003
ED-EB VS AO 465.0 0.0 0.000002
ED-EB VS GSK 388.0 47.0 0.000218
ED-EB VS HGSA 449.0 16.0 0.000008
ED-EB VS IGOA 465.0 0.0 0.000002
ED-EB VS IMFO 454.0 11.0 0.000005
ED-EB VS MFLA 386.0 49.0 0.000258
ED-EB VS MPA 426.0 39.0 0.000066
ED-EB VS MSCA 465.0 0.0 0.000002
ED-EB VS SDCS 458.0 7.0 0.000003
ED-EB VS EBCM 153.0 282.0 1
LS-SPA VS EO 460.0 5.0 0.000003
LS-SPA VS AO 465.0 0.0 0.000002
LS-SPA VS GSK 347.0 88.0 0.004939
LS-SPA VS HGSA 448.0 17.0 0.000009
LS-SPA VS IGOA 465.0 0.0 0.000002
LS-SPA VS IMFO 454.0 11.0 0.000005
LS-SPA VS MFLA 385.0 50.0 0.00028
LS-SPA VS MPA 410.0 55.0 0.000251
LS-SPA VS MSCA 461.0 4.0 0.000002
LS-SPA VS SDCS 458.0 7.0 0.000003
LS-SPA VS EBCM 184.0 251.0 1
NLSHADE VS EO 435.0 0.0 0.000002
NLSHADE VS AO 463.0 2.0 0.000002
NLSHADE VS GSK 417.0 18.0 0.000015
NLSHADE VS HGSA 460.0 5.0 0.000003
NLSHADE VS IGOA 462.0 3.0 0.000002
NLSHADE VS IMFO 459.0 6.0 0.000003
NLSHADE VS MFLA 450.0 15.0 0.000007
NLSHADE VS MPA 428.0 7.0 0.000005
NLSHADE VS MSCA 463.0 2.0 0.000002
NLSHADE VS SDCS 460.0 5.0 0.000003
NLSHADE VS EBCM 121.0 314.0 1

the-art algorithms have a fast convergence speed and can obtain better
solutions on these selected functions compared with the other 10 new
algorithms. Compared with the 4 state-of-the-art algorithms, AO, MFLA,
HGSA, IGOA, and MSCA have a slower convergence speed and the worst
global search ability (i.e., less efficient) on these selected functions. The
other algorithms, such as EO, GAK, IMFO, MPA and SDCS, have a similar
convergence speed to the 4 state-of-the-art algorithms, but they are
inferior to the 4 state-of-the-art algorithms on most of these select
functions. Particularly, there is a clear gap between the 4 state-of-the-art
algorithms and the 11 new algorithms on functions F3, F7, F11, F21 and
F24. These results suggest that the 4 state-of-the-art algorithms have a
faster convergence speed and a stronger global search ability on most of
the selected functions.

3.3.1.5. The trade-off of exploration and exploitation analysis. We
consider the method proposed in Ref. [93] to evaluate the trade-off
between exploration and exploitation of the 15 algorithms. In partic-
ular, the percentage of exploration (i.e., XPL%) and the percentage of
exploitation (i.e., XPT%) are used to evaluate the trade-off response. XPL
% represents the level of exploration as a relationship betweel111n the
diversity in each iteration and the maximum reached diversity. XPT%
corresponds to the level of exploitation. Both elements, XPL% and XPT%
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are mutually conflicting and complementary. For more information
about how to evaluate the trade-off of algorithms, please refer to [93].

Fig.S8 shows the experimental results of the exploration and
exploitation trade-off of the 15 algorithms on functions F1, F3, F4, F7,
F11, F19, F22 and F24 with 30 variables. Due to space limitations, we
only analyze the results on functions F1, F7, F11 and F22. For more
information about the trade-off analysis of the 15 algorithms on other
functions, please read the supplementary material. The analysis results
of Fig. S8 and Table S2 are summarized as follows.

e Unimodal function F1: In terms of the 4 state-of-the-art algorithms,
LS-SPA and NLSHADE are the two most prominent algorithms on
function F1, with an exploitation of 98.55% and 98.30%, and an
exploration of 1.45% and 1.70%, respectively. ED-EB and HSES
perform slightly worse than LS-SPA and NLSHADE and have trade-
off behaviors of exploitation and exploration similar to these of
two top algorithms. They exploited the search space 99.19% and
97.82% of the time, respectively. In terms of the 10 new algorithms,
EBCM performs slightly worse than LS-SPA and NLSHADE but has
similar trade-off exploitation and exploration behaviors as LS-SPA
and NLSHADE. Meanwhile, the search space is exploited 96.95% of
the time. MFLA, GSK, and IMFO also perform better among the 11
newly proposed algorithms, and they spent 85.58%, 99.13%, and
99.15% of the time exploiting the search space. Although MFLA
employs a different exploration and exploitation rate compared with
LS-SPA and NLSHADE, it benefits from multiple exploration peaks
appearing during the optimization process to jump into different
search zones and find better solutions. The other new algorithms
including EO, AO, MPA, HGSA, IGOA, MSCA and SDCS, are less
efficient in terms of solution quality and exploit the search space
96.78%, 93.31%, 98.84%, 99.56%, 79.76%, 66.20%, and 0.00% of
the time, respectively. In particular. SDCS uses excessive exploration
(i.e., 100% of the time) in its search process. EO, AO, MPA, and
HGSA maintain a behavior very close to the one used by the top two
algorithms but the reason for finding different solutions is because of
the search mechanism used for exploration and exploitation. More-
over, MPA, IGOA and MSCA produce a very rough trade-off response.
In all cases, the incremental-decremental graph shows that the
exploration effect is very short, while the exploitation action is
prolonged during most of the search time. The best trade-off can be
found to be more than 98% exploitation and less than 2% exploration
on function F1.

