
Swarm and Evolutionary Computation 77 (2023) 101248

Available online 14 January 2023
2210-6502/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Performance assessment and exhaustive listing of 500+ nature-inspired
metaheuristic algorithms

Zhongqiang Ma a, Guohua Wu a,*, Ponnuthurai Nagaratnam Suganthan b,c,*, Aijuan Song a,
Qizhang Luo a

a School of Traffic and Transportation Engineering, Central South University, Changsha 410075, China
b KINDI Center for Computing Research, College of Engineering, Qatar University, Doha, Qatar
c School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore

A R T I C L E I N F O

Keywords:
Metaheuristics
Nature-inspired
Parameter tuning
Search bias to origin
Performance evaluation
Nonparametric tests

A B S T R A C T

Metaheuristics are popularly used in various fields, and they have attracted much attention in the scientific and
industrial communities. In recent years, the number of new metaheuristic names has been continuously growing.
Generally, the inventors attribute the novelties of these new algorithms to inspirations from either biology,
human behaviors, physics, or other phenomena. In addition, these new algorithms, compared against basic
versions of other metaheuristics using classical benchmark problems, show competitive performances. However,
many new metaheuristics are not rigorously tested on challenging benchmark suites and are not compared with
state-of-the-art metaheuristic variants. Therefore, in this study, we exhaustively tabulate more than 500 meta
heuristics. In particular, several representative metaheuristics are introduced from two aspects, namely, the
inspirational source and the essential operators for generating solutions. To comparatively evaluate the per
formance of the state-of-the-art and newly proposed metaheuristics, 11 newly proposed metaheuristics (generally
with high numbers of citations) and 4 state-of-the-art metaheuristics are comprehensively compared on the
CEC2017 benchmark suite. For fair comparisons, a parameter tuning tool named irace is used to automatically
configure the parameters of all 15 algorithms. In addition, whether these algorithms have a search bias to the
origin (i.e., the center of the search space) is investigated. All the experimental results are analyzed by several
nonparametric statistical methods, including the Bayesian rank-sum test, Friedman test, Wilcoxon signed-rank
test, critical difference plot and Bayesian signed-rank test. Moreover, the convergence, diversity, and the
trade-off between exploration and exploitation of these 15 algorithms are also analyzed. The results show that
the performance of the newly proposed EBCM algorithm performs similarly to the 4 compared algorithms and
has the same properties and behaviors, such as convergence, diversity, exploration and exploitation trade-offs, in
many aspects. However, the other 10 recent metaheuristics are less efficient and robust than the 4 state-of-the-art
metaheuristics. The performance of all 15 of the algorithms is likely to deteriorate due to certain transformations,
while the 4 state-of-the-art metaheuristics are less affected by transformations such as the shifting of the global
optimal point away from the center of the search space. It should be noted that, except EBCM, the other 10 new
algorithms are inferior to the 4 state-of-the-art algorithms in terms of convergence speed and global search ability
on CEC 2017 functions. Moreover, the other 10 new algorithms are rougher (i.e., present in their behavior with
high oscillations) in terms of the trade-off between exploitation and exploration and population diversity
compared with the 4 state-of-the-art algorithms. Finally, several important issues relevant to the metaheuristic
research area are discussed and some potential research directions are suggested.

1. Introduction

Optimization algorithms play an important role in the economy,
engineering, management, and medicine because many real-world

problems can be modeled as optimization problems. Optimization al
gorithms attempt to reach the optimal objective values (i.e., minimum
or maximum) and satisfy the related constraints. Very complex problems
are highly constrained, multimodal, discontinuous, noisy and of high

* Corresponding authors.
E-mail addresses: guohuawu@csu.edu.cn (G. Wu), p.n.suganthan@qu.edu.qa (P.N. Suganthan).

Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

https://doi.org/10.1016/j.swevo.2023.101248
Received 6 February 2022; Received in revised form 28 November 2022; Accepted 9 January 2023

mailto:guohuawu@csu.edu.cn
mailto:p.n.suganthan@qu.edu.qa
www.sciencedirect.com/science/journal/22106502
https://www.elsevier.com/locate/swevo
https://doi.org/10.1016/j.swevo.2023.101248
https://doi.org/10.1016/j.swevo.2023.101248
https://doi.org/10.1016/j.swevo.2023.101248
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2023.101248&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Swarm and Evolutionary Computation 77 (2023) 101248

2

dimension, all of which can make the traditional exact algorithms (e.g.,
mathematical programming) ineffective.

As an alternative method, approximate algorithms have attracted
much attention in recent decades. Approximate algorithms can be
roughly divided into heuristic algorithms and metaheuristic algorithms.
Heuristic algorithms generally need to be elaborately designed for spe
cific optimization problems and may have weak flexibility in solving
other types of problems. In contrast, metaheuristics provide a general
optimization framework for solving various optimization problems and
benefit from the randomness embedded into the operators, which makes
it possible to find a satisfactory, or near-optimal solution, in a reasonable
time, however, they cannot guarantee the optimum solution for complex
problems [1]. The merits of simplicity, less problem dependence, flexi
bility, derivative-free mechanism, and local optima avoidance make
metaheuristics user-friendly [2].

Metaheuristics can be defined as high-level methodologies that
embody the underlying heuristics to solve optimization problems [3].
The term metaheuristic was first proposed by Glover in 1986 [4], and
most modern nature-inspired algorithms can be considered meta
heuristics [5]. The concept of nature-inspired is about creating algo
rithms by mimicking natural phenomena or biological behaviors to solve
optimization problems. For example, simulated annealing (SA) [6] is
inspired by the idea of the solid annealing principle. Particle swarm
optimization (PSO) [7] is derived from the interaction behaviors of birds
in the flock. Ant colony optimization (ACO) [8] mimics the behaviors of
ants in finding the shortest path between a nest and a food source. The
classification criteria of metaheuristics can be varied. For instance, ac
cording to the number of candidate solutions at each iteration, meta
heuristics can be further divided into population-solution based
metaheuristics and single-solution based metaheuristics [9]. Popular
single-solution based metaheuristics include SA, tabu search (TS) [4],
iterated local search (ITS) [10], guided local search (GLS) [11], random
search (RS) [12], variable neighborhood search (VNS) [13], and large
neighborhood search (LNS) [14]. Population-solution based meta
heuristics include the genetic algorithm (GA) [15], differential evolution
(DE) [16], pattern search (PS) [17], and others.

There are still some issues in the field of metaheuristics. With the
increase in the number of recent metaheuristics, the necessity of irra
tionally introducing new metaheuristic algorithms is questioned [18].
Molina et al. [19] found that there is no necessary significant relation
ship between the inspiration sources of algorithms and their perfor
mance. However, some researchers expect to improve the performance
of metaheuristics through the inspiration source, which is still
misleading. There is no work that comprehensively evaluates and
compares the efficiency and effectiveness of the newly proposed and the
state-of-the-art metaheuristics [20,21]. Furthermore, some algorithms
perform well on problems with the optimal solution located at the origin
(i.e., center of the search space) but are less efficient when the optimal
solutions are shifted [22–24]. This issue may affect the fair evaluation of
the algorithms.

Motivated by the issues mentioned above, in this paper, we first
summarize and analyze the related metaheuristics studies. Then,
extensive experiments are conducted by using representative bench
mark functions, to fairly evaluate and understand the performances and
characteristics of the state-of-the-art and the recent metaheuristics with
a unified parameter tuning method. Furthermore, we test whether the
algorithms have a search bias to the origin. Therefore, the main research
contributions of our paper are outlined as follows:

• More than 500 metaheuristics are collected and a taxonomy of the
metaheuristics is proposed. In particular, several representative al
gorithms are introduced from two aspects, including the inspiration
sources and the essential operators for generating solutions.

• We perform extensive experiments to evaluate and understand the
performances of the state-of-the-art and the recent metaheuristics.
Eleven representative metaheuristics with new names (generally

with high numbers of citations) and 4 state-of-the-art metaheuristics
are selected to be comprehensively compared on the CEC2017
benchmark suite. In addition, whether these algorithms have a
search bias to the origin is investigated. For fair comparisons, a
unified framework named irace is used to tune the parameters of all
the comparative algorithms.

• We use multiple nonparametric statistical methods to analyze the
experimental results in depth. The statistical results show that the
newly proposed EBCM algorithm performs similarly to the 4
compared algorithms and has the same properties and behaviors,
such as convergence, diversity, exploration and exploitation trade-
offs, in many aspects. However, the other 10 recent metaheuristics
are less efficient and robust than the 4 state-of-the-art meta
heuristics. All 15 algorithms show certain degrees of search bias
toward the origin, but the 4 state-of-the-art metaheuristics are less
affected by the shift operator on the functions. Furthermore, we find
that the other 10 new algorithms (i.e., except for EBCM) are inferior
to the 4 state-of-the-art algorithms in terms of convergence speed
and global search ability on most of the CEC2017 functions. The
other 10 new algorithms show a rougher trade-off and diversity
compared with the 4 state-of-the-art algorithms. Finally, several
important issues that should be considered in the metaheuristic
research area are discussed and some potential research directions
are suggested.

The paper is organized as follows: Section 2 presents a taxonomy of
the metaheuristics and some representative metaheuristics are further
introduced and investigated by explaining the inspiration sources and
the essential operators for generating solutions. Extensive experiments
are conducted to evaluate the performance of the 15 comparative al
gorithms in Section 3, and some properties of these algorithms are
further studied, including convergence, diversity, and the exploration
and exploitation trade-offs. Section 4 engages with some metaheuristics
research issues and suggests several potential research directions. Sec
tion 5 draws the conclusion.

2. Literature overviews

In the last few decades, not only various improved versions of met
aheuristics, but also many metaheuristics with new names mimicking
the behaviors of humans, animals and plants, and the phenomena of
physics and chemistry have been proposed. We selected some of the
popular metaheuristics (i.e., 47 metaheuristics) to search for publica
tions of these algorithms in the Web of Science updates to November
2021. Fig. 1 shows that the number of publications for DE, PSO, SA,
ACO, and the artificial immune system all exceeded 10,000. It can be
observed that many newly proposed metaheuristics have also received
many citations and substantial attention. Therefore, metaheuristics are
still among the hot research topics and it is expected that the number of
publications of new metaheuristics and state-of-the-art metaheuristics
will continue to increase in the future. Table 71 summarizes more than
500 metaheuristics, in which “B#” corresponds to reference [#] in
Appendix B of the related supplemental material. For details on the full
list of metaheuristics, please refer to the supplementary materials.

2.1. Taxonomy of metaheuristics

There are various taxonomy methods for metaheuristics in the
literature, and the most popular taxonomy is based on the source of
inspiration [19,20,25]. Fig. 2 illustrates a rough metaheuristics classi
fication, in which the metaheuristics are divided into population-based

1 If a metaheuristic algorithm is not included in Table 7, please inform the
authors. Table 7 will be updated online at: https://github.com/P-N-Suganth
an/MHA-500Plus

Z. Ma et al.

https://github.com/P-N-Suganthan/MHA-500Plus
https://github.com/P-N-Suganthan/MHA-500Plus

Swarm and Evolutionary Computation 77 (2023) 101248

3

optimization algorithms (POAs) and single-solution based optimization
algorithms (SOAs) according to the number of solutions generated in
each iteration. SOAs generally require only one individual to search the
solution space. In contrast, POAs contain multiple individuals that
search the solution space cooperatively and globally with some opera
tors and mechanisms, such as mutation, crossover, selection, informa
tion sharing, and search behavior learning.

We mainly focus on the POAs in this paper. Compared with SOAs, the
most important characteristics of POAs are three-fold [1]. First, multiple
points (i.e., solutions or individuals) are employed to search the solution
space cooperatively. Second, mechanisms for information sharing and
interactive learning among the individuals are adopted. Third, POAs are
stochastic, as randomness is usually incorporated into search operators
such as mutation and crossover. In Fig. 2, the POAs can be further
roughly divided into evolutionary algorithms (EAs), swarm intelligence
algorithms (SIAs) and physics or chemistry-based algorithms (P/CBAs).

2.1.1. Evolutionary algorithms
EAs are inspired by Darwinian evolutionary theory and mimic the

behavior of evolution in nature, such as recombination, mutation, and
selection [26], which fully embodies the idea of survival of the fittest.
The first computer simulation of evolution can be traced back to 1954 by
the work of Barricelli [27] but his publication did not attract widespread
attention [28]. Until the 1960s and early 1970s, optimization methods
could be designed via artificial simulated evolution after the use of
evolutionary strategies (ES) to solve complex engineering problems in
Rechenberg’s work [29,30]. Currently, many variants of ES have been
proposed in the literature, such as (1+1)-ES, (μ+1)-ES, (μ+λ)-ES, and (μ,
λ)-ES [31]. In 1960, evolutionary programming (EP) was first proposed
by Fogel to achieve artificial intelligence [32,33]. Originally EP used
finite state machines as predictors to predict environments. Currently,
EP is a popular evolutionary algorithm and has many different versions
including FEP (Fast EP) [34], AEP (Adaptive EP) [35], RLEP

Fig. 1. The number of publications about some popular metaheuristics.

Fig. 2. A classification of metaheuristics.

Z. Ma et al.

Swarm and Evolutionary Computation 77 (2023) 101248

4

(Evolutionary Programming based on Reinforcement Learning) [36],
and ENAEP (Ensemble algorithm of Gaussian and Cauchy mutation
operators using AEP) [37]. In the early 1970s, genetic algorithms
became popular through the work of Holland [15], and their perfor
mance mainly depended on the efficient encoding and decoding of the
solution, appropriate parameter configuration and operators, including
crossover, mutation and selection. GA and its variants are popular in a
wide range of fields, such as planning [38] and scheduling [39], bio
logical [40] and chemical [41] engineering, and data mining [42]. Later,
genetic programming (GP) appeared and gradually became popular
starting from the early 1990s. The variants of GP include MGP (multi
gene genetic programming) [43], and GGP (grammatical genetic pro
gramming) [44]. Subsequently, differential evolution introduced by
Storn and Price in 1995 [16,45], emerged as a very competitive evolu
tionary algorithm, especially in dealing with continuous optimization
problems. There are many powerful and efficient variants of DE pro
posed in the literature, such as MPEDE [46] (multi-population ensemble
DE), EDEV [47] (ensemble of multiple DE variants), SaDE [48] (with
adapted mutation strategies and parameters), jDE [49] (with
self-adapted parameters) and CoDE [50] (composition of multiple stra
tegies and parameter settings).

2.1.2. Swarm intelligence algorithms
SIAs mimic the behaviors of animals, plants, and human groups in

nature to optimize problems. Decentralized control and self-
organization are two important features of SIAs [51], which can be
understood as a group of individuals achieving common goals through
cooperation. In other words, each individual of the swarm has its own
intelligence and behaviors, and the integration of multiple individuals
has more power to solve complex problems [52]. Particularly, the
following advantages of SIAs make them user-friendly optimizers [53]:
1) The general framework can be applied to various fields with only a
few modifications; 2) The information of the solution space and search
states is reserved and used to guide the search during the optimization
process; 3) Relatively fewer parameters make SIAs require less tuning
effort to cater to different optimization problems. However, there still
exist some critical issues that have not been well addressed in SIAs, such
as premature convergence, being stuck in a local optimum, and lack of
good trade-offs between exploitation and exploration [54]. Compared
with EAs, SIAs do not have crossovers, while evolutionary algorithms
usually have crossovers. SIAs do not include competitive selections, but
EAs usually have selections. In addition, SIAs can be hybridized with EAs
to include crossovers/selections. SIAs can be further categorized into
human-related algorithms and nonhuman algorithms according to the
inspiration source.

(1) Human-related algorithms

Human-related algorithms (HRAs) are inspired by the behaviors of
humans in society, such as learning, competition, political campaigns,
and cultural influence [55]. For example, inspired by the behavior of
human learning, the teaching-learning-based optimization (TLBO) al
gorithm works on the effect of a teacher on learners [56]. The
gaining-sharing knowledge-based algorithm (GSK) simulates the process
of obtaining and sharing knowledge during the human lifespan [52].
The group teaching optimization algorithm (GTOA) mimics the mech
anism of group teaching [57]. In terms of society competition, the soccer
league competition algorithm (SLCA) is inspired by teams competing
during a season in a soccer league [58] and the imperialist competitive
algorithm (ICA) simulates the competition among imperialists [59].
Inspired by political campaigns, Askari et al. [5] conducted a compre
hensive analysis of political mechanisms and proposed a new algorithm
called the political optimizer (PO). In addition, the greedy reedy politics
optimization (GPO) [60] and the parliamentary optimization algorithm
(POA) [61] are also inspired by political mechanisms. There are many
algorithms inspired by other human society inspiration sources, such as

the poor and rich optimization algorithm (PRO) [62], human urbani
zation algorithm (HUS) [63], life choice-based optimizer (LCBO) [64]
and queuing search algorithm (QS) [65].

(2) Nonhuman algorithms

Nonhuman algorithms (NHAs) include animal-based algorithms
(AAs) and plant-based algorithms (PAs). AAs are inspired by the
behavior of different animals, such as foraging, flocking, mating, and
other behaviors [66]. For example, PSO is inspired by the behavior of a
flock of birds or a school of fish, in which each particle can move
throughout the solution space and update its current position in terms of
a current best solution and a global best solution [53]. An artificial bee
colony (ABC) is a metaheuristic based on the intelligent behavior of a
honey bee swarm. The bee colony consists of three types of bees,
employed bees, onlooker bees, and scout bees, and the search phases can
be divided into search, recruit, and abandon [67]. The bat algorithm
(BA) [68] and cuckoo search (CS) [69] are inspired by the echolocation
behavior of bats and the brood parasitism of some cuckoo species,
respectively. Other popular AAs include the firefly algorithm (FA) [70],
gray wolf optimizer (GWO) [71] and grasshopper optimization algo
rithm (GOA) [72]. PAs are inspired by plant behavior such as growth,
root expansion, weed invasion and flower pollinatio [65,73]. For
instance, the invasive weed optimization (IWO) algorithm [74] mimics
the process of weed invasion, and the flower-pollinating algorithm
(FPA) [75] simulates the characteristics of flower pollination.

2.1.3. Physics/chemistry-based algorithms
P/CBAs are mostly created by imitating the physical and chemical

law phenomena in nature, including electromagnetic force, inertia force,
gravity, electrical charges, river systems, movement, chemical changes
of material, and others [73,76–79]. For instance, the gravitational
search algorithm (GSA) [80] is inspired by the law of gravity and mass
interactions, where the search individuals are a collection of masses.
According to the concepts of the white hole, black hole and wormhole in
cosmology, multi-verse optimization (MVO) [81] has been designed to
solve complex problems. In MVO, white holes and black holes are
correlated with explorations, and wormholes are responsible for sharing
and exploiting the information of the solution space. In addition, har
mony search (HS) [82] mimics the behavior of an orchestra to create the
most harmonious melody and measure it by aesthetic standards.
Detailed information about HS is described in the literature [83]. Other
typical P/CBAs include water evaporation optimization (WEO) [84],
transient search optimization (TSO) [85], chemical reaction optimiza
tion (CRO) [86], and charged system search (CSS) [87].

2.2. Optimization mechanisms of metaheuristics

In this section, the optimization frameworks of single-solution based
and population-based metaheuristics are presented. After that, several
representative metaheuristics are reviewed from two different aspects,
the inspiration sources and the essential operators for generating
solutions.

2.2.1. Optimization framework of metaheuristics
As Algorithm 1 [88,89] shows, typical single-solution based meta

heuristics start from a single initial solution. It iteratively performs a
generation and selection procedure for a single solution until a termi
nation condition is met; then, a best-so-far solution will be returned. In
each iteration, a candidate solution set, C(st), is generated based on the
incumbent solution, st, in the generation procedure. In the selection
phase, a selection operation is performed on the set C(st) to choose a new
solution st+1 to replace the current solution.

Population-based metaheuristics begin with an initial population
solution P0, as shown in Algorithm 2 [88,90]. Afterward, the generation

Z. Ma et al.

Swarm and Evolutionary Computation 77 (2023) 101248

5

and selection are iteratively executed to generate a new population P′

t,
and selects promising individuals to form a new population Pt+1 to
replace the current population. Finally, the best-so-far solution, P∗, is
returned when a given stopping criterion is met. Moreover, the historical
information can be memorized in Algorithm 1 and Algorithm 2 to better
generate candidate solutions and to select promising solutions.

Regardless of the kinds of optimization frameworks and classifica
tion criteria used, exploration and exploitation play crucial roles in
improving the performance of metaheuristics [47,91,92]. Exploration
refers to the ability to globally search the solution space and find a
promising region, which is associated with escaping from the local op
timum and avoiding a premature convergence (i.e., increasing popula
tion diversity). Exploitation denotes the capability of locally searching
the promising region found by the exploration operators. The
well-known trade-off between exploration and exploitation is critical. In
regards to the trade-offs of the exploration and exploitation of meta
heuristics, Morales-Castañeda et al. [93] and Črepinšek et al.[94] con
ducted an in-depth investigation.

