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ARTICLE INFO ABSTRACT

Keywords: Background and Motivations: Physiological signals, such as the Photoplethysmogram (PPG) collected through
TTR-GAN wearable devices, consistently encounter significant motion artifacts. Current signal processing techniques, and
1D'CyC1§(I;\IANS even state-of-the-art machine learning algorithms, frequently struggle to effectively restore the inherent bodily
3\1;:;1;365 signals amidst the array of randomly generated distortions. This often leads to the modification or even the

Blind PPG Restoration degradation of the underlying physiological information.

Wrist to Finger PPG Translation Methods: To enhance heart rate estimation from wrist PPG (WPPG) signals, this study introduces the Translation

Heart Rate Variability Through Restoration GAN (TTR-GAN). TTR-GAN comprises cascaded dual-stage 1D Cycle Generative Adver-
sarial Networks (1D-CycleGANs) constructed using Super-ONNs. In the first phase, corrupted wPPG waveforms
are blindly restored using a 1D-CycleGAN-based restoration framework. Subsequently, in the second phase, the
restored wPPG waveforms are translated into clean finger PPG (fPPG) signals through a 1D-CycleGAN-based
signal-to-signal translation or synthesis framework. Both the restorer and translator GANs undergo indepen-
dent evaluation using robust temporal, spectral, and clinical metrics.
Results: The application of the multipass restoration scheme to the wPPG signals resulted in significantly lower
entropy compared to the raw wPPGs, indicating reduced irregularity. Using the proposed PRTX metric to
evaluate the translational ability of the multichannel translator CycleGAN, we achieved a substantial improve-
ment of 35.88% in wrist-to-finger PPG translation. The correlation between the pulse rate and pulse rate vari-
ations estimated from the generated fPPG signals and the heart rate and heart rate variability readings from the
ground truth ECG improved by approximately 10.4% and 14.7%, respectively, when compared to the raw wPPG
signals.
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Conclusion: The proposed TTR-GAN can be implemented in wearable devices to obtain reliable real-time car-
diovascular data during daily activities.

1. Introduction

Plethysmography is a medical technique used to measure changes in
volume within an organ or the entire body. The term “Plethysmography”
is derived from the Greek word “plethysmos,” which means increasing,
enlarging, or becoming full, among other meanings (Plethysmography:
Purpose, Procedure & Preparation, 2022). Photoplethysmography (PPG)
is an optically obtained plethysmogram, primarily collected from a
pulse-oximeter device. It is used to quantify the perfusion of blood to the
dermis and subcutaneous tissue of the skin. While PPG is one of the most
easily recordable physiological signals, it can be employed to estimate
various vital body parameters such as Heart Rate (HR) (Reiss,
Indlekofer, Schmidt, & Van Laerhoven, 2019), Respiratory Rate
(Pimentel, 2017; Chowdhury, 2022), Blood Oxygen Saturation (SpO2)
(Banik, Hossain, Kwon, Kim, & Kim, 2020), and Blood Pressure (BP)
(Mahmud, 2022; Chowdhury, 2020). So, among the four vital body
parameters, which include body temperature, heart rate, respiration
rate, and blood pressure (Vital Signs, 2022), three can be robustly esti-
mated from PPG signals (Reiss et al., 2019; Pimentel, Aug. 2017;
Chowdhury, 2022; Banik et al., 2020; Mahmud, 2022; Chowdhury,
2020). Due to its non-invasiveness, ease of acquisition, direct or indirect
relation to various vital body parameters, and the ability to be combined
with other physiological signals for creating robust solutions (Mahmud,
2022; Mahmud, 2023), there have been several recent studies that uti-
lized PPG and its derivatives to develop various healthcare tools and
applications (Mahmud, 2023; Shabaan, et al., 2020; Liu et al., 2018;
Yang et al., Nov. 2019; Alonzo and Co, 2018; Han, 2020; Spachos et al.,
2011; Resit Kavsaoglu et al., 2014). PPG signals have been instrumental
in detecting and predicting various cardiovascular anomalies alongside
ECG signals (Mahmud, 2023; Shabaan, et al., 2020; Liu et al., 2018).
When combined, PPG and ECG signals, or their features, have contrib-
uted to the development of robust machine learning tools for estimating
cardiovascular diseases (CVDs) such as Heart Rate Variability (HRV)
analysis (Liu, Fang, Chen, Li, & Li, 2018), Atrial Fibrillation (AF or A-
Fib) detection (Yang et al., 2019), Ventricular Fibrillation (V-Fib)
detection (Alonzo & Co, 2018), and Premature Atrial and Ventricular
Contraction Detection (Han, 2020), among others. In some studies, PPG
has shown promise for Biometric Identification as an alternative to ECG
(Spachos, Gao, & Hatzinakos, 2011; Resit Kavsaoglu, Polat, & Recep
Bozkurt, 2014).

PPG is primarily obtained from fingertips using pulse-oximeter-
based sensors in both clinical and non-clinical settings. The shape of
PPG signals can vary due to the contact pressure applied to the skin
during data collection (Scardulla, D’Acquisto, Colombarini, Hu, Pasta, &
Bellavia, 2022). Besides fingers, PPG can also be acquired from other
body locations, such as the wrist (Lee, Chung, & Lee, 2019), arm (Zhang,
Zhou, & Zeng, 2017), forehead (Wan, Chen, & Yang, 2022), and other
areas like the toe or ankle (Ubbink, 2004; Jonsson, Laurent, Eneling,
Skau, & Lindberg, 2005), chest (Marzorati, Bovio, Salito, Mainardi, &
Cerveri, 2020), and so on. The shape of PPG signals may also differ
across different acquisition locations on the body (Hartmann et al.,
2019; Chan, 2019; Hartmann et al., 2019); even when collected from the
same subject within the same timeframe. Other factors affecting PPG
shape, such as patient age (Hartmann et al., 2019; Yousef, Reaz, & Ali,
2022), blood pressure level (Martinez, Howard, Abbott, Lim, Ward, &
Elgendi, 2022), or blood glucose level (BGL) (Golap, Raju, Haque, &
Hashem, 2021), change very slowly and remain stable for a subject over
a long duration, thus seldom impacting real-time setups. However,
during real-time data acquisition, replicating studies from PPG acquired
from different parts of the body (e.g., finger vs. wrist) presents

challenges, as some PPG features change along with their shape. Hart-
mann et al. (2019) reported that measurement sites significantly varied
mean amplitude, peak point position, notch location, and reflective
index among PPG signals acquired from six different body locations
(finger, upper wrist, lower wrist, arm, earlobe, and forehead). Interest-
ingly, PPG acquired from the lower wrist was found to be more similar to
the most abundant finger PPG (fPPG) than the PPG acquired from the
upper wrist. Moreover, PPG collected from different regions of the body
exhibits phase shifts due to variations in Pulse Transit Time (PTT)
resulting from the blood flowing from the aortic valve to the specific
location, which was minimized in these studies during experimentation:
(Hartmann et al., 2019; Hartmann et al., 2019). Therefore, for vital body
parameter estimation, transferring knowledge learned from PPG
collected at one physiological location to another is challenging but
essential. Nevertheless, finger PPG is considered the gold standard for
clinical data acquisition, and most of the large and diverse clinical-grade
waveform databases (e.g., MIMIC-III (“MIMIC-III Waveform Database
v1.0", 2022; Johnson, 2016)) include fPPG along with other physio-
logical signals such as ECG. However, it is not clinically acceptable to
transfer knowledge acquired from training an algorithm on a dataset
containing clinical grade fPPG to PPG acquired from another body
location using a non-clinical-grade device (e.g., wPPG from wearables)
for estimating body parameters due to feature variations and cross-
domain challenges. Furthermore, the measured Pulse Rate Variability
(PRV) from wPPG signals is less correlated with the ground truth HRV
measured from ECG signals than the PRV measured from fPPG signals, as
reported by Nardelli, Vanello, Galperti, Greco, & Scilingo, 2020. Pal-
iakaité (2021) through their experiments showed that wPPG is more
erroneous than fPPG for cuff-less, continuous blood pressure estimation.
On the other hand, Rajala, Lindholm, and Taipalus (2018) reported a
stronger correlation between fPPG and Pulse Wave Velocity (PWV) than
wPPG. Beh and Wu (2022) demonstrated that simultaneously collected
ECG is the most efficient in classifying the level of mental workload
among a group of controlled subjects, closely followed by fPPG, then
wPPG. Apart from the presence of severe motion artifacts in wPPG, one
primary reason behind these outcomes is the loss of intrinsic features in
wPPG compared to fPPG or earlobe PPG, partially due to poor arterial
blood supply in those organs (Hartmann et al., 2019). In an attempt to
minimize feature loss, Tsai (2021) in their extensive study reintroduced
missing features in distorted PPG (finger and wrist), the first derivative
of PPG (FDPPG, VPG, or PPG’) and the second derivative of PPG
(SDPPG, APG, or PPG’’) by setting manual thresholds on the third de-
rivative of PPG (TDPPG or PPG’”’) based on the feature sets of uncor-
rupted PPG. They disassembled the wPPG and fPPG signals into their
component waves or harmonics and showed that the variation in their
shapes and features is primarily due to them sharing the same harmonic
content (component frequencies) but with varying amplitudes. How-
ever, this scheme was not entirely successful due to the existence of
missing features even in TDPPG to some extent, which could potentially
be resolved using higher-order derivatives. Challenges of this nature can
be readily addressed through deep learning-based approaches. A study
conducted by the Stanford Machine Learning Group led by Andrew Ng
(Voisin, Shen, Aliamiri, Avati, Hannun, & Ng, 2022) demonstrated that
during training for AF episode detection from ambulatory PPG, the in-
termediate kernels in their deep Convolutional Neural Network (CNN)
network automatically generated derivatives of PPG while learning.
Hence, efficient deep learning approaches, such as Generative Adver-
sarial Networks (GANs) (Goodfellow, 2014), should be capable of
effortlessly restoring missing features in corrupted PPG signals. In
addition to conventional GANs (Goodfellow, 2014), there exist purpose-