Multimodal function F7: The 4 state-of-the-art algorithms and EBCM
are the top five best-performing algorithms for solving function F7,
where NLSHADE achieves the best results with 90.49% exploitation
and 9.52% exploration. Moreover, HSES, ED-EB, and LS-SPA spent
98.20%, 93.69% and 96.26% of the time exploiting respectively. In
terms of the 11 new algorithms, EBCM shows competitive perfor-
mance with 89.52% exploitation and 110.49% exploration. EO,
MPA, IMFO, and HGSA perform slightly worse than the 4 state-of-
the-art algorithms but their trade-off levels between exploration
and exploitation are close to the 4 state-of-the-art algorithms. The
performance of AO, IGOA, MFLA, GSK, SDCS, and MSCA widens the
gap with the 4 state-of-the-art algorithms and has different trade-off
levels. They spent 97.01%, 78.41%, 83.98%, 92.54%, 98.40%, and
76.86% of the time exploring the search space, respectively. Partic-
ularly, IGOA, MFLA, and MSCA focus less on exploitation compared
with the 4 state-of-the-art algorithms. On the contrary, SDCS has a
slightly higher exploitation rate. Moreover, AO, GSK, and SDCS have
similar trade-off levels between exploration and exploitation
compared with the 4 state-of-the-art algorithms but have different
solution qualities. Once again, it is a good example of how the dif-
ference in the quality of the specific search mechanism of each al-
gorithm greatly affects the performance. According to the
incremental-decremental graph, all 15 algorithms focused on
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Fig. 3. The CD plot of algorithms on the CEC 2017 functions with 30 variables.
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Fig. 4. Convergence plots on functions with 30 variables.

exploitation, with a trade-off of more than 90% of the time exploring
and less than 10% exploiting.

e Hybrid function F11: The top six best-performing algorithms for
solving function F11 are the 4 state-of-the-art algorithms, EBCM and
GSK. NLSHADE achieves the best results that exploited the search
space 90.58% of the time and explored 9.42% of the time. HSES, ED-
EB and LS-SPA exploited the search space 96.89%, 96.95%, and
95.14% of the time, respectively. GSK is slightly better than HSES
and ED-EB with an exploitation of 95.03% and 4.97% exploration,
respectively. Regarding the other new algorithms, EBCM obtains
similar results to the 4 state-of-the-art algorithms and exploited the
search space 88.99% of the time. MPA, MFLA, IMFO, and SDCS are
inferior to the 4 state-of-the-art algorithms on function F11. They
explored the search space 97.00%, 54.36%, 96.86%, and 97.04% of
the time, respectively. The worst five algorithms are AO, EO, IGOA,
HGSA, and MSCA, which achieve the exploitation of 53.31%,
97.88%, 79.10%, 99.59%, and 60.31%, respectively. These results

show that MFLA, AO, and MSCA focused less on exploitation
compared with the 4 state-of-the-art algorithms. In other words, their
exploitation and exploration rates are not much different. In
contrast, EO, MPA, and HGSA seem to focus slightly more on
exploitation compared with the 4 state-of-the-art algorithms. More-
over, IGOA, HGSA and MSCA once again produce a rough trade-off
response, and always seem inefficient. The incremental-
decremental graph shows that the best-performing algorithms that
prefer exploitation to exploration, and are closer to 90% exploitation
and 10% exploration, are used in their search process.

e Composition function F22: The results in Table S2 suggest that the
most prominent algorithms for solving function F22 are 4 state-of-
the-art algorithms and EBCM. In addition, GSK, MFLA, and SDCS
are the distant seconds. In terms of the 4 state-of-the-art algorithms,
HSES, ED-EB, and LS-SPA exploited the search space 98.08%,
98.87%, and 98.55 of the times, respectively. On the contrary, they
spent 1.92%, 1.13%, and 1.45% of their time exploring, respectively.

12
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NLSHADE focused less on exploitation than the other four state-of-
the-art algorithms, with an exploitation of 96.82% and an explora-
tion of 3.182%. In terms of the 11 new algorithms, EBCM attains
similar results to the 4 state-of-the-art algorithms, which exploited
the search space 99.27% of the time and explored 0.735% of the
time. GSK and MFLA have a better performance that achieves an
exploitation of 97.57% and 81.69%, respectively. AO, MPA, SDCS,
MSCA, and HGSA are slightly inferior to the seven top algorithms and
have different trade-off levels. They spent 87.53%, 97.82%, 99.00%,
59.21% and 99.54% on exploitation, respectively. Moreover, EO,
IGOA, and IMFO are the three worst algorithms for solving function
F22. Although EO, GSK, MPA, HGSA, and SDCS obtain trade-off
levels that are very similar to those of the best seven algorithms,
they present bad performance in terms of the solution quality. This
once again shows the importance of the search mechanisms to obtain
a better performance. It is important to note that the 4 state-of-the-
art algorithms, GSK and SDCS, produce the smoothest trade-off
response, but EO, MPA, HGSA, IGOA, MPLA, and MSCA produce a
rough trade-off response. According to the incremental-decremental
graph, all the algorithms focused more time on exploitation, and the
best trade-off for function F22 is closer to 99% exploitation and 1%
exploration.

In summary, EBCM has a similar performance and trade-off behavior
of exploitation and exploration compared with the 4 state-of-the-art
algorithms. Furthermore, GSK, MPA, MFLA, and IMFO are slightly
inferior to the 4 state-of-the-art algorithms but demonstrate better
performance than the other 6 new algorithms (i.e., except for EBCM).
Although each algorithm has different exploitation and exploration
behaviors on each function, all the algorithms focus more time on
exploitation, especially the better-performing algorithms. Due to
space limitations, we only show the balancing behavior of GSK and
EBCM on functions F1, F7, F11 and F22, as shown in Fig. 5.

3.3.1.6. Diversity analysis. To complement the analysis, an experiment
of diversity on functions F3, F7, F11 and F24 with 30 variables is con-
ducted and the results are presented in Fig. 6. In the experiments, we
consider Eq.s (1) and (2) defined in Ref. [93] for a diversity assessment
and these two Eq.s are shown below.

Div; = % Z|median(xj) — ] (42)
pa

1 m
Div = > Div; 43)
J=1

where median(x) represents the median of dimension j in the whole
population. x; is the dimension j of search agent i. n corresponds to the
number of search agents in the population while m symbolizes the
number of design variables of the optimization problem.

According to Fig. 6, it is clear that all 13 algorithms (i.e., except for
AO and MSCA) begin with a large diversity as a consequence of their
random initialization. As the number of iterations increase, the popu-
lation diversity diminishes. AO and MSCA also begin with a large di-
versity but they have a certain population diversity at the final stage of
iteration. Especially the diversity of AO on functions F11 and F24 first
decreases and then increases gradually with the iterations. Most of the
11 new algorithms show a rough trade-off response, especially MPA,
MSCA, MFLA, IGOA and HGSA, which exhibit high oscillation behavior.
Compared with the 11 new algorithms, the 4 state-of-the-art algorithms
show the smoothest diversity responses.

3.3.2. Results of CEC 2017 functions considering nonshifted and shifted

3.3.2.1. Evaluate the search bias toward the origin. In the literature, some
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algorithms perform well when solving problems whose optimal solu-
tions are located at the origin/center of the search space, but they are
less efficient when dealing with the same functions whose optimal so-
lutions deviate from the origin. Liang et al. [124] first evaluated the
performance of the multiagent genetic algorithm by considering the
searches biased to the origin. In addition, some newly proposed algo-
rithms, such as TLBO [22,23] and GWO [24], have also been verified to
have a search bias to the origin. In this section, extensive experiments
are carried out on the shifted and non-shifted CEC 2017 functions and
consider 10 and 30 variables to evaluate whether the 15 algorithms (11
recent algorithms and 4 state-of-the-art algorithms) have a search bias to
the origin. Detailed information on the experimental results is shown in
Tables S23-S24. Nonparametric methods, such as the Friedman test and
the Wilcoxon signed-ranks test are used to further analyze the experi-
mental data.