2.2.2. Introduction of representative metaheuristics
In this section, several representative state-of-the-art and new met

aheuristics are reviewed from two aspects: (1) the inspiration source for
proposing the algorithm, and (2) the essential operators for generating
solutions in each algorithm. These representative metaheuristics include
some popular and competitive algorithms and the recently proposed
algorithms.

(1) Differential Evolution (DE) [16]

DE is a competitive metaheuristic inspired by the principle of sur
vival of the fittest. In DE, the population evolves through mutation,
crossover, and selection in each generation, and the most frequently
used mutation operator of DE is called DE/rand/1, which can be
formulated as

v→i,G = x→ri
1 ,G

+ F⋅

(

x→ri
2 ,G

− x→ri
3 ,G

)

(1)

where v→i,G is the mutation vector, x→ri
1 ,G

, x→ri
2 ,G

, and x→ri
3 ,G are three

randomly generated distinct vectors, and F is a mutation factor among [0,
1].

The other popular mutation schemes are summarized as follows [95,
96]:

DE

/

best

/

1 : v→i,G = x→best,G + F⋅

(

x→ri
1 ,G

− x→ri
2 ,G

)

(2)

DE

/

best

/

2 : v→i,G = x→best,G + F⋅

(

x→ri
1 ,G

− x→ri
2 ,G

)

+ F⋅

(

x→ri
3 ,G

− x→ri
4 ,G

)

(3)

DE

/

rand

/

2 : v→i,G = x→ri
1 ,G

+ F⋅

(

x→ri
2 ,G

− x→ri
3 ,G

)

+ F⋅

(

x→ri
4 ,G

− x→ri
5 ,G

)

(4)

DE

/

target − to − best

/

1 : v→i,G

= x→i,G + F⋅
(

x→best,G − x→i,G

)

+ F⋅

(

x→ri
1 ,G

− x→ri
2 ,G

)

(5)

DE

/

current − to − rand

/

1 : v→i,G

= x→i,G + F⋅

(

x→ri
1 ,G

− x→i,G

)

+ F⋅

(

x→ri
2 ,G

− x→ri
3 ,G

)

(6)

where x→ri
1 ,G

, x→ri
2 ,G

, x→ri
3 ,G

, x→ri
4 ,G

, and x→ri
5 ,G are mutually different vec

tors, which are randomly chosen from the population at generation G.
x→i,G is the target vector at generation G. x→best,G is the vector with the
best fitness in the population at generation G. F is the scaling factor
within [0,1].

Two widely used crossover methods in DE are the binomial crossover
and exponential crossover, and their formulas are shown as follows [97,
98].

Binomial crossover:

ui,j,G= {
vi,j,G if randi(0, 1) ≤ CR or j = jrand
xi,j,G otherwise (7)

Exponential crossover:

ui,j,G= {
vi,j,G for j = 〈l〉D, 〈l + 1〉D,…, 〈l + L − 1〉D
xi,j,G otherwise (8)

where ui,j,G, xi,j,G, and vi,j,G are the j-th components of vectors u→i,G, x→i,G,
and v→i,G, respectively, i = {1,2,…,NP}, and j = {1,2,…,D}. jrand is an
integer, that is randomly generated in the range of [1,D]. randi(0,1) is a
number randomly generated from a uniform distribution in the range of
[0,1]. The notation < >D denotes the modulo function with modulus D
and L is an integer number ranging in [1,D].

The selection operation can be completed by comparing the fitness
values of the target vector and the trial vector that determines which
vectors can survive to the next generation.

x→i,G+1= {
u→i,G if f

(

u→i,G

)

≤ f
(

x→i,G

)

x→i,G otherwise
(9)

where x→i,G+1 and x→i,G are target vectors at the generations G and G+ 1,
respectively, u→i,G+1 is the trial vector at generation G and f(∗) is the
objective function considered.

There exist many variants of DE in the literature. Some variants show
competitive performance in solving complex problems. For example,
LSHADE-cnEpSin [99] combines a sinusoidal approach based on per
formance adaptation and a covariance matrix learning method for the
crossover operator into LSHADE-EpSin, which achieved a competitive
performance at the 2017 IEEE CEC. Mohamed et al. [100] proposed a
new version of DE named LSHADE-SPACMA by integrating
LSHADE-SPA and a modified version of CMA-ES. Furthermore,
Mohamed et al. [97] proposed two new DE variants named EDE and
EBDE, where EDE had a less greedy mutation strategy named
DE/current-to-ord_best/1, and EBDE introduced a more greedy muta
tion strategy named DE/current-to-ord_pbest/1. We named this newly
proposed algorithm EDE-EBDE in our paper. MPEDE [46] and EDEV
[47] are two powerful variants proposed by Wu. In MPEDE [46], three
mutation strategies simultaneously coexisted, i.e., “current-to-pbest/1”
and “current-to-rand/1” and “rand/1”. EDEV [47] consists of three
highly popular and efficient DE variants, namely JADE, CoDE, and
EPSDE. The entire population of EDEV is partitioned into four sub
populations to coevolve to obtain better results. In the latest research,
Ghosh et al. [101] combined SHADE and LSHADE with the nearest
spatial neighborhood-based parameter adaptive process modification
method to propose NSHADE and NLSHADE.

Z. Ma et al.

Swarm and Evolutionary Computation 77 (2023) 101248

6

(2) Hybrid sampling evolution strategy (HSES) [102]

HSES is a new version of ES that combines the covariance matrix
adaptation-evolution strategy (CMA-ES) and the univariate sampling
method, it achieved the best performance at the 2018 IEEE CEC. In the
HSES, the CMA-ES is mainly used for unimodal problems and the uni
variate sampling method is used for multimodal nonseparable problems.
In particular, the method for calculating the mean value and the stan
dard deviation of UMDAc (i.e., univariate marginal distribution algo
rithm continuous) is modified in the HSES. For detailed information
about the HSES, please refer to [102].

(3) EBOwithCMAR [103]

EBOwithCMAR (Effective Butterfly Optimizer with Covariance Ma
trix Adapted Retreat Phase) is an improved variant of the butterfly
optimizer, which combines a self-adaptive butterfly optimizer and a
covariance matrix adapted retreat phase. The solution modification Eq.s
are shown as follows.

Criss − cross modification : vz = x1ccz + F ∗
(

x1r1z − (X1 ∪ X2)r2z

)
(10)

Toward − best modification : vz = x1bestz + F ∗
(

x1ccz − (X1 ∪ X2)r2z

)
(11)

where vz is a new vector, and x1ccz , x1r1z and (X1 ∪ X2)r2z
are three

distinct individual vectors. x1bestz is the best neighbor of the z-th vector. F
is a positive real number that controls the population evolution
rate. X1 ∪ X2 is the combination of both populations. In particular, the
crossover operator of EBOwithCMAR is based on the Eq. (9).

(4) Snap-drift cuckoo search (SDCS) [104]

SDCS is a new version of CS [69] proposed by Rakhshani, that in
tegrates the snap and drift modes into CS to establish the trade-off be
tween exploration and exploitation. Moreover, a pair of new crossover
and mutation operators are employed to improve the search capability.
The updated rules of the SDCS are shown below.

Snap and drift modes: pa =

{
max(0, pm − ω) if μ = snap

min(1, pm + ω) if μ = drift
(12)

Crossover operator: xt+1
i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

xt
i +a0 ⊗

(
xt

j ⊗Lévy(β) − xt
i

)
if p< J

xt
i +a0 ⊗

(
xt

j − xt
i ⊗Lévy(β)

)
if J ≤ p≤ 1 − J

xt
i +a0 ⊗

(
xt

j − xt
i

)
⊗Lévy(β) if p≥ 1 − J

(13)

Mutation operator: xt+1
i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xt
i +H(pa − ε)⊗

(
xt

j ⊗ r − xt
i

)
if p< J

xt
i +H(pa − ε)⊗

(
xt

j − xt
i ⊗ r

)
if J ≤ p≤ 1 − J

xt
i +H(pa − ε)⊗

(
xt

j − xt
i

)
if p≥ 1 − J

(14)

where pa is known as a switching parameter [105], which is applied to
trade-off the snap mode and drift mode. pm is the performance measure,
and ω is the increase (or decrease) rate of pa. μ is an auxiliary parameter
that equals snap if 0 ≤ pm ≤ 0.5; otherwise, μ = drift. xt

i and xt
j are two

mutually different positions at time t, and xt+1
i is the i-th position at time

t+ 1. a0 and β are the Lévy flight exponent and step size scaling factor,
respectively. H refers to the Heaviside step function. r, p, and ε are three
randomly generated numbers with uniform distributions, and J ∈ [0, 1]
is a possibility value. The notation ⊗ indicates entrywise

multiplications.

(5) Multi-strategy enhanced sine cosine algorithm (MSCA) [106]

MSCA is an improved version of SCA [107], which is based on sine
and cosine functions and randomly generates multiple initial individuals
to fluctuate outward or toward the best solution. In MSCA, multiple
control mechanisms and operators are embedded into SCA, including
the Cauchy mutation operator, chaotic local search mechanism, and
opposition-based learning strategy, and two differential evolution op
erators are used to achieve a better trade-off between exploration and
exploitation. The position update Eq.s of MSCA are the same as those of
SCA and can be expressed as follows.

Xt+1
i = {

Xt
i + r1 × sin(r2) ×

⃒
⃒r3Pt

i − Xt
i

⃒
⃒ r4 < 0.5

Xt
i + r1 × cos(r2) ×

⃒
⃒r3Pt

i − Xt
i

⃒
⃒ r4 ≥ 0.5

(15)

r1 = a − t
a
T

(16)

where Xt
i is the position of the current solution in the i-th dimension at

the t-th iteration, and Pt
i is the position of the destination point in the i-th

dimension at the t-th iteration. r1 is a random variable that is calculated
by Eq. (16), which is a constant, t is the current iteration, and T is the
maximum number of iterations. r2 is a random variable responsible for
the movement (i.e., toward or outward Pt

i) of the next solution (i.e.,
Xt+1

i). r3 is a random variable that gives random weights for Pt
i . r4 is a

random number within [0,1]. For detailed information on the mecha
nisms and operators adopted in MSCA please refer to [106].

(6) Improved moth-flame optimization algorithm (IMFO) [108]

IMFO is a newly improved algorithm that introduces a hybrid phase,
dynamic crossover mechanism, and fitness-dependent weight factor into
MFO [109] to overcome the degeneration of the global search capability
and convergence speed. The main inspiration of IMFO is also the navi
gation behavior of moths in nature, which is referred to as a transverse
orientation. The position update Eq.s of moths in IMFO are shown as
follows.

w =

⃒
⃒
⃒
⃒
⃒

f (Mbest)

f
(
Mk

i
)

⃒
⃒
⃒
⃒
⃒

(17)

Mk
i = Dk− 1

i ebtcos(2πt) + w⋅Fk− 1
i + (1 − w)⋅Mbest (18)

where w is a weight factor that depends on fitness, f(Mbest) is the fitness
value of the best solution Mbest and f(Mk

i) represents the fitness values of
the i-th moth at iteration k. Mk

i and Fk− 1
i are the positions of the i-th moth

and the j-th flame at iterations k and k − 1, respectively. Dk− 1
i is the

distance between the i-th moth and the j-th flame at iteration k − 1, b is a
constant used to define the shape of the logarithmic spiral and t is a
random number within [-1,1].

(7) Aquila optimizer (AO) [110]

AO is inspired by Aquila’s behavior in nature during the process of
catching prey. The optimization procedures of the proposed AO algo
rithm are represented in four methods, selecting the search space by a
high soar with a vertical stoop, exploring within a divergent search
space by a contour flight with a short glide attack, exploiting within a
convergent search space by a low flight with a slow descent attack, and
swooping by walking and grabbing the prey. In AO, the different steps
(four methods) have different mathematical expressions for solution
position updating and are shown as follows.

Z. Ma et al.

Swarm and Evolutionary Computation 77 (2023) 101248

7

Step 1 : X1(t+ 1) = Xbest(t) ×
(

1 −
t
T

)
+ (XM(t) − Xbest(t) ∗ rand) (19)

Step 2 : X2(t+ 1) = Xbest(t) × Levy(D) + XR(t) + (y − x) ∗ rand (20)

Step 3 : X3(t+ 1)

= (Xbest(t) − XM(t)) × α − rand + (UB − LB) × rand+ LB) × δ
(21)

Step 4 : X4(t+ 1)

= QF × Xbest(t) − (G1 ×X(t)× rand) − G2 × Levy(D) + rand × G1

(22)

where Xi(t+1) is the solution of the next iteration of t, which is gener
ated by each search method (XI) and i = 1, 2, 3, 4. Xbest(t) is the best-
obtained solution until the tth iteration, XM(t) denotes the location
mean value of the current solutions at the tth iteration, Levy(D) is the levy
flight distribution function, XR(t) is a random solution taken in the range
of [1,N] at the tth iteration, y = r × cos(θ) and x = r × sin(θ) are used to
present the spiral shape in the search and α and δ are the exploitation
adjustment parameters fixed at 0.1. LB and UB are the lower bound and
upper bound of the given problem, respectively. QF denotes a quality
function used to establish the equilibrium of the search strategies, G1
denotes various motions of the AO, G2 denotes the flight slope of the AO
that is used to follow the prey during the slope from the first location (1)
to the last location (t), rand is a random value between 0 and 1, and t and
T represent the current iteration and the maximum number of iterations,
respectively. For detailed parameter information calculations and the
AO, please refer to [110].

(8) Improved grasshopper optimization algorithm (IGOA) [111]

The grasshopper optimization algorithm (GOA) [71] is a recently
proposed metaheuristic algorithm that is inspired by the swarming
behavior of grasshoppers. IGOA improves GOA through the integration
of multiple mechanisms including Gaussian mutation, Levy-flight
strategy and opposition-based learning. The improvement method in
IGOA is similar to that of the MSCA. The mathematical expression of the
solution position update is as follows.

Xd
i = c

⎛

⎜
⎜
⎜
⎜
⎝

∑N

j=1

j∕=i

c
ubd − lbd

2
s
(⃒
⃒
⃒xd

j − xd
i

⃒
⃒
⃒

) xj − xi

dij

⎞

⎟
⎟
⎟
⎟
⎠

⊕ G(α) + T̂ d (23)

Xlevy
i = X∗

i + rand(d) ⊕ levy(β) (24)

Xt+1
i = {

Xlevy
i fitness

(
Xlevy

i
)〉

fitness
(
X∗

i

)

X∗
i otherwise

(25)

In Eq. (23), Xd
i represents the updated position of grasshopper i in the

d-th dimension. xd
j and xd

i are two different grasshoppers in the d-th
dimension. N is the number of grasshoppers, and c is a parameter
calculated by the Eq. c = cmax − l(cmax − cmin)/L. ubd and lbd are the
upper bound and lower bound in the d-th dimension, respectively. s(∗) is
the function that defines the social forces, and dij is the distance between
the i-th and j-th grasshoppers. G(∗) and T̂d are the Gaussian step vector
and the value of the best-so-far solution in the d-th dimension,
respectively. α is a Gaussian random number generated in the range of
[0,1]. The generation and selection of the new solution are based on Eq.
s (24) and (25). Xlevy

i is a new solution generated based on the Levy flight
mechanism, and X∗

i is the new position of the i-th grasshopper after
updating. Xt+1

i is a selected solution based on the fitness value between
Xlevy

i and X∗
i . rand(d) and levy(∗) are the d-th dimension random vectors in

[0,1] and the Levy distribution, respectively. β is the Levy index. The
notation ⊕ in all the Eq.s represents the dot product operation.

(9) Hyperbolic gravitational search algorithm (HGSA) [112]

GSA is a physically inspired population-based algorithm that solves
problems based on the law of gravity and mass interactions [80]. HGSA
is a new version of GSA, in which the hyperbolic acceleration coefficient,
dynamic regulation, and decreasing hyperbolic function are adopted to
achieve a better trade-off between exploration and exploitation. The
positions and velocities of the individuals in HGSA can be calculated as
follows.

vd
i (t+ 1) = randi × vd

i (t) + c1(t) × ad
i (t)Δt + c2(t) ×

(
gbest − xd

i (t)
)/

Δt
(26)

xd
i (t+ 1) = xd

i (t) + vd
i (t+ 1) (27)

where xd
i (t) and vd

i (t) are the position and velocity of the i-th individual
in the d-th dimension at iteration t, ad

i (t) is the acceleration of individual
i at time t and c1(t) and c2(t) are the acceleration coefficients at time t.
randi is a uniform random variable in the interval [0,1]. gbest is the
position of the best-so-far solution. Δt is the time increment. For
detailed information about HGSA, please refer to [112].

(10) Memetic frog leaping algorithm (MFLA)

MFLA is an improved version of the shuffled frog leaping algorithm
(SFLA) that was first proposed by Eusuff et al. [113]. SFLA is a meta
heuristic search approach that mimics the foraging behavior of frogs,
which is similar to PSO. In the frog population, each frog can commu
nicate with each other and the worst frog can jump to find the best food
source guided by the best frog. MFLA improves SFLA by integrating a
memetic mechanism and a new search leaping rule. The mathematical
formulas are shown below.

Qm= {
Qg if rand < 0.5
QC else (28)

Q′

w = Qw + rand(Qbest − Qw) + rand(Qm − Qw) (29)

where Qw and Qbest are the worst and best frog, respectively. Qm is an
auxiliary variable. Qg and QC represent the geometric center and grav
itational center, respectively. For the Eq.s for calculating Qg and QC,
please refer to [114].

(11) Gaining‑sharing knowledge-based algorithm (GSK) [52]

GSK is inspired by the human behaviors of gaining and sharing
knowledge, which can be divided into two phases: (1) the junior gaining
and sharing phase and (2) the senior gaining and sharing phase. The
differential Eq.s for generating the new solutions are proposed in two
phases and described as follows:

xnew
ij = {

xi + kf ∗ [(xi− 1 − xi+1) + (xr − xi)] f (xi) > f (xr)

xi + kf ∗ [(xi− 1 − xi+1) + (xi − xr)] f (xi) ≤ f (xr)
(30)

xnew
ij = {

xi + kf ∗
[(

xp− best − xp− worst
)
+ (xm − xi)

]
f (xi) > f (xm)

xi + kf ∗
[(

xp− best − xp− worst
)
+ (xi − xr)

]
f (xi) ≤ f (xm)

(31)

where xi is the i-th individual. Compared with the current individual xi,
xi− 1 and xi+1 are the nearest better and worse individuals respectively, to
constitute the gain source of knowledge. xp− best and xp− worst are the best
individual and worst individual, respectively, among all the individuals.
xr and xm are individuals randomly selected from the population, kf is a
real number greater than 0 and f(∗) is the objective function.

Z. Ma et al.

Swarm and Evolutionary Computation 77 (2023) 101248

8

(12) Marine predators algorithm (MPA) [115]

MPA mimics marine predators and uses the predation behavior of the
Lévy and Brownian movements to optimize problems. The optimal
encounter rate policy in the interaction between predator and prey is
also considered. In MPA, the optimization process is divided into three
phases due to different velocity ratios.

Phase 1: When the velocity ratio is high or the prey is moving faster
than the predator

stepsize̅̅̅̅ →
i = R→B ⊗

(

Elite
̅̅→

i − R→B ⊗ Prey̅̅→
i

)

i = 1,⋯n (32)

Prey̅̅→
i = Prey̅̅→

i + P⋅ R→⊗ stepsize̅̅̅̅ →
i (33)

Phase 2: In the unit velocity ratio or when both predator and prey are
moving at almost the same pace

• For the first half of the population (i = 1,⋯n/2)

stepsize̅̅̅̅ →
i = R→L ⊗

(

Elite
̅̅→

i − R→L ⊗ Prey̅̅→
i

)

i = 1,⋯n
/

2 (34)

Prey̅̅→
i = Prey̅̅→

i + P⋅ R→⊗ stepsize̅̅̅̅ →
i (35)

• For the second half of the population (i = n/2,⋯n)

stepsize̅̅̅̅ →
i = R→B ⊗

(

R→B ⊗ Elite
̅̅→

i − Prey̅̅→
i

)

i = n
/

2,⋯n (36)

Prey̅̅→
i = Elite

̅̅→
i + P⋅CF ⊗ stepsize̅̅̅̅ →

i (37)

Phase 3: In a low-velocity ratio when the predator is moving faster
than the prey

stepsize̅̅̅̅ →
i = R→L ⊗

(

R→L ⊗ Elite
̅̅→

i − Prey̅̅→
i

)

i = 1,⋯n (38)

Prey̅̅→
i = Elite

̅̅→
i + P⋅CF ⊗ stepsize̅̅̅̅ →

i (39)

where stepsize
̅̅̅̅ →

i is the step size matrix of the search individuals (predator

and prey) and Elite
̅̅→

i is the matrix that oversees the searching and finding
of the prey based on the information of the prey’s positions. Prey̅̅→

i is the
function matrix based on which the predators update their positions. R→B
is a vector containing random numbers that represents a Brownian
motion. P is the constant number, and R→ is a vector that contains a
random number in the interval [0,1]. R→L is a vector that contains
random numbers following the Lévy distribution. CF is an adaptive
parameter used to control the predator step size.