S. Mahmud et al.

built advanced and hybrid versions of GANs, like DCGAN (Radford,
Metz, & Chintala, 2015), StyleGAN (Karras, Laine, & Aila, 2021),
Pix2Pix (Lata, Dave, & Nishanth, 2019), DiscoGAN (Kim, Cha, Kim, Lee,
& Kim, 2017), LSGAN (Mao, Li, Xie, Lau, Wang, & Smolley, 2017), and
CycleGAN (Zhu, Park, Isola, & Efros, 2017), which can be applied for
generative adversarial learning, as is the focus of this application.
Among these, Cycle Generative Adversarial Networks, or CycleGANS,
possess the ability to maintain consistency while learning to transform
between images or signals of different modalities. This consistency
serves as a crucial rationale behind the interest in CycleGANSs for various
clinical applications (Armanious et al., 2019). Therefore, in this study,
our objective is to utilize CycleGANS to restore these harmonic compo-
nents and synthesize fPPG from the corresponding wPPG.

As discussed earlier, estimating HR, HRV, and other bodily param-
eters from PPG signals and making clinical decisions is more challenging
and prone to error compared to directly acquiring from ECG. It becomes
even more challenging when using wPPGs due to the inherent feature
loss even in clean wPPG signals and their increased susceptibility to
motion artifacts generated by body movements. In recent years, wear-
able wPPG has been widely employed to estimate the heart rate of
subjects in real-time during their daily activities (Thomas and Gopi,
2019; Biswas, 2019; Chowdhury et al., 2018; Jarchi and Casson, 2017;
Zhang et al., 2015; Burrello, 2021; Roy and Gupta, 2020; Fyjita et al.,
2018; Rocha, Aug. 2020; Panwar et al., 2020; Song et al., 2021; Yen
et al.,, 2022; Yen et al., 2022; Risso, 2021; Ismail et al., 2022). In
response to the challenges encountered during data acquisition, feature
extraction, and body parameter estimation from wearable devices,
several methods have been proposed in these studies. While most of the
current research employs various signal processing techniques, the uti-
lization of deep machine learning networks in this field remains rela-
tively limited. CorNet (Biswas, 2019), along with its more efficient
version Binary-CorNet (Rocha, 2020), used a combination of simple
CNN and Long Short-Term Memory (LSTM) blocks to estimate HR and
Biometric Identification from ambulatory PPG. MoDTRAP (Roy &
Gupta, 2020) implemented multiple signal processing techniques in
conjunction with LSTM and Multilayer Perceptron (MLP) networks for
HR estimation from motion-corrupted PPG data. PP-Net, proposed by
Panwar, Gautam, Biswas, & Acharyya, 2020, also utilizes a combination
of CNN and LSTM to estimate HR and BP from fPPG data collected from
the MIMIC-III dataset (MIMIC-III Waveform Database v1.0, 2022;
Johnson, 2016). Song, Nam, & Kim, 2021 introduced the NAS-PPG
framework for HR estimation from wPPG by combining multiple data-
sets through neural network search. Yen, Chang, and Liao (2022) and
Yen, Liao, and Huang (2022) employed CNN-LSTM networks for the
estimation of HR, BP, and other physiological parameters from fPPG
signals collected from MIMIC-III. Risso, 2021 presented MorphNet for
HR estimation from motion-corrupted wPPG data from the PPG-DaLiA
dataset (Reiss et al., 2019). In a very recent study, Ismail, Siddiqi, &
Akram, 2022 proposed a Convolutional-Recurrent Regressor model for
HR estimation from wPPG signals while correcting motion artifacts
using corresponding 3-axis accelerometer (ACC) signals. However, to
the best of our knowledge, none of the studies in the current literature
have attempted to synthesize fPPG from wPPG for body parameter
estimation. This is primarily due to two main challenges: the absence of
a dataset containing corresponding fPPG and wPPG for evaluating
signal-to-signal translation and the lack of corresponding ground truth
ECG data for validating the estimated body parameters. Additionally,
the challenge of estimating clean finger PPG directly from corrupted
wrist PPG further complicates this task.

CycleGANs used in this study have primarily been applied in two
types of applications: image restoration (Wu et al., 2019; Wang et al.,
2022; Jia et al., 2019; Peng et al., 2020) and image-to-image translation
or transformation, including domain adaptation and synthetic image
generation (Dai and Tang,2022; Li et al, 2019; Tang et al;
Wang,2019SPS:id::bib67). There have been some preliminary studies
that employed CycleGANs to correct motion artifacts from 1D
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physiological signals (predominantly wrist PPG) using wearable devices
(Long, Kim, Lee, & Chung, 2022; Zargari, Aqajari, Khodabandeh, Rah-
mani, & Kurdahi, 2022). In these studies, the authors converted the
clean and corrupted PPG signals into 2D spectrograms during training
and reverted them to 1D signals during the evaluation phase. In an early
study, Lin, Zhang, & Liu, 2022 successfully removed Ballistocardiogram
(BCG) artifacts from simultaneous EEG-fMRI (Electroencephalography
and functional magnetic resonance imaging) signals using a 1D-Cycle-
GAN. Kiranyaz et al. in their pioneering study introduced a 1D Opera-
tional CycleGAN-based blind restoration scheme which effectively
restored corrupted Holter ECGs regardless of the artifacts and out-
performed CNN-based CycleGANs while utilizing five times fewer
network parameters. In a more recent study, Mahmud et al. (2024)
proposed a supervised, attention-guided operational CycleGAN (AGO--
CycleGAN) method to restore motion-corrupted EEG signals. CycleGANs
have also been applied to signal-to-signal translation studies, such as the
work in (Seo, Yoon, Joo, & Nam, 2022), which generated 12-lead ECG
traces from single-channel ECG signals using CycleGANs. Mohebbian
etal. (2022) and Basak (2024) reconstructed pure fetal ECG signals from
a mixture of mother and fetal ECGs using CycleGANSs. Several studies
have attempted to generate synthetic EEG signals for data augmentation
and other purposes (Hartmann et al., 2022; Xu, 2021; Luo and Lu, 2018;
Jiao et al., 2020). More recently, some studies have focused on using
cascaded CycleGANSs to address challenging problems spanning multiple
domains. The R2C-GAN framework, proposed by Ahishali, Degerli,
Kiranyaz, Hamid, Mazhar, & Gabbouj, 2022 employed 2D-CycleGANSs to
blindly restore noisy X-ray images before COVID-19 classification. In
contrast, Kanti Podder (2023) introduced a 1D-CycleGAN-based
approach to restoring carotid artery flow velocity (cbfv) waveforms,
enhancing the performance of a patient classification model. Sayem
et al. (2023) in a very recent study proposed a 1D-CycleGAN-based
wPPG restoration framework to enhance AF-detection (i.e., classifica-
tion) from wearables. To the best of our knowledge, no prior study in the
1D domain has explored the cascading of signal restoration and
signal-to-signal translation CycleGANs to address any problem, as
explored in this study.

