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Aim: Generate fire susceptibility maps for the present and 2070, to identify the threat
wildfires pose to koalas now and under future climate change.

Location: Australia.

Time period: Present and 2070.

Major taxa studied: 60 main tree species browsed by koalas.

Method: The Decision Tree machine learning algorithm was applied to generate a fire
susceptibility index (a measure of the potential for a given area or region to experience
wildfires) using a dataset of conditioning factors, namely: altitude, aspect, rainfall,
distance from rivers, distance from roads, forest type, geology, koala presence and future
dietary sources, land use-land cover (LULC), normalized difference vegetation index
(NDVI), slope, soil, temperature, and wind speed.

Results: We found a general increase in susceptibility of Australian vegetation to
bushfires overall. The simulation for current conditions indicated that 39.56% of total
koala habitat has a fire susceptibility rating of “very high” or “high”, increasing to 44.61%
by 2070.

Main conclusions: Wildfires will increasingly impact koala populations in the future. If
this iconic and vulnerable marsupial is to be protected, conservation strategies need to
be adapted to deal with this threat. It is crucial to strike a balance between ensuring that
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koala habitats and populations are not completely destroyed by fire while also allowing

for forest rejuvenation and regeneration through periodic burns.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC
BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Climate change (IPCC, 2014) and habitat loss (Shabani et al., 2019) are driving global declines in species populations,
leading to extinctions (Thomas et al., 2004). If humans fail to slow down anthropogenic climate change, many species
will experience range contractions (Chen et al., 2011; Jump and Penuelas, 2005) to the point of extinction (Bellard et al.,
2012; Parmesan and Yohe, 2003; Strona and Bradshaw, 2018; Thomas et al., 2004; Urban, 2015). Predictive models of
future climates that incorporate current trajectories of greenhouse gas emissions indicate that extreme climatic conditions
(floods, droughts, and fires) will increase (Cremen et al.,, 2021). These extreme events will have detrimental effects on
vulnerable species, and international organizations including United Nations (UN), the European Union (EU), and the
World Bank have acknowledged the need for climate-related hazard risk reduction through mitigation and adaptation
strategies.

Species distribution models (SDMs) integrate empirical data on species occurrences or abundance with environmental
factors (Elith and Leathwick, 2009). These models predict the distribution of suitable habitat for species, providing valuable
insights into ecological and evolutionary processes (Pollock et al., 2014). SDMs can directly model the distribution habitat
for a focal species using environmental variables (Hijmans et al., 2004). Alternatively, they can model the distribution of
suitable habitat of other species that the focal species relies on, such as its food sources (Shabani et al., 2019). SDMs are
extensively employed in terrestrial, marine, and freshwater contexts, often involving extrapolation across time and space.
Indeed, they have been widely used to investigate the impact of future climate change on species distributions (Carlson
et al., 2022; Habibullah et al., 2022; Rupasinghe et al., 2022; Varol et al., 2022).

However, suitable habitat alone does not guarantee species survival (Salafsky et al., 2008). Severe climate-related
events like wildfires (Tehrany et al., 2019b), cyclones, and floods (Tehrany et al., 2019a) will have adverse effects on
species even within their supposedly suitable habitat. In the past, neighbouring populations could recolonize areas
after local extinctions caused by such events. However, human-induced habitat loss and fragmentation hampers this
recolonization process (Vieira et al., 2022). Moreover, climate change is intensifying the frequency of extreme climate
events (Cai et al., 2014). Consequently, safeguarding endangered species requires not only identifying suitable habitat but
also understanding the potential impacts of extreme events on those habitats.

Fire is a key force behind carbon cycles and vegetation regeneration (Landry et al., 2015). While wildfires are a natural
phenomenon, catastrophic fire events in the 21st century suggest that changing climate is affecting fire regimes (Bowman
et al,, 2009). High-intensity fires have occurred in regions and seasons where they have not historically occurred (Keeley
and Zedler, 2009). The 2019-2020 Black Summer period in Australia resulted in 5.5 million hectares (roughly 7%) of New
South Wales being burnt-four times greater than the area of destruction recorded in any previous fire season (Simmons
et al., 2021). Over 450 threatened plant species and 293 threatened animal species occur in the footprint of the Black
Summer fires (Department of Premier and Cabinet, 2020), and the long-term survival of a significant proportion of these
species has been impacted by the fires (Dickman, 2021). Furthermore, 17 of the 22 major vegetation groups found across
Australia suffered more extensive fires and higher burning temperatures during the Black Summer fires than ever before
(Godfree et al., 2021). Eucalypt tall open forests were one of the most severely affected of these vegetation groups, with
a total of 1.14 mega hectares burnt (Godfree et al., 2021).