(13) Equilibrium optimizer (EO) [91]

EO is inspired by the control volume mass balance models that are
used to estimate both the dynamic and equilibrium states. In EO, each
individual has its concentration (position), and the best-so-far solution is
named the equilibrium candidate. Each individual randomly updates
their concentration around the equilibrium candidates to finally reach
the equilibrium state (optimal result). The updating rule of the in
dividuals is shown as follows.

C→= C→eq +

(

C→− C→eq

)

⋅ F→+
G→

λ
→

V

(
1 − F→

)
(40)

where C→ is a concentration vector of the individuals, C→eq is a vector that

contains the candidates in the equilibrium pool, F→ is an exponential
term that includes an exponential function, V is considered a unit, and λ

→

is a random vector in the range of [0,1]. In EO, the selection process is
completed by comparing the fitness value of C→i with the fitness values of
C→eq1, C→eq2, C→eq3, and C→eq4 and selecting the best one to replace the
worst one.

As mentioned above, we can summarize the general mathematical
model of the essential operators that generate solutions in the
population-based metaheuristics, which can be described as the new
solution xt+1

i being equal to the sum of the current solution xt
i and the

modification increment or mutation vector Δxt
i [78], i.e.,

xt+1
i = xt

i + Δxt
i (41)

The ways to determine Δxt
i reflect the essential differences among the

different metaheuristics.

3. Experimental analyses

To evaluate the performance and properties of the newly proposed
algorithm, 11 newly named metaheuristics and 4 state-of-the-art meta
heuristics are selected in this section. We first use a unified framework
named irace to automatically configure the parameters of all 15
comparative algorithms. Then, whether these algorithms have a search
bias to the origin is investigated. For detailed description, the conver
gence, diversity, and trade-off between the exploration and exploitation
of all 15 algorithms are also analyzed. All the experimental results were
analyzed by nonparametric statistical methods, including the Friedman
test, Wilcoxon signed-ranks test, and Bayesian signed-rank test.

3.1. Experiment setup

In this section, 11 newly proposed representative metaheuristics that
are popular and highly cited and 4 state-of-the-art metaheuristics are
selected for the comparison experiments. The 15 algorithms are

Table 1
Summary of the 15 comparison algorithms.

Algorithm Year Abbreviation

• 11 new algorithms
Aquila optimizer [110] 2017 AO
Effective butterfly optimizer with covariance

matrix adapted retreat phase [103]
2017 EBOwithCMAR

(EBCM)a

Snap-drip cuckoo search [104] 2017 SDCS
Improved grasshopper optimization algorithm

[111]
2018 IGOA

Hyperbolic gravitational search algorithms [112] 2019 HGSA
Memetic frog leaping algorithm [114] 2019 MFLA
Improved moth-flame optimization algorithm

[108]
2020 IMFO

Multi-strategy enhanced Sine Cosine Algorithm
[106]

2020 MSCA

Gaining-sharing knowledge-based algorithm [52] 2019 GSK
Marine predators algorithm [115] 2020 MPA
Equilibrium optimizer [91] 2020 EO
• 4 state-of-the-art algorithms
L-SHADE with nearest spatial neighborhood-

based modification [101]
2017 NLSHADE

LSHADE with semi-parameter adaptation hybrid
with CMA-ES [100]

2017 LSHADE-SPACMA
(LS-SPA)

Hybrid sampling evolution strategy [102] 2018 HSES
Two enhanced DE variants EDE and EBDE [97] 2019 EDE-EBDE (ED-EB)

Note: In the rest of this paper, we use EBCM, LS-SPA, and ED-EB to represent
EBOwithCMAR, LSHADE-SPACMA, and EDE-EBDE, respectively.

a As a top performer in a CEC competition, it was initially selected as a state-
of-the-art algorithm. But, a reviewer asked us to classify it under newer
algorithms.

Z. Ma et al.

Swarm and Evolutionary Computation 77 (2023) 101248

9

summarized in Table 1.
We select 2017 CEC bound-constrained numerical optimization

problems as the benchmark problems [116], which contain thirty
functions that can be divided into four categories, unimodal functions
(F1-F3), multimodal functions(F4-F10), hybrid functions (F11-F20) and
composition functions (F21-F30). These functions have the same upper
bound (100) and lower bound (-100). The global minimum value of each
function is the product of the function index and 100. In this paper, the
maximum number of function evaluations is set to 10000 ∗D, and all the
experimental results are obtained from average values over 31 runs.

To make fair comparisons [117,118], we first tuned the parameters
of all 15 comparative algorithms on all the CEC 2017 functions with 10,
30, and 50 variables. The tuned parameter values are presented in
Table 2. Afterward, further experiments are conducted from two aspects:
performance evaluation and verification of whether these comparison
algorithms have a search bias to the origin. In the performance evalu
ation experiments, all the CEC 2017 functions with 10, 30, and 50
variables are used. To evaluate whether these comparative algorithms
have a search bias to the origin, all the shifted and nonshifted CEC 2017

functions with 10 and 30 variables are used.
All experimental results are analyzed by several nonparametric sta

tistical methods including the Bayesian rank-sum test, Friedman test,
Wilcoxon signed-rank test, and Bayesian signed-rank test to verify
whether the performance of two or more algorithms differs from each
other statistically. If the p value obtained by any two algorithms is equal
to or less than 0.05, it indicates that there is a significant difference in
the performance of the two algorithms. Otherwise, the opposite is true.
Details of the statistical results are summarized in the supplementary
file, where the result tables (or figures) are denoted as “TableS# (Fig.
S#)” and “#” is the table number. All the algorithms are coded in
MATLAB software and run on a Windows 10 operating system with a
Core i7–10700CPU and 32 G RAM. The codes of this paper have been
published online (http://faculty.csu.edu.cn/guohuawu/zh_CN/zdylm/
193832/list/index.htm).

3.2. Automatic parameter tuning

For a fair comparison, we employed the iterated racing (irace)

Table 2
Parameter tuning results of the 15 algorithms.

Algorithm Default parameters Tuned parameters
10 variables 30 variables 50 variables

AO [110] Population size n=25; number of
clusters m= 5;

Population size n=34; Exploitation
adjustment parameters α=0.9161;
δ=0.3806

Population size n=10; Exploitation
adjustment parameters α=0.4207;
δ=09379

Population size n=69; Exploitation
adjustment parameters α=0.186;
δ=0.6773

SDCS
[104]

Population size n={15, 25, 35};
Increase/decrease rate of
pa={0.005, 0.5, 1}; Movement
variability parameter J={0.1, 0.2,
0.3}; Step size scaling factor
a0={0.01, 0.1, 1}

Population size n=10; Increase/decrease
rate of pa=0.3413; Movement variability
parameter J=0.8281; Step size scaling
factor a0=0.9491

Population size n=24; Increase/
decrease rate of pa=0.1854; Movement
variability parameter J=0.9618; Step
size scaling factor a0=0.5973

Population size n=10; Increase/
decrease rate of pa=0.9137;
Movement variability parameter
J=0.9316; Step size scaling factor
a0=0.5201

IGOA
[111]

Population size n =30 Population size n=34 Population size n=35 Population size n=25

HGSA
[112]

Population size n=30;
Gravitational constant G0=100

Population size n=37; Gravitational
constant G0=89

Population size n=23; Gravitational
constant G0=118

Population size n=24; Gravitational
constant G0=116

MFLA
[114]

Number of memeplexes m={2, 4,
5}; Number of frogs in a memeplex
n={4, 5, 10}; beta=0.6

Number of memeplexes m=5; Number of
frogs in a memeplex n=5; beta=0.7563

Number of memeplexes m=4; Number
of frogs in a memeplex n=6;
beta=0.5867

Number of memeplexes m=4; Number
of frogs in a memeplex n=5;
beta=1.4742

IMFO
[108]

Population size n=100; Spiral
shape parameter b=1; Iteration
ratio P=0.5

Population size n=119; Spiral shape
parameter b=4; Iteration ratio P=0.0199

Population size n=118; Spiral shape
parameter b=4; Iteration ratio
P=0.2963

Population size n=93; Spiral shape
parameter b=3; Iteration ratio
P=0.3593

MSCA
[106]

Population size n =30; Probability
factor Pc=0.8; Constant number
a=2; μ=4 is a parameter that
controls the degree of chaotic
function.

Population size n=27; Probability factor
Pc=0.0659; Constant number a=1; μ=3
is a parameter that controls the degree of
chaotic function.

Population size n=31; Probability factor
Pc=0.0319; Constant number a=1; μ=4
is a parameter that controls the degree
of chaotic function.

Population size n=31; Probability
factor Pc=0.0116; Constant number
a=1; μ=4 is a parameter that controls
the degree of chaotic function.

GSK [52] Population size n=100; Top and
bottom percentage of individuals
P=0.1; Knowledge factor kf=0.5;
Knowledge ratio kr=0.9;
Knowledge rate K=10

Population size n =101; Top and bottom
percentage of individuals P=0.1353;
Knowledge factor kf=0.4822;
Knowledge ratio kr=0.9797; Knowledge
rate K=12

Population size n =93; Top and bottom
percentage of individuals P=0.052;
Knowledge factor kf=0.485; Knowledge
ratio kr=0.991; Knowledge rate K=10

Population size n =100; Top and
bottom percentage of individuals
P=0.0521; Knowledge factor
kf=0.4581; Knowledge ratio
kr=0.9309; Knowledge rate K=9

MPA [115] Population size n=25; Probability
factor FADs={0.1, 0.2, 0.5, 0.7,
0.9}; Constant number P={0.1, 0.5,
1, 1.5, 2}

Population size n=21; Probability factor
FADs=0.8297; Constant number
P=0.6737

Population size n=31; Probability factor
FADs=0.1014; Constant number
P=0.1949

Population size n=25; Probability
factor FADs=0.3425; Constant
number P=0.5076

EO [91] Population size n=30; Constant
number a1=2; Constant number
a2=1; Generation Probability
GP=0.5

Population size n=33; Constant number
a1=1.8876; Constant number
a2=0.9305; Generation Probability
GP=0.2999

Population size n=31; Constant number
a1=1.9447; Constant number
a2=0.95021; Generation Probability
GP=0.5871

Population size n=20; Constant
number a1=1.8587; Constant number
a2=1.1681; Generation Probability
GP=0.7087

EBCM
[103]

probls=0.1;σ=0.3; arch_rate=2.6;
Memory size H=6

probls=0.9209;σ=0.2997;
arch_rate=2.3947; Memory size H=5

probls=0.4149;σ=0.9267;
arch_rate=3.2152; Memory size H=8

probls=0.818;σ=0.019;
arch_rate=3.0527; Memory size H=4

NLSHADE
[101]

Population size Np= {50,100}; MF

and MCr are memory archive
values, MF = 0.5, MCr = 0.5.

Population size Np= 140; MF and MCr are
memory archive values, MF = 0.8404,
MCr = 0.9969.

Population size Np= 138; MF and MCr

are memory archive values, MF = 0.897,
MCr = 0.7163.

Population size Np= 164; MF and MCr

are memory archive values, MF =

0.9039, MCr = 0.792.
HSES

[100]
Population size M=200; N=100 Population size M=182; N=90 Population size M=181; N=98 Population size M=214; N=92

LS-SPA
[102]

pbest =0.3; pbestmin=0.15 pbest =0.416; pbestmin=0.1732 pbest =0.4765; pbestmin=0.1459 pbest =0.2438; pbestmin=0.1749

ED-EB
[97]

L_Rate=0.8; EDE_best_rate=0.1;
Memory size=5

L_Rate=0.;0.2797 EDE_best_rate=0.4957;
Memory_size=5

L_Rate=0.7763; EDE_best_rate=0.1264;
Memory_size=6

L_Rate=0.5034;
EDE_best_rate=0.2124; Memory_size=4

Note: The adjustment parameters of each algorithm are determined based on the published paper and the codes are obtained from the authors’ websites.

Z. Ma et al.

http://faculty.csu.edu.cn/guohuawu/zh_CN/zdylm/193832/list/index.htm
http://faculty.csu.edu.cn/guohuawu/zh_CN/zdylm/193832/list/index.htm

Swarm and Evolutionary Computation 77 (2023) 101248

10

method to automatically configure the main parameters. The iterated
racing method repeats three steps until it meets a termination criterion:
(1) Sampling new configurations according to a particular distribution;
(2) Selecting the best configurations from the newly sampled configu
rations by means of racing, and (3) Updating the sampling distribution
to bias the sampling toward the best configurations [119].

The following issues are interacting: (1) Different algorithms have a
different number of parameters requiring different number of function
evaluations; (2) Having too few tuneable parameters may make an al
gorithm to have a fixed characteristic. According to the "No Free Lunch"
theorem, algorithms with fixed characteristic may not be efficient for
solving diverse types of optimization problems; (3) Allocating a single
fixed number of function evaluations for all algorithms may result in too
few or too many function evaluations for tuning each algorithm.
Considering all these, we tuned the main parameters of each algorithm
independently. This approach offers different tuning budgets for
different algorithms. This is acceptable for offline applications. Param
eter adjustment results of the 15 algorithms are shown in Table 2.

The irace method is implemented through an R package named irace,
developed by López-Ibáñez et al. [119]. Irace receives as input a
parameter space definition corresponding to the parameters of our 15
algorithms that will be tuned, a set of training instances for which the
parameters must be tuned, and a set of options for the irace that define
the configuration scenario. For example, we tune the AO parameters,
and the training instances are eight functions covering all types of the
CEC 2017 functions. Then, the irace searches in the parameter search
space for good-performing algorithm configurations by executing AO on
different functions with different parameter configurations. In other
words, all the parameter configurations will be tested on all the func
tions to verify which is the best performing configuration. For a detailed
implementation of the irace method, please refer to [119–123].

3.3. Experimental results and discussion

In this section, 11 recent algorithms and 4 state-of-the-art algorithms
are compared on CEC 2017 functions with 10, 30, and 50 variables,
respectively. The experimental results of the 15 algorithms are sum
marized in Tables S1-S3. Nonparametric statistical methods, including
Friedman test, Bayesian signed-rank, and Wilcoxon signed-rank test.
The detailed statistical results can be found in Tables S4-S22 of the
supplemental materials. Due to space limitations, we only show the
analysis results on functions with 30 variables in the text. For more in
formation about the analysis results on functions with 10 and 50 vari
ables, please refer to Sections 3 and 4 of Appendix A in the
supplementary material.

3.3.1. Benchmark functions with 30 variables

3.3.1.1. Comparison of each function. Some interesting observations can
be obtained from the statistical results of the functions with 30 variables
reported in Table S2. It is observed that MFLA, GSK, IMFO, MPA, AO,
and EBCM exhibit competitive performance among the 11 recent algo
rithms as compared with the 4 state-of-the-art algorithms. In particular,
EBCM has the best performance among the 11 newly proposed algo
rithms. EBCM outperforms HSES, ED-EB, LS-SPA and NLSHADE on
twenty-one (F2, F5-F6, F7-F9, F11, F13, F15, F16-F17, F20-F21 and F23-
F30), fourteen (F2, F4, F5, F7-F8, F11-F13, F16-F17, F21, F25-F26, and
F28), fourteen (F5, F7-F8, F10-F11, F13, F16, F21, F23-F26, F28 and
F30), and five (F5-F6, F8, F13 and F25) functions, respectively.

MFLA is superior to HSES, ED-EB, LS-SPA and NLSHADE on eight
(F1-F2, F6, F20, and F25-F28), four (F4 and F25-F26), four (F4 and F25-
F26), and two (F22 and F25) functions. Moreover, MFLA exhibits high
efficiency in dealing with the composition function F25.

GSK is superior to HSES, ED-EB, LS-SPA and NLSHADE on fifteen
(F1-F4, F6, F11, F13, F15-F16, F20, F23, and F26-F29), three (F4, F11,

and F28), five (F4, F23-F24, F26, and F28), and two (F22 and F25)
functions. Particularly, the performance of GSK is equivalent to the 4
state-of-the-art algorithms (except NLSHADE) in solving the composi
tion function F22. Moreover, GSK is superior or similar to all 5 compe
tition algorithms on multimodal function F4 and composition function
F28.

IMFO outperforms HSES, ED-EB, LS-SPA, and NLSHADE on five (F1-
F2, F6, F20, and F25), two (F4 and F25), two (F4 and F25), and one
(F25) functions.

The MPA achieves better results than the HSES, ED-EB, LS-SPA, and
NLSHADE on seven (F2, F6, F20-F21, F23, F26, and F28), three (F4, F26,
and F28), five (F4, F21, F23, F26, and F28), and one (F25) functions.
Particularly, MPA yields promising performance on the composition
function F26 by surpassing all 4 state-of-the-art algorithms.

In contrast, EO, AO, HGSA, IGOA, MSCA, and SDCS demonstrate less
efficiency than the 4 state-of-the-art algorithms. For instance, these 6
recent algorithms are only superior to the 4 state-of-the-art algorithms in
less than 3 functions. In particular, AO is almost inferior to the 4 state-of-
the-art algorithms on all thirty functions.

In conclusion, EBCM shows competitive performance compared with
4 state-of-the-art algorithms. The performance of EBCM completely
surpasses HSES and is comparable to ED-EB and LS-SPA on the CEC 2017
functions with 30 variables. However, MFLA, GSK, IMFO, and MPA are
inferior to the 4 state-of-the-art algorithms in most functions. EO, AO,
HGSA, IGOA, MSCA, and SDCS have less efficiency in dealing with CEC
2017 functions with 30 variables since they are only superior to or
comparable to the 4 state-of-the-art algorithms in a few functions. The
results show that MFLA/GSK/IMFO/MPA/EBCM is superior to HSES,
ED-EB, LS-SPA, and NLSHADE on 8/4/4/2/21, 15/3/5/2/14, 5/2/2/1/
14, and 7/3/3/1/5 functions, respectively. In addition, MFLA and GSK
are comparable to these 3 comparative algorithms (except NLSHADE)
on function F22. EO, AO, HGSA, IGOA, MSCA, and SDCS only perform
better than HSES, ED-EB, LS-SPA, and NLSHADE on 2/1/1/0, 0/0/0/1,
1/1/2/1, 0/0/0/1, 2/0/1/1, and 0/1/1/1 function(s). It is worth noting
that 11 recent algorithms become less efficient as the dimension of the
functions increases (i.e., from 10 variables to 30 variables).

3.3.1.2. Results of Wilcoxon signed-rank test. As seen from Table 3,
EBCM performs competitively with 4 state-of-the-art algorithms on the
CEC 2017 functions with 30 variables. In addition, GSK exhibits signif
icantly similar performance to HSES in solving functions with 30 vari
ables which is consistent with the conclusion of the Bayesian rank-sum
test and the Friedman test. In contrast, the performances of EO, AO,
HGSA, IGOA, IMFO, MFLA, MPA, MSCA, SDCS, and HSES are signifi
cantly different from those of the 4 state-of-the-art algorithms. In other
words, these 9 recent algorithms are not efficient in dealing with the
CEC 2017 functions with 30 variables. It is worth noting that some
recent algorithms, such as MPA, SDCS and MFLA, demonstrate high
efficiency on functions with 10 variables but have a deteriorated per
formance in solving functions with 30 variables.

3.3.1.3. Results of the CD plot. In the cases of the functions with 30
variables, EBCM exhibits similar performance to the 4 state-of-the-art
algorithms in Fig. 3, and the performance of GSK and MFLA are signif
icantly similar to HSES, LS-SPA, and ED-EB. In addition, there was no
significant difference between MPA and HSES. In contrast, the perfor
mance of the other 7 recent algorithms (i.e., AO, IMFO, EO, SDCS,
HGSA, MSCA, and IGOA) is significantly different from that of the 4
state-of-the-art algorithms. The conclusions drawn in this case are
similar to the observation results of the Bayesian rank-sum test, the
Friedman test, and the Wilcoxon signed-rank test.