In light of the aforementioned challenges associated with extracting
physiological parameters from wearable wPPG, this study introduces the
Translation Through Restoration (TTR-GAN, in short), a dual-stage
framework based on 1D-CycleGANs, designed for robustly estimating
vital body parameters from wrist-worn wearable devices. As illustrated
in Fig. 1, the TTR-GAN primarily comprises two cascading 1D-Cycle-
GAN-based sub-systems. The primary objective of the CycleGANs in
the first stage is to restore corrupted wPPG signals into clean wPPG
signals. This restoration process significantly enhances the overall signal
quality by eliminating artifacts that are challenging to remove using
conventional signal processing techniques. However, while the clean
wPPG signals exhibit improved quality, they may still lack some of the
diagnostic or clinical information present in clinical grade fPPG wave-
forms. To address this, CycleGAN in the second stage transfers the
domain of the restored wPPG signals to clinical grade fPPG signals
through translation. The PR and PRV extracted from the generated fPPG
signals closely correlate with HR and HRV extracted from clinical-grade
ECG signals, even more than the restored wPPG signals. The primary
contributions of this study are summarized as follows:

o In this pioneering study, clinical-grade fPPG signals are synthesized
from restored motion corrupted wPPG data obtained using a wrist-
watch through the proposed TTR-GAN to improve the precision of
the estimated physiological information such as heart rate, heart rate
variability, etc.

e To the best of our knowledge, this study is the first to blindly restore
PPG signals and their derivatives using 1D-CycleGANs.

e This study represents the first instance where 1D-CycleGANs have
been cascaded for both signal restoration and signal-to-signal
synthesis.
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(a) Blind Wrist PPG Restoration Scheme
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Fig. 1. The proposed TTR-GAN framework (3-channel approach) operates in two phases: (a) Initially, the corrupted wPPGs and their first two derivatives are
independently and blindly restored using the Restoration or Restorer GANs. (b) In the second stage, the restored wPPG data is utilized to translate to fPPG waveforms
through the 3-channel Translator GAN. In each stage, the signal restoration or translation performance of the 1D-CycleGANSs is assessed both temporally and
spectrally. Finally, we conducted a clinical evaluation of the generated fPPGs in comparison to the input raw wPPGs against ground truth ECGs.

e To the best of our knowledge, this study is the first to employ Super
Generative Neuron-based Operational Neural Networks (Super-
ONN5) in a 1D application.

e For the first time, state-of-the-art time-series entropy measurement
techniques have been used to quantitatively evaluate the signal
restoration performance of the Restoration GANs. We have intro-
duced the novel PRTX metric to reliably quantify the performance of
the Translator GAN in synthesizing fPPG signals from the phase-
shifted wPPG waveforms.

The remainder of the paper is organized as follows: In Section 2, we
delve into the materials and methods employed in this study, providing a
comprehensive overview of the theoretical foundations of Super
Generative Neuron based Operational Neural Networks (Super-ONNs)
and the architectures of the 1D- CycleGANs used for wPPG restoration
and wPPG to fPPG translation. Section 3 includes a concise account of
the dataset employed in this study, data preparation techniques,
experimental configurations, and an evaluation of the proposed TTR-
GAN framework’s quantitative and qualitative performance. Lastly, in
Section 4, we present a succinct conclusion.

2. Materials and methods

In this section, we first review the evolution of non-localized kernel-
based 1D Super Generative Neuron Operational Neural Networks (1D-
Super-ONNSs) in comparison to Convolutional Neural Networks (CNNs),
ONNs, and Self-ONNs. Following that, we provide an overview of the
general structure and components of the proposed TTR-GAN frame-
work, along with an explanation of the evaluation strategies.

2.1. 1D-Super-ONNs: 1D-Self-ONNs infused with super neurons

Conventional CNNs utilize only linear convolutional operators for

feature propagation through their neurons and layers. The output of the
k™ neuron in the I layer of a 1D-CNN can be expressed as Eq. (1) (Li
et al.). In this case, for the sake of simplicity, a convolutional operation
with unit stride and zero padding was considered.

Ni-y

1 _ gl !
X, = b+ E X
i=0

@

where b}, is the bias associated with the neuron and x/, is the [ layer’s k'
neuron output, which can be further expressed as Eq. (2),

k—1
xi(m) = ConviD(wa, Y ™') =Y wh(r)y ™ (m+ 1) (2)
=0

where w), represents the weight of the kernel connecting the i neuron
of the (I — 1) layer to the k™ neuron of the I layer, y:! represents the

1- 1)”’ layer’s i neuron output, and ‘m’ and ‘r’ are convolutional op-
erators. The convolution operation for CNNs is depicted in Fig. 2 (a). In
contrast to CNNs, Operational Neural Networks (ONNSs) (Kiranyaz, Ince,
losifidis, & Gabbouj, 2020) are more generalized as they can possess
non-linear convolutional operators. Based on the generalized operator
formula for ONNs (Eq. (3)), it can be realized that in the case of ONNs,
every single neuron can be assigned unique nodal (y) and pool (P) op-
erators. Due to this flexibility, ONNs gain the ability to incorporate non-
linear transformations suitable for a particular set of problems. The
operator formula for ONNs (Eq. (3)) can be visualized in Fig. 2 (b).
k—1

X (m) = PL(wic (Wi (r) 5 m 1) ) 2,

Even with their heterogeneous nature, conventional ONNs are often
not suitable for general applications or cannot reach their full potential
due to their exponentially increasing computational overhead in pro-
portion to the network complexity, occurring due to their search for the

3
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Fig. 2. A depiction of the 1D nodal operations with the 1D kernels of the neurons at layer 1 for (a) CNN, (b) ONN, and (c) Self-ONN (Kiranyaz et al., 2021).

optimal operator for each neuron. On the contrary, handcrafting a
certain set of features for each problem will greatly limit the flexibility
and generality of the ONNS. It is also not always possible to express the
nodal operator for each neuron in terms of common mathematical
functions. To solve this problem, Kiranyaz, Malik, Abdallah, Ince, &
losifidis, 2021 proposed Self-Generative ONNSs, or simply Self-ONNs
which use Taylor Series approximation near the origin (a = 0) (i.e.,
The Maclaurin Series) for the non-linear transformation of each gener-
ative neuron, thus allowing any nodal operator function to be formed
during training without the need o*f any operator set library or a prior
search process. For this reason, Self-ONN-based models can reach an
even higher level of diversity and flexibility than static ONNs. Now, as
derived in (Kiranyaz et al., 2021; Malik et al., 2021; Malik et al.), the
contribution of the i neuron in generating the feature map x}, from the

(1-1)"layer to the I'* layer of a Self-ONN model can be expressed by Eq.

4,

bias =0

FX XX XTI TTT XYY TTT XTTTYYIYT TTTITIITIYY]

m+1

m-1

yhem) xH1(m)

Fig. 3. A Localized (a) vs. non-localized kernel operations (b, c) to create the pixel, x/*!(m), from the output maps of the previous layer neurons; (b) Randomly

as

as

yLm)  xH(m)
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bias € Z[+4] i

— K—1 Q .
xlm) =3 > vl (WZEQ) (r), v (m+ 1) )
=0 g=1
K—1 Q ] 0 .
= Z wil (r.q) O (m+ r))q = Z ConvlD (wi;cQ), (yﬁ“)" )
r=0 g¢=1 g=1

4

where wl’.,((Q) is the K x Q dimensional kernel matrix between the ith

neuron from the (I —1)™ layer to the k™ neuron at the I** layer. This
operation has been illustrated in Fig. 2 (c). Here, the hyperparameter Q
can be tweaked to control the degree of Taylor series approximation

while wll.,(CQ) is the learnable kernel, unlike CNNs and ONNs. Finally, the
output of a single neuron can be formulated as Eq. (5),

Ny

xh=bl + fok 5)
=0

Mentionable that, with the Q = 1 setting, a Self-ONN acts like a CNN as
there is no non-linearity in the first term of the Taylor Series

(c)

bias € R

jesccsccsgmmmeccsccsay
e
K
i
H

m+1

jesscsscsscy

m-1

R
—~

Il

|
w
I

yhm)  xH(m)

localized kernels within a spatial bias range of |I'| = 4 are shown; (¢) The optimized locations of each kernel during a particular iteration of backward propagation
training are illustrated.
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approximation.

Nevertheless, Self-ONN like its predecessors (CNN, ONN) contains
localized kernel connections between layers. As shown in Fig. 3 (a), for a
certain neuron located at a point ‘m’ at the current layer of a 1D-Self-
ONN, all linked kernels in the previous layer are centered at the same
location of their output feature map. This limits a neuron to learning
from only a fixed location of the previous layer’s feature map while the

N
A= pit 4 Z operlD <wﬁzl, Yi,VNOZeroPad)

k=1
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grid, as shown in Fig. 3 (c), contrary to the integer grid for the random
approach. Thus, Eq. (6) can be replaced with the fractional bias as in Eq.
(8). As shown in Fig. 3 (c), the shifted kernels assume fractional posi-
tions over the layer yi A bias range of &}, € R[£I can still be predefined,
within which the fractional positions can be achieved through interpo-
lation.

(®

o ()| 2 = +Z (7 [y (i © ). (Fhtm s i) | )

neighboring pixels might also provide important features for the neuron
to learn. Kiranyaz et al., in their extensive study (Kiranyaz et al.) pro-
posed two methods to generate non-localized kernels or super neurons
to break this limitation. The first approach functions by randomly
locating the kernel within a spatial bias of a predefined range (I'). For
this study, let’s set the maximum bias range, I" as 4. Now, for a 1D-Self-
ONN model, let @}, € Z[T] be the integer bias for the i neuron of the
(1+ 1) layer connected to the k™ neuron of the I layer, and T\ be the
shift operator for y;( by the bias [a}]. Then we can perform the shift to
obtain yk (m + a}) and operate with the original kernel w';* of size Kx, as
expressed in Eq. (6).

N _ ’ ’
A= 4 Z r)perlD(T(“'k) (), wi' ,NoZeroPad >

k=1

N
S ) [ = B (P (@) 0)), ey (5 () () ])
k=1

Vre [0, Kx—1]

And, for the kernel element wﬁk“ , the nodal operator y can be expressed

as Eq. (7). Upon omitting the DC bias term bll.”, the generative neuron
has a 2D kernel matrix where the g™ weight of the kernel element (r) has

been represented by w, ! (r,q).