An important aspect of Australia and its near surrounds is a heritage of unique endemic species, such as the koala
(Phascolarctos cinereus). The koala is highly specialized with extremely specific habitat and dietary needs (Kjeldsen et al.,
2019). Its distribution has contracted since the Last Interglacial period (128-116k years) (Adams-Hosking et al., 2011b),
with further rapid contraction and population declines in the 230 years since European colonization. Moreover, it is
projected that koala habitat will continue to decline due to climate change (Adams-Hosking et al., 2011a,b; Gordon
et al., 1988; Lunney et al.,, 2012). However, while Shabani et al. (2019) investigated whether past climate conditions
could account for observed spatio-temporal range shifts suggested by fossil specimens of koalas, they did not investigate
whether other climate-related factors, such as fire, could prevent koalas using otherwise suitable habitat.

In addition to being highly sensitive to changes in climate, habitat reduction and fragmentation arising from land
clearing for development has placed more koalas in close proximity to humans. This has escalated mortality rates of koalas
due to domestic animal predation and road-kill (Gonzalez-Astudillo et al., 2017; Lunney et al., 2007, 2022b; McAlpine
et al.,, 2015). Barely 230 years after European colonists arrived in Australia, the koala has been classified as “threatened”
in over 60% of its current distribution range, with a population decline exceeding 50% (Melzer et al., 2000), although some
populations have remained stable (Lunney et al., 2016). The IUCN Red List considers koalas as Vulnerable in the Australian
states of Queensland and New South Wales, as well as in the Australian Capital Territory. The Australian Environment
Protection and Biodiversity Conservation Act of 1999, incorporates the same classification status (Sequeira et al., 2014).
A study, using an expert elicitation methodology, estimated the total national koala population to be between 144,000
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and 605,000, with a decline of 24% over the past three generations (Adams-Hosking et al., 2016). The main causes of this
population decline have been identified as significance of endemic disease (McCallum et al., 2018), threats related to high
human population densities (e.g. road kill, attacks by pets; Lunney et al., 2022a) and ongoing pressures from habitat loss
and climate change (Shabani et al., 2019).

Koalas are dependent on eucalyptus (mainly, Eucalyptus spp.) for both shelter and diet. Indeed, koalas are apex
herbivores in these systems—they are at the top of the food chain for the plants they consumer (though they are
occasionally preyed upon by dingos and large pythons (McAlpine et al., 2006)) Thus, the fundamental requirement for the
survival of koala populations is a minimum level of Eucalyptus forest cover (Santika et al., 2014) and koala populations
are mainly limited by the availability of food and suitable habitat. Species distribution studies considering the impact of
climate change on Eucalyptus varieties generally project parallel range declines in the varieties for which the koala has
adapted to use (Austin and Van Niel, 2011; Booth, 2013, 2017; Booth et al., 2015; Butt et al., 2013; Hughes, 2003; Hughes
et al., 1996; Matusick et al., 2013; Mok et al., 2012).

Machine learning and other simulation methods used to construct intelligent models have in recent years been used
successfully to produce Forest Fire Susceptibility Mapping for many regions (Dimuccio et al,, 2011; Jaafari et al., 2018;
Tehrany et al., 2021), enabling the investigation of the magnitude of changes in fire regimes due to climate change. In
this study, we use the well-known machine learning method Decision Tree (DT) to generate fire susceptibility maps
taking vegetation (and other factors) into account. We aim to (i) generate fire susceptibility maps for the present and
2070 for the entire country, and (ii) identify the proportion of koala habitat that is highly susceptible to fire now and
under future climate change. We hypothesize that fire susceptibility will display a notable increase due to Anthropogenic
climate change across vegetation types and in koala habitats specifically, possibly leading to a substantial decline in koala
populations.