The results of the Friedman test in Table 4 show that SDCS, MSCA,
MFLA, and MPA have a better performance compared with the 4 state-
of-the-art algorithms for solving the nonshifted and shifted functions
with 10 and 30 variables. Particularly, the SDCS achieves the lowest
rank with scores of 3.4 and 3.6, respectively. Compared with the results
obtained on the shifted functions, the performance of AO, SDCS, MSCA,
and MFLA are significantly improved for solving the nonshifted func-
tions with 10 and 30 variables. The performance of SDCS, MSCA and
MFLA are significantly affected by the shift operator on the functions. In
other words, these algorithms have search that are biased to the origin.
The performance of the other recent algorithms (i.e., EO, IGOA, and
HGSA) is slightly improved for solving the nonshifted functions
compared with the algorithms dealing with the shifted functions. In
addition, the performance of the 4 state-of-the-art algorithms has no
significant difference in the solution between the nonshifted functions
and the shifted functions.

The results of the Wilcoxon Signed Ranks test are shown in Tables 5-
6. It can be found that the values of R" are generally greater than the
values of R, which means that the 15 algorithms can obtain better
performances in solving the nonshifted functions. In other words, all 15
algorithms have searches biased to the origin and are affected to varying
degrees. For example, the 4 state-of-the-art algorithms are less affected
by the shift operator on the functions compared with the 11 recent al-
gorithms. In contrast, AO, SDCS, MFLA, MSCA, HGSA, and IGOA among
the 11 recent algorithms are greatly affected. In addition, we draw the
CD plots for the experimental results as shown in Figs. 7-8, which have
similar conclusions to the observations from the Friedman test and the
Wilcoxon signed ranks test.

In conclusion, all 15 comparative algorithms suffer from search
biases to the origin to varying degrees. In particular, the 4 state-of-the-
art algorithms are less affected by the shift operator on the functions
compared with the 11 recent algorithms.

3.3.2.2. The trade-off response of AO, MFLA, MSCA, and SDCS on the
nonshifted functions. Because AO, MFLA, MSCA, and SDCS maintain
good performance in problems where the optimal point is in the origin,
we conduct experiments to investigate the trade-off response of these
four algorithms on functions F7 and F24 with 10 and 30 variables, and
the results are presented in Figures S13-S14. As can be seen from Fig.
S13, the evolution of the trade-off in the nonshifted functions for AO
demonstrates consistency with the trade-off made by them on the shifted
functions. MFLA focuses slightly less on exploration when considering
functions that are shifted. It exploited the search space 83.53% of the
time on the nonshifted function F7 while 72.68% of the time exploiting
on the shifted function F7. Moreover, MFLA spent 46.87% and 42.70%
of the time exploiting the search space of the nonshifted and shifted
function F24, respectively. In contrast, MSCA and SDCS focused slightly
more exploration on the nonshifted functions than the shifted functions.
According to Fig.S14, MFLA, MSCA, and SDCS present consistent trade-
off responses between nonshifted and shifted functions. The case of AO
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Fig. 5. The balancing behavior of GSK and EBCM on functions F1, F7, F11, and F22.
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Table 4
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Table 6

The results of Wilcoxon signed-ranks test on the shifted and non-shifted functions with 30 variables.
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to guide the search directions to a promising region in the solution
space is another promising optimization mechanism. In particular,
balancing exploration and exploitation to improve the performance
of metaheuristics is significant. Therefore, we appeal to researchers
to improve and propose metaheuristics not only from the inspiration
source but also from the perspectives of the essential search behav-
iors and optimization mechanisms.

Automatic design and configuration of metaheuristics: The
design and configuration of metaheuristics can be considered an
optimization problem. Traditional methods depend on prior knowl-
edge and trial-and-error methods to obtain a configuration. Auto-
matic design and configuration methods are attracting attention in
the fields of metaheuristics [127]. It not only saves a substantial
amount of human effort during the empirical analysis and design of
metaheuristics but also leads to high-performance optimizers [128].
Therefore, it is worth using automatic methods to design and
configure metaheuristics. For example, there are many operators,
neighborhood structures, parameters, and mechanisms of informa-
tion sharing and learning in the component pool. These components
may be adaptively automatically selected from the component pool
based on the features of the problems, and can be effectively com-
bined to design efficient algorithms for solving the specific problems.
With regard to metaheuristic design, LaTorre et al. [117] suggested
that simplicity should be considered one of the preferential aspects in
the design of new optimization techniques. Particularly, some new
algorithms are improved on previous algorithms by updating or
adding new strategies to their search procedure. Each improve-
ment/component that affects the performance of the new algorithm
needs to be further analyzed [129].

Combining machine learning techniques with metaheuristics:
Machine learning (ML) has achieved fruitful results in recent de-
cades. ML’s powerful learning, prediction, and decision-making ca-
pabilities have opened a new horizon for metaheuristic research. It is
promising to combine ML and metaheuristics in the following as-
pects: 1) A combination of meta-heuristics and deep learning, rein-
forcement learning, ensemble learning, etc., and reasonable
recommendation of optimization algorithms for specific problems
[130,131]. 2) Using ML techniques to help to model optimization
problems, analyze the solution space, and perform problem decom-
position [132,133]. 3) ML can use historical data to dynamically
adjust parameter values during the optimization process of meta-
heuristics. Besides, when metaheuristics have multiple operators and
search mechanisms, ML is a prevalent and effective method for
learning the characteristics of these operators and mechanisms, and
for generating the appropriate algorithmic configuration [134,135].
Integrate problem domain knowledge into metaheuristics:
Integrating algorithms with problem domain knowledge can
improve the performance of the algorithms. For instance, designing
the operators and search mechanisms of metaheuristics based on the
problem characteristics leads to having the search directions of the
algorithms based on the landscapes of the problem. In addition, the
optimality conditions of the problems can also be used to reduce the
variables and the difficulty of the problems considered [136].
Application to complex real-world optimization problems: Most
real-world optimization problems are large-scale, with complex
constraints, high-dimensional objectives, continuous variables and
discrete variables. However, metaheuristics also face quite a few
challenges when solving these complex real-world optimization
problems. It is efficient to combine metaheuristics with surrogate
models [1] such as parallel acceleration and simulation optimization
to solve complex real-world optimization problems.

Conclusions

In this paper, we provide a comprehensive review of metaheuristics.