For this study, we have opted for the first approach to generate non-
localized kernels for our Super-ONN-based models, given that the Py-
thon implementation of the second and more ideal approach is currently
unavailable. A comprehensive derivation of forward and backward
propagation for Self-ONNs with non-localized Super Neurons or Super-
ONNs is provided by Kiranyaz et al., covering both randomized and
optimization-based implementations. PyTorch-based implementations
of ONNS, Self-ONNs, and Super-ONNs can be found in Kiranyaz, Malik,
Gabbouj, & Ince, 2022.

2.2. The Translation Through Restoration GAN (TTR-GAN) framework

(6)

The proposed Translation Through Restoration GAN (TTR-GAN)
framework comprises two schemes: blind wPPG restoration and wPPG
to fPPG translation, as illustrated in Fig. 1. The objective is to integrate
the restorative and translational capabilities of 1D-CycleGANs within a
unified framework. Both schemes follow similar training and testing

W (m+ i +r) Wi (r,q) ) = Wi (r, D)yl (m o+ af +7) -+ wh (r, 20k (m + a + 1) oo+l (r, Q)3 (m + o+ 1) ° %)

As shown in Fig. 3 (b), the yellow box represents the preset bias range
(I' = £4) within which the kernels of size 3 have been shifted randomly,
but in integer locations. Now, the i* neuron of the (I+ l)th layer can
learn from shifted kernels y} (m + @}) in various discrete locations o} €
7[+4] within the predefined spatial-bias range.

On the other hand, the second approach consists of guiding the
kernels to convergence through backpropagation steps while optimizing
along with other parameters during training. In this case, the shift values
should be a real number i.e., ai € R, thus the individual sensitivity
Adl, = ;TEQ can be computed. Due to the shift here being a subset of the

real numbers, the shifted kernels ?i = Tyl will stay in a fractional

procedures, except for distinct generator architectures and data prepa-
ration steps, as depicted in Fig. 4.

2.2.1. TTR-GAN structure

TTR-GAN first focuses on restoring the corrupted Wrist PPG signals,
as generating clinical grade finger PPGs directly from corrupted wPPGs
is more prone to error. Additionally, since a majority of the wPPG seg-
ments in the dataset were corrupted, using a small subset of good wPPG
segments from a limited number of subjects for fPPG translation is
insufficient to achieve optimal performance using CycleGANs. wPPG
signals, typically generated by wearables, naturally contain more arti-
facts compared to fPPGs, which are primarily acquired in clinical
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(a) Generator Model (Restoration): GG2BWPPG | GG2BwWVPG | GG2BWAPG
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(b) Generator Model (Translation): GW2F
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(c) Discriminator Model (Common)

Self-ONN(ft:16, k:11, s:1, p:5, q:3)

m & g
B H B “~
‘M HEE =R ¢ Self-ONN(ft:32, k:7, s:1, p:3, q:3)
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< I3 o 2z 17 =
2 4 [¢) =3 °
3 M 5 A4
3 o
e § 32 Self-ONN(ft:256, k:5, s:1, p:2, q:3)
£

Self-ONN(ft:1, k:3, s:1, p:1, g:3)

¥

Super-ONN(ft:1 or 3, k:1, p:0, q:3, sf:2)

L Super-ONN(ft:512, k:7, p:3, q:3, sf:2)

1> Super-ONN(ft:64, k:11, p:5, q:3, sf:2)

[01]
Glossary
=» MaxPooling (2) ft: Number of filters
® Transposed Super-ONN (2) k: Kernel size
= Skip Connection s: Strides
[ Encoder p: Padding
[ Decoder q: Qth order polynomial

sf: Maximum Shifts or Bias

Fig. 4. The Generator and Discriminator architectures for the TTR-GAN framework are as follows: (a) The Generator for the Restoration GANs utilizes a ResNet-
9block network implemented with Super-ONNs instead of CNNs. (b) For the Translation GAN, we employ a Super-ONN-based UNet model. (c¢) Self-ONN-based
PatchGAN Discriminators are utilized for both the restoration and synthesis schemes.

settings. These artifacts vary in intensity and type, often diversely
affecting wPPGs. In practical terms, it is also more reasonable to restore
wPPG signals before synthesizing fPPG signals, considering that in real-
life scenarios, wPPG signals are often corrupted by random artifacts.
Based on this understanding, we perform unpaired and blind restoration
of the wPPG signals in Phase 1 of TTR-GAN, carried out by the restorer
GANSs shown in Fig. 1 (a). This blind restoration scheme, which remains
agnostic to the artifacts, enhances the quality and diversity of the clean
wPPG subset. Subsequently, we translate all restored wPPG signals into
clean fPPGs. As discussed earlier, wPPGs lack diagnostic values
compared to clinical grade fPPGs purely due to physiological reasons.
So, the translator GAN shown in Fig. 1 (b) is used to generate clinical
grade fPPGs from restored, high-quality wPPG signals. Recently Mah-
mud (2023) have reported improved signal synthesis performance by
using the first two derivatives of PPG, namely Velocity of PPG (VPG or
FDPPG or PPG’) and Acceleration of PPG (APG or SDPPG or PPG”), in
parallel to the PPG waveforms. In the case of TTR-GAN, we experi-
mented with both single-channel and three-channel approaches and
found relatively better performance with the latter. Therefore, in Fig. 1,
we propose that TTR-GAN should be implemented as a three-channel
framework to achieve higher performance. Note that the two addi-
tional inputs to the model (WVPG and wAPG) are only used to enhance
CycleGAN performance in both phases by incorporating additional
features during the learning process. However, when generating metrics
(e.g., pulse rate), only PPG signals are utilized. During practical imple-
mentations, there is no need for acquiring fPPG or ECG data. We only
used ECG for clinical evaluation. Once the TTR-GAN has been trained,
which requires only wPPG and fPPG data, we deploy the trained resto-
ration and translation models in a cascaded fashion to convert the ac-
quired raw wPPG into clean fPPG.

We utilized a 1D version of the ResNet-based generators commonly
employed in 2D-CycleGANSs to restore and denoising images (Mostofa
et al.,, 2020; Tavakkoli et al., 2020; Wang and Yang, 2021), as the
Restorer GANs. These three-layer deep Restoration GANs incorporate
nine residual blocks in the bottleneck layers, with CNN layers being
replaced by Super-ONN layers. A detailed illustration is provided in
Fig. 4 (a). In the input layer, we employ 8 filters or kernels, which are
subsequently doubled to 32 in the bottleneck layer. Each of the nine

Super-ONN blocks within the bottleneck includes reflection padding.
The kernel size in the initial layer is maintained at 7 to capture coarser
features (Kiranyaz et al.), gradually decreasing to 3 in the bottleneck.
Conversely, for the generators of the Translator GAN, we employed a
five-layer deep UNet (Ronneberger, Fischer, & Brox, 2015) with its CNN
layers substituted by Super-ONNS, as depicted in Fig. 4 (b). UNet and its
various adaptations have been applied in numerous 2D (Ronneberger
et al., 2015; Tahir, 2021; Qiblawey, 2021; Huang, et al., 2022) and 1D
(Mahmud, 2023) segmentation tasks over the past few years, making it a
suitable choice for the generator in the Translator CycleGAN. The
number of filters in the UNet increases from 16 in the initial layer to 256
in the bottleneck. Kernel size and padding decrease as we delve deeper
into the model. In both Restoration and Translation GANs, the decoder
structure has been designed as the exact reverse of the encoder, except
for the final layer. While Restoration GANs always feature a single
neuron in the final layer, Translator GANs can have either 1 or 3 neurons
depending on the number of channels. For the Super-ONN blocks, we
consistently applied a polynomial order ’q’ of 3 in all of our experiments,
along with a kernel shifting ’sf’ of 2, as displayed in Fig. 4. Both for
restoration and translation, we adopted Self-ONN-based, 5-layer
PatchGAN (Isola, Zhu, Zhou, & Efros, 2022) models, as illustrated in
Fig. 4 (c). The initial layer comprises 16 filters, with a progressive
doubling in the number of filters in each subsequent layer, reaching 256
in the fifth layer before culminating in a binary classifier featuring a
linear activation function. The kernel size (from 11 to 3) and padding
(from 5 to 1) are diminished in each deeper layer. These discriminators
operate as binary classifiers, distinguishing between real and counterfeit
or generated samples.