3.3.1.4. Convergence analysis. The convergence plots of the 15 algo
rithms on functions F1, F3, F4, F10, F11, F19, F21 and F24 with 30
variables are shown in Fig. 4. According to Fig. 4, EBCM and 4 state-of-

Z. Ma et al.

Swarm and Evolutionary Computation 77 (2023) 101248

11

the-art algorithms have a fast convergence speed and can obtain better
solutions on these selected functions compared with the other 10 new
algorithms. Compared with the 4 state-of-the-art algorithms, AO, MFLA,
HGSA, IGOA, and MSCA have a slower convergence speed and the worst
global search ability (i.e., less efficient) on these selected functions. The
other algorithms, such as EO, GAK, IMFO, MPA and SDCS, have a similar
convergence speed to the 4 state-of-the-art algorithms, but they are
inferior to the 4 state-of-the-art algorithms on most of these select
functions. Particularly, there is a clear gap between the 4 state-of-the-art
algorithms and the 11 new algorithms on functions F3, F7, F11, F21 and
F24. These results suggest that the 4 state-of-the-art algorithms have a
faster convergence speed and a stronger global search ability on most of
the selected functions.

3.3.1.5. The trade-off of exploration and exploitation analysis. We
consider the method proposed in Ref. [93] to evaluate the trade-off
between exploration and exploitation of the 15 algorithms. In partic
ular, the percentage of exploration (i.e., XPL%) and the percentage of
exploitation (i.e., XPT%) are used to evaluate the trade-off response. XPL
% represents the level of exploration as a relationship betwee1111n the
diversity in each iteration and the maximum reached diversity. XPT%
corresponds to the level of exploitation. Both elements, XPL% and XPT%

are mutually conflicting and complementary. For more information
about how to evaluate the trade-off of algorithms, please refer to [93].

Fig.S8 shows the experimental results of the exploration and
exploitation trade-off of the 15 algorithms on functions F1, F3, F4, F7,
F11, F19, F22 and F24 with 30 variables. Due to space limitations, we
only analyze the results on functions F1, F7, F11 and F22. For more
information about the trade-off analysis of the 15 algorithms on other
functions, please read the supplementary material. The analysis results
of Fig. S8 and Table S2 are summarized as follows.

• Unimodal function F1: In terms of the 4 state-of-the-art algorithms,
LS-SPA and NLSHADE are the two most prominent algorithms on
function F1, with an exploitation of 98.55% and 98.30%, and an
exploration of 1.45% and 1.70%, respectively. ED-EB and HSES
perform slightly worse than LS-SPA and NLSHADE and have trade-
off behaviors of exploitation and exploration similar to these of
two top algorithms. They exploited the search space 99.19% and
97.82% of the time, respectively. In terms of the 10 new algorithms,
EBCM performs slightly worse than LS-SPA and NLSHADE but has
similar trade-off exploitation and exploration behaviors as LS-SPA
and NLSHADE. Meanwhile, the search space is exploited 96.95% of
the time. MFLA, GSK, and IMFO also perform better among the 11
newly proposed algorithms, and they spent 85.58%, 99.13%, and
99.15% of the time exploiting the search space. Although MFLA
employs a different exploration and exploitation rate compared with
LS-SPA and NLSHADE, it benefits from multiple exploration peaks
appearing during the optimization process to jump into different
search zones and find better solutions. The other new algorithms
including EO, AO, MPA, HGSA, IGOA, MSCA and SDCS, are less
efficient in terms of solution quality and exploit the search space
96.78%, 93.31%, 98.84%, 99.56%, 79.76%, 66.20%, and 0.00% of
the time, respectively. In particular. SDCS uses excessive exploration
(i.e., 100% of the time) in its search process. EO, AO, MPA, and
HGSA maintain a behavior very close to the one used by the top two
algorithms but the reason for finding different solutions is because of
the search mechanism used for exploration and exploitation. More
over, MPA, IGOA and MSCA produce a very rough trade-off response.
In all cases, the incremental-decremental graph shows that the
exploration effect is very short, while the exploitation action is
prolonged during most of the search time. The best trade-off can be
found to be more than 98% exploitation and less than 2% exploration
on function F1.

• Multimodal function F7: The 4 state-of-the-art algorithms and EBCM
are the top five best-performing algorithms for solving function F7,
where NLSHADE achieves the best results with 90.49% exploitation
and 9.52% exploration. Moreover, HSES, ED-EB, and LS-SPA spent
98.20%, 93.69% and 96.26% of the time exploiting respectively. In
terms of the 11 new algorithms, EBCM shows competitive perfor
mance with 89.52% exploitation and 110.49% exploration. EO,
MPA, IMFO, and HGSA perform slightly worse than the 4 state-of-
the-art algorithms but their trade-off levels between exploration
and exploitation are close to the 4 state-of-the-art algorithms. The
performance of AO, IGOA, MFLA, GSK, SDCS, and MSCA widens the
gap with the 4 state-of-the-art algorithms and has different trade-off
levels. They spent 97.01%, 78.41%, 83.98%, 92.54%, 98.40%, and
76.86% of the time exploring the search space, respectively. Partic
ularly, IGOA, MFLA, and MSCA focus less on exploitation compared
with the 4 state-of-the-art algorithms. On the contrary, SDCS has a
slightly higher exploitation rate. Moreover, AO, GSK, and SDCS have
similar trade-off levels between exploration and exploitation
compared with the 4 state-of-the-art algorithms but have different
solution qualities. Once again, it is a good example of how the dif
ference in the quality of the specific search mechanism of each al
gorithm greatly affects the performance. According to the
incremental-decremental graph, all 15 algorithms focused on

Table 3
The results with significant differences of the Wilcoxon signed-rank test in 10,
30, and 50 variables.

Algorithms 30 variables
R+ R− p-value

HSES VS EO 444.0 21.0 0.000013
HSES VS AO 465.0 0.0 0.000002
HSES VS GSK 230.0 205.0 0.778632
HSES VS HGSA 449.0 16.0 0.000008
HSES VS IGOA 465.0 0.0 0.000002
HSES VS IMFO 436.0 29.0 0.000027
HSES VS MFLA 346.0 89.0 0.005281
HSES VS MPA 375.0 90.0 0.003269
HSES VS MSCA 458.0 7.0 0.000003
HSES VS SDCS 465.0 0.0 0.000002
HSES VS EBCM 53.0 412.0 1
ED-EB VS EO 460.0 5.0 0.000003
ED-EB VS AO 465.0 0.0 0.000002
ED-EB VS GSK 388.0 47.0 0.000218
ED-EB VS HGSA 449.0 16.0 0.000008
ED-EB VS IGOA 465.0 0.0 0.000002
ED-EB VS IMFO 454.0 11.0 0.000005
ED-EB VS MFLA 386.0 49.0 0.000258
ED-EB VS MPA 426.0 39.0 0.000066
ED-EB VS MSCA 465.0 0.0 0.000002
ED-EB VS SDCS 458.0 7.0 0.000003
ED-EB VS EBCM 153.0 282.0 1
LS-SPA VS EO 460.0 5.0 0.000003
LS-SPA VS AO 465.0 0.0 0.000002
LS-SPA VS GSK 347.0 88.0 0.004939
LS-SPA VS HGSA 448.0 17.0 0.000009
LS-SPA VS IGOA 465.0 0.0 0.000002
LS-SPA VS IMFO 454.0 11.0 0.000005
LS-SPA VS MFLA 385.0 50.0 0.00028
LS-SPA VS MPA 410.0 55.0 0.000251
LS-SPA VS MSCA 461.0 4.0 0.000002
LS-SPA VS SDCS 458.0 7.0 0.000003
LS-SPA VS EBCM 184.0 251.0 1
NLSHADE VS EO 435.0 0.0 0.000002
NLSHADE VS AO 463.0 2.0 0.000002
NLSHADE VS GSK 417.0 18.0 0.000015
NLSHADE VS HGSA 460.0 5.0 0.000003
NLSHADE VS IGOA 462.0 3.0 0.000002
NLSHADE VS IMFO 459.0 6.0 0.000003
NLSHADE VS MFLA 450.0 15.0 0.000007
NLSHADE VS MPA 428.0 7.0 0.000005
NLSHADE VS MSCA 463.0 2.0 0.000002
NLSHADE VS SDCS 460.0 5.0 0.000003
NLSHADE VS EBCM 121.0 314.0 1

Z. Ma et al.

Swarm and Evolutionary Computation 77 (2023) 101248

12

exploitation, with a trade-off of more than 90% of the time exploring
and less than 10% exploiting.

• Hybrid function F11: The top six best-performing algorithms for
solving function F11 are the 4 state-of-the-art algorithms, EBCM and
GSK. NLSHADE achieves the best results that exploited the search
space 90.58% of the time and explored 9.42% of the time. HSES, ED-
EB and LS-SPA exploited the search space 96.89%, 96.95%, and
95.14% of the time, respectively. GSK is slightly better than HSES
and ED-EB with an exploitation of 95.03% and 4.97% exploration,
respectively. Regarding the other new algorithms, EBCM obtains
similar results to the 4 state-of-the-art algorithms and exploited the
search space 88.99% of the time. MPA, MFLA, IMFO, and SDCS are
inferior to the 4 state-of-the-art algorithms on function F11. They
explored the search space 97.00%, 54.36%, 96.86%, and 97.04% of
the time, respectively. The worst five algorithms are AO, EO, IGOA,
HGSA, and MSCA, which achieve the exploitation of 53.31%,
97.88%, 79.10%, 99.59%, and 60.31%, respectively. These results

show that MFLA, AO, and MSCA focused less on exploitation
compared with the 4 state-of-the-art algorithms. In other words, their
exploitation and exploration rates are not much different. In
contrast, EO, MPA, and HGSA seem to focus slightly more on
exploitation compared with the 4 state-of-the-art algorithms. More
over, IGOA, HGSA and MSCA once again produce a rough trade-off
response, and always seem inefficient. The incremental-
decremental graph shows that the best-performing algorithms that
prefer exploitation to exploration, and are closer to 90% exploitation
and 10% exploration, are used in their search process.

• Composition function F22: The results in Table S2 suggest that the
most prominent algorithms for solving function F22 are 4 state-of-
the-art algorithms and EBCM. In addition, GSK, MFLA, and SDCS
are the distant seconds. In terms of the 4 state-of-the-art algorithms,
HSES, ED-EB, and LS-SPA exploited the search space 98.08%,
98.87%, and 98.55 of the times, respectively. On the contrary, they
spent 1.92%, 1.13%, and 1.45% of their time exploring, respectively.

Fig. 3. The CD plot of algorithms on the CEC 2017 functions with 30 variables.

Fig. 4. Convergence plots on functions with 30 variables.

Z. Ma et al.

Swarm and Evolutionary Computation 77 (2023) 101248

13

NLSHADE focused less on exploitation than the other four state-of-
the-art algorithms, with an exploitation of 96.82% and an explora
tion of 3.182%. In terms of the 11 new algorithms, EBCM attains
similar results to the 4 state-of-the-art algorithms, which exploited
the search space 99.27% of the time and explored 0.735% of the
time. GSK and MFLA have a better performance that achieves an
exploitation of 97.57% and 81.69%, respectively. AO, MPA, SDCS,
MSCA, and HGSA are slightly inferior to the seven top algorithms and
have different trade-off levels. They spent 87.53%, 97.82%, 99.00%,
59.21% and 99.54% on exploitation, respectively. Moreover, EO,
IGOA, and IMFO are the three worst algorithms for solving function
F22. Although EO, GSK, MPA, HGSA, and SDCS obtain trade-off
levels that are very similar to those of the best seven algorithms,
they present bad performance in terms of the solution quality. This
once again shows the importance of the search mechanisms to obtain
a better performance. It is important to note that the 4 state-of-the-
art algorithms, GSK and SDCS, produce the smoothest trade-off
response, but EO, MPA, HGSA, IGOA, MPLA, and MSCA produce a
rough trade-off response. According to the incremental-decremental
graph, all the algorithms focused more time on exploitation, and the
best trade-off for function F22 is closer to 99% exploitation and 1%
exploration.

In summary, EBCM has a similar performance and trade-off behavior
of exploitation and exploration compared with the 4 state-of-the-art
algorithms. Furthermore, GSK, MPA, MFLA, and IMFO are slightly
inferior to the 4 state-of-the-art algorithms but demonstrate better
performance than the other 6 new algorithms (i.e., except for EBCM).
Although each algorithm has different exploitation and exploration
behaviors on each function, all the algorithms focus more time on
exploitation, especially the better-performing algorithms. Due to
space limitations, we only show the balancing behavior of GSK and
EBCM on functions F1, F7, F11 and F22, as shown in Fig. 5.

3.3.1.6. Diversity analysis. To complement the analysis, an experiment
of diversity on functions F3, F7, F11 and F24 with 30 variables is con
ducted and the results are presented in Fig. 6. In the experiments, we
consider Eq.s (1) and (2) defined in Ref. [93] for a diversity assessment
and these two Eq.s are shown below.

Divj =
1
n

∑n

i=1

⃒
⃒median

(
xj) − xj

i

⃒
⃒ (42)

Div =
1
m

∑m

j=1
Divj (43)

where median(xj) represents the median of dimension j in the whole
population. xij is the dimension j of search agent i. n corresponds to the
number of search agents in the population while m symbolizes the
number of design variables of the optimization problem.

According to Fig. 6, it is clear that all 13 algorithms (i.e., except for
AO and MSCA) begin with a large diversity as a consequence of their
random initialization. As the number of iterations increase, the popu
lation diversity diminishes. AO and MSCA also begin with a large di
versity but they have a certain population diversity at the final stage of
iteration. Especially the diversity of AO on functions F11 and F24 first
decreases and then increases gradually with the iterations. Most of the
11 new algorithms show a rough trade-off response, especially MPA,
MSCA, MFLA, IGOA and HGSA, which exhibit high oscillation behavior.
Compared with the 11 new algorithms, the 4 state-of-the-art algorithms
show the smoothest diversity responses.

3.3.2. Results of CEC 2017 functions considering nonshifted and shifted

3.3.2.1. Evaluate the search bias toward the origin. In the literature, some

algorithms perform well when solving problems whose optimal solu
tions are located at the origin/center of the search space, but they are
less efficient when dealing with the same functions whose optimal so
lutions deviate from the origin. Liang et al. [124] first evaluated the
performance of the multiagent genetic algorithm by considering the
searches biased to the origin. In addition, some newly proposed algo
rithms, such as TLBO [22,23] and GWO [24], have also been verified to
have a search bias to the origin. In this section, extensive experiments
are carried out on the shifted and non-shifted CEC 2017 functions and
consider 10 and 30 variables to evaluate whether the 15 algorithms (11
recent algorithms and 4 state-of-the-art algorithms) have a search bias to
the origin. Detailed information on the experimental results is shown in
Tables S23-S24. Nonparametric methods, such as the Friedman test and
the Wilcoxon signed-ranks test are used to further analyze the experi
mental data.

The results of the Friedman test in Table 4 show that SDCS, MSCA,
MFLA, and MPA have a better performance compared with the 4 state-
of-the-art algorithms for solving the nonshifted and shifted functions
with 10 and 30 variables. Particularly, the SDCS achieves the lowest
rank with scores of 3.4 and 3.6, respectively. Compared with the results
obtained on the shifted functions, the performance of AO, SDCS, MSCA,
and MFLA are significantly improved for solving the nonshifted func
tions with 10 and 30 variables. The performance of SDCS, MSCA and
MFLA are significantly affected by the shift operator on the functions. In
other words, these algorithms have search that are biased to the origin.
The performance of the other recent algorithms (i.e., EO, IGOA, and
HGSA) is slightly improved for solving the nonshifted functions
compared with the algorithms dealing with the shifted functions. In
addition, the performance of the 4 state-of-the-art algorithms has no
significant difference in the solution between the nonshifted functions
and the shifted functions.

The results of the Wilcoxon Signed Ranks test are shown in Tables 5-
6. It can be found that the values of R+ are generally greater than the
values of R− , which means that the 15 algorithms can obtain better
performances in solving the nonshifted functions. In other words, all 15
algorithms have searches biased to the origin and are affected to varying
degrees. For example, the 4 state-of-the-art algorithms are less affected
by the shift operator on the functions compared with the 11 recent al
gorithms. In contrast, AO, SDCS, MFLA, MSCA, HGSA, and IGOA among
the 11 recent algorithms are greatly affected. In addition, we draw the
CD plots for the experimental results as shown in Figs. 7-8, which have
similar conclusions to the observations from the Friedman test and the
Wilcoxon signed ranks test.

In conclusion, all 15 comparative algorithms suffer from search
biases to the origin to varying degrees. In particular, the 4 state-of-the-
art algorithms are less affected by the shift operator on the functions
compared with the 11 recent algorithms.

3.3.2.2. The trade-off response of AO, MFLA, MSCA, and SDCS on the
nonshifted functions. Because AO, MFLA, MSCA, and SDCS maintain
good performance in problems where the optimal point is in the origin,
we conduct experiments to investigate the trade-off response of these
four algorithms on functions F7 and F24 with 10 and 30 variables, and
the results are presented in Figures S13-S14. As can be seen from Fig.
S13, the evolution of the trade-off in the nonshifted functions for AO
demonstrates consistency with the trade-off made by them on the shifted
functions. MFLA focuses slightly less on exploration when considering
functions that are shifted. It exploited the search space 83.53% of the
time on the nonshifted function F7 while 72.68% of the time exploiting
on the shifted function F7. Moreover, MFLA spent 46.87% and 42.70%
of the time exploiting the search space of the nonshifted and shifted
function F24, respectively. In contrast, MSCA and SDCS focused slightly
more exploration on the nonshifted functions than the shifted functions.
According to Fig.S14, MFLA, MSCA, and SDCS present consistent trade-
off responses between nonshifted and shifted functions. The case of AO

Z. Ma et al.

Swarm and Evolutionary Computation 77 (2023) 101248

14

Fig. 5. The balancing behavior of GSK and EBCM on functions F1, F7, F11, and F22.

Z. Ma et al.

Swarm and Evolutionary Computation 77 (2023) 101248

15

Fig. 6. Diversity analysis on functions F3, F7, F11, and F24 with 30 variables.

Z. Ma et al.

Swarm and Evolutionary Computation 77 (2023) 101248

16

on function F24 is interesting. AO produces a rougher trade-off response
on the shifted F24 than on the nonshifted F24. In particular, AO
employed a trade-off of 96.91% exploitation and 3.09% exploration on
the problem where the optimal solution is in the origin. On the shifted
function F24, AO spent 76.94% on exploiting and 23.07% on exploring.
Especially the SDCS maintains the same trade-off response between
nonshifted and shifted. Nevertheless, its performance in terms of quality
is significantly better than the nonshifted functions. This seems to
indicate that the SDCS maintains a fixed trade-off without considering
the function type. In a word, it is important to point out that these four
algorithms present a rough trade-off response on non-shifted and shifted
functions F7 and F24. These results suggest that the search mechanisms
used by these algorithms seem to have a significant impact on their
performance, which we will investigate in our future work.

4. Issues and suggestions for future research

Despite the fruitful results of metaheuristic research in the past few
decades, there are still some suggestions and interesting open problems
that need to be investigated in future research.

• Fair and comprehensive comparisons: For a fair comparison, it is
necessary to configure the parameters of all the comparative algo
rithms using the same satisfactory parameter tuning approach, as the
performance of metaheuristics is severely affected by the parameter
settings. In addition, when evaluating the performance of a newly
proposed algorithm, it is required to compare with state-of-the-art
algorithms on comprehensive and representative benchmark suits.
Almost all the metaheuristic algorithms are stochastic, which means
that they may obtain results of different quality in different runs.
Therefore, rigorous statistical tests are useful in comparing different
metaheuristic algorithms [125,126]. In some cases, the details of an
algorithm are not fully explained due to space limitations, which
may result in inaccurate replication and inconsistent computation
results. Thus, it is highly recommended that the authors make the
source codes publicly available.

• Improve and propose metaheuristics from search behavior and
optimization mechanisms perspectives: Recent metaheuristics are
proposed according to phenomena from biology, nature, physics, and
so on. However, the effective performance of metaheuristics essen
tially depends on the search behaviors and optimization mecha
nisms. For example, the neighborhood structures (e.g., one-point
exchange and multiple-point exchange) in single-solution based
metaheuristics, and the operators (e.g., crossover, mutation, and
recombination) in population-solution based metaheuristics play
crucial roles in the high performance of the optimizers. Besides, how

Table 4
The results of the Friedman test on the nonshifted and shifted CEC2017
functions.