More than 500 newly proposed and improved metaheuristics are
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Table 7
List of metaheuristics (This list will be posted at: https://github.com/P-N-Suganthan).
Refs Year Full name & abbreviation Refs Year Full name & abbreviation
Bl 1960 Evolutionary Programming, EP B257 2016 Water Evaporation Optimization, WEO
B2 1964 Evolution Strategies, ES B258 2016 Root Tree Optimization Algorithm, RTO
B3 1971 Genetic Algorithm, GA B259 2016 FIFA World Cup Algorithm, FIFAWC
B4 1977 Scatter Search Algorithm, SSA B260 2016 Sperm Whale Algorithm, SWA
B5 1981 Genetic Programming, GP B261 2016 Virus Optimization Algorithm, VOA
B6 1983 Simulated Annealing, SA B262 2016 Duelist Algorithm, DA
B7 1986 Tabu Search Algorithm, TSA B263 2016 Raven Roosting Optimization Algorithm, RROA
B8 1989 Stochastic Search Network, SSN B264 2016 Ring Seal Search, RSS
B9 1989 Memetic Algorithm, MA B265 2016 Flying Elephant Algorithm, FEA
B10 1992 Ant Colony Optimization, ACO B266 2016 Camel Algorithm, CA
B11 1993 Shuffled Complex Evolution, SCE B267 2016 Crystal Energy Optimization Algorithm, CEO
B12 1993 Great Deluge Algorithm, GDA B268 2016 Passing Vehicle Search, PVS
B13 1994 Cultural Algorithms, CA B269 2016 Tug Of War Optimization, TWO
B14 1995 Differential Evolution, DE B270 2016 Dynamic Virtual Bats Algorithm, DVBA
B15 1995 Particle Swarm Optimization, PSO B271 2016 Lion Optimization Algorithm, LOA
Bl16 1995 Old Bachelor Acceptance, OBA B272 2016 Natural Forest Regeneration Algorithm, NFR
B17 1996 Bacterial Evolutionary Algorithm, BEA B273 2016 Simulated Kalman Filter, SKF
B18 1997 Variable Neighbourhood Descent Algorithm, VND B274 2016 Shuffled Multi-Swarm Micro-Migrating Birds Optimization, SM?-MBO
B19 1998 Bee System, BS1 B275 2016 Yin-Yang-Pair Optimization, YYPO
B20 1998 Photosynthetic Learning Algorithm, PLA B276 2016 Virulence Optimization Algorithm, VOA
B21 1998 Chaos Optimization Algorithm, COA B277 2017 Artificial Butterfly Optimization, ABO
B22 1999 Sheep Flocks Heredity Model, SFHD B278 2017 Cyclical Parthenogenesis Algorithm, CPA
B23 1999 Extremal Optimization, EO B279 2017 Deterministic Oscillatory Search, DOS
B24 1999 Gravitational Clustering Algorithm, GCA B280 2017 Fractal-based Algorithm, FA
B25 2000 Clonal Selection Algorithm, CSA B281 2017 Neuronal Communication Algorithm, NCA
B26 2001 Harmony Search Algorithm, HSA B282 2017 Lightning Attachment Procedure Optimization, LAPO
B27 2001 Gene Expression Programming, GEP B283 2017 Bison Behavior Algorithm, BBA
B28 2001 Marriage In Honey Bees Optimization, MBO B284 2017 Drone Squadron Optimization, DSO
B29 2002 Bacterial Foraging Algorithm, BFA B285 2017 Human Behavior-Based Optimization, HBO
B30 2002 Bacteria Chemotaxis Algorithm, BCA B286 2017 Vibrating Particles System, VPS
B31 2002 Bee System, BS2 B287 2017 Spotted Hyena Optimizer, SHO
B32 2002 Popmusic Algorithm, POPMUSIC B288 2017 Salp Swarm Algorithm, SSA
B33 2002 Social Cognitive Optimization, SCO B289 2017 Grasshopper Optimisation Algorithm, GOA
B34 2003 Artificial Fish Swarm Algorithm, AFSA B290 2017 Rain Fall Optimization Algorithm, RFO
B35 2003 Covariance Matrix Adaptation-Evolution Strategy, CMA-ES B291 2017 Hydrological Cycle Algorithm, HCA
B36 2003 Society and Civilization, SC B292 2017 Killer Whale Algorithm, KWA
B37 2003 Artificial Immune System, AIS B293 2017 Camel Herd Algorithm, CHA
B38 2003 Queen-bee Evolution, QBE B294 2017 Collective Decision Optimization Algorithm, CDOA
B39 2003 Electromagnetism-Like Mechanism Optimization, EMO B295 2017 Laying Chicken Algorithm, LCA
B40 2004 Beehive Algorithm, BHA B296 2017 Kidney-Inspired Algorithm, KIA
B41 2004 Self-Organizing Migrating Algorithm, SOMA B297 2017 Golden Sine Algorithm, Gold-SA
B42 2005 Artificial Bee Colony Algorithm, ABCA B298 2017 Sperm Motility Algorithm, SMA
B43 2005 Bee Colony Optimization, BCO B299 2017 Rain Water Algorithm, RWA
B44 2005 Bees Swarm Optimization Algorithm, BSOA B300 2017 Thermal Exchange Optimization, TEO
B45 2005 Dendritic Cells Algorithm, DCA B301 2017 Porcellio Scaber Algorithm, PSA
B46 2005 The Bees Algorithm, BA B302 2017 Selfish Herd Optimizer, SHO
B47 2005 Wasp Swarm Optimization, WSO B303 2017 Polar Bear Optimization Algorithm, PBO
B48 2006 Shuffled Frog-Leaping Algorithm, SFLA B304 2017 Social Engineering Optimization, SEO
B49 2006 Big Bang-Big Crunch, BBC B305 2017 Sonar Inspired Optimization, SIO
B50 2006 Cat Swarm Optimization, CSO B306 2017 Weighted Superposition Attraction, WSA
B51 2006 Flocking base Algorithm, FA B307 2017 Satin Bowerbird Optimizer, SBO
B52 2006 Honey-bees Mating Optimization Algorithm, HBMO B308 2018 Artificial Atom Algorithm, A3
B53 2006 Small-World Optimization Algorithm, SWOA B309 2018 Artificial Swarm Intelligence, ASI
B54 2006 Saplings Growing Up Algorithm, SGUA B310 2018 Bees Life Algorithm, BLA
B55 2006 Seeker Optimization Algorithm, SOA B311 2018 Beetle Swarm Optimization Algorithm, BSOA
B56 2006 Weed Colonization Optimization, WCO B312 2018 Brunsvigia Optimization Algorithm, BVOA
B57 2007 Imperialist Competitive Algorithm, ICA B313 2018 Car Tracking Optimization Algorithm, CTOA
B58 2007 Monkey Search Algorithm, MSA B314 2018 Cheetah Based Algorithm, CBA
B59 2007 River Formation Dynamics, RFD B315 2018 Cheetah Chase Algorithm, CCA
B60 2007 Bacterial Swarming Algorithm, BSA B316 2018 Chaotic Crow Search Algorithm, CCSA
B61 2007 Bacterial-GA Foraging, BF B317 2018 Circular Structures of Puffer Fish Algorithm, CSPF
B62 2007 Parliamentary Optimization Algorithm, POA B318 2018 Competitive Learning Algorithm, CLA
B63 2007 Simplex Algorithm, SA B319 2018 Cricket Chirping Algorithm, CCA
B64 2007 Good Lattice Swarm Algorithm, GLSA B320 2018 Fibonacci Indicator Algorithm, FLA
B65 2007 Central Force Optimization, CFO B321 2018 Plant Self-Defense Mechanism Algorithm, PSDM
B66 2008 Fast Bacterial Swarming Algorithm, FBSA B322 2018 Emperor Penguin Optimizer, EPO
B67 2008 Biogeography-based Optimization, BBO B323 2018 Lion Pride Optimization Algorithm, LPOA
B68 2008 Bar Systems, BS B324 2018 Multi-Scale Quantum Harmonic Oscillator Algorithm, MQHO
B69 2008 Catfish Particle Swarm Optimization, CatfishPSO B325 2018 Mushroom Reproduction Optimization, MRO
B70 2008 Goose Team Optimizer, GTO B326 2018 Tree Growth Algorithm, TGA
B71 2008 Harmony Element Algorithm, HEA B327 2018 Moth Search Algorithm, MSA
B72 2008 Fish-School Search, FSF B328 2018 Farmland Fertility, FF
B73 2008 Roach Infestation Optimization, RIO B329 2018 Pity Beetle Algorithm, PBA
B74 2008 Viral Search, VS B330 2018 Mouth Brooding Fish Algorithm, MBF