2.2.2. Strategies for training CycleGANs: restoration vs. translation

The general approach for training CycleGANs, whether for signal
restoration or signal-to-signal translation, remains consistent, except for
the data preparation strategies discussed in Section 3.2. The generator’s
objective is to generate counterfeit samples that closely mimic real ones,
while the discriminator’s role is to differentiate between authentic and
counterfeit samples. Through this adversarial interplay, the CycleGAN
continually refines its performance until the generators are capable of
producing counterfeit samples of such high caliber that they become
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indistinguishable from real samples by the discriminator. In TTR-GAN,
the Restoration GANs generate counterfeit clean wPPG and its de-
rivatives from the raw waveforms through blind restoration (i.e.,
restoration irrespective of the artifacts). Conversely, the Translation
GAN generates counterfeit fPPG signals based on the restored wPPG
waveforms and learns the art of signal synthesis. In this context, for
wPPG restoration, the generator GB2GwPPG (referred to as the gener-
ator for bad to good wPPG restoration) in Fig. 1 (a) gets trained to
convert the poor-quality wPPG (Wj) samples into high-quality or good
ones (Wg), while the generator GGZBWPPG learns to generate Wy from
W¢ and is discarded after training. Meanwhile, the discriminators
DB2GwPPG (the discriminator for bad to good wPPG generation, gets
trained to discriminate between ground truth and generated good-
quality wPPG samples) and DG2BwWPPG (the discriminator for good to
bad wPPG generation) in Fig. 1 (a) strive to maximize the adversarial
loss function to create more convincing transformations. The formula-
tions for the adversarial loss functions are provided in Egs. (9) and (10),

LosS 44,1 (GB2GwPPG, DB2GwPPG, W)

1o

~ > (1 — DB2GwPPG(GB2GwPPG(Ws(i))))* 9)
i=1

LoSSaa2 (GG2BWwPPG, DG2BwPPG, W)

1 m

== (1 - DG2BwPPG(GG2BwPPG(Wq(i))))’ (10)
m =

To enhance the wPPG restoration performance, we incorporate cycle-

consistency loss into the Restoration GAN for wPPG, as formulated in
Eq. (11).

m
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there is no identity loss implemented. On the other hand, we employ our
proposed PRTX metric (details in Section 2.3.2), which combines Power
Ratio and Temporal Cross-Correlation measures, as the validation metric
during the training of the Translator GANSs. As for the Restoration GANs,
we utilize Spectral Correlation (nspec) (Eq. (14)) and spectral Relative
Root Mean Squared Error (RRMSEg,..) (Eq. (15)), as proposed by Zhang
et al. (2021) as the validation metrics.

- 1 — p(PSD(F), PSD(GX2C(F) )
Toee = 100<1 ~ 1—p(PSD(F),PSD(W)) > a4
RRMSE, .. = RMS(PSD(F)—PSD(GX2C(F) ) as)

RMS(PSD(F))

In this context, PSD stands for Power Spectral Density. It’s important to
note that PRTX (power ratio and temporal cross-correlation), being a
combination of temporal and spectral metrics, is partially dependent on
the temporal alignment of the waveforms under evaluation. Specifically,
they should be aligned or exhibit a constant phase shift. This makes
PRTX suitable for the Translator GAN, given that the input wPPG, fPPG,
and their respective derivatives are aligned (except for a constant phase
shift between wrist and finger data, which is addressed through cross-
correlation, as discussed in Section 2.3.2). Conversely, the Restoration
GANSs operate on unaligned data, and therefore, they are assessed using
purely spectral metrics such as 7, and RRMSEg., which do not rely on
the relative temporal alignment of the waveforms.

2.3. Evaluation process for TTR-GAN

The Restoration and Translation GANs are assessed separately using

m

1 1
Lossey.(GB2GWPPG, GG2BWPPG, Wy, Wg) = — > (GG2BwPPG(GB2GWPPG(Wy(i) ) ) — Wy(i) ) +— > _(GB2GwPPG(GG2BWPPG(Wq (i) ) ) — We(i))
. m m

i=1

The identity loss formulated in Eq. (12) is also considered alongside the
above two losses to reduce the variance occurring due to the input
sample class being the same as that of the desired output.

m

i=1

1D

distinct sets of quantitative metrics. For the restoration scheme, the
input data is unaligned, whereas for signal synthesis, it is aligned.
Additionally, the Restoration GANs operate with data from a single

m

Lossi.(GB2GwPPG, GG2BwPPG, Wy, Wg) = % > (GB2GWPPG(We(i) ) ) — Wali) ) +% > ((GG2BwPPG(Ws(i) ) ) — Wali) ) 12)

For the 3-channel approach involving wVPG and wAPG, the same pro-
cedure has been applied. Conversely, when wrist and finger PPGs are
denoted as W and F, respectively, the functional aspects of the Translator
GAN (Fig. 1 (b)) can be elucidated by substituting Wg, W, GB2GWPPG,
GG2BwPPG, DB2GwPPG and DG2BwPPG with W, F, GW2F (generator
for wrist to finger PPG translation), GF2W (generator for finger to wrist
PPG translation), DW2F (discriminator for wrist to finger PPG trans-
lation) and DF2W (discriminator for finger to wrist PPG translation),
respectively, as shown in Egs. (9) to (12). Ultimately, the objective of
any CycleGAN training session is to minimize the overall loss as
formulated in Eq. (13).

Lossiorar = LOSSaay1 + LOSSqas + ALOSScye + BLOSS 4, 13)
Here, 1 and S represent the loss weights that are fine-tuned before

training. All losses have been formulated based on the Mean Squared
Error (MSE). It’s worth noting that for the multichannel Translator GAN,

i=1

modality (WPPG), while the Translation GANs are trained on cross-
modal datasets (WPPG to fPPG). Therefore, their respective quantita-
tive metrics should be capable of effectively measuring their perfor-
mance improvements. We conduct both quantitative and qualitative
evaluations of the two TTR-GAN framework components.

2.3.1. Blind wrist PPG restoration

In this scheme, we restore corrupted wPPG signals using 1D-Cycle-
GANs. The CycleGAN takes two inputs: clean wPPG or its derivatives
and corrupted wPPG or its derivatives. It is trained to learn the under-
lying probabilistic distribution of both sets of training data and how to
improve the corrupted segments based on high-quality samples. How-
ever, this data is unaligned, meaning that for a particular corrupted
wPPG segment, there is no corresponding clean segment that can be
temporally assessed (as elaborated in Section 3.2). Implementing a
system that can simultaneously acquire the clean version of the
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corrupted wPPG signals is not practically feasible, making it impossible
to assess the CycleGAN performance using traditional quantitative
evaluation metrics such as accuracy, precision, recall, reconstruction
error, or correlation coefficients. Therefore, we propose relative quan-
tification metrics, such as entropy, to evaluate CycleGAN’s ability to
restore corrupted wPPG signals. Entropy is a commonly used scientific
concept for assessing anomalies or randomness in a system. Artifacts in
physiological signals are anomalies or irregularities that we aim to
quantify using various state-of-the-art time-series entropy measurement
techniques. For this study, we employed three different entropy metrics:
Approximate Entropy (ApEn) (Pincus, Gladstone, & Ehrenkranz, 1991),
Sample Entropy (SampEn) (Richman & Moorman, 2000), and Fuzzy
Entropy (FuzzyEn) (Chen, Wang, Xie, & Yu, 2007) to quantify the ir-
regularities (or regularities) in the wPPG waveforms before and after
restoration. ApEn, which was proposed by Pincus et al., 1991 for
quantifying irregularities in physiological signals (e.g., ECG), is defined
in Eq. (16):

ApEn = ¢"(r) — ™" (1) (16)

where, ¢™(r) can be defined as Eq. (17),

N—m+1

Py =N-m+1)" Y IneCl(r) a7)
i=1

Here, C"'(r) measures the regularity within a given tolerance r, while
¢™(r) —¢™(r) measures the mean stability of those patterns while
iterating through the data points. Richman & Moorman, 2000 intro-
duced SampEn as an improvement over ApEn, and it is formulated in Eq.
(18):

A™(r)

SampEn = — ln(Bm "

) (18)

Here, A™(r) and B™(r) are defined in Egs. (19) and (20), respectively,

A = (V= m) Y AT 9)
B () =(V-m) S BI) 20)

i=1

In this case, A"(r) and B!*(r) quantify the irregularity in the pattern
within a given tolerance r for a signal with N data points, while m de-
notes the length of compared runs of data (i.e., the threshold for
checking patterns). r can also be denoted as the filter level or the
threshold for detecting irregularities (i.e., any irregularity with an
amplitude lower than this will be ignored). Inspired by ApEn and
SampEn, Chen et al. (2007) proposed FuzzyEn for estimating time series
irregularities and first applied it to characterize surface Electromyog-
raphy (EMG) signals. FuzzyEn can be formulated by Eq. (21) as follows:

FuzzyEn = In(¢" (n,7) ) —In(¢"*' (n, 7)) (C2Y)

¢™ in the FuzzyEn can be defined as Eq. (22),

N—m

¢"(n,r) = (N —m)~' Z((N—m— H7'e 2 D;;) (22)

i=1 =LA

Here, Dj! denotes the degree of similarity or regularity between two
adjacent vectors Xi* and X]". The distorted wPPG signals and their de-
rivatives are generally more irregular, resulting in a higher overall en-
tropy. The contained entropy of the restored wPPG waveforms should be
lower due to their uniformity. From Fig. 1 (a), we adopt the multipass
evaluation strategy from Kiranyaz et al. through passing the CycleGAN
outputs through the trained model multiple times to achieve better
wPPG restoration performance. We qualitatively and quantitatively
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assess the outcomes from each pass in Section 2.3.3 to show that the
restoration performance indeed improves until a certain pass starts to
show a drop in performance. We use the restored wPPGs from the
optimal pass for wPPG to fPPG translation.