Algorithms Average ranking on functions
with 10 variables

Average ranking on functions
with 30 variables

nonshifted shifted nonshifted shifted

EO 9.3333 (9) 11.0333 (12) 8.6 (8) 8.1167 (10)
MPA 5.9833 (5) 3.85 (1) 6.3667 (6) 7.55 (9)
GSK 10.1 (11) 7.75 (9) 11.2333 (13) 7.3667 (4)
MSCA 4.2833 (2) 10.4333 (11) 4.35 (3) 9.55 (14)
IMFO 11.6167 (14) 8.7667 (10) 13.7667 (15) 7.5 (8)
MFLA 4.5333 (3) 5.5667 (5) 4.3833 (4) 7.3667 (4)
HGSA 11.75 (15) 12 (13) 12.3833 (14) 8.5333 (12)
IGOA 11.6 (13) 12.4667 (14) 9.4833 (11) 9.0833 (13)
SDCS 3.9333 (1) 7.65 (8) 4 (2) 8.25 (11)
AO 5.0333 (4) 13.8667 (15) 3.8167 (1) 9.85 (15)
NLSHADE 9.3833 (10) 5.7 (6) 6.3 (5) 7.3667 (4)
EBCM 7.7667 (7) 4.1833 (2) 8.733 (9) 7.3667 (4)
HSES 10.1667 (12) 7.4333 (7) 10.1667 (12) 7.3667 (4)
LS-SPA 6.4333 (6) 4.75 (4) 7.45 (7) 7.3667 (4)
ED-EB 8.0833 (8) 4.55 (3) 8.9167 (10) 7.3667 (4)

Ta
bl

e
5

Th
e

re
su

lts
 o

f W
ilc

ox
on

 s
ig

ne
d-

ra
nk

s
te

st
 o

n
th

e
sh

ift
ed

 a
nd

 n
on

-s
hi

fte
d

fu
nc

tio
ns

 w
ith

 1
0

va
ri

ab
le

s.

N
o.

EO

-
no

ns
hi

fte
d

VS
 E

O
-

sh
ift

ed

A
O

-
no

ns
hi

fte
d

VS
 A

O
-

sh
ift

ed

G
SK

-
no

ns
hi

fte
d

VS
 G

SK
-

sh
ift

ed

H
G

SA
-

no
ns

hi
fte

d
VS

 H
G

SA
-

sh
ift

ed

IG
O

A
-

no
ns

hi
fte

d
VS

 IG
O

A
-

sh
ift

ed

IM
FO

-
no

ns
hi

fte
d

VS
 IM

FO
-

sh
ift

ed

M
FL

A
-

no
ns

hi
fte

d
VS

 M
FL

A
-

sh
ift

ed

M
PA

-
no

ns
hi

fte
d

VS
 M

PA
-

sh
ift

ed

M
SC

A
-

no
ns

hi
fte

d
VS

 M
SC

A
-

sh
ift

ed

SD
CS

-
no

ns
hi

fte
d

VS
 S

D
CS

-
sh

ift
ed

H
SE

S-

no
ns

hi
fte

d
VS

 H
SE

S-

sh
ift

ed

EB
CM

-
no

ns
hi

fte
d

VS
 E

BC
M

-
sh

ift
ed

ED
-E

B-

no
ns

hi
fte

d
VS

 E
D

-E
B-

sh

ift
ed

LS
-S

PA
-

no
ns

hi
fte

d
VS

 L
S-

SP
A

-
sh

ift
ed

N
LS

H
A

D
E-

no

ns
hi

fte
d

VS

N
LS

H
A

D
E-

sh

ift
ed

R+
33

7.
5

46
5.

0
27

8.
5

42
6.

0
38

8.
0

27
0.

0
40

0.
5

34
6.

5
46

1.
0

42
3.

5
27

4.
0

30
8.

0
28

1.
5

37
5.

5
30

9.
0

R−
97

.5

0.
0

18
6.

5
39

.0

77
.0

16

5.
0

64
.5

11

8.
5

4.
0

41
.5

16

1.
0

12
7.

0
15

3.
5

89
.5

12

6.
0

p-
va

lu
e

0.
00

83

0.
00

00
02

>
=

0.
2

1.
39

66
E-

5
8.

71
8E

-4

>
=

0.
2

2.
69

7E
-4

0.

01
79

9
1.

30
38

E-
8

1.
95

22
E-

5
>
=

0.
2

0.
05

06
4

0.
17

23

0.
00

24
64

>
=

0.
2

Z. Ma et al.

Swarm and Evolutionary Computation 77 (2023) 101248

17

to guide the search directions to a promising region in the solution
space is another promising optimization mechanism. In particular,
balancing exploration and exploitation to improve the performance
of metaheuristics is significant. Therefore, we appeal to researchers
to improve and propose metaheuristics not only from the inspiration
source but also from the perspectives of the essential search behav
iors and optimization mechanisms.

• Automatic design and configuration of metaheuristics: The
design and configuration of metaheuristics can be considered an
optimization problem. Traditional methods depend on prior knowl
edge and trial-and-error methods to obtain a configuration. Auto
matic design and configuration methods are attracting attention in
the fields of metaheuristics [127]. It not only saves a substantial
amount of human effort during the empirical analysis and design of
metaheuristics but also leads to high-performance optimizers [128].
Therefore, it is worth using automatic methods to design and
configure metaheuristics. For example, there are many operators,
neighborhood structures, parameters, and mechanisms of informa
tion sharing and learning in the component pool. These components
may be adaptively automatically selected from the component pool
based on the features of the problems, and can be effectively com
bined to design efficient algorithms for solving the specific problems.
With regard to metaheuristic design, LaTorre et al. [117] suggested
that simplicity should be considered one of the preferential aspects in
the design of new optimization techniques. Particularly, some new
algorithms are improved on previous algorithms by updating or
adding new strategies to their search procedure. Each improve
ment/component that affects the performance of the new algorithm
needs to be further analyzed [129].

• Combining machine learning techniques with metaheuristics:
Machine learning (ML) has achieved fruitful results in recent de
cades. ML’s powerful learning, prediction, and decision-making ca
pabilities have opened a new horizon for metaheuristic research. It is
promising to combine ML and metaheuristics in the following as
pects: 1) A combination of meta-heuristics and deep learning, rein
forcement learning, ensemble learning, etc., and reasonable
recommendation of optimization algorithms for specific problems
[130,131]. 2) Using ML techniques to help to model optimization
problems, analyze the solution space, and perform problem decom
position [132,133]. 3) ML can use historical data to dynamically
adjust parameter values during the optimization process of meta
heuristics. Besides, when metaheuristics have multiple operators and
search mechanisms, ML is a prevalent and effective method for
learning the characteristics of these operators and mechanisms, and
for generating the appropriate algorithmic configuration [134,135].

• Integrate problem domain knowledge into metaheuristics:
Integrating algorithms with problem domain knowledge can
improve the performance of the algorithms. For instance, designing
the operators and search mechanisms of metaheuristics based on the
problem characteristics leads to having the search directions of the
algorithms based on the landscapes of the problem. In addition, the
optimality conditions of the problems can also be used to reduce the
variables and the difficulty of the problems considered [136].

• Application to complex real-world optimization problems: Most
real-world optimization problems are large-scale, with complex
constraints, high-dimensional objectives, continuous variables and
discrete variables. However, metaheuristics also face quite a few
challenges when solving these complex real-world optimization
problems. It is efficient to combine metaheuristics with surrogate
models [1] such as parallel acceleration and simulation optimization
to solve complex real-world optimization problems.

5. Conclusions

In this paper, we provide a comprehensive review of metaheuristics.
More than 500 newly proposed and improved metaheuristics are Ta

bl
e

6
Th

e
re

su
lts

 o
f W

ilc
ox

on
 s

ig
ne

d-
ra

nk
s

te
st

 o
n

th
e

sh
ift

ed
 a

nd
 n

on
-s

hi
fte

d
fu

nc
tio

ns
 w

ith
 3

0
va

ri
ab

le
s.

N
o.

EO

-
no

ns
hi

fte
d

VS
 E

O
-

sh
ift

ed

A
O

-
no

ns
hi

fte
d

VS
 A

O
-

sh
ift

ed

G
SK

-
no

ns
hi

fte
d

VS
 G

SK
-

sh
ift

ed

H
G

SA
-

no
ns

hi
fte

d
VS

 H
G

SA
-

sh
ift

ed

IG
O

A
-

no
ns

hi
fte

d
VS

 IG
O

A
-

sh
ift

ed

IM
FO

-
no

ns
hi

fte
d

VS
 IM

FO
-

sh
ift

ed

M
FL

A
-

no
ns

hi
fte

d
VS

 M
FL

A
-

sh
ift

ed

M
PA

-
no

ns
hi

fte
d

VS
 M

PA
-

sh
ift

ed

M
SC

A
-

no
ns

hi
fte

d
VS

 M
SC

A
-

sh
ift

ed

SD
CS

-
no

ns
hi

fte
d

VS
 S

D
CS

-
sh

ift
ed

H
SE

S-

no
ns

hi
fte

d
VS

 H
SE

S-

sh
ift

ed

EB
CM

-
no

ns
hi

fte
d

VS
 E

BC
M

-
sh

ift
ed

ED
-E

B-

no
ns

hi
fte

d
VS

 E
D

-E
B

-s
hi

fte
d

LS
-S

PA
-

no
ns

hi
fte

d
VS

 L
S-

SP
A

-s

hi
fte

d

N
LS

H
A

D
E-

no

ns
hi

fte
d

VS

N
LS

H
A

D
E

-s
hi

fte
d

R+
41

5.
0

46
5.

0
33

2.
0

41
9.

0
46

2.
0

22
3.

0
39

2.
0

39
4.

0
46

5.
0

45
2.

0
35

2.
0

33
8.

0
33

7.
5

34
3.

0
28

9.
0

R−
50

.0

0.
0

13
3.

0
46

.0

3.
0

24
2.

0
43

.0

71
.0

0.

0
13

.0

11
3.

0
97

.0

97
.5

12

2.
0

14
6.

0
p-

va
lu

e
5.

59
2E

-5

0.
00

00
02

0.

04
04

8
3.

45
4E

-5

9.
31

4E
-9

>
=

0.
2

4.
7E

-5

5.
05

4E
-4

1.

86
26

E-
9

1.
63

92
E-

7
0.

01
28

34

0.
00

80
08

0.

00
83

01

0.
02

21

>
=

0.
2

Z. Ma et al.

Swarm and Evolutionary Computation 77 (2023) 101248

18

Table 7
List of metaheuristics (This list will be posted at: https://github.com/P-N-Suganthan).

Refs Year Full name & abbreviation Refs Year Full name & abbreviation

B1 1960 Evolutionary Programming, EP B257 2016 Water Evaporation Optimization, WEO
B2 1964 Evolution Strategies, ES B258 2016 Root Tree Optimization Algorithm, RTO
B3 1971 Genetic Algorithm, GA B259 2016 FIFA World Cup Algorithm, FIFAWC
B4 1977 Scatter Search Algorithm, SSA B260 2016 Sperm Whale Algorithm, SWA
B5 1981 Genetic Programming, GP B261 2016 Virus Optimization Algorithm, VOA
B6 1983 Simulated Annealing, SA B262 2016 Duelist Algorithm, DA
B7 1986 Tabu Search Algorithm, TSA B263 2016 Raven Roosting Optimization Algorithm, RROA
B8 1989 Stochastic Search Network, SSN B264 2016 Ring Seal Search, RSS
B9 1989 Memetic Algorithm, MA B265 2016 Flying Elephant Algorithm, FEA
B10 1992 Ant Colony Optimization, ACO B266 2016 Camel Algorithm, CA
B11 1993 Shuffled Complex Evolution, SCE B267 2016 Crystal Energy Optimization Algorithm, CEO
B12 1993 Great Deluge Algorithm, GDA B268 2016 Passing Vehicle Search, PVS
B13 1994 Cultural Algorithms, CA B269 2016 Tug Of War Optimization, TWO
B14 1995 Differential Evolution, DE B270 2016 Dynamic Virtual Bats Algorithm, DVBA
B15 1995 Particle Swarm Optimization, PSO B271 2016 Lion Optimization Algorithm, LOA
B16 1995 Old Bachelor Acceptance, OBA B272 2016 Natural Forest Regeneration Algorithm, NFR
B17 1996 Bacterial Evolutionary Algorithm, BEA B273 2016 Simulated Kalman Filter, SKF
B18 1997 Variable Neighbourhood Descent Algorithm, VND B274 2016 Shuffled Multi-Swarm Micro-Migrating Birds Optimization, SM2-MBO
B19 1998 Bee System, BS1 B275 2016 Yin-Yang-Pair Optimization, YYPO
B20 1998 Photosynthetic Learning Algorithm, PLA B276 2016 Virulence Optimization Algorithm, VOA
B21 1998 Chaos Optimization Algorithm, COA B277 2017 Artificial Butterfly Optimization, ABO
B22 1999 Sheep Flocks Heredity Model, SFHD B278 2017 Cyclical Parthenogenesis Algorithm, CPA
B23 1999 Extremal Optimization, EO B279 2017 Deterministic Oscillatory Search, DOS
B24 1999 Gravitational Clustering Algorithm, GCA B280 2017 Fractal-based Algorithm, FA
B25 2000 Clonal Selection Algorithm, CSA B281 2017 Neuronal Communication Algorithm, NCA
B26 2001 Harmony Search Algorithm, HSA B282 2017 Lightning Attachment Procedure Optimization, LAPO
B27 2001 Gene Expression Programming, GEP B283 2017 Bison Behavior Algorithm, BBA
B28 2001 Marriage In Honey Bees Optimization, MBO B284 2017 Drone Squadron Optimization, DSO
B29 2002 Bacterial Foraging Algorithm, BFA B285 2017 Human Behavior-Based Optimization, HBO
B30 2002 Bacteria Chemotaxis Algorithm, BCA B286 2017 Vibrating Particles System, VPS
B31 2002 Bee System, BS2 B287 2017 Spotted Hyena Optimizer, SHO
B32 2002 Popmusic Algorithm, POPMUSIC B288 2017 Salp Swarm Algorithm, SSA
B33 2002 Social Cognitive Optimization, SCO B289 2017 Grasshopper Optimisation Algorithm, GOA
B34 2003 Artificial Fish Swarm Algorithm, AFSA B290 2017 Rain Fall Optimization Algorithm, RFO
B35 2003 Covariance Matrix Adaptation–Evolution Strategy, CMA-ES B291 2017 Hydrological Cycle Algorithm, HCA
B36 2003 Society and Civilization, SC B292 2017 Killer Whale Algorithm, KWA
B37 2003 Artificial Immune System, AIS B293 2017 Camel Herd Algorithm, CHA
B38 2003 Queen-bee Evolution, QBE B294 2017 Collective Decision Optimization Algorithm, CDOA
B39 2003 Electromagnetism-Like Mechanism Optimization, EMO B295 2017 Laying Chicken Algorithm, LCA
B40 2004 Beehive Algorithm, BHA B296 2017 Kidney-Inspired Algorithm, KIA
B41 2004 Self-Organizing Migrating Algorithm, SOMA B297 2017 Golden Sine Algorithm, Gold-SA
B42 2005 Artificial Bee Colony Algorithm, ABCA B298 2017 Sperm Motility Algorithm, SMA
B43 2005 Bee Colony Optimization, BCO B299 2017 Rain Water Algorithm, RWA
B44 2005 Bees Swarm Optimization Algorithm, BSOA B300 2017 Thermal Exchange Optimization, TEO
B45 2005 Dendritic Cells Algorithm, DCA B301 2017 Porcellio Scaber Algorithm, PSA
B46 2005 The Bees Algorithm, BA B302 2017 Selfish Herd Optimizer, SHO
B47 2005 Wasp Swarm Optimization, WSO B303 2017 Polar Bear Optimization Algorithm, PBO
B48 2006 Shuffled Frog-Leaping Algorithm, SFLA B304 2017 Social Engineering Optimization, SEO
B49 2006 Big Bang–Big Crunch, BBC B305 2017 Sonar Inspired Optimization, SIO
B50 2006 Cat Swarm Optimization, CSO B306 2017 Weighted Superposition Attraction, WSA
B51 2006 Flocking base Algorithm, FA B307 2017 Satin Bowerbird Optimizer, SBO
B52 2006 Honey-bees Mating Optimization Algorithm, HBMO B308 2018 Artificial Atom Algorithm, A3
B53 2006 Small-World Optimization Algorithm, SWOA B309 2018 Artificial Swarm Intelligence, ASI
B54 2006 Saplings Growing Up Algorithm, SGUA B310 2018 Bees Life Algorithm, BLA
B55 2006 Seeker Optimization Algorithm, SOA B311 2018 Beetle Swarm Optimization Algorithm, BSOA
B56 2006 Weed Colonization Optimization, WCO B312 2018 Brunsvigia Optimization Algorithm, BVOA
B57 2007 Imperialist Competitive Algorithm, ICA B313 2018 Car Tracking Optimization Algorithm, CTOA
B58 2007 Monkey Search Algorithm, MSA B314 2018 Cheetah Based Algorithm, CBA
B59 2007 River Formation Dynamics, RFD B315 2018 Cheetah Chase Algorithm, CCA
B60 2007 Bacterial Swarming Algorithm, BSA B316 2018 Chaotic Crow Search Algorithm, CCSA
B61 2007 Bacterial-GA Foraging, BF B317 2018 Circular Structures of Puffer Fish Algorithm, CSPF
B62 2007 Parliamentary Optimization Algorithm, POA B318 2018 Competitive Learning Algorithm, CLA
B63 2007 Simplex Algorithm, SA B319 2018 Cricket Chirping Algorithm, CCA
B64 2007 Good Lattice Swarm Algorithm, GLSA B320 2018 Fibonacci Indicator Algorithm, FLA
B65 2007 Central Force Optimization, CFO B321 2018 Plant Self-Defense Mechanism Algorithm, PSDM
B66 2008 Fast Bacterial Swarming Algorithm, FBSA B322 2018 Emperor Penguin Optimizer, EPO
B67 2008 Biogeography-based Optimization, BBO B323 2018 Lion Pride Optimization Algorithm, LPOA
B68 2008 Bar Systems, BS B324 2018 Multi-Scale Quantum Harmonic Oscillator Algorithm, MQHO
B69 2008 Catfish Particle Swarm Optimization, CatfishPSO B325 2018 Mushroom Reproduction Optimization, MRO
B70 2008 Goose Team Optimizer, GTO B326 2018 Tree Growth Algorithm, TGA
B71 2008 Harmony Element Algorithm, HEA B327 2018 Moth Search Algorithm, MSA
B72 2008 Fish-School Search, FSF B328 2018 Farmland Fertility, FF
B73 2008 Roach Infestation Optimization, RIO B329 2018 Pity Beetle Algorithm, PBA
B74 2008 Viral Search, VS B330 2018 Mouth Brooding Fish Algorithm, MBF

(continued on next page)

Z. Ma et al.

https://github.com/P-N-Suganthan

Swarm and Evolutionary Computation 77 (2023) 101248

19

Table 7 (continued)