(continued on next page)
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Table 7 (continued)

Refs Year Full name & abbreviation Refs Year Full name & abbreviation

B75 2008 Plant Growth Optimization, PGO B331 2018 Artificial Flora Optimization Algorithm, AFOA
B76 2009 Artificial Beehive Algorithm, ABA B332 2018 Elephant Swarm Water Search Algorithm, ESWS
B77 2009 Artificial Physics Optimization, APO B333 2018 Sperm Swarm Optimization Algorithm, SSOA
B78 2009 Bee Colony-inspired Algorithm, BCiA B334 2018 Team Game Algorithm, TGA

B79 2009 Gravitational Emulation Local Search, GELS B335 2018 Coyote Optimization Algorithm, COA

B8O 2009 Group Search Optimizer, GBO B336 2018 Queuing Search Algorithm, QSA

B81 2009 Cuckoo Search, CS B337 2018 Supernova Optimizer, SO

B82 2009 Gravitational Search Algorithm, GSA B338 2018 Spiritual Search, SS

B83 2009 Firefly Algorithm, FA B339 2018 School Based Optimization, SBO

B84 2009 Frog Call inspired Algorithm, FCA B340 2018 Weighted Vertices Optimizer, WVO

B85 2009 Glowworm Swarm Optimization, GSO B341 2018 Volleyball Premier League Algorithm, VPLA

B86 2009 League Championship Algorithm, LCA B342 2018 Yellow Saddle Goatfish Algorithm, YSGA

B87 2009 Paddy Field Algorithm, PFA B343 2019 Raccoon Optimization Algorithm, ROA

B88 2009 Dolphin Partner Optimization, DPO B344 2019 Andean Condor Algorithm, ACA

B89 2009 Dialectic Search, DS B345 2019 Anglerfish Algorithm, AA

B90 2009 Human-Inspired Algorithms, HIA B346 2019 Artificial Ecosystem-Based Optimization, AEO
B91 2009 Artificial Searching Swarm Algorithm, ASSA B347 2019 Atom Search Optimization Algorithm, ASOA
B92 2009 Bumble Bees Mating Optimization, BBMO B348 2019 Artificial Feeding Birds, AFB

B93 2009 Group Counseling Optimization, GCO B349 2019 Artificial Coronary Circulation System, ACCS
B94 2009 Hunting Search Algorithm, HSA B350 2019 Artificial Electric Field Algorithm, AEFA

B95 2009 Locust Swarm, LS B351 2019 Bus Transportation Algorithm, BTA

B96 2009 Intelligent Water Drops Algorithm, INDA B352 2019 Biology Migration Algorithm, BMA

B97 2009 Water Flow Algorithm, WFA B353 2019 Buzzard Optimization Algorithm, BUZOA

B98 2010 Asexual Reproduction Optimization, ARO B354 2019 Blue Monkey Algorithm, BM

B99 2010 Bean Optimization Algorithm, BOA B355 2019 Chaotic Dragonfly Algorithm, CDA

B100 2010 Bat Algorithm, BA B356 2019 Cultural Coyote Optimization Algorithm, CCOA
B101 2010 Bee Swarm Optimization, BSO B357 2019 Dice Game Optimizer, DGO

B102 2010 Charged System Search, CSS B358 2019 Donkey Theorem Optimization, DTO

B103 2010 Chemical Reaction Optimization Algorithm, CRO B359 2019 Deer Hunting Optimization Algorithm, DHOA
B104 2010 Gravitational Field Algorithm, GFA B360 2019 Falcon Optimization Algorithm, FOA

B105 2010 Fireworks Algorithm, FA B361 2019 Find-Fix-Finish-Exploit-Analyze Algorithm, F3EA
B106 2010 Eagle Strategy, ES B362 2019 Flow Regime Algorithm, FRA

B107 2010 Grenade Explosion Algorithm, GEA B363 2019 Chaotic Optimal Foraging Algorithm, COFA
B108 2010 Wind Driven Optimization, WDO B364 2019 Naked Moled Rat, NMR

B109 2010 Termite Colony Optimization, TCO B365 2019 Xerus Optimization Algorithm, XOA

B110 2010 Consultant-Guided Search, CGS B366 2019 Nuclear Reaction Optimization, NRO

B111 2010 Social Emotional Optimization Algorithm, SEOA B367 2019 Hypercube Natural Aggregation Algorithm, HNAA
B112 2010 Hierarchical Swarm Model, HSM B368 2019 Sailfish Optimizer, SO

B113 2010 Reincarnation Algorithm, RA B369 2019 The Algorithm of the Innovative Gunner, AIG
B114 2011 Artificial Plants Optimization Algorithm, APO B370 2019 Supply-Demand-Based Optimization, SDBO
B115 2011 Brain Storm Optimization, BSO B371 2019 Butterfly Optimization Algorithm, BOA

B116 2011 Bioluminescent Swarm Optimization Algorithm, BSOA B372 2019 Emperor Penguins Colony, EPC