2.3.2. Wrist-to-finger PPG synthesis

The wrist-to-finger PPG synthesis scheme is similar to traditional 1D-
segmentation model-based signal-to-signal translation (Mahmud, 2023).
In the single-channel approach, we train a 1D-CycleGAN to estimate
fPPGs from the restored wPPGs. In the three-channel approach (Fig. 1),
we include restored wVPGs and wAPGs from phase 1 as inputs to a
multi-channel (three-channel) 1D-CycleGAN for fPPG synthesis. In this
case, we propose our novel PRTX metric due to the shortcomings in the
existing metrics for robustly quantifying the performance of the 1D-
CycleGANSs in wrist-to-finger PPG translation. Initially, we attempted
to apply the Pearson Correlation Coefficient (PCC) (Eq. (23)), which
failed to evaluate the fPPG translation performance effectively due to its
susceptibility to existing phase shifts between the ground truth and the
generated fPPG signals (Mahmud, 2023).

(23)

PearsonCorrelationCoefficient, p(x,y) = nZi:] (i — x)(ny, y)
NHSIEEE SR

Even though the generated fPPG signals matched in shape, there was
a time domain shift compared to the ground truth due to the phase shift
between the input wPPG and fPPG waveforms (Hartmann et al., 2019;
Hartmann et al., 2019). Therefore, we utilized cross-correlation (Xcorr)
for the temporal or time domain evaluation of fPPG translation, as it is
insensitive to phase shifts owing to its use of convolution (Bracewell,
1999; Papoulis, 1994). The convolutional operation can be formulated
as shown in Eq. (24).

frg= / " F@)s(i—)de @24)

Based on this, the temporal Xcorr (TXcorr in this study) between the
ground truth and the translated fPPGs can be formulated as in Eq. (25)
(Cross-correlation, 2022);

TXcorr(fPPG, fPPG) = JPPG*{PPG = [TXcorr(fPPG, fPPG (1)
_ /°° (fPPG( — 7) » fPPG (1 — 7) )dz

- / " (PPG(x) o fPPG (1 + 1) )dr (25)

Here, fPPG represents the translated fPPG from wPPG, and fPPG de-
notes the complex conjugate of the fPPG signal. However, during the
evaluation stage, it was observed that using TXcorr alone as a metric did
not yield distinguishable results before and after translation. Therefore,
we also incorporated the power ratio (PWRR) of the signals into our
evaluation metric due to its capacity to quantify the power contained
within wPPG and generated fPPG signals, allowing for differentiation.
PR can be formulated based on Eq. (26).

|Puorn(fPPG) — Puorm(fPPG) | )

— 26
max(Porm (fPPG), Pomm (fPPG)) 20)

PowerRatio(PWRR) = 1 — (

Here, max(A,B) denotes a built-in function used to determine the
maximum value between two variables. This metric has been designed
to vary between 0 and 1. Now, the normalized power is denoted as Pm,
of a signal x can be defined as shown in Eq. (27).

n 2
Pnorm (x) = M (27)

n

Here, n represents the number of data points in the signal. Therefore, the
final PRTX metric for evaluating the translation from wPPG to fPPG has
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been formulated as the mean of the temporal cross-correlation (TXcorr)
and the power ratio (PWRR), as presented in Eq. (28).

PWRR + TXcorr

PRTX =
2

(28)

2.3.3. Clinical evaluation process

The proposed TTR-GAN (Fig. 1) is a framework for signal restoration
and synthesis, particularly for wPPG signals. It cannot detect the QRS
complex (R-peaks) from the ECG signals nor the systolic/diastolic peaks
from the PPG signals. To clinically evaluate the platform through heart
rate (HR) and heart rate variation (HRV) analysis, external tools or al-
gorithms are required. As explained in the introductory section, HR and
HRYV can be robustly estimated from the ECG signals, while the inverse
of the pulse-pulse interval (PPI) from PPG can be used as a pseudo-HR,
namely pulse rate (PR). HR is one of the four vital bodily parameters
(Vital Signs, 2022), and HR and HRV can be used to reliably predict
various cardiovascular diseases (Perret-Guillaume, Joly, & Benetos,
2009), respiratory tract infectious diseases (e.g., COVID-19 (Hasty,
Garcia, Davila, Wittels, Hendricks, & Chong, 2021), hypertension
(Chowdhury, 2020; Lan, Raknim, Kao, & Huang, 2018), and more.
Resting state HR varies from person to person and can be affected by
factors such as stress, anxiety, medication, hormones, high body tem-
perature, dehydration, and physical activity (Olshansky, Ricci, &
Fedorowski, 2022). An abnormality in HR and HRV (too high, too low,
or irregular) can indicate cardiac complexities, such as Tachycardia
(resulting from a high resting HR) (Swai, Hu, Zhao, Rugambwa, & Ming,
2019) and Bradycardia (resulting from a low resting HR) (Mason &
Lonngvist, 2015). In addition to respiratory tract diseases, as discussed
earlier (e.g., COVID-19), abnormalities in HR and HRV might also be
related to infectious diseases such as viral myocarditis (Schultz, Hilliard,
Cooper, & Rihal, 2009), Lyme disease (Lelovas, Dontas, Bassiakou, &
Xanthos, 2008), etc. The existence of endocrine disorders, such as Hy-
perthyroidism (Cacciatori, 1996) and Hypothyroidism (Herrmann,
2020), can also be predicted from abnormally fluctuating HR. Beyond
that, HR has direct correlations with the psychological conditions of
patients, such as anxiety and depression (Gorman & Sloan, 2000).
Recent studies have applied advanced machine learning techniques to
link HR and HRV to seemingly unrelated diseases, including Diabetes
Mellitus (DM) (Ewing, 1981), inflammation (Williams, 2019), and more.
Given this discussion, it is crucial to robustly estimate HR and HRV from
wearables in order to monitor such diseases in real-time during 24-hour
home monitoring.

In this study, we detect the R-peaks using the deep learning-based R-
peak detector proposed by Gabbouj, 2022, which is implemented using a
1D-Self-ONN-based UNet (Ronneberger et al., 2015). It is trained on the
benchmark CPSC-2020 ECG dataset (Cai, 2020), which contains more
than 1 million beats. Based on the detected R-peaks, we calculate the
beat-to-beat, i.e., the RR-interval (RRI or RR-I in short) between the
peaks. Mean RR (RR) and mean HR (HR) for each segment are estimated
using Egs. (29) and (30), respectively (Qin, Li, Huang, & Zhao, 2017).

B
RR = ==——— 29
N (29)
N
£ ()
HR = ———~ 30
N (30)

Here, RRI is a measurement of the time elapsed between two suc-
cessive R-waves of the QRS signal on the ECG, typically expressed in
milliseconds (ms), while HR, its reciprocal, is generally expressed as
beats per minute (BPM). To convert RR into HR (i.e., converting milli-
seconds into minutes), Eq. (30) is applied to each RRI-estimate. Pulse
rates (PRs) are calculated from the PPI (in place of RRI) using Egs. (29)
and (30) based on the systolic/diastolic peaks extracted from wPPG and
fPPG signals using MATLAB-based (Peak analysis, 2023) peak detector
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used in these studies: (Mahmud, 2022; Mahmud, 2023). We then
calculate the Pearson Correlation Coefficient (PCC) (Eq. (23)) between
the true HR from ECG and the pseudo-HR or PR from wPPG and syn-
thesized fPPG (fPPG’) signals, respectively, over the entire dataset. HRV
and PRV are measured per ECG and PPG segment, respectively, using the
Root Mean Square of Successive Differences (RMSSD) and per subject
using the Standard Deviation of Normal-R-to-Normal-R Intervals
(SDNN) (Qin et al., 2017). SDNN and RMSSD can be calculated as shown
in Egs. (31) and (32), respectively.

SDNN = 31)

=

(RRi1 — RR)*

i

RMSSD = (32)

N-—-1

So, SDNN is determined based on the mean RR (RR), while RMSSD is
akin to a moving average. In this study, we calculate RR per subject to
measure SDNN. RMSSD, being a dynamic parameter, is divided by one
less than the number of RR estimates per segment. SDNN and RMSSD are
then averaged over the entire dataset (subject and segment-wise,
respectively) to generate a single numerical value (ECG, wPPG, fPPG,
and fPPG’) for comparison. To conduct a comprehensive analysis, in
Section 3.3.3, we create scatter plots to illustrate the correlations be-
tween PPI from fPPG vs. wPPG (Fig. 6 (e)) and fPPG’ (Fig. 6 (f)).
Additionally, we present the trends of HR/PR, RRI/PPI, and HRV/PRV
across the entire dataset (Fig. 6 (a-d)). SDNN and RMSSD measures for
PRV are calculated based on PPI (instead of RRI) using Egs. (31) and
(32), respectively.