Refs Year Full name & abbreviation Refs Year Full name & abbreviation

B75 2008 Plant Growth Optimization, PGO B331 2018 Artificial Flora Optimization Algorithm, AFOA
B76 2009 Artificial Beehive Algorithm, ABA B332 2018 Elephant Swarm Water Search Algorithm, ESWS
B77 2009 Artificial Physics Optimization, APO B333 2018 Sperm Swarm Optimization Algorithm, SSOA
B78 2009 Bee Colony-inspired Algorithm, BCiA B334 2018 Team Game Algorithm, TGA
B79 2009 Gravitational Emulation Local Search, GELS B335 2018 Coyote Optimization Algorithm, COA
B80 2009 Group Search Optimizer, GBO B336 2018 Queuing Search Algorithm, QSA
B81 2009 Cuckoo Search, CS B337 2018 Supernova Optimizer, SO
B82 2009 Gravitational Search Algorithm, GSA B338 2018 Spiritual Search, SS
B83 2009 Firefly Algorithm, FA B339 2018 School Based Optimization, SBO
B84 2009 Frog Call inspired Algorithm, FCA B340 2018 Weighted Vertices Optimizer, WVO
B85 2009 Glowworm Swarm Optimization, GSO B341 2018 Volleyball Premier League Algorithm, VPLA
B86 2009 League Championship Algorithm, LCA B342 2018 Yellow Saddle Goatfish Algorithm, YSGA
B87 2009 Paddy Field Algorithm, PFA B343 2019 Raccoon Optimization Algorithm, ROA
B88 2009 Dolphin Partner Optimization, DPO B344 2019 Andean Condor Algorithm, ACA
B89 2009 Dialectic Search, DS B345 2019 Anglerfish Algorithm, AA
B90 2009 Human-Inspired Algorithms, HIA B346 2019 Artificial Ecosystem-Based Optimization, AEO
B91 2009 Artificial Searching Swarm Algorithm, ASSA B347 2019 Atom Search Optimization Algorithm, ASOA
B92 2009 Bumble Bees Mating Optimization, BBMO B348 2019 Artificial Feeding Birds, AFB
B93 2009 Group Counseling Optimization, GCO B349 2019 Artificial Coronary Circulation System, ACCS
B94 2009 Hunting Search Algorithm, HSA B350 2019 Artificial Electric Field Algorithm, AEFA
B95 2009 Locust Swarm, LS B351 2019 Bus Transportation Algorithm, BTA
B96 2009 Intelligent Water Drops Algorithm, IWDA B352 2019 Biology Migration Algorithm, BMA
B97 2009 Water Flow Algorithm, WFA B353 2019 Buzzard Optimization Algorithm, BUZOA
B98 2010 Asexual Reproduction Optimization, ARO B354 2019 Blue Monkey Algorithm, BM
B99 2010 Bean Optimization Algorithm, BOA B355 2019 Chaotic Dragonfly Algorithm, CDA
B100 2010 Bat Algorithm, BA B356 2019 Cultural Coyote Optimization Algorithm, CCOA
B101 2010 Bee Swarm Optimization, BSO B357 2019 Dice Game Optimizer, DGO
B102 2010 Charged System Search, CSS B358 2019 Donkey Theorem Optimization, DTO
B103 2010 Chemical Reaction Optimization Algorithm, CRO B359 2019 Deer Hunting Optimization Algorithm, DHOA
B104 2010 Gravitational Field Algorithm, GFA B360 2019 Falcon Optimization Algorithm, FOA
B105 2010 Fireworks Algorithm, FA B361 2019 Find-Fix-Finish-Exploit-Analyze Algorithm, F3EA
B106 2010 Eagle Strategy, ES B362 2019 Flow Regime Algorithm, FRA
B107 2010 Grenade Explosion Algorithm, GEA B363 2019 Chaotic Optimal Foraging Algorithm, COFA
B108 2010 Wind Driven Optimization, WDO B364 2019 Naked Moled Rat, NMR
B109 2010 Termite Colony Optimization, TCO B365 2019 Xerus Optimization Algorithm, XOA
B110 2010 Consultant-Guided Search, CGS B366 2019 Nuclear Reaction Optimization, NRO
B111 2010 Social Emotional Optimization Algorithm, SEOA B367 2019 Hypercube Natural Aggregation Algorithm, HNAA
B112 2010 Hierarchical Swarm Model, HSM B368 2019 Sailfish Optimizer, SO
B113 2010 Reincarnation Algorithm, RA B369 2019 The Algorithm of the Innovative Gunner, AIG
B114 2011 Artificial Plants Optimization Algorithm, APO B370 2019 Supply-Demand-Based Optimization, SDBO
B115 2011 Brain Storm Optimization, BSO B371 2019 Butterfly Optimization Algorithm, BOA
B116 2011 Bioluminescent Swarm Optimization Algorithm, BSOA B372 2019 Emperor Penguins Colony, EPC
B117 2011 Cockroach Swarm Optimization, CSO B373 2019 Electron Radar Search Algorithm, ERSA
B118 2011 Group Escape Behavior, GEB B374 2019 Henry Gas Solubility Optimization, HGSO
B119 2011 Group Leaders Optimization Algorithm, GIOA B375 2019 Hitchcock Bird-Inspired Algorithm, HBIA
B120 2011 Teaching-Learning Base Optimization, TLBO B376 2019 Hammerhead Shark Optimization Algorithm, HOA
B121 2011 Cuckoo Optimization Algorithm, COA B377 2019 Fitness Dependent Optimizer, FDO
B122 2011 Artificial Chemical Reaction Optimization Algorithm, ACROA B378 2019 Life Choice-Based Optimizer, LCBO
B123 2011 Galaxy-Based Search Algorithm, GBSA B379 2019 Parasitism–Predation Algorithm, PPA
B124 2011 Spiral Dynamics Inspired Optimization, SDIO B380 2019 Pathfinder Algorithm, PA
B125 2011 Plant Propagation Algorithm, PPA B381 2019 Poor And Rich Optimization Algorithm, PROA
B126 2011 Eco-Inspired Evolutionary Algorithm, EIEA B382 2019 Seagull Optimization Algorithm, SOA
B127 2011 Gravitational Interactions Optimization, GIO B383 2019 Sooty Tern Optimization Algorithm, STOA
B128 2011 Stem Cells Algorithm, SCA B384 2019 Harris Hawks Optimization, HHO
B129 2011 Water-Flow Algorithm, WFA B385 2019 Bonobo Optimizer, BO
B130 2012 Anarchic Society Optimization, ASO B386 2019 Spherical Search Optimizer, SSO
B131 2012 Artificial Tribe Algorithm, ATA B387 2019 Squirrel Search Algorithm, SSA
B132 2012 Bat Intelligence, BI B388 2019 Flying Squirrel Optimizer, FSO
B133 2012 Collective Animal Behavior, CAB B389 2019 Bald Eagle Search Optimisation Algorithm, BESO
B134 2012 Cloud Model-based Differential Evolution Algorithm, CMDE B390 2019 Search And Rescue Optimization Algorithm, SAR
B135 2012 Flower Pollination Algorithm, FPA B391 2019 Wild Mice Colony Algorithm, WMC
B136 2012 Flock by Leader, FL B392 2019 Thieves And Police Algorithm, TPA
B137 2012 Krill Herd Algorithm, KHA B393 2020 Artificial Transgender Longicorn Algorithm, ATLA
B138 2012 Fruit Fly Optimization Algorithm, FFOA B394 2020 Barnacles Mating Optimizer, BMO
B139 2012 Water Cycle Algorithm, WCA B395 2020 Black Hole Mechanics Optimization, BHMO
B140 2012 Differential Search Algorithm, DSA B396 2020 Billiards-Inspired Optimization Algorithm, BIOA
B141 2012 Ray Optimization, RO B397 2020 Border Collie Optimization, BCO
B142 2012 Migrating Bird Optimization, MBO B398 2020 Bear Smell Search Algorithm, BSSA
B143 2012 Wolf Search Algorithm, WSA B399 2020 Buyer Inspired Meta-Heuristic Optimization Algorithm, BIMHO
B144 2012 Mine Blast Algorithm, MBA B400 2020 Darts Game Optimizer, DGO
B145 2012 Electro-Magnetism Optimization, EMO B401 2020 Dynamic Differential Annealed Optimization, DDAO
B146 2012 Bacterial Colony Optimization, BCO B402 2020 Dynastic Optimization Algorithm, DOA
B147 2012 Great Salmon Run, GSR B403 2020 Forensic Based Investigation, FBI
B148 2012 Japanese Tree Frogs Calling Algorithm, JTFC B404 2020 Plasma Generation Optimization, PGO
B149 2012 Community of Scientist Optimization, CSO B405 2020 Newton Metaheuristic Algorithm, NMA
B150 2012 Quantum-inspired Bacterial Swarming Optimization, QBSO B406 2020 Tunicate Swarm Algorithm, TSA

(continued on next page)

Z. Ma et al.

Swarm and Evolutionary Computation 77 (2023) 101248

20

Table 7 (continued)

Refs Year Full name & abbreviation Refs Year Full name & abbreviation

B151 2012 Hoopoe Heuristic Optimization, HH B407 2020 Marine Predators Algorithm, MPA
B152 2012 Intelligent Gravitational Search Algorithm, IGSA B408 2020 Equilibrium Optimizer, EO
B153 2012 Lion Pride Optimizer, LPO B409 2020 Electric Fish Optimization, EFO
B154 2012 Zombie Survival Optimization, ZSO B410 2020 Slime Mould Algorithm, SMA
B155 2012 Artificial Photosynthesis and Phototropism Mechanism, APPM B411 2020 Black Widow Optimization Algorithm, BWOA
B156 2012 Superbug Algorithm, SA B412 2020 Manta Ray Foraging Optimization, MRFO
B157 2013 Artificial Plant Optimization Algorithm, APOA B413 2020 Mayfly Algorithm, MA
B158 2013 Artificial Reaction Algorithm, ARA B414 2020 Orcas Algorithm, OA
B159 2013 Adaptive Social Behavior Optimization, ASBO B415 2020 Political Optimizer, PO
B160 2013 Bat-Inspired Algorithm, BI B416 2020 Group Teaching Optimization Algorithm, GTOA
B161 2013 Co-Operation Of Biology Related Algorithm, COBRA B417 2020 Turbulent Flow Of Water-Based Optimization, TFWO
B162 2013 Global Neighborhood Algorithm, GNA B418 2020 Human Urbanization Algorithm, HUA
B163 2013 Mosquito Host-Seeking Algorithm, MHSA B419 2020 Chimp Optimization Algorithm, COA
B164 2013 Mobility Aware-Termite, MAT B420 2020 Coronavirus Optimization Algorithm, COA
B165 2013 Backtracking Search Optimization, BSO B421 2020 COVID-19 Optimizer Algorithm, CVA
B166 2013 Black Holes Algorithm, BHA B422 2020 Multivariable Grey Prediction Evolution Algorithm, MGPE
B167 2013 Social Spider Optimization, SSO B423 2020 Sandpiper Optimization Algorithm, SOA
B168 2013 Dolphin Echolocation, DE B424 2020 Shuffled Shepherd Optimization Method, SSOM
B169 2013 Artificial Cooperative Search, ACS B425 2020 Red Deer Algorithm, RDA
B170 2013 Gases Brownian Motion Optimization, GBMO B426 2020 Golden Ratio Optimization Method, GTOM
B171 2013 Swallow Swarm Optimization Algorithm, SSOA B427 2020 Gaining-Sharing Knowledge Based Algorithm, GSKA
B172 2013 Penguins Search Optimization Algorithm, PSOA B428 2020 Adolescent Identity Search Algorithm, AISA
B173 2013 Egyptian Vulture Optimization, EVO B429 2020 Capuchin Search Algorithm, CSA
B174 2013 Atmosphere Clouds Model Optimization, ACMO B430 2020 Giza Pyramids Construction, GPC
B175 2013 Magnetotactic Bacteria Optimization Algorithm, MBOA B431 2020 Grand Tour Algorithm, GTA
B176 2013 Blind, Naked Mole-Rats Algorithm, BNMR B432 2020 Groundwater Flow Algorithm, GFA
B177 2013 Soccer Game Optimization, SGO B433 2020 Gradient-Based Optimizer, GO
B178 2013 Seven-Spot Ladybird Optimization, SSLO B434 2020 Interactive Autodidactic School, IAS
B179 2013 Cuttlefish Algorithm, CA B435 2020 LÉVy Flight Distribution, LFD
B180 2013 African Wild Dog Algorithm, AWDA B436 2020 Momentum Search Algorithm, MSA
B181 2013 Mussels Wandering Optimization, MWO B437 2020 Nomadic People Optimizer, NPO
B182 2013 Swine Influenza Models Based Optimization, SIMB B438 2020 New Caledonian Crow Learning Algorithm, NCCL
B183 2013 Tree Physiology Optimization, TPO B439 2020 Horse Optimization Algorithm, HOA
B184 2014 Animal Behavior Hunting, ABH B440 2020 Rao Algorithms, RA
B185 2014 Artificial Raindrop Algorithm, ARA B441 2020 Rat Swarm Optimizer, RSO
B186 2014 Grey Wolf Optimizer, GWO B442 2020 Rain Optimization Algorithm, ROA
B187 2014 Symbiotic Organisms Search, SOS B443 2020 Student Psychology Based Optimization Algorithm, SPOA
B188 2014 Colliding Bodies Optimization, CBO B444 2020 Seasons Optimization Algorithm, SOA
B189 2014 Chicken Swarm Optimization, CSO B445 2020 Shell Game Optimization, SGO
B190 2014 Spider Monkey Optimization, SMO B446 2020 Sparrow Search Algorithm, SSA
B191 2014 Interior Search Algorithm, ISA B447 2020 Tiki-Taka Algorithm, TTA
B192 2014 Animal Migration Optimization Algorithm, AMOA B448 2020 Transient Search Optimization, TSO
B193 2014 Coral Reefs Optimization Algorithm, CROA B449 2020 Vapor-Liquid Equilibrium Algorithm, VLEA
B194 2014 Bird Mating Optimizer, BMO B450 2020 Virus Spread Optimization, VSO
B195 2014 Shark Smell Optimization, SSO B451 2020 Wingsuit Flying Search, WFS
B196 2014 Exchange Market Algorithm, EMA B452 2020 Water Strider Algorithm, WSA
B197 2014 Forest Optimization Algorithm, FOA B453 2020 Woodpecker Mating Algorithm, WMA
B198 2014 Golden Ball Algorithm, GBA B454 2020 Solar System Algorithm, SSA
B199 2014 Keshtel Algorithm, KA B455 2020 Arsh-Fati-Based Cluster Head Selection Algorithm, ARSH-FATI-CHS
B200 2014 Kaizen Programming, KP B456 2020 Teng-Yue Algorithm, TYA
B201 2014 Kinetic Gas Molecule Optimization, KGMO B457 2020 Projectiles Optimization, PO
B202 2014 Strawberry Algorithm, SA B458 2020 Color Harmony Algorithm, CHA
B203 2014 Heart Algorithm, HA B459 2020 Multi-Objective Beetle Antennae Search, MOBAS
B204 2014 Artificial Ecosystem Algorithm, AEA B460 2020 Orca Optimization Algorithm, OOA
B205 2014 The Scientific Algorithms, SA B461 2020 Photon Search Algorithm, PSA
B206 2014 Worm Optimization, WO B462 2020 Kernel Search Optimization, KSO
B207 2014 Greedy Politics Optimization, GPO B463 2020 Spherical Search Algorithm, SSA
B208 2014 Human Learning Optimization, HLO B464 2020 Triple Distinct Search Dynamics, TDSD
B209 2014 Soccer League Competition Algorithm, SLCA B465 2021 Chaos Game Optimization, CGO
B210 2014 Hyper-Spherical Search Algorithm, HSSA B466 2021 Chameleon Swarm Algorithm, CSA
B211 2014 Ecogeography-Based Optimization, EBO B467 2021 Atomic Orbital Search, AOS
B212 2014 Pigeon-Inspired Optimization, PIO B468 2021 Artificial Jellyfish Search Optimizer, JS
B213 2015 Ant Lion Optimization, ALO B469 2021 Cooperation Search Algorithm, CSA
B214 2015 Artificial Algae Algorithm, AAA B470 2021 Material Generation Algorithm, MGA
B215 2015 Artificial Showering Algorithm, ASA B471 2021 Crystal Structure Algorithm, CryStA1
B216 2015 Cricket Algorithm, CA B472 2021 Archimedes Optimization Algorithm, AOA
B217 2015 Gradient Evolution Algorithm, GEA B473 2021 Archerfish Hunting Optimizer, AHO
B218 2015 Moth-Flame Optimization Algorithm, MFOA B474 2021 Battle Royale Optimization Algorithm, BRO
B219 2015 Monarch Butterfly Optimization, MBO B475 2021 Artificial Lizard Search Optimization, ALSO
B220 2015 Water Wave Optimization, WWO B476 2021 Quantum Firefly Algorithm, QFA
B221 2015 Stochastic Fractal Search, SFS B477 2021 Flow Direction Algorithm, FDA
B222 2015 Elephant Herding Optimization, EHO B478 2021 Lichtenberg Algorithm, LA
B223 2015 Vortex Search Algorithm, VSA B479 2021 Pastoralist Optimization Algorithm, POA
B224 2015 Earthworm Optimization Algorithm, EOA B480 2021 Ebola Optimization Search Algorithm, EOSA
B225 2015 Lightning Search Algorithm, LSA B481 2021 Elephant Clan Optimization, ECO
B226 2015 Heat Transfer Search Algorithm, HTSA B482 2021 Red Colobuses Monkey, RCM

(continued on next page)

Z. Ma et al.

Swarm and Evolutionary Computation 77 (2023) 101248

21

collected, and a taxonomy of metaheuristics is further proposed to
describe the metaheuristics from two aspects, including the inspiration
sources and the essential operators for generating solutions. We find that
the recent metaheuristics proposed in the literature are neither rigor
ously tested on comprehensive and representative benchmark suites, nor
compared with the state-of-the-art metaheuristics. Therefore, to eval
uate and understand the performance of the state-of-the-art and recent
metaheuristics, 11 representative metaheuristics with new names are
selected as recent algorithms to be compared with the 4 state-of-the-art
algorithms on the CEC 2017 benchmark suite.

For fair comparisons, we first use a unified framework named irace to
automatically configure the parameters of all 15 comparative algo
rithms. Then, whether these algorithms have a search bias to the origin
is investigated. For a detailed description, the convergence, diversity
and trade-off between the exploration and exploitation of all 15 algo
rithms are also analyzed. All the experimental results were analyzed by
nonparametric statistical methods, including the Friedman test, Wil
coxon signed-ranks test, and Bayesian signed-rank test. The results show
that the performance of EBCM is similar to the 4 compared algorithms,
and has the same properties and behaviors, such as convergence, di
versity, exploration and exploitation trade-off, etc. But the other 10
recent algorithms are inferior to the 4 state-of-the-art algorithms for
solving the CEC 2017 benchmark suite with 10, 30, and 50 variables.
Besides, all 15 algorithms have searches biased to the origin but with
different strengths. However, the 4 state-of-the-art algorithms are less
affected by the shift operator of the functions compared with the 11
recent algorithms. Except for EBCM, it should be noted that the other 10
new algorithms are inferior to the 4 state-of-the-art algorithms in terms
of convergence speed and global search ability on CEC 2017 functions.
Moreover, the other 10 new algorithms show a rougher trade-off and
diversity compared to the 4 state-of-the-art algorithms. Finally, several
issues and suggestions based on the abovementioned review and ex
periments are proposed.

In the next part of this survey series, we extend our work from the
following aspects:

(1) Metaheuristics are a broad field of research. We need to focus on
comparative studies including examining more newly proposed
algorithms and state-of-the-art algorithms on benchmarks and
real-world problems of different sizes, complexes, and categories.

(2) Due to space limitations, we investigated the performance and
properties of different metaheuristics in the current study. We
need a thorough theoretical analysis to confirm why these met
aheuristics perform better or worse.

(3) We investigated some metaheuristics on whether their search is
biased toward the origin. However, which parameters or strate
gies influence this property requires further study.

Table 7 (continued)

Refs Year Full name & abbreviation Refs Year Full name & abbreviation

B227 2015 Ions Motion Algorithm, IMA B483 2021 Golden Eagle Optimizer, GEO
B228 2015 Optics Inspired Optimization, OIO B484 2021 Group Mean-Based Optimizer, GMBO
B229 2015 Tree Seed Algorithm, TSA B485 2021 Dingo Optimizer, DO
B230 2015 Runner-Root Algorithm, RRA B486 2021 Coronavirus Herd Immunity Optimizer, CHIO
B231 2015 Elephant Search Algorithm, ESA B487 2021 Red Fox Optimization Algorithm, RFO
B232 2015 Election Algorithm, EA B488 2021 Arithmetic Optimization Algorithm, AOA
B233 2015 Locust Search, LS B489 2021 African Vultures Optimization Algorithm, AVOA
B234 2015 Invasive Tumor Growth Optimization Algorithm, ITWO B490 2021 Artificial Gorilla Troops Optimizer, GTO
B235 2015 Jaguar Algorithm, JA B491 2021 Artificial Hummingbird Algorithm, AHA
B236 2015 General Relativity Search Algorithm, GRSA B492 2021 Intelligent Ice Fishing Algorithm, IIFA
B237 2015 Root Growth Optimizer, RGO B493 2021 Komodo Mlipir Algorithm, KMA
B238 2015 Bull Optimization Algorithm, BOA B494 2021 Linear Prediction Evolution Algorithm, LPE
B239 2015 Prey-Predator Algorithm, PPA B495 2021 Multi-Objective Trader Algorithm, MOTR
B240 2015 African Buffalo Optimization, ABO B496 2021 Optimal Stochastic Process Optimizer, OSPO
B241 2016 Artificial Infectious Disease Optimization, AID B497 2021 Remora Optimization Algorithm, ROA
B242 2016 Across Neighborhood Search, ANS B498 2021 Ring Toss Game-Based Optimization Algorithm, RTGBO
B243 2016 Cricket Behavior-Based Algorithm, CBBA B499 2021 RUNge Kutta Optimizer, RUN
B244 2016 Competitive Optimization Algorithm, COOA B500 2021 Samw
B245 2016 Cognitive Behavior Optimization Algorithm, COA B501 2021 String Theory Algorithm, STA
B246 2016 Electromagnetic Field Optimization, EFO B502 2021 Success History Intelligent Optimizer, SHIO
B247 2016 Football Game Algorithm, FGA B503 2021 Tangent Search Algorithm, TSA
B248 2016 Intrusive Tumor Growth Inspired Optimization Algorithm, ITGO B504 2021 Tuna Swarm Optimization, TSO
B249 2016 Galactic Swarm Optimization, GSO B505 2021 Volcano Eruption Algorithm, VCA
B250 2016 Whale Optimization Algorithm, WOA B506 2021 Smart Flower Optimization Algorithm, SFOA
B251 2016 Sine Cosine Algorithm, SSA B507 2022 Ali baba and the Forty Thieves Optimization, AFT
B252 2016 Dragonfly Algorithm, DA B508 2022 Honey Badger Algorithm, HBA
B253 2016 Crow Search Algorithm, CSA B509 2022 Orca Predation Algorithm, OPA
B254 2016 Multi-Verse Optimizer, MVO B510 2022 Reptile Search Algorithm, RSA
B255 2016 Bird Swarm Algorithm, BSA B511 2022 Skip Salp Swam Algorithm, SSSA
B256 2016 Virus Colony Search, VCS

Algorithm 1
The common optimization framework of a single-solution based metaheuristics.