B117 2011 Cockroach Swarm Optimization, CSO B373 2019 Electron Radar Search Algorithm, ERSA

B118 2011 Group Escape Behavior, GEB B374 2019 Henry Gas Solubility Optimization, HGSO

B119 2011 Group Leaders Optimization Algorithm, GIOA B375 2019 Hitchcock Bird-Inspired Algorithm, HBIA

B120 2011 Teaching-Learning Base Optimization, TLBO B376 2019 Hammerhead Shark Optimization Algorithm, HOA
B121 2011 Cuckoo Optimization Algorithm, COA B377 2019 Fitness Dependent Optimizer, FDO

B122 2011 Artificial Chemical Reaction Optimization Algorithm, ACROA B378 2019 Life Choice-Based Optimizer, LCBO

B123 2011 Galaxy-Based Search Algorithm, GBSA B379 2019 Parasitism-Predation Algorithm, PPA

B124 2011 Spiral Dynamics Inspired Optimization, SDIO B380 2019 Pathfinder Algorithm, PA

B125 2011 Plant Propagation Algorithm, PPA B381 2019 Poor And Rich Optimization Algorithm, PROA
B126 2011 Eco-Inspired Evolutionary Algorithm, EIEA B382 2019 Seagull Optimization Algorithm, SOA

B127 2011 Gravitational Interactions Optimization, GIO B383 2019 Sooty Tern Optimization Algorithm, STOA

B128 2011 Stem Cells Algorithm, SCA B384 2019 Harris Hawks Optimization, HHO

B129 2011 Water-Flow Algorithm, WFA B385 2019 Bonobo Optimizer, BO

B130 2012 Anarchic Society Optimization, ASO B386 2019 Spherical Search Optimizer, SSO

B131 2012 Artificial Tribe Algorithm, ATA B387 2019 Squirrel Search Algorithm, SSA

B132 2012 Bat Intelligence, BI B388 2019 Flying Squirrel Optimizer, FSO

B133 2012 Collective Animal Behavior, CAB B389 2019 Bald Eagle Search Optimisation Algorithm, BESO
B134 2012 Cloud Model-based Differential Evolution Algorithm, CMDE B390 2019 Search And Rescue Optimization Algorithm, SAR
B135 2012 Flower Pollination Algorithm, FPA B391 2019 Wild Mice Colony Algorithm, WMC

B136 2012 Flock by Leader, FL B392 2019 Thieves And Police Algorithm, TPA

B137 2012 Krill Herd Algorithm, KHA B393 2020 Artificial Transgender Longicorn Algorithm, ATLA
B138 2012 Fruit Fly Optimization Algorithm, FFOA B394 2020 Barnacles Mating Optimizer, BMO

B139 2012 Water Cycle Algorithm, WCA B395 2020 Black Hole Mechanics Optimization, BHMO
B140 2012 Differential Search Algorithm, DSA B396 2020 Billiards-Inspired Optimization Algorithm, BIOA
B141 2012 Ray Optimization, RO B397 2020 Border Collie Optimization, BCO

B142 2012 Migrating Bird Optimization, MBO B398 2020 Bear Smell Search Algorithm, BSSA

B143 2012 Wolf Search Algorithm, WSA B399 2020 Buyer Inspired Meta-Heuristic Optimization Algorithm, BIMHO
Bl144 2012 Mine Blast Algorithm, MBA B400 2020 Darts Game Optimizer, DGO

B145 2012 Electro-Magnetism Optimization, EMO B401 2020 Dynamic Differential Annealed Optimization, DDAO
B146 2012 Bacterial Colony Optimization, BCO B402 2020 Dynastic Optimization Algorithm, DOA

B147 2012 Great Salmon Run, GSR B403 2020 Forensic Based Investigation, FBI

B148 2012 Japanese Tree Frogs Calling Algorithm, JTFC B404 2020 Plasma Generation Optimization, PGO

B149 2012 Community of Scientist Optimization, CSO B405 2020 Newton Metaheuristic Algorithm, NMA

B150 2012 Quantum-inspired Bacterial Swarming Optimization, QBSO B406 2020 Tunicate Swarm Algorithm, TSA

(continued on next page)
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Refs Year Full name & abbreviation Refs Year Full name & abbreviation

B151 2012 Hoopoe Heuristic Optimization, HH B407 2020 Marine Predators Algorithm, MPA

B152 2012 Intelligent Gravitational Search Algorithm, IGSA B408 2020 Equilibrium Optimizer, EO

B153 2012 Lion Pride Optimizer, LPO B409 2020 Electric Fish Optimization, EFO

B154 2012 Zombie Survival Optimization, ZSO B410 2020 Slime Mould Algorithm, SMA

B155 2012 Artificial Photosynthesis and Phototropism Mechanism, APPM B411 2020 Black Widow Optimization Algorithm, BWOA
B156 2012 Superbug Algorithm, SA B412 2020 Manta Ray Foraging Optimization, MRFO

B157 2013 Artificial Plant Optimization Algorithm, APOA B413 2020 Mayfly Algorithm, MA

B158 2013 Artificial Reaction Algorithm, ARA B414 2020 Orcas Algorithm, OA

B159 2013 Adaptive Social Behavior Optimization, ASBO B415 2020 Political Optimizer, PO

B160 2013 Bat-Inspired Algorithm, BI B416 2020 Group Teaching Optimization Algorithm, GTOA
B161 2013 Co-Operation Of Biology Related Algorithm, COBRA B417 2020 Turbulent Flow Of Water-Based Optimization, TFWO
B162 2013 Global Neighborhood Algorithm, GNA B418 2020 Human Urbanization Algorithm, HUA

B163 2013 Mosquito Host-Seeking Algorithm, MHSA B419 2020 Chimp Optimization Algorithm, COA

B164 2013 Mobility Aware-Termite, MAT B420 2020 Coronavirus Optimization Algorithm, COA
B165 2013 Backtracking Search Optimization, BSO B421 2020 COVID-19 Optimizer Algorithm, CVA

B166 2013 Black Holes Algorithm, BHA B422 2020 Multivariable Grey Prediction Evolution Algorithm, MGPE
B167 2013 Social Spider Optimization, SSO B423 2020 Sandpiper Optimization Algorithm, SOA

B168 2013 Dolphin Echolocation, DE B424 2020 Shuffled Shepherd Optimization Method, SSOM
B169 2013 Artificial Cooperative Search, ACS B425 2020 Red Deer Algorithm, RDA

B170 2013 Gases Brownian Motion Optimization, GBMO B426 2020 Golden Ratio Optimization Method, GTOM
B171 2013 Swallow Swarm Optimization Algorithm, SSOA B427 2020 Gaining-Sharing Knowledge Based Algorithm, GSKA
B172 2013 Penguins Search Optimization Algorithm, PSOA B428 2020 Adolescent Identity Search Algorithm, AISA
B173 2013 Egyptian Vulture Optimization, EVO B429 2020 Capuchin Search Algorithm, CSA