2. Methods
2.1. Koala browse species

There is a wide variety of Eucalyptus species that koalas may browse, and their selection depends on factors such as
habitat and the availability of food sources. For this study, we compiled a comprehensive list of 60 koala browse species
from diverse sources, including a literature review and the research conducted by Shabani et al. (2019).

2.2. Conditioning factors

As shown in Fig. 1 (methodology flowchart), wildfire susceptibility was modelled for current and 2070 for the entire
country. All the conditioning factors (altitude, aspect, distance from the river, distance from the road, forest type, geology,
LULC, NDVI, slope, soil, and wind speed) between the present and 2070 were consistent over the time except temperature,
rainfall and koala food source for which the projections by 2070 were available. We further note that at present, and likely
in 2070, there is no koala food source in Northern Territory and koalas are currently only found in Queensland, New South
Wales, Victoria, South Australia, and the Australian Capital Territory).

2.3. Data

A wildfire dataset is crucial for assessing model susceptibility. All natural hazard susceptibility analyses (Pradhan,
2010) require two groups of data, namely, inventory factors (independent) and conditioning factors (dependent) (Jebur
et al.,, 2014; Tehrany et al., 2019c). Inventory factors represent the locality of the occurrence; (Tshering et al., 2020; You
et al., 2017) conditioning factors represent proxies for the intensity and speed at which the fire spreads (Pourtaghi et al.,
2016). In this study, fire inventory maps for each state and the conditioning factors were derived from different sources
(Table 1). Further, while koalas are not found throughout Australia, several of the tree species that are edible for koalas
can be found in the eastern, northeastern, and southwestern regions of the country. We therefore modelled current and
future distributions of koala forests in all Australian states and territories, including those not currently occupied by koala
populations, as this allows us to identify opportunities for future ex-situ conservation/translocation projects.

2.4. Inventory data

We used 70% of the total wildfire events for model training and the remaining 30% for testing/validation purposes.
Hence, in this study 700 fire events were used to train the model, and the remaining 300 events were chosen for testing.
Further, we generated random sample points of non-fire locations and similarly divided them into the training (70%) and
testing samples (30%) for further validation purposes.

2.5. Conditioning factors

No standardized framework exists for constructing a dataset of conditioning factors, and in many cases are limited
to the data available, which may be sourced from previous studies, and the use of expert knowledge (Eugenio et al.,
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Fig. 1. Methodology flowchart and conditioning factors of this study.

2016; Pourghasemi et al., 2016). We established a dataset of 14 conditioning factors, namely, elevation, slope, aspect,
wind speed, temperature, road distance, river distance, rainfall, NDVI, the identity of the 60 koala-browse tree species,
geology, soil, forest types, and LULC (Table 1). These factors were used in conjunction with a GIS to produce the maps
(see supplementary file).

The topographic factors were included on the basis of their influence on climatic factors that impact on fire occurrence
(Jaiswal et al., 2002). Increasing landscape elevation from gullies leads to higher temperatures due to greater exposure
to sunlight on hill crests, and thus, increased proneness to fire. The greater exposure and reduced physical protection
increase wind speeds, thus enhancing the rate of spread. Greater slope increases the fire frontal radiation and convection
causing fires to spread more rapidly uphill and move slower downhill. The speed of advance of a fire front doubles
per 10-degree slope increase, implying that the advance up a 20-degree slope is four times quicker than over level
ground. In general, the forests were mainly located on steep slopes, thus, increasing the risk of fire. Aspect refers to the
orientation of the slope face, which impacts soil moisture and temperature levels, as well as exposure to solar radiation.
The topographical variables were calculated from LiDAR data obtained from a Digital Elevation Model with 5-metre spatial
resolution (Table 1).

The most influential climate variables that impact on fire occurrence are precipitation, temperature, and wind. Higher
temperatures reduce the moisture content of the ground level organic matter, particularly dry grasses, decomposing
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Table 1
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Conditioning & inventory factors and data sources.