Input: initial solution s0; parameters
Output: The best solution
t←0;

Repeat
/* Generate candidate solutions (partial or complete neighborhood) from st */

Generate(C(st));
/* Select a solution from C(s) to replace the current solution st */
st+1 = Select(C(st));
t = t+ 1;
Until the termination condition is met.

Algorithm 2
The common optimization framework of a population-based metaheuristics.

Input: initial solution P0; parameters
Output: The best solution
t←0;
Evaluate the initial solutions and remember the best one as P∗;
Repeat
Generate (P′

t); /*Generation a new population */
Pt+1 = Select Population(Pt ∪ P′

t); /*Select new population */
Record the best solution found so far P∗;

t←t+ 1;
Until the termination condition is met
return the best solution found P∗.

Z. Ma et al.

Swarm and Evolutionary Computation 77 (2023) 101248

22

Overall, we hope that our study provides useful insight to guide
future designs of more practicable metaheuristics that are capable of
handling complex, high-dimensional and large-scale real-world
problems.

Credit for Authors’ Contributions

Zhongqiang Ma: Programmed the methods, conducted experiments,
prepared the draft manuscript. Guohua Wu: Supervised and edited the
manuscript. P. N. Suganthan: Proposed the overall project, supervised
and edited the manuscript. Aijuan Song: Assisted in the editing. Qiz
hang Luo: Assisted in the editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgement

Open Access funding provided by the Qatar National Library.

Fig. 7. The CD plot of algorithms on the nonshifted functions with 10 variables.

Fig. 8. The CD plot of algorithms on the nonshifted functions with 30 variables.

Z. Ma et al.

Swarm and Evolutionary Computation 77 (2023) 101248

23

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.swevo.2023.101248.

References

[1] G. Wu, R. Mallipeddi, P.N. Suganthan, Ensemble strategies for population-based
optimization algorithms – a survey, Swarm Evol. Comput. 44 (2019) 695–711,
https://doi.org/10.1016/j.swevo.2018.08.015.

[2] R. Moghdani, K. Salimifard, Volleyball premier league algorithm, Appl. Soft
Comput. 64 (2018) 161–185.

[3] R. Rajabioun, Cuckoo optimization algorithm, Appl. Soft Comput. 11 (2011)
5508–5518, https://doi.org/10.1016/j.asoc.2011.05.008.

[4] F. Glover, Future paths for integer programming and links to artificial
intelligence, Comput. Oper. Res. 13 (1986) 533–549.

[5] Q. Askari, I. Younas, M. Saeed, Political Optimizer: A novel socio-inspired meta-
heuristic for global optimization, Knowledge-Based Syst. (2020) 195, https://doi.
org/10.1016/j.knosys.2020.105709.

[6] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing,
Science 220 (80-) (1983) 671–680.

[7] J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proc. ICNN’95-
International Conf. Neural Networks, IEEE, 1995, pp. 1942–1948.

[8] M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization, IEEE Comput. Intell.
Mag. 1 (2006) 28–39.

[9] S.H. Aghay Kaboli, J. Selvaraj, N.A. Rahim, Rain-fall optimization algorithm: a
population based algorithm for solving constrained optimization problems,
J. Comput. Sci. 19 (2017) 31–42, https://doi.org/10.1016/j.jocs.2016.12.010.

[10] H.R. Lourenço, O.C. Martin, T. Stützle, Iterated local search: Framework and
applications. Handb. Metaheuristics, Springer, 2019, pp. 129–168.

[11] C. Voudouris, E.P.K. Tsang, A. Alsheddy, Guided local search. Handb.
Metaheuristics, Springer, 2010, pp. 321–361.

[12] L.A. Rastrigin, The convergence of the random search method in the extremal
control of a many parameter system, Autom. Remote Control. 24 (1963)
1337–1342.

[13] N. Mladenović, P. Hansen, Variable neighborhood search, Comput. Oper. Res. 24
(1997) 1097–1100.

[14] D. Pisinger, S. Ropke, Large neighborhood search. Handb. Metaheuristics,
Springer, 2010, pp. 399–419.

[15] J.H. Holland, Adaptation in natural and artificial systems, univ. of mich. press,
Ann Arbor. (1975).

[16] R. Storn, K. Price, Differential evolution–a simple and efficient heuristic for global
optimization over continuous spaces, J. Glob. Optim. 11 (1997) 341–359.

[17] R. Hooke, T.A. Jeeves, ``Direct Search’’ solution of numerical and statistical
problems, J. ACM. 8 (1961) 212–229.

[18] A. Tzanetos, G. Dounias, Nature inspired optimization algorithms or simply
variations of metaheuristics? Artif. Intell. Rev. 54 (2021) 1841–1862.

[19] D. Molina, J. Poyatos, J. Del Ser, S. García, A. Hussain, F. Herrera, Comprehensive
taxonomies of nature- and bio-inspired optimization: inspiration versus
algorithmic behavior, critical analysis recommendations, Cognit. Comput. 12
(2020) 897–939, https://doi.org/10.1007/s12559-020-09730-8.

[20] A.H. Halim, I. Ismail, S. Das, Performance assessment of the metaheuristic
optimization algorithms: an exhaustive review, Artif. Intell. Rev. (2020), https://
doi.org/10.1007/s10462-020-09906-6.

[21] X. Chu, T. Wu, J.D. Weir, Y. Shi, B. Niu, L. Li,
Learning–interaction–diversification framework for swarm intelligence
optimizers: a unified perspective, Neural Comput. Appl. 32 (2018) 1789–1809,
https://doi.org/10.1007/s00521-018-3657-0.

[22] Z. Chen, Y. Liu, Z. Yang, X. Fu, J. Tan, X. Yang, An enhanced teaching-learning-
based optimization algorithm with self-adaptive and learning operators and its
search bias towards origin, Swarm Evol. Comput. (2021) 60, https://doi.org/
10.1016/j.swevo.2020.100766.

[23] J.K. Pickard, J.A. Carretero, V.C. Bhavsar, On the convergence and origin bias of
the teaching-learning-based-optimization algorithm, Appl. Soft Comput. 46
(2016) 115–127, https://doi.org/10.1016/j.asoc.2016.04.029.

[24] P. Niu, S. Niu, N. liu, L. Chang, The defect of the Grey Wolf optimization
algorithm and its verification method, Knowledge-Based Syst 171 (2019) 37–43,
https://doi.org/10.1016/j.knosys.2019.01.018.

[25] A.E. Ezugwu, A.K. Shukla, R. Nath, A.A. Akinyelu, J.O. Agushaka, H. Chiroma, P.
K. Muhuri, Metaheuristics: a comprehensive overview and classification along
with bibliometric analysis, Artif. Intell. Rev. (2021), https://doi.org/10.1007/
s10462-020-09952-0.

[26] C. Pizzuti, Evolutionary computation for community detection in networks: a
review, IEEE Trans. Evol. Comput. 22 (2017) 464–483.

[27] N.A. Barricelli, Symbiogenetic evolution processes realized by artificial methods,
1957.

[28] A.S. Fraser, Simulation of genetic systems by automatic digital computers I.
Introduction, Aust. J. Biol. Sci. 10 (1957) 484–491.

[29] I. Rechenberg, Evolution strategy: nature’s way of optimization. Optim. Methods
Appl. Possibilities Limitations, Springer, 1989, pp. 106–126.

[30] L.J. Fogel, A.J. Owens, M.J. Walsh, Intelligent decision making through a
simulation of evolution, Behav. Sci. 11 (1966) 253–272.

[31] D. Simon, Evolutionary Optimization Algorithms, John Wiley & Sons, 2013.

[32] D.B. Fogel, Evolutionary Computation: Toward A New Philosophy Of Machine
Intelligence, John Wiley & Sons, 2006.

[33] L.J. Fogel, Artificial intelligence through a simulation of evolution, in: Proc. 2nd
Cybern. Sci. Symp, 1965, p. 1965.

[34] X. Yao, Y. Liu, G. Lin, Evolutionary programming made faster, IEEE Trans. Evol.
Comput. 3 (1999) 82–102.

[35] R. Mallipeddi, P.N. Suganthan, Evaluation of novel adaptive evolutionary
programming on four constraint handling techniques, in: Proceedings of the 2008
IEEE Congr. Evol. Comput. (IEEE World Congr. Comput. Intell., IEEE, 2008,
pp. 4045–4052.

[36] H. Zhang, J. Lu, Adaptive evolutionary programming based on reinforcement
learning, Inf. Sci. (Ny). 178 (2008) 971–984.

[37] R. Mallipeddi, S. Mallipeddi, P.N. Suganthan, Ensemble strategies with adaptive
evolutionary programming, Inf. Sci. (Ny). 180 (2010) 1571–1581.

[38] Q. Liu, X. Li, L. Gao, Y. Li, A modified genetic algorithm with new encoding and
decoding methods for integrated process planning and scheduling problem, IEEE
Trans. Cybern. (2020).

[39] G. Zhang, Y. Hu, J. Sun, W. Zhang, An improved genetic algorithm for the flexible
job shop scheduling problem with multiple time constraints, Swarm Evol.
Comput. 54 (2020), 100664.

[40] S. Sayed, M. Nassef, A. Badr, I. Farag, A nested genetic algorithm for feature
selection in high-dimensional cancer microarray datasets, Expert Syst. Appl. 121
(2019) 233–243.

[41] F. Curtis, X. Li, T. Rose, A. Vazquez-Mayagoitia, S. Bhattacharya, L.
M. Ghiringhelli, N. Marom, GAtor: a first-principles genetic algorithm for
molecular crystal structure prediction, J. Chem. Theory Comput. 14 (2018)
2246–2264.

[42] W. Chen, M. Panahi, H.R. Pourghasemi, Performance evaluation of GIS-based
new ensemble data mining techniques of adaptive neuro-fuzzy inference system
(ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle
swarm optimization (PSO) for landslide spatial modelling, Catena 157 (2017)
310–324.

[43] E.C. Pedrino, T. Yamada, T.R. Lunardi, J.C. de Melo Vieira Jr, Islanding detection
of distributed generation by using multi-gene genetic programming based
classifier, Appl. Soft Comput. 74 (2019) 206–215.

[44] C. Ryan, J.J. Collins, M.O. Neill, Grammatical evolution: Evolving programs for
an arbitrary language, in: Proceedings of the Eur. Conf. Genet. Program.,
Springer, 1998, pp. 83–96.

[45] S. Das, P.N. Suganthan, Differential evolution: a survey of the state-of-the-art,
IEEE Trans. Evol. Comput. 15 (2010) 4–31.

[46] G. Wu, R. Mallipeddi, P.N. Suganthan, R. Wang, H. Chen, Differential evolution
with multi-population based ensemble of mutation strategies, Inf. Sci. (Ny). 329
(2016) 329–345.

[47] G. Wu, X. Shen, H. Li, H. Chen, A. Lin, P.N. Suganthan, Ensemble of differential
evolution variants, Inf. Sci. (Ny). 423 (2018) 172–186, https://doi.org/10.1016/
j.ins.2017.09.053.

[48] A.K. Qin, V.L. Huang, P.N. Suganthan, Differential evolution algorithm with
strategy adaptation for global numerical optimization, IEEE Trans. Evol. Comput.
13 (2008) 398–417.

[49] J. Brest, S. Greiner, B. Boskovic, M. Mernik, V. Zumer, Self-adapting control
parameters in differential evolution: a comparative study on numerical
benchmark problems, IEEE Trans. Evol. Comput. 10 (2006) 646–657.

[50] Y. Wang, Z. Cai, Q. Zhang, Differential evolution with composite trial vector
generation strategies and control parameters, IEEE Trans. Evol. Comput. 15
(2011) 55–66.

[51] F.A. Hashim, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany, S. Mirjalili, Henry gas
solubility optimization: a novel physics-based algorithm, Futur. Gener. Comput.
Syst. 101 (2019) 646–667, https://doi.org/10.1016/j.future.2019.07.015.

[52] A.W. Mohamed, A.A. Hadi, A.K. Mohamed, Gaining-sharing knowledge based
algorithm for solving optimization problems: a novel nature-inspired algorithm,
Int. J. Mach. Learn. Cybern. 11 (2020) 1501–1529, https://doi.org/10.1007/
s13042-019-01053-x.

[53] G. Dhiman, M. Garg, A. Nagar, V. Kumar, M. Dehghani, A novel algorithm for
global optimization: rat swarm optimizer, J. Ambient Intell. Humaniz. Comput.
(2020), https://doi.org/10.1007/s12652-020-02580-0.

[54] W. Al-Sorori, A.M. Mohsen, New Caledonian crow learning algorithm: a new
metaheuristic algorithm for solving continuous optimization problems, Appl. Soft
Comput. 92 (2020), https://doi.org/10.1016/j.asoc.2020.106325.

[55] M.H. Sulaiman, Z. Mustaffa, M.M. Saari, H. Daniyal, Barnacles mating optimizer:
a new bio-inspired algorithm for solving engineering optimization problems, Eng.
Appl. Artif. Intell. 87 (2020), https://doi.org/10.1016/j.engappai.2019.103330.

[56] R.V Rao, V.J. Savsani, D.P. Vakharia, Teaching–learning-based optimization: a
novel method for constrained mechanical design optimization problems, Comput.
Des. 43 (2011) 303–315, https://doi.org/10.1016/j.cad.2010.12.015.

[57] Y. Zhang, Z. Jin, Group teaching optimization algorithm: a novel metaheuristic
method for solving global optimization problems, Expert Syst. Appl. (2020) 148,
https://doi.org/10.1016/j.eswa.2020.113246.

[58] N. Moosavian, B.Kasaee Roodsari, Soccer league competition algorithm: a novel
meta-heuristic algorithm for optimal design of water distribution networks,
Swarm Evol. Comput. 17 (2014) 14–24, https://doi.org/10.1016/j.
swevo.2014.02.002.

[59] E. Atashpaz-Gargari, C. Lucas, Imperialist competitive algorithm: an algorithm for
optimization inspired by imperialistic competition, in: Proceedings of the 2007
IEEE Congr. Evol. Comput., 2007, pp. 4661–4667, https://doi.org/10.1109/
CEC.2007.4425083.

Z. Ma et al.

https://doi.org/10.1016/j.swevo.2023.101248
https://doi.org/10.1016/j.swevo.2018.08.015
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0002
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0002
https://doi.org/10.1016/j.asoc.2011.05.008
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0004
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0004
https://doi.org/10.1016/j.knosys.2020.105709
https://doi.org/10.1016/j.knosys.2020.105709
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0006
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0006
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0007
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0007
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0008
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0008
https://doi.org/10.1016/j.jocs.2016.12.010
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0010
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0010
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0011
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0011
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0012
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0012
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0012
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0013
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0013
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0014
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0014
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0016
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0016
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0017
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0017
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0018
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0018
https://doi.org/10.1007/s12559-020-09730-8
https://doi.org/10.1007/s10462-020-09906-6
https://doi.org/10.1007/s10462-020-09906-6
https://doi.org/10.1007/s00521-018-3657-0
https://doi.org/10.1016/j.swevo.2020.100766
https://doi.org/10.1016/j.swevo.2020.100766
https://doi.org/10.1016/j.asoc.2016.04.029
https://doi.org/10.1016/j.knosys.2019.01.018
https://doi.org/10.1007/s10462-020-09952-0
https://doi.org/10.1007/s10462-020-09952-0
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0026
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0026
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0028
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0028
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0029
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0029
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0030
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0030
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0031
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0032
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0032
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0033
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0033
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0034
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0034
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0035
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0035
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0035
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0035
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0036
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0036
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0037
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0037
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0038
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0038
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0038
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0039
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0039
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0039
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0040
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0040
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0040
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0041
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0041
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0041
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0041
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0042
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0042
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0042
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0042
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0042
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0043
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0043
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0043
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0044
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0044
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0044
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0045
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0045
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0046
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0046
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0046
https://doi.org/10.1016/j.ins.2017.09.053
https://doi.org/10.1016/j.ins.2017.09.053
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0048
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0048
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0048
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0049
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0049
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0049
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0050
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0050
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0050
https://doi.org/10.1016/j.future.2019.07.015
https://doi.org/10.1007/s13042-019-01053-x
https://doi.org/10.1007/s13042-019-01053-x
https://doi.org/10.1007/s12652-020-02580-0
https://doi.org/10.1016/j.asoc.2020.106325
https://doi.org/10.1016/j.engappai.2019.103330
https://doi.org/10.1016/j.cad.2010.12.015
https://doi.org/10.1016/j.eswa.2020.113246
https://doi.org/10.1016/j.swevo.2014.02.002
https://doi.org/10.1016/j.swevo.2014.02.002
https://doi.org/10.1109/CEC.2007.4425083
https://doi.org/10.1109/CEC.2007.4425083

Swarm and Evolutionary Computation 77 (2023) 101248

24

[60] J.S.M.L. Melvix, Greedy politics optimization: Metaheuristic inspired by political
strategies adopted during state assembly elections, in: Proceedings of the 2014
IEEE Int. Adv. Comput. Conf., IEEE, 2014, pp. 1157–1162.

[61] A. Borji, A new global optimization algorithm inspired by parliamentary political
competitions, in: Proceedings of the Mex. Int. Conf. Artif. Intell, Springer, 2007,
pp. 61–71.

[62] S.H. Samareh Moosavi, V.K. Bardsiri, Poor and rich optimization algorithm: a new
human-based and multi populations algorithm, Eng. Appl. Artif. Intell. 86 (2019)
165–181, https://doi.org/10.1016/j.engappai.2019.08.025.

[63] H. Ghasemian, F. Ghasemian, H. Vahdat-Nejad, Human urbanization algorithm: a
novel metaheuristic approach, Math. Comput. Simul. 178 (2020) 1–15, https://
doi.org/10.1016/j.matcom.2020.05.023.

[64] A. Khatri, A. Gaba, K.P.S. Rana, V. Kumar, A novel life choice-based optimizer,
Soft Comput. 24 (2019) 9121–9141, https://doi.org/10.1007/s00500-019-
04443-z.

[65] J. Zhang, M. Xiao, L. Gao, Q. Pan, Queuing search algorithm: a novel
metaheuristic algorithm for solving engineering optimization problems, Appl.
Math. Model. 63 (2018) 464–490, https://doi.org/10.1016/j.apm.2018.06.036.

[66] Q. Zhang, R. Wang, J. Yang, A. Lewis, F. Chiclana, S. Yang, Biology migration
algorithm: a new nature-inspired heuristic methodology for global optimization,
Soft Comput 23 (2019) 7333–7358.

[67] D. Karaboga, B. Basturk, A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm, J. Glob. Optim. 39
(2007) 459–471, https://doi.org/10.1007/s10898-007-9149-x.

[68] X.-S. Yang, A new metaheuristic bat-inspired algorithm, in: Proceedings of the
Nat. Inspired Coop. Strateg. Optim. (NICSO 2010), Springer, 2010, pp. 65–74.

[69] X.-S. Yang, S. Deb, Cuckoo search via Lévy flights, in: Proceedings of the 2009
World Congr. Nat. Biol. Inspired Comput., Ieee, 2009, pp. 210–214.

[70] X.-S. Yang, Firefly algorithms for multimodal optimization, in: Proceedings of the
Int. Symp. Stoch. Algorithms, Springer, 2009, pp. 169–178.

[71] S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer, Adv. Eng. Softw. 69
(2014) 46–61, https://doi.org/10.1016/j.advengsoft.2013.12.007.

[72] S.Z. Mirjalili, S. Mirjalili, S. Saremi, H. Faris, I. Aljarah, Grasshopper optimization
algorithm for multi-objective optimization problems, Appl. Intell. 48 (2018)
805–820.

[73] S. Harifi, J. Mohammadzadeh, M. Khalilian, S. Ebrahimnejad, Giza pyramids
construction: an ancient-inspired metaheuristic algorithm for optimization, Evol.
Intell. (2020) 1–19.