B174 2013 Atmosphere Clouds Model Optimization, ACMO B430 2020 Giza Pyramids Construction, GPC

B175 2013 Magnetotactic Bacteria Optimization Algorithm, MBOA B431 2020 Grand Tour Algorithm, GTA

B176 2013 Blind, Naked Mole-Rats Algorithm, BNMR B432 2020 Groundwater Flow Algorithm, GFA

B177 2013 Soccer Game Optimization, SGO B433 2020 Gradient-Based Optimizer, GO

B178 2013 Seven-Spot Ladybird Optimization, SSLO B434 2020 Interactive Autodidactic School, IAS

B179 2013 Cuttlefish Algorithm, CA B435 2020 LEVy Flight Distribution, LFD

B180 2013 African Wild Dog Algorithm, AWDA B436 2020 Momentum Search Algorithm, MSA

B181 2013 Mussels Wandering Optimization, MWO B437 2020 Nomadic People Optimizer, NPO

B182 2013 Swine Influenza Models Based Optimization, SIMB B438 2020 New Caledonian Crow Learning Algorithm, NCCL
B183 2013 Tree Physiology Optimization, TPO B439 2020 Horse Optimization Algorithm, HOA

B184 2014 Animal Behavior Hunting, ABH B440 2020 Rao Algorithms, RA

B185 2014 Artificial Raindrop Algorithm, ARA B441 2020 Rat Swarm Optimizer, RSO

B186 2014 Grey Wolf Optimizer, GWO B442 2020 Rain Optimization Algorithm, ROA

B187 2014 Symbiotic Organisms Search, SOS B443 2020 Student Psychology Based Optimization Algorithm, SPOA
B188 2014 Colliding Bodies Optimization, CBO B444 2020 Seasons Optimization Algorithm, SOA

B189 2014 Chicken Swarm Optimization, CSO B445 2020 Shell Game Optimization, SGO

B190 2014 Spider Monkey Optimization, SMO B446 2020 Sparrow Search Algorithm, SSA

B191 2014 Interior Search Algorithm, ISA B447 2020 Tiki-Taka Algorithm, TTA

B192 2014 Animal Migration Optimization Algorithm, AMOA B448 2020 Transient Search Optimization, TSO

B193 2014 Coral Reefs Optimization Algorithm, CROA B449 2020 Vapor-Liquid Equilibrium Algorithm, VLEA
B194 2014 Bird Mating Optimizer, BMO B450 2020 Virus Spread Optimization, VSO

B195 2014 Shark Smell Optimization, SSO B451 2020 Wingsuit Flying Search, WFS

B196 2014 Exchange Market Algorithm, EMA B452 2020 Water Strider Algorithm, WSA

B197 2014 Forest Optimization Algorithm, FOA B453 2020 Woodpecker Mating Algorithm, WMA

B198 2014 Golden Ball Algorithm, GBA B454 2020 Solar System Algorithm, SSA

B199 2014 Keshtel Algorithm, KA B455 2020 Arsh-Fati-Based Cluster Head Selection Algorithm, ARSH-FATI-CHS
B200 2014 Kaizen Programming, KP B456 2020 Teng-Yue Algorithm, TYA

B201 2014 Kinetic Gas Molecule Optimization, KGMO B457 2020 Projectiles Optimization, PO

B202 2014 Strawberry Algorithm, SA B458 2020 Color Harmony Algorithm, CHA

B203 2014 Heart Algorithm, HA B459 2020 Multi-Objective Beetle Antennae Search, MOBAS
B204 2014 Artificial Ecosystem Algorithm, AEA B460 2020 Orca Optimization Algorithm, OOA

B205 2014 The Scientific Algorithms, SA B461 2020 Photon Search Algorithm, PSA

B206 2014 Worm Optimization, WO B462 2020 Kernel Search Optimization, KSO

B207 2014 Greedy Politics Optimization, GPO B463 2020 Spherical Search Algorithm, SSA

B208 2014 Human Learning Optimization, HLO B464 2020 Triple Distinct Search Dynamics, TDSD

B209 2014 Soccer League Competition Algorithm, SLCA B465 2021 Chaos Game Optimization, CGO

B210 2014 Hyper-Spherical Search Algorithm, HSSA B466 2021 Chameleon Swarm Algorithm, CSA

B211 2014 Ecogeography-Based Optimization, EBO B467 2021 Atomic Orbital Search, AOS

B212 2014 Pigeon-Inspired Optimization, PIO B468 2021 Artificial Jellyfish Search Optimizer, JS

B213 2015 Ant Lion Optimization, ALO B469 2021 Cooperation Search Algorithm, CSA

B214 2015 Artificial Algae Algorithm, AAA B470 2021 Material Generation Algorithm, MGA

B215 2015 Artificial Showering Algorithm, ASA B471 2021 Crystal Structure Algorithm, CryStAl

B216 2015 Cricket Algorithm, CA B472 2021 Archimedes Optimization Algorithm, AOA
B217 2015 Gradient Evolution Algorithm, GEA B473 2021 Archerfish Hunting Optimizer, AHO

B218 2015 Moth-Flame Optimization Algorithm, MFOA B474 2021 Battle Royale Optimization Algorithm, BRO
B219 2015 Monarch Butterfly Optimization, MBO B475 2021 Artificial Lizard Search Optimization, ALSO
B220 2015 Water Wave Optimization, WWO B476 2021 Quantum Firefly Algorithm, QFA

B221 2015 Stochastic Fractal Search, SFS B477 2021 Flow Direction Algorithm, FDA

B222 2015 Elephant Herding Optimization, EHO B478 2021 Lichtenberg Algorithm, LA

B223 2015 Vortex Search Algorithm, VSA B479 2021 Pastoralist Optimization Algorithm, POA

B224 2015 Earthworm Optimization Algorithm, EOA B480 2021 Ebola Optimization Search Algorithm, EOSA
B225 2015 Lightning Search Algorithm, LSA B481 2021 Elephant Clan Optimization, ECO

B226 2015 Heat Transfer Search Algorithm, HTSA B482 2021 Red Colobuses Monkey, RCM
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Refs Year Full name & abbreviation Refs Year Full name & abbreviation

B227 2015 Tons Motion Algorithm, IMA B483 2021 Golden Eagle Optimizer, GEO

B228 2015 Optics Inspired Optimization, OIO B484 2021 Group Mean-Based Optimizer, GMBO

B229 2015 Tree Seed Algorithm, TSA B485 2021 Dingo Optimizer, DO

B230 2015 Runner-Root Algorithm, RRA B486 2021 Coronavirus Herd Immunity Optimizer, CHIO
B231 2015 Elephant Search Algorithm, ESA B487 2021 Red Fox Optimization Algorithm, RFO