3. Experimentation and results

In this section, we will first discuss the Mental Workload Assessment
on the N-back Task Using the Wearable Sensor (MAUS) dataset (Beh &
Wu, 2022; Beh, Yi-Hsuan, & An-Yeu (Andy) Wu, 2021), which was
utilized in this study. Second, we will delve into the data preparation
strategies and experimental setup that were established for the proposed
TTR-GAN. Third, we will present detailed quantitative and qualitative
assessment results for both wPPG restoration and wrist-to-finger PPG
synthesis. Additionally, we will examine the computational complexities
of the TTR-GAN framework when implemented in a wearable system.
Finally, we will conclude this section with a comparative analysis of
TTR-GAN against relevant frameworks from the literature.

3.1. Mental workload assessment on N-back task using wearable sensor
(MAUS) dataset

The MAUS dataset utilized in this study was curated and shared by
Beh and Wu (2022) and Beh et al. (2021) to assess mental workloads
through physiological signals acquired from wearable devices. This
dataset includes wPPG signals obtained wirelessly using a PixArt
wristwatch with a sampling frequency of 100 Hz. Additionally, it en-
compasses fPPG, ECG, and Galvanic Skin Response (GSR) signals, all of
which were simultaneously collected using a ProComp Infiniti device
with a sampling frequency of 256 Hz (Bio-medical.com, 2022). The
dataset was compiled from 22 healthy young participants with a mean
age of 23 years and a standard deviation (SD) of 1.7 years. During data
collection, each subject was engaged in tasks spanning various levels of
mental workload, ranging from restful states to intensive cognitive ac-
tivities. The average duration of signal acquisition per subject amounted
to approximately 35 min, resulting in a total usable signal length of
around 12 h and 50 min. The primary motivation behind selecting the
MAUS dataset for this study stems from the scarcity of publicly available
or shareable datasets that contain concurrent wrist and finger PPG
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waveforms suitable for signal-to-signal translation or synthesis, as well
as ground truth ECG data for the validation of certain physiological
parameters derived from the PPG signals. Notably, none of the similar
datasets (Markova et al., 2019; Albuquerque, 2020; Miji¢ et al., 2019;
Vollmer et al., 2023; Gjoreski, 2020) encompass simultaneous re-
cordings of wrist and finger PPG signals. While there have been datasets
(Tsai, 2021) that collected concurrent wrist and finger PPG signals, they
lacked ECG ground truth, and their accessibility was restricted due to
privacy concerns. It is worth mentioning that the GSR signals within the
MAUS dataset were not utilized in the context of this study.

3.2. Data preparation and experimental setup

The MAUS dataset included signals collected from two devices,
PixArt and ProComp Infiniti, with different sampling frequencies (100
Hz and 256 Hz, respectively). To ensure temporal alignment in the
processed dataset, all signals were resampled to a common sampling rate
of 125 Hz. Both devices were affected by 50 Hz powerline noise, with
PixArt being more severely affected. To reduce powerline noise, a 50 Hz
notch filter with a quality factor (Q-factor) of 10 was applied to signals
from both devices. Bandpass filters were used to clean the PPG signals,
with cutoff frequencies of 0.05 and 30 Hz (Pilt et al., 2013), while the
cutoff frequencies for the bandpass filter applied to the ECG signals were
0.1 and 40 Hz (Bailey, 1990). Following practices from similar studies,
the signals were segmented into segments of 512 data points, and each
segment was normalized to a range between 0 and 1 for preparing the
dataset for training deep learning models (Mahmud, 2022; Mahmud,
2023; Ibtehaz, 2022). A total of 8976 segments were extracted from the
dataset. Upon meticulous visual assessment of several samples, it was
evident that the fPPG and ECG signals were of high quality and did not
necessitate restoration. This study conducted experiments using both
single-channel (PPG) and three-channel (PPG, VPG, and APG) ap-
proaches. For the three-channel approach, VPG and APG signals for both
wPPG and fPPG segments were derived and stored in the database
(Fig. 1). The extraction and preprocessing of VPG and APG signals,
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including filtering, alignment, and normalization, followed the process
explained in past studies (Mahmud, 2022; Mahmud, 2023). The deep
learning networks (CycleGANs) were trained in a Python environment,
utilizing an end-to-end pipeline built on the PyTorch library. Each
network was trained on an NVIDIA 3080Ti GPU for 1000 epochs while
monitoring the validation metrics (74, and RRMSEg,) discussed in
Section 2.2.2.

3.2.1. Blind wrist PPG restoration

For the “Blind wPPG restoration” scheme, the wPPG segments were
manually categorized into three groups: high, mediocre, and low qual-
ity. The annotators rigorously distinguished between high and low-
quality wPPG segments, adhering to the data preparation strategies
proposed by Kiranyaz et al.. To create an adversarial dataset, the very
high-quality wPPG signals were labeled as ‘good,” and the very low-
quality wPPG signals were labeled as ‘bad,” while the rest were cate-
gorized as ‘mediocre.” During the manual sorting process, certain cor-
rupted segments with NaN values, straight lines, or no discernible
physiological information were excluded from the dataset. Out of the
8976 segments, 1876 were labeled as ‘good,” 2732 as ‘mediocre,” 4204
as ‘bad,” and 164 as ‘corrupted.’ Due to the dataset’s class imbalance, the
‘good’ samples were intentionally overlapped by 50 %, resulting in a
final count of 3752 segments. These 3752 ‘good’ segments, along with
the 4204 ‘bad’ quality wPPG segments, were utilized to construct 5-fold
subject-independent datasets for Cross-Validation (CV). In each fold, all
segments (including ‘good,” ‘mediocre,” and ‘bad’) from 4 to 5 subjects
(approximately 20 % of all subjects) were designated for testing, while
the ‘good’ and ‘bad’ segments from the remaining subjects were desig-
nated for training. As previously explained, the test sets for the resto-
ration GANs did not contain ground truth clean segments, making it
impossible to perform a direct quantitative evaluation of the restoration
performance in the temporal domain. The annotations for the ‘good’ and
‘bad” wVPG and wAPG segments followed the same criteria as the wPPG
segments and were restored independently for the three-channel
approach, with configurations similar to those used for wPPG
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Fig. 5. Entropy measurements for (a) wPPG, (b) wVPG, and (c) wAPG signals before and after restoration, following the multipass restoration scheme in TTR-GAN

Phase 1, as depicted in Fig. 1 (a).
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Fig. 7. Qualitative visualization of sample outcomes from the multipass wPPG restoration scheme under TTR-GAN. It includes common cases in which (a)-(b)
entropy decreased, (c) entropy increased, and (d) entropy remained similar after wPPG, wVPG, and wAPG restoration. For each sample, we also provide the
Approximate Entropy (ApEn) for the wPPG segment before and after restoration.

restoration (as shown in Fig. 1). This approach allowed the three
restoration GANs to independently learn the transformation domains for
restoring wPPG and its derivatives, which would subsequently be used
in the wPPG to fPPG translation phase. During training, 10 % of the
segments were randomly selected for validation. Supplementary
Table S1 provides additional details about the folds.

3.2.2. Wrist-to-finger PPG synthesis

On the other hand, for the “w2fPPG synthesis” scheme, we employed
corresponding wPPG and fPPG segments for one-to-one translation. The
restored wPPG segments obtained from all test folds in the previous step
were aggregated to form the restored wPPG dataset. Consequently, a
total of 8812 segments (comprising 1876 ‘good,” 2732 ‘mediocre,” and
4204 ‘bad’ quality wPPG segments) and their corresponding fPPG seg-
ments were utilized to train the translator GAN. In the three-channel
approach, the wPPG segments constituted just one of the three input
channels for the Translator GAN. The other two channels received inputs
from the restored wVPG and wAPG segments (as depicted in Fig. 1). The

Table 1
The overall 5-fold-CV w2fPPG translation performance based on the proposed
PRTX metric. We also show the performance before and after wPPG restoration.

Metric Waveform Before wPPG Restoration After wPPG Restoration
Single Three Single Three
Channel Channels Channel Channels
TXcorr  fPPGvs.wPPG  0.6762 0.6762 0.6706 0.6706
fPPG vs. fPPG’' 0.9006 0.9235 0.9466 0.9561
PWRR fPPGvs. wPPG  0.5440 0.5440 0.5304 0.5304
fPPG vs. fPPG’' 0.8689 0.9238 0.9322 0.9398
PRTX fPPG vs. wPPG 0.5977 0.5977 0.5867 0.5867
fPPG vs. fPPG' 0.8953 0.9212 0.9357 0.9455
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data for training the Translator GAN was partitioned into 5-fold subject-
independent CV, adhering to the same approach as that of the restora-
tion GANs. During the training process, 10 % of the segments were
randomly selected for validation. In contrast to the restoration scheme,
the test sets, in this case, included ground truth fPPG signals and their
derivatives, allowing for direct quantitative evaluation in the temporal
domain. Further details about the folds can be found in Supplementary
Table S2.

3.3. Quantitative evaluation

In this section, we conduct a quantitative evaluation of the perfor-
mance of CycleGANs in wPPG restoration and wrist-to-finger PPG
translation.