[74] A.R. Mehrabian, C. Lucas, A novel numerical optimization algorithm inspired
from weed colonization, Ecol. Inform. 1 (2006) 355–366.

[75] X.-S. Yang, Flower pollination algorithm for global optimization, in: Proceedings
of the Int. Conf. Unconv. Comput. Nat. Comput., Springer, 2012, pp. 240–249.

[76] S. Harifi, M. Khalilian, J. Mohammadzadeh, S. Ebrahimnejad, Emperor penguins
colony: a new metaheuristic algorithm for optimization, Evol. Intell. 12 (2019)
211–226.

[77] V. Hayyolalam, A.A.P. Kazem, Black widow optimization algorithm: a novel
meta-heuristic approach for solving engineering optimization problems, Eng.
Appl. Artif. Intell. 87 (2020), 103249.

[78] E. Bogar, S. Beyhan, Adolescent Identity Search Algorithm (AISA): a novel
metaheuristic approach for solving optimization problems, Appl. Soft Comput. 95
(2020), https://doi.org/10.1016/j.asoc.2020.106503.

[79] M. Khishe, M.R. Mosavi, Chimp optimization algorithm, Expert Syst. Appl. 149
(2020), 113338.

[80] E. Rashedi, H. Nezamabadi-pour, S. Saryazdi, GSA: a gravitational search
algorithm, Inf. Sci. (Ny). 179 (2009) 2232–2248, https://doi.org/10.1016/j.
ins.2009.03.004.

[81] S. Mirjalili, S.M. Mirjalili, A. Hatamlou, Multi-Verse optimizer: a nature-inspired
algorithm for global optimization, Neural Comput. Appl. 27 (2015) 495–513,
https://doi.org/10.1007/s00521-015-1870-7.

[82] Z.W. Geem, J.H. Kim, G.V. Loganathan, A new heuristic optimization algorithm:
harmony search, Simulation 76 (2001) 60–68.

[83] T. Zhang, Z.W. Geem, Review of harmony search with respect to algorithm
structure, Swarm Evol. Comput. 48 (2019) 31–43, https://doi.org/10.1016/j.
swevo.2019.03.012.

[84] A. Kaveh, T. Bakhshpoori, Water Evaporation Optimization: a novel physically
inspired optimization algorithm, Comput. Struct. 167 (2016) 69–85, https://doi.
org/10.1016/j.compstruc.2016.01.008.

[85] M.H. Qais, H.M. Hasanien, S. Alghuwainem, Transient search optimization: a new
meta-heuristic optimization algorithm, Appl. Intell. 50 (2020) 3926–3941,
https://doi.org/10.1007/s10489-020-01727-y.

[86] A.Y.S. Lam, V.O.K. Li, Chemical-reaction-inspired metaheuristic for optimization,
IEEE Trans. Evol. Comput. 14 (2009) 381–399.

[87] A. Kaveh, S. Talatahari, A novel heuristic optimization method: charged system
search, Acta Mech. 213 (2010) 267–289, https://doi.org/10.1007/s00707-009-
0270-4.

[88] E.-G. Talbi, Metaheuristics: From Design To Implementation, John Wiley & Sons,
2009.

[89] B. Doğan, T. Ölmez, A new metaheuristic for numerical function optimization:
vortex search algorithm, Inf. Sci. (Ny). 293 (2015) 125–145, https://doi.org/
10.1016/j.ins.2014.08.053.

[90] F.A. Hashim, K. Hussain, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany,
Archimedes optimization algorithm: a new metaheuristic algorithm for solving
optimization problems, Appl. Intell. (2020), https://doi.org/10.1007/s10489-
020-01893-z.

[91] A. Faramarzi, M. Heidarinejad, B. Stephens, S. Mirjalili, Equilibrium optimizer: a
novel optimization algorithm, Knowledge-Based Syst. 191 (2020), 105190,
https://doi.org/10.1016/j.knosys.2019.105190.

[92] G. Dhiman, V. Kumar, Seagull optimization algorithm: theory and its applications
for large-scale industrial engineering problems, Knowledge-Based Syst. 165
(2019) 169–196, https://doi.org/10.1016/j.knosys.2018.11.024.

[93] B. Morales-Castañeda, D. Zaldívar, E. Cuevas, F. Fausto, A. Rodríguez, A better
balance in metaheuristic algorithms: does it exist? Swarm Evol. Comput. (2020)
54, https://doi.org/10.1016/j.swevo.2020.100671.

[94] M. Črepinšek, S.-H. Liu, M. Mernik, Exploration and exploitation in evolutionary
algorithms: a survey, ACM Comput. Surv. 45 (2013) 1–33.

[95] Z.-H. Zhan, Z.-J. Wang, H. Jin, J. Zhang, Adaptive distributed differential
evolution, IEEE Trans. Cybern. 50 (2019) 4633–4647.

[96] K.R. Opara, J. Arabas, Differential evolution: a survey of theoretical analyses,
Swarm Evol. Comput. 44 (2019) 546–558.

[97] A.W. Mohamed, A.A. Hadi, K.M. Jambi, Novel mutation strategy for enhancing
SHADE and LSHADE algorithms for global numerical optimization, Swarm Evol.
Comput. 50 (2019), 100455, https://doi.org/10.1016/j.swevo.2018.10.006.

[98] A. Viktorin, R. Senkerik, M. Pluhacek, T. Kadavy, A. Zamuda, Distance based
parameter adaptation for success-history based differential evolution, Swarm
Evol. Comput. 50 (2019), 100462, https://doi.org/10.1016/j.
swevo.2018.10.013.

[99] N.H. Awad, M.Z. Ali, P.N. Suganthan, Ensemble sinusoidal differential covariance
matrix adaptation with Euclidean neighborhood for solving CEC2017 benchmark
problems, in: Proceedings of the 2017 IEEE Congr. Evol. Comput., 2017,
pp. 372–379, https://doi.org/10.1109/CEC.2017.7969336.

[100] A.W. Mohamed, A.A. Hadi, A.M. Fattouh, K.M. Jambi, LSHADE with semi-
parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark
problems, in: Proceedings of the 2017 IEEE Congr. Evol. Comput., IEEE, 2017,
pp. 145–152.

[101] A. Ghosh, S. Das, A.K. Das, R. Senkerik, A. Viktorin, I. Zelinka, A.D. Masegosa,
Using spatial neighborhoods for parameter adaptation: an improved success
history based differential evolution, Swarm Evol. Comput. 71 (2022), 101057.

[102] G. Zhang, Y. Shi, Hybrid sampling evolution strategy for solving single objective
bound constrained problems, in: Proceedings of the 2018 IEEE Congr. Evol.
Comput., 2018, pp. 1–7, https://doi.org/10.1109/CEC.2018.8477908.

[103] A. Kumar, R.K. Misra, D. Singh, Improving the local search capability of effective
butterfly optimizer using covariance matrix adapted retreat phase, in:
Proceedings of the 2017 IEEE Congr. Evol. Comput., 2017, pp. 1835–1842,
https://doi.org/10.1109/CEC.2017.7969524.

[104] H. Rakhshani, A. Rahati, Snap-drift cuckoo search: a novel cuckoo search
optimization algorithm, Appl. Soft Comput. 52 (2017) 771–794, https://doi.org/
10.1016/j.asoc.2016.09.048.

[105] X.-S. Yang, S. Deb, Cuckoo search: recent advances and applications, Neural
Comput. Appl. 24 (2014) 169–174, https://doi.org/10.1007/s00521-013-1367-1.

[106] H. Chen, M. Wang, X. Zhao, A multi-strategy enhanced sine cosine algorithm for
global optimization and constrained practical engineering problems, Appl. Math.
Comput. 369 (2020), 124872, https://doi.org/10.1016/j.amc.2019.124872.

[107] S. Mirjalili, SCA: a sine cosine algorithm for solving optimization problems,
Knowledge-Based Syst 96 (2016) 120–133, https://doi.org/10.1016/j.
knosys.2015.12.022.

[108] D. Pelusi, R. Mascella, L. Tallini, J. Nayak, B. Naik, Y. Deng, An improved moth-
flame optimization algorithm with hybrid search phase, Knowledge-Based Syst
191 (2020), 105277, https://doi.org/10.1016/j.knosys.2019.105277.

[109] S. Mirjalili, Moth-flame optimization algorithm: A novel nature-inspired heuristic
paradigm, Knowledge-Based Syst. 89 (2015) 228–249, https://doi.org/10.1016/j.
knosys.2015.07.006.

[110] L. Abualigah, D. Yousri, M. Abd Elaziz, A.A. Ewees, M.A.A. Al-Qaness, A.
H. Gandomi, Aquila optimizer: a novel meta-heuristic optimization algorithm,
Comput. Ind. Eng. 157 (2021), 107250.

[111] J. Luo, H. Chen, Q. zhang, Y. Xu, H. Huang, X. Zhao, An improved grasshopper
optimization algorithm with application to financial stress prediction, Appl.
Math. Model. 64 (2018) 654–668, https://doi.org/10.1016/j.apm.2018.07.044.

[112] D. Pelusi, R. Mascella, L. Tallini, J. Nayak, B. Naik, Y. Deng, Improving
exploration and exploitation via a hyperbolic gravitational search algorithm,
Knowledge-Based Syst 193 (2020), 105404, https://doi.org/10.1016/j.
knosys.2019.105404.

[113] M.M. Eusuff, K.E. Lansey, Optimization of water distribution network design
using the shuffled frog leaping algorithm, J. Water Resour. Plan. Manag. 129
(2003) 210–225.

[114] D. Tang, Z. Liu, J. Yang, J. Zhao, Memetic frog leaping algorithm for global
optimization, Soft Comput. 23 (2019) 11077–11105, https://doi.org/10.1007/
s00500-018-3662-3.

[115] A. Faramarzi, M. Heidarinejad, S. Mirjalili, A.H. Gandomi, Marine predators
algorithm: a nature-inspired metaheuristic, Expert Syst. Appl. 152 (2020),
113377, https://doi.org/10.1016/j.eswa.2020.113377.

[116] S. Debnath, W. Arif, S. Baishya, Buyer inspired meta-heuristic optimization
algorithm, Open Comput. Sci. 10 (2020) 194–219, https://doi.org/10.1515/
comp-2020-0101.

[117] A. LaTorre, D. Molina, E. Osaba, J. Poyatos, J. Del Ser, F. Herrera, A prescription
of methodological guidelines for comparing bio-inspired optimization algorithms,
Swarm Evol. Comput. 67 (2021), 100973.

[118] E. Osaba, E. Villar-Rodriguez, J. Del Ser, A.J. Nebro, D. Molina, A. LaTorre, P.
N. Suganthan, C.A.C. Coello, F. Herrera, A tutorial on the design, experimentation
and application of metaheuristic algorithms to real-world optimization problems,
Swarm Evol. Comput. 64 (2021), 100888.

Z. Ma et al.

http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0060
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0060
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0060
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0061
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0061
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0061
https://doi.org/10.1016/j.engappai.2019.08.025
https://doi.org/10.1016/j.matcom.2020.05.023
https://doi.org/10.1016/j.matcom.2020.05.023
https://doi.org/10.1007/s00500-019-04443-z
https://doi.org/10.1007/s00500-019-04443-z
https://doi.org/10.1016/j.apm.2018.06.036
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0066
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0066
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0066
https://doi.org/10.1007/s10898-007-9149-x
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0068
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0068
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0069
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0069
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0070
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0070
https://doi.org/10.1016/j.advengsoft.2013.12.007
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0072
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0072
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0072
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0073
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0073
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0073
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0074
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0074
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0075
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0075
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0076
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0076
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0076
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0077
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0077
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0077
https://doi.org/10.1016/j.asoc.2020.106503
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0079
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0079
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1016/j.ins.2009.03.004
https://doi.org/10.1007/s00521-015-1870-7
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0082
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0082
https://doi.org/10.1016/j.swevo.2019.03.012
https://doi.org/10.1016/j.swevo.2019.03.012
https://doi.org/10.1016/j.compstruc.2016.01.008
https://doi.org/10.1016/j.compstruc.2016.01.008
https://doi.org/10.1007/s10489-020-01727-y
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0086
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0086
https://doi.org/10.1007/s00707-009-0270-4
https://doi.org/10.1007/s00707-009-0270-4
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0088
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0088
https://doi.org/10.1016/j.ins.2014.08.053
https://doi.org/10.1016/j.ins.2014.08.053
https://doi.org/10.1007/s10489-020-01893-z
https://doi.org/10.1007/s10489-020-01893-z
https://doi.org/10.1016/j.knosys.2019.105190
https://doi.org/10.1016/j.knosys.2018.11.024
https://doi.org/10.1016/j.swevo.2020.100671
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0094
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0094
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0095
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0095
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0096
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0096
https://doi.org/10.1016/j.swevo.2018.10.006
https://doi.org/10.1016/j.swevo.2018.10.013
https://doi.org/10.1016/j.swevo.2018.10.013
https://doi.org/10.1109/CEC.2017.7969336
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0100
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0100
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0100
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0100
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0101
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0101
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0101
https://doi.org/10.1109/CEC.2018.8477908
https://doi.org/10.1109/CEC.2017.7969524
https://doi.org/10.1016/j.asoc.2016.09.048
https://doi.org/10.1016/j.asoc.2016.09.048
https://doi.org/10.1007/s00521-013-1367-1
https://doi.org/10.1016/j.amc.2019.124872
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.1016/j.knosys.2015.12.022
https://doi.org/10.1016/j.knosys.2019.105277
https://doi.org/10.1016/j.knosys.2015.07.006
https://doi.org/10.1016/j.knosys.2015.07.006
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0110
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0110
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0110
https://doi.org/10.1016/j.apm.2018.07.044
https://doi.org/10.1016/j.knosys.2019.105404
https://doi.org/10.1016/j.knosys.2019.105404
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0113
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0113
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0113
https://doi.org/10.1007/s00500-018-3662-3
https://doi.org/10.1007/s00500-018-3662-3
https://doi.org/10.1016/j.eswa.2020.113377
https://doi.org/10.1515/comp-2020-0101
https://doi.org/10.1515/comp-2020-0101
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0117
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0117
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0117
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0118
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0118
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0118
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0118

Swarm and Evolutionary Computation 77 (2023) 101248

25

[119] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, M. Birattari, T. Stützle, The
irace package: Iterated racing for automatic algorithm configuration, Oper. Res.
Perspect. 3 (2016) 43–58, https://doi.org/10.1016/j.orp.2016.09.002.

[120] L.C.T. Bezerra, M. López-Ibáñez, T. Stützle, Automatically designing state-of-the-
art multi- and many-objective evolutionary algorithms, Evol. Comput. 28 (2019)
195–226, https://doi.org/10.1162/evco_a_00263.

[121] A.J. Nebro, M. López-Ibáñez, C. Barba-González, J. García-Nieto, Automatic
configuration of NSGA-II with jMetal and irace, Proc. Genet. Evol. Comput. Conf.
Companion. (2019) 1374–1381, https://doi.org/10.1145/3319619.3326832.

[122] C. Huang, Y. Li, X. Yao, A survey of automatic parameter tuning methods for
metaheuristics, IEEE Trans. Evol. Comput. 24 (2020) 201–216, https://doi.org/
10.1109/TEVC.2019.2921598.

[123] D. Jiang, X. Li, Order fulfilment problem with time windows and synchronisation
arising in the online retailing, Int. J. Prod. Res. 59 (2021) 1187–1215.

[124] J.J. Liang, S. Baskar, P.N. Suganthan, A.K. Qin, Performance evaluation of
multiagent genetic algorithm, Nat. Comput. 5 (2006) 83–96, https://doi.org/
10.1007/s11047-005-1625-y.

[125] J. Carrasco, S. García, M.M. Rueda, S. Das, F. Herrera, Recent trends in the use of
statistical tests for comparing swarm and evolutionary computing algorithms:
practical guidelines and a critical review, Swarm Evol. Comput. 54 (2020),
https://doi.org/10.1016/j.swevo.2020.100665.

[126] J. Derrac, S. García, D. Molina, F. Herrera, A practical tutorial on the use of
nonparametric statistical tests as a methodology for comparing evolutionary and
swarm intelligence algorithms, Swarm Evol. Comput. 1 (2011) 3–18.

[127] L.C.T. Bezerra, M. López-Ibánez, T. Stützle, Automatic component-wise design of
multiobjective evolutionary algorithms, IEEE Trans. Evol. Comput. 20 (2015)
403–417.

[128] M. López-Ibánez, T. Stützle, Automatically improving the anytime behaviour of
optimisation algorithms, Eur. J. Oper. Res. 235 (2014) 569–582.

[129] A.P. Piotrowski, J.J. Napiorkowski, Some metaheuristics should be simplified, Inf.
Sci. (Ny). 427 (2018) 32–62.

[130] E.-G. Talbi, Combining metaheuristics with mathematical programming,
constraint programming and machine learning, Ann. Oper. Res. 240 (2016)
171–215.

[131] M. Karimi-Mamaghan, M. Mohammadi, P. Meyer, A.M. Karimi-Mamaghan, E.-
G. Talbi, Machine learning at the service of meta-heuristics for solving
combinatorial optimization problems: A state-of-the-art, Eur. J. Oper. Res. 296
(2022) 393–422.

[132] E.-G. Talbi, Machine learning into metaheuristics: a survey and taxonomy, ACM
Comput. Surv. 54 (2021) 1–32.

[133] J. Ma, D. Xia, Y. Wang, X. Niu, S. Jiang, Z. Liu, H. Guo, A comprehensive
comparison among metaheuristics (MHs) for geohazard modeling using machine
learning: insights from a case study of landslide displacement prediction, Eng.
Appl. Artif. Intell. 114 (2022), 105150.

[134] S. Nematzadeh, F. Kiani, M. Torkamanian-Afshar, N. Aydin, Tuning
hyperparameters of machine learning algorithms and deep neural networks using
metaheuristics: a bioinformatics study on biomedical and biological cases,
Comput. Biol. Chem. 97 (2022), 107619.

[135] J.-S. Chou, T.-K. Nguyen, Forward forecast of stock price using sliding-window
metaheuristic-optimized machine-learning regression, IEEE Trans. Ind.
Informatics. 14 (2018) 3132–3142.

[136] A. Song, G. Wu, W. Pedrycz, L. Wang, Integrating variable reduction strategy with
evolutionary algorithms for solving nonlinear equations systems, IEEE/CAA J.
Autom. Sin. 9 (2021) 75–89.

Z. Ma et al.

https://doi.org/10.1016/j.orp.2016.09.002
https://doi.org/10.1162/evco_a_00263
https://doi.org/10.1145/3319619.3326832
https://doi.org/10.1109/TEVC.2019.2921598
https://doi.org/10.1109/TEVC.2019.2921598
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0123
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0123
https://doi.org/10.1007/s11047-005-1625-y
https://doi.org/10.1007/s11047-005-1625-y
https://doi.org/10.1016/j.swevo.2020.100665
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0126
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0126
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0126
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0127
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0127
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0127
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0128
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0128
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0129
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0129
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0130
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0130
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0130
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0131
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0131
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0131
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0131
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0132
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0132
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0133
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0133
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0133
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0133
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0134
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0134
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0134
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0134
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0135
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0135
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0135
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0136
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0136
http://refhub.elsevier.com/S2210-6502(23)00022-6/sbref0136

	Performance assessment and exhaustive listing of 500+ nature-inspired metaheuristic algorithms
	1 Introduction
	2 Literature overviews
	2.1 Taxonomy of metaheuristics
	2.1.1 Evolutionary algorithms
	2.1.2 Swarm intelligence algorithms
	2.1.3 Physics/chemistry-based algorithms

	2.2 Optimization mechanisms of metaheuristics
	2.2.1 Optimization framework of metaheuristics
	2.2.2 Introduction of representative metaheuristics

	3 Experimental analyses
	3.1 Experiment setup
	3.2 Automatic parameter tuning
	3.3 Experimental results and discussion
	3.3.1 Benchmark functions with 30 variables
	3.3.1.1 Comparison of each function
	3.3.1.2 Results of Wilcoxon signed-rank test
	3.3.1.3 Results of the CD plot
	3.3.1.4 Convergence analysis
	3.3.1.5 The trade-off of exploration and exploitation analysis
	3.3.1.6 Diversity analysis

	3.3.2 Results of CEC 2017 functions considering nonshifted and shifted
	3.3.2.1 Evaluate the search bias toward the origin
	3.3.2.2 The trade-off response of AO, MFLA, MSCA, and SDCS on the nonshifted functions

	4 Issues and suggestions for future research
	5 Conclusions
	Credit for Authors’ Contributions

	Declaration of Competing Interest
	Data availability
	Acknowledgement
	Supplementary materials
	References