Conditioning &
inventory factors

Source

Elevation Light detection and ranging (LiDAR) data from Australia
Government/Geoscience Australia:
https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search%23/metadata/89644

Slope Derived from DEM

Aspect Derived from DEM

Wind The Global Wind Atlas
https://globalwindatlas.info/

Temperature (Hijmans et al., 2004)

Distance to roads

Australian government, Geoscience Australia website:
http://www.ga.gov.au/data-pubs/maps

Distance to river

Australian government, Geoscience Australia website:
https://www.ga.gov.au/scientific- topics/national-location-information/national-
surface-water-information

Rainfall

(Hijmans et al., 2004)

NDVI

NDVI factor has been used to measure the vegetation cover. It was prepared
using Landsat-8 images according to:
where NIR and R values are the infrared and red bands, respectively.

60 species browsed
by koala for the
present and 2070

Refer to (Shabani et al., 2019):

Callitris endlicheri, Casuarina torulosa, Eucalyptus agglomerate, E. albens, E.
amplifolia, E. bancroftii, E. baueriana, E. bicostata, E. biturbinata, E. blakelyi, E.
bosistoana, E. bridgesiana, E. camphora, E. chloroclada, E. cinerea, E. conica, E.
consideniana, E. coolabah, E. crebra, E. cypellocarpa, E. dalrympleana, E. dealbata,
E. dwyeri, E. globoidea, E. globulus, E. goniocalyx, E. largiflorens, E. longifolia, E.
macrorhyncha, E. maidenii, E. mannifera, E. melliodora, E. macrocarpa, E.
microcorys, E. moluccana, E. nicholii, E. nortonii, E. nova-anglica, E. oblonga, E.
ovata, E. parramattensis, E. pauciflora, E. pilligaensis, E. polyanthemos, E.
populnea, E. prava, E. propinqua, E. pseudoglobulus, E. punctata, E. quadrangulate,
E. radiata, E. robusta, E. rossii, E. rubida, E. scias, E. sclerophylla, E. sieberi, E.
tereticornis, E. vicina, and E. viminalis

Geology Australian government, Geoscience Australia website:
http://www.ga.gov.au/data-pubs/maps
Soil Australian Soil Resource Information System Website:

https://www.asris.csiro.au/themes/Atlas.html

Forest types

https://www.agriculture.gov.au/abares/forestsaustralia

LULC

Australian government website:
https://www.agriculture.gov.au/abares/aclump/land-use/data-download

Wildfires extent
(inventory factor)

Australian Government Department of Agriculture, Water, and the
Environment Website:
https://www.awe.gov.au/abares/forestsaustralia/forest-data-maps-and-
tools/spatial-data/forest-fire
http://www.environment.gov.au/fed/catalog/main/home.page
Australian Government Website:
https://data.gov.au/data/dataset/2020-operational-bushfire-boundaries
South Australia Government Data Directory:
https://data.sa.gov.au/data/dataset/last-fire

leaves and needles, as well as emerging saplings, enhancing susceptibility (Vadrevu et al., 2006). Much of Australia
experiences drought conditions, sometimes enduring for years, facilitating the spread of fires. Bureau of Meteorology
data indicates that the average warming of the continent has slightly exceeded one degree Celsius since 1910, with the
greatest proportion of the increase since 1950. With higher temperatures, fuel loads exist closer to the combustible point
and burn faster following ignition.

Wind speeds accelerate the spread of fire by providing more oxygen and pushing the burning front to ignite unburned
fuel. Strong winds also contribute to spotting, where burning embers are carried by the wind, causing fires to ignite
areas beyond the fire front. These embers can travel up to 30 km downwind. Fires spread slower when wind speeds are
below 12-15 km/h. Dry fuels burn faster than damp fuels, so the time since the last rainfall and the amount of rain are
crucial factors in assessing susceptibility to fire. Drought or moisture deficit can indicate extreme fire susceptibility. Lower
humidity levels increase the likelihood of fire, as vegetation becomes more combustible due to the release of moisture
content.

Roads and rivers, and the clearing of firebreaks, can act as physical barriers to fires spreading, areas near close to large
bodies of water bodies have a lower susceptibility as surrounding moisture levels will be higher. ArcGIS Pro 3.1. was used
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to generate proximity maps of roads and rivers. NDVI values representing vegetation characteristics were downloaded
from the website of the Bureau of Meteorology. The monthly NDVI values are derived from the series of cloud-free
afternoon observations through the month made by the NOAA satellite.