B232 2015 Election Algorithm, EA B488 2021 Arithmetic Optimization Algorithm, AOA
B233 2015 Locust Search, LS B489 2021 African Vultures Optimization Algorithm, AVOA
B234 2015 Invasive Tumor Growth Optimization Algorithm, ITWO B490 2021 Artificial Gorilla Troops Optimizer, GTO
B235 2015 Jaguar Algorithm, JA B491 2021 Artificial Hummingbird Algorithm, AHA
B236 2015 General Relativity Search Algorithm, GRSA B492 2021 Intelligent Ice Fishing Algorithm, IIFA

B237 2015 Root Growth Optimizer, RGO B493 2021 Komodo Mlipir Algorithm, KMA

B238 2015 Bull Optimization Algorithm, BOA B494 2021 Linear Prediction Evolution Algorithm, LPE
B239 2015 Prey-Predator Algorithm, PPA B495 2021 Multi-Objective Trader Algorithm, MOTR
B240 2015 African Buffalo Optimization, ABO B496 2021 Optimal Stochastic Process Optimizer, OSPO
B241 2016 Artificial Infectious Disease Optimization, AID B497 2021 Remora Optimization Algorithm, ROA

B242 2016 Across Neighborhood Search, ANS B498 2021 Ring Toss Game-Based Optimization Algorithm, RTGBO
B243 2016 Cricket Behavior-Based Algorithm, CBBA B499 2021 RUNge Kutta Optimizer, RUN

B244 2016 Competitive Optimization Algorithm, COOA B500 2021 Samw

B245 2016 Cognitive Behavior Optimization Algorithm, COA B501 2021 String Theory Algorithm, STA

B246 2016 Electromagnetic Field Optimization, EFO B502 2021 Success History Intelligent Optimizer, SHIO
B247 2016 Football Game Algorithm, FGA B503 2021 Tangent Search Algorithm, TSA

B248 2016 Intrusive Tumor Growth Inspired Optimization Algorithm, ITGO B504 2021 Tuna Swarm Optimization, TSO

B249 2016 Galactic Swarm Optimization, GSO B505 2021 Volcano Eruption Algorithm, VCA

B250 2016 Whale Optimization Algorithm, WOA B506 2021 Smart Flower Optimization Algorithm, SFOA
B251 2016 Sine Cosine Algorithm, SSA B507 2022 Ali baba and the Forty Thieves Optimization, AFT
B252 2016 Dragonfly Algorithm, DA B508 2022 Honey Badger Algorithm, HBA

B253 2016 Crow Search Algorithm, CSA B509 2022 Orca Predation Algorithm, OPA

B254 2016 Multi-Verse Optimizer, MVO B510 2022 Reptile Search Algorithm, RSA

B255 2016 Bird Swarm Algorithm, BSA B511 2022 Skip Salp Swam Algorithm, SSSA

B256 2016 Virus Colony Search, VCS

Algorithm 1
The common optimization framework of a single-solution based metaheuristics.

Input: initial solution so; parameters
Output: The best solution
t<0;
Repeat
/* Generate candidate solutions (partial or complete neighborhood) from s; */
Generate(C(s;));
/* Select a solution from C(s) to replace the current solution s, */
ser1 = Select(C(st));
t=t+1;
Until the termination condition is met.

Algorithm 2
The common optimization framework of a population-based metaheuristics.

Input: initial solution Py; parameters
Output: The best solution
t<0;
Evaluate the initial solutions and remember the best one as P*;
Repeat
Generate (P’t); /*Generation a new population */
P, = Select_Population(P, U P,); /*Select new population */
Record the best solution found so far P*;
tet+ 1;
Until the termination condition is met
return the best solution found P*.

collected, and a taxonomy of metaheuristics is further proposed to
describe the metaheuristics from two aspects, including the inspiration
sources and the essential operators for generating solutions. We find that
the recent metaheuristics proposed in the literature are neither rigor-
ously tested on comprehensive and representative benchmark suites, nor
compared with the state-of-the-art metaheuristics. Therefore, to eval-
uate and understand the performance of the state-of-the-art and recent
metaheuristics, 11 representative metaheuristics with new names are
selected as recent algorithms to be compared with the 4 state-of-the-art
algorithms on the CEC 2017 benchmark suite.

21

For fair comparisons, we first use a unified framework named irace to
automatically configure the parameters of all 15 comparative algo-
rithms. Then, whether these algorithms have a search bias to the origin
is investigated. For a detailed description, the convergence, diversity
and trade-off between the exploration and exploitation of all 15 algo-
rithms are also analyzed. All the experimental results were analyzed by
nonparametric statistical methods, including the Friedman test, Wil-
coxon signed-ranks test, and Bayesian signed-rank test. The results show
that the performance of EBCM is similar to the 4 compared algorithms,
and has the same properties and behaviors, such as convergence, di-
versity, exploration and exploitation trade-off, etc. But the other 10
recent algorithms are inferior to the 4 state-of-the-art algorithms for
solving the CEC 2017 benchmark suite with 10, 30, and 50 variables.
Besides, all 15 algorithms have searches biased to the origin but with
different strengths. However, the 4 state-of-the-art algorithms are less
affected by the shift operator of the functions compared with the 11
recent algorithms. Except for EBCM, it should be noted that the other 10
new algorithms are inferior to the 4 state-of-the-art algorithms in terms
of convergence speed and global search ability on CEC 2017 functions.
Moreover, the other 10 new algorithms show a rougher trade-off and
diversity compared to the 4 state-of-the-art algorithms. Finally, several
issues and suggestions based on the abovementioned review and ex-
periments are proposed.

In the next part of this survey series, we extend our work from the
following aspects:

(1) Metaheuristics are a broad field of research. We need to focus on
comparative studies including examining more newly proposed
algorithms and state-of-the-art algorithms on benchmarks and
real-world problems of different sizes, complexes, and categories.
Due to space limitations, we investigated the performance and
properties of different metaheuristics in the current study. We
need a thorough theoretical analysis to confirm why these met-
aheuristics perform better or worse.

We investigated some metaheuristics on whether their search is
biased toward the origin. However, which parameters or strate-
gies influence this property requires further study.

(2)

3
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Fig. 7. The CD plot of algorithms on the nonshifted functions with 10 variables.

cD

AO

SDCS

MSCA

MFLA

NLSHADE

MPA

LS_SPA

EO

EBCM

ED_EB

IGOA

HSES

HGSA

—— IMFO

Fig. 8. The CD plot of algorithms on the nonshifted functions with 30 variables.

Overall, we hope that our study provides useful insight to guide
future designs of more practicable metaheuristics that are capable of
handling complex, high-dimensional and large-scale real-world
problems.
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