Presence/absence data for the 60 main tree species browsed by koala (Table S1, also see McAlpine et al. (2023))
were obtained from species distribution modelling results of every single species. The results were modelled using
current occurrences and selected climatic and non-climatic variables. Model validation was performed with the current
koala-browse species and koala occurrence records (Shabani et al., 2019). These records were derived from current
distribution records and outputs of an ensemble modelling study that incorporated the CCSM4 and MIROC-ESM GCMs
and four modelling techniques (generalized linear model, maximum entropy, generalized boosting model, and surface-
range envelope) applied to the 60 species for the present day, and 2070 were investigated and results are shown in Fig.
S1. Shabani et al. (2019). These results are shown in Fig S1; dark green represents most suitable habitat, light green least
suitable, and white unsuitability. Table S1 includes all modelled (Shabani et al., 2019) 60 species browsed by koala in the
present study.

Soil and geology type were also included in the analysis. A soil map (scale 1:250,000) and geology map (scale 1:100,000)
were obtained from the national Geoscience Australia website. Trees, shrubs, and flammable forest vegetation types
occurring in fire-prone areas enhance the risk associated with ignition (Sari, 2021). Fuel load quantifies the layers of
fallen bark, and other organic litter that characterizes the landscape. The greater and drier the fuel load, the more intense
the fire. Loosely compacted fuel layers have greater aeration and, hence, burn faster than more densely compacted and
scattered decomposing vegetation. Smaller fuel elements such as twigs ignite more quickly, particularly when dry and
less densely layered and in the fire front path. Larger fuels, such as tree trunks, often continue to burn long after the more
easily combustible fuels and the passing of the fire front. Eucalypt tree oils promote combustion. LULC constitutes a key
factor influencing rate of occurrence of wildfires (Sari, 2021).

Regarding the data preparation, vector factors such as geology and LULC were converted to raster format. An Euclidean
Function was applied to calculate distance factors (road and river). Due to the original spatial resolution of koala food maps
(300 x 300 m), other factors were also summarized at the same pixel size. GIS-related analysis was performed in ArcGIS
Pro 3.1 (see Fig. 2).

2.6. Decision tree (DT)

DT is a machine learning algorithm (Bhaduri et al., 2008; Murthy, 1998) regularly used in predictive modelling
(Nefeslioglu et al., 2010) and is considered less complicated than other supervised learning methods such as ANN (Saito
et al,, 2009). The DT method has a top-down structure meaning that factors located at the top of a tree will exert a
greater impact on wildfire occurrence than those in the lower order. Initially, DT classifies the conditioning factors of
the dataset into homogeneous hierarchically-structures trees based on levels of susceptibility (Witten and Frank, 2002).
The predictive efficiency of the output is dependent on the preciseness of the analysis of the set of input variables
used in the generation of Decision rules (Myles et al., 2004). The modelled relationships between variables require no
strict assumptions regarding data distribution (Mingers, 1989) and the format of data format may be nominal or scalar
(Mathuria, 2013).

In simple terms, DT evaluates the comparative importance of the relationship of the dependent variable with each
conditioning factor. Trees are constructed downwards from a root node, to a set of internal nodes, and finally to the set
of terminal nodes. A binary (yes/no; positive/negative) decision occurs at each node that separates the classes. At each
level of the tree, each binary decision produces a further two potential binary options on the following next level. On
reaching the terminal node level conditioning factors with a significant impact on fires are reserved for processing, and
the remainder rejected.

Numerous processing approach options exist in DT Modelling, including Chi-squared Automatic Interaction Detection
(CHAID), Exhaustive CHAID, Classification and Regression Trees (CRT), Quick, Unbiased, and Efficient Statistic Tree (QUEST)
(Kadavi et al., 2019) CHAID was used in this study at each step where the conditioning factor manifesting the most
significant relationship with the dependent variable was chosen (Althuwaynee et al., 2014). Where no class of conditioning
factor indicated a significant relationship to the dependent variable, the classes were merged. CHAID has become the
method of choice the modelling of natural hazard susceptibility, due to its processing speed and its efficiency in multi-
way node splitting (Dou et al., 2019). The CHAID algorithm was implemented in IBM SPSS Statistics V.27, and the selection
of criteria was based on earlier studies. Splitting and merging categories requires values set between 0 and 1. The value
of 0.9 was chosen for splitting and 0.001 for merging after a length trial and error process.

2.7. Accuracy assessment

The susceptibility maps were validated calculating the Area Under the Curve (AUC). AUC rates model quality in
predicting target occurrences and non-occurrences, hence, susceptible to fire or not, at any point in the modelled area
(Arabameri et al., 2020). AUC validation is frequently chosen for natural hazard models, based on its comprehensiveness
and visually interpretable validation method (Tehrany et al., 2019c; Tshering et al., 2020; Yilmaz, 2009). Commencing
by arranging the susceptibility index in descending order, it classifies the index into 100 categories represented on the
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Fig. 2. Conditioning factors dataset at the continental scale. The 14 conditioning factors are elevation, slope, aspect, wind, temperature, road distance,
river distance, rainfall, NDVI, 60 koala-browse species, geology, soil, forest types, and LULC. The wildfire inventory factors were obtained from the
national Department of Agriculture, Water, and the Environment and other sources. Detailed results and maps of the state-based analysis are reported
in the supplementary file.

y-axis, cumulative 1% intervals represented on the x-axis. By overlaying the fire inventory on the susceptibility index,
the presence of training and testing fire points in each class can be evaluated, and the rates of prediction and success
can be calculated (Tehrany et al., 2021). The closer the values are to 1 on the AUC 0-1 scale, the greater the accuracy of
the technique. The fire training and testing datasets showed how method made accurate predictions. In the Australian
continent analysis based on 1000 fire points, 700 events were reserved for training and 300 events for testing.

3. Results
3.1. Fire susceptibility index and DT tree structure

Modelling results at the continental scale under present time indicated that 14.9% of the entire country has a fire
susceptibility index of “very high” and “high” (areas shown in red and orange colours in Fig. 3 and S5). Further, the
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Fig. 3. Wildfire susceptibility index based on modelling at the continental scale and the location of koala-browse species for the present and projected
for 2070.

spatial analysis indicated that 39.59% of the area suitable for koala browse species currently have “very high” or “high”
fire susceptibility (Fig. 3). Results for 2070 indicated that 15.66% of the entire country would have a fire susceptibility
index of “very high” and “high” (Fig. 3 and S5), and that 44.61% of the areas suitable for koala browse species would
have “very high” and “high” fire susceptibility (Fig. 3). DT structure for the present at the continental scale identified the
presence of koala browse species, altitude, and land use-land cover (LULC) as the most influential factors affecting fire
susceptibility, while the most influential factors impacting wildfire distribution for 2070 were forest types, wind, presence
of koala browse species, rainfall, and altitude (Refer to SI). In most areas, the DT also identified a northerly aspect as part
of the most susceptible branch of DT, implying that the influence of this variable is considerably high (Refer to SI).

In each state and territory where koalas naturally inhabit, there has been an expansion in the extent of their habitat
categorized as possessing a “high” or “very high” susceptibility to fire (refer to SI for state-specific outcomes). The findings
reveal that within Queensland (QLD) and South Australia (SA), 65.24% and 89.11% of the entire koala habitat, respectively,
are projected to exhibit a “very high” or “high” rating of fire susceptibility.

4. Discussion

The primary aim of our study was to assess fire susceptibility in koala habitat now and in the future. Using the
dynamic Decision Tree machine learning algorithm, a series of fire susceptibility maps were generated (refer to SI).
Modelling results at the continental scale showed a general increase of fire susceptibility, with the proportion of Australia
experiencing “high” or “very high” fire susceptibility increasing from 14.9% now to 15.66% by 2070. Remarkably, 39.56%
of the total habitat of koalas are in areas identified as having fire susceptibility index of “very high” and “high” now, and
this percentage would likely increase to 44.61% by 2070. While a larger portion of the koala’s range is becoming highly
susceptible to fire, it does not automatically imply habitat loss for them. Koalas may still be able to survive in these
areas if: (1) their food sources can also withstand the fire-prone conditions, and (2) koalas can re-populate previously
burnt-out areas from neighbouring habitat — a task that is becoming more difficult due to habitat fragmentation and the
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increasingly large areas being burnt (Lunney et al., 2007, 2004, 2017; Matthews et al., 2007). However, koalas will walk
many kilometres to relocate after fire (Matthews et al., 2016).

The state-based modelling results (Refer to SI) showed that fire susceptibility of koala habitat increased more in QLD
and SA than in other states. By 2070, 65.24% and 89.11% of the total koala habitat (the main 60 koala-browse, eucalypt
forests and woodlands) in QLD and SA are located in areas projected to have high or very high fire susceptibility (Fig. 3,
also see SI). While many of the affected browse species have an inherent resilience to fire, the massive biogeographic
and demographic impact of widespread wildfires may leave ecosystems declining on a landscape-scale, increasing their
susceptibility to regeneration failure (Stevens-Rumann et al., 2018).

As yet, there is insufficient knowledge regarding the direct responses of forest species to megafires, with post-fire
assessments tending to rely on expert opinion (Legge et al., 2022) or extrapolating the extent of fire coverage regardless
of its severity/heat intensity (Ward et al., 2020). A forum of the Royal Zoological Society of NSW covered this theme with
original contributions (Dickman et al., 2022; Ensbey et al., 2023). Continued research on the impact of megafire and the
longer-term post-fire recovery is essential, given that cool, patchy burning may offer a tool for management in reducing
severity in certain forests (Hislop et al., 2020; Lydersen et al., 2017).

The predicted increase in susceptibility to fire in koala habitat, together with the declining area of koala-suitable habitat
(Shabani et al., 2019), will have a compounding impact on the historical trend that has led to their Red List status and
national classification as Vulnerable (Law et al., 2017). Fires of greater severity will likely reduce the quality of koala
habitats, increase fragmentation of habitats, and directly kill more koalas, invoking the genetic factors that end in the
extinctions of isolated groups of a species via the loss of diversity (i.e., the extinction vortex). Research indicates that
koala browsing of epicormic growth supports the recolonization of burned-out eucalypt forest and woodland around
18 months after the occurrence of a fire, (Matthews et al., 2016) but demographic data on koala population responses,
particularly in the longer-term, is lacking. Indeed, populations can still be depressed by 63% a decade after a fire event
(Legge et al., 2022).

We emphasize the importance of incorporating field validation as an integral component of habitat management.
Mitchell et al. (2021) suggested that utilizing layered datasets, each with specific attributes, rather than mapping
approaches that combine multiple habitat attributes into a single map, would offer greater flexibility and usefulness
to stakeholders. This approach would enable stakeholders to utilize individual layers or combine them as needed for
their specific requirements. Further, there are assumptions and limitations inherent in presence-only data, as well as in
modelled projections based on climatic factors and envelopes. These include mismatches of scale and resolution (Wiens
et al.,, 2009), dispersal barriers, novel biotic interactions, and limited documentation on projected natural disturbances
(Elith et al., 2011). Nonetheless, koala-browse species projections over multiple time periods on the continental-scale
offers a useful baseline for biogeographical interpretations and conservation application. According to our maps, Tasmania
shows a significant amount of suitable habitat, which is less prone to wildfires compared to the mainland. While this
opens up the possibility of translocating animals to the region, koalas have had a devastating impact in some areas they
have been introduced to (Kangaroo Island (Masters et al., 2004) and the species has been identified as a potential threat
to Tasmanian biodiversity (Department of Primary Industries Parks Water and Environment Tasmania Australia, 2011)).
Indeed, our findings demonstrating the suitability of Tasmania for koalas emphasize the potential risk posed by their
introduction to the region.

5. Conclusion

We investigated changes in the susceptibility of Australia’s vegetation to wildfire between the present and 2070. Our
results indicated a general increase in fire susceptibility across the country. Future fuel loads will reflect the impacts of
changing climate, biomass growth, fuel decay, and fire consumption of fuel. Projecting the dynamics of future fire is linked
to research on these factors. Through our study, we aimed to raise awareness among landscape managers regarding the
limitations of habitat maps and the risks associated with fire susceptibility. Our goal is for this increased awareness to
advance decision-making and habitat conservation of one of Australia’s most iconic and vulnerable species.
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