3.3.1. Blind wrist PPG restoration

As mentioned earlier, each segment in the processed dataset com-
prises N = 512 data points. For all entropy measurement techniques, we
employed an m of 2 and ar of 0.1 (Egs. (16) to (22)), which are standard
values established in the literature (Bandt & Pompe, 2002; Porta, 1998).
According to the literature, the value of m should be chosen such that N
falls between 10™ and 30™ to ensure reliable measurement of irregu-
larity, a criterion that was satisfied with our selected values. We opted
for a small value of r to account for even minor irregularities present in
the signals (see Fig. 7). We computed the mean entropies of the 8812
wPPG segments both before and after restoration across all 5 passes. It is
important to note that the unrestored data comprises a mixture of cor-
rupted, mediocre, and high-quality signals. The restoration GANs
bolstered the approach by preserving the integrity of high-quality
wPPGs, wVPGs, and wAPGs for most cases (as depicted in Fig. 7 (d)).
Consequently, the entropy measurements remained very close in such
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Table 2
PCC between HR extracted from ground truth ECG, wPPG, fPPG, and translated
fPPG ' signals for the 3-channel approach.

Parameter Waveforms Pearson Correlation
Coefficient (PCC)
Heart Rate (HR) vs. Pulse Rate (PR) ECG vs. wPPG 0.7968
(unrestored)
ECG vs. wPPG 0.8304
(restored)
ECG vs. fPPG 0.9242
ECG vs. fPPG’ 0.9003
Heart Rate Variability (HRV) vs. ECG vs. wPPG 0.6991
Pulse Rate Variability (PRV) in (unrestored)
SDNN ECG vs. wPPG 0.7438
(restored)
ECG vs. fPPG 0.9254
ECG vs. fPPG’ 0.8457

instances. For mediocre cases, slight improvements were observed,
while severely corrupted segments exhibited significant enhancements
in entropy measurements (Fig. 7 (a-c)). Fig. 5 presents the average en-
tropy results of 5-fold-CV for wPPGs, wVPGs, and wAPGs before and
after restoration.

From Fig. 5, using all techniques, it is evident that the entropy of the
waveforms significantly decreased after restoration, indicating the
removal of irregularities through the process. It can also be observed
that, in most cases, the optimal performance is achieved during the 3rd
pass. Beyond the 3rd pass, the improvement is generally negligible,
absent, or even leads to degradation in some cases. Consequently, we opt
for using the restored wPPG signals from the 3rd pass for the wPPG to
fPPG translation phase. It is worth mentioning that for a small group of
corrupted segments, the entropy increased after restoration (as shown in
Fig. 7 (c)), as these corrupted segments were less irregular compared to
the restored ones. These segments belong to the final segments in their
respective records and are unique cases specific to this dataset. The
MATLAB implementation of the entropy algorithms was sourced from
(M011ge—Alvarez, 2022).

3.3.2. Wrist-to-finger PPG synthesis

We assessed the translation performance of the 1D-CycleGAN with
and without wPPG restoration in both single and three-channel ap-
proaches, using the proposed PRTX metric. The aggregated 5-fold cross-
validation results for w2fPPG translation can be found in Table 1. For a
more detailed breakdown, per-fold results with and without wPPG
restoration are available in Supplementary Tables S3 and S4,
respectively.

From Table 1, we can observe that the PRTX between the ground
truth fPPG and the fPPG (generated fPPG) significantly improved after
wPPG restoration. Furthermore, introducing wVPG and wAPG (in the 3-
channel approach) to the system led to a slight enhancement in the
PRTX metric. For the best case, the PRTX metric improved from
approximately 58.67 % (between fPPG and wPPG) to over 94.55 %
(between fPPG and fPPG/) after translation i.e., around 35.88 %
improvement. These results demonstrate the capability of these metrics
to effectively quantify the morphological differences between wPPG and

Table 3

Mean Heart (or Pulse) Rate (HR/PR), mean RR/PP-Interval (RRI/PPI), and Heart
(or Pulse) Rate Variability (HRV/PRV) analysis outcomes over the entire dataset
(3-channel) for ECG, wPPG, fPPG, and fPPG’.

Waveforms Mean HR/ Mean RRI/ Mean HRV/ Mean HRV/PRV
PR (BPM) PPI (ms) PRV (SDNN- (RMSSD-ms)
ms)
ECG 82.240 770.245 94.008 44.928
wPPG 78.114 789.596 96.048 52.988
fPPG 79.307 751.418 90.489 37.609
fPPG’ 79.433 752.274 91.694 41.690
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fPPG signals and the improvements achieved after translation, irre-
spective of phase shifts.

3.3.3. Clinical evaluation: Heart rate and heart rate variability analysis

As previously mentioned, the TTR-GAN framework cannot inde-
pendently determine heart rate (HR), heart rate variability (HRV), pulse
rate (PR), and pulse rate variability (PRV) from ECG and/or PPG signals.
Its primary function is to enhance corrupted wearable wPPG signals and
translate them to clinical grade fPPG waveforms to improve the
extraction of cardiovascular features. For clinical evaluation, we use the
corresponding ECG signals as the reference. We extract R-peaks from the
ECG signals based on the trained model by Gabbouj (2022). Pulse-pulse
interval (PPI) is measured based on systolic/diastolic peaks extracted
from both wPPG and fPPG using the peak detection techniques utilized
in previous studies (Mahmud, 2022; Mahmud, 2023). When we corre-
late the HR and HRV extracted from the ground truth ECG signals with
the PR and PRV from the PPG signals using the Pearson Correlation
Coefficient (PCC) formulated in Eq. (23), we obtain the results presented
in Table 2. The correlation between HRV and PRV is determined by
using the SDNN metric formulated in Eq. (31). This choice is made
because SDNN is considered a more robust measure of HRV than
RMSSD, as it is utilized in state-of-the-art wearables like the Apple
Watch (Kar, 2023).

The PCC between the PRs estimated from fPPG’ generated by the
TTR-GAN and the HRs extracted from the ground truth ECG signals
improved by approximately 10.35 % compared to PRs from the unre-
stored wPPG signals, increasing from 0.7968 to 0.9003 by dint of
Translation Through Restoration. Before this, we observed an approxi-
mate 3.36 % (improved from 0.7968 to 0.8304) boost in the PCC be-
tween the HRs from the ECG and the PRs from the wPPG after
restoration. On the other hand, when correlating HRV from ECG and
PRV from fPPG’ measured through SDNN, the TTR-GAN achieved an
improvement of approximately 14.66 %, increasing from 0.6991 to
0.8457 thanks to the Translation Through Restoration on the raw wPPG
waveforms. Prior to this, we observed an approximate 4.47 % (improved
from 0.6991 to 0.7438) boost in the PCC between the HRV from the
ECGs and the PRV from the restored wPPGs.

To ensure that the extracted heart (or pulse) rate and variability
ranges align with subject metadata and real-world trends, we examined
four key metrics: mean HR/PR (in BPM), mean RR (in ms), mean HRV/
PRV in terms of SDNN (ms) and RMSSD (ms) measured across the entire
dataset. These results are presented in Table 3 where we can observe
that the mean HRV (or PRV) values across different modalities are not as
pronounced i.e., closely related as those for HRs (or PRs). However,
TTR-GAN generated fPPG’ signals closely approximate the ground truth
fPPGs across all metrics. In general, the PPG waveforms exhibit a similar
range of mean PRVs as the HRV from the ECG signals, even though the
clinical parameters were extracted using different techniques. Further-
more, the extracted HR (or PR), RR, and HRV (or PRV) parameters align
with the clinical range for healthy young subjects (Shaffer & Ginsberg,
2017; Aeschbacher, 2016), which make up the MAUS dataset. This
alignment underscores the reliability of the analytical procedures
employed in this section.

The trends in HR/PR and HRV/PRV across the entire dataset may not
be readily apparent from the mean results presented in Table 3. There-
fore, in Fig. 6 (a-d), we have plotted the HR, RRI, and HRV (RMSSD and
SDNN) trends of ECG against PR, PPI, and PRV (RMSSD and SDNN) from
wPPG, fPPG, and fPPG’, respectively, with annotations for each subject.
It is evident from these plots that TTR-GAN enhanced PR, PPI, and PRV
performance for all subjects through restoration and translation, subject
14 being the most anomalous. However, the performance of fPPG’ never
surpasses that of fPPG in matching ECG, as fPPG serves as the ground
truth for the TTR-GAN, and ECG has been used solely for clinical eval-
uation. Scatter plots in Fig. 6 (e, f) illustrate the correlations between
PRs extracted from fPPG and wPPG, and from fPPG and fPPG’, respec-
tively. We can conclude that TTR-GAN has improved the correlation,
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wPPG Unrestored wPPG Restored fPPG Translated

wPPG Unrestored wPPG Restored fPPG Translated fPPG Ground Truth ECG Ground Truth

wPPG Unrestored wPPG Restored fPPG Translated fPPG Ground Truth ECG Ground Truth

wPPG Unrestored wPPG Restored fPPG Translated fPPG Ground Truth ECG Ground Truth

wPPG Unrestored wPPG Restored fPPG Translated fPPG Ground Truth ECG Ground Truth

wPPG Unrestored wPPG Restored fPPG Translated fPPG Ground Truth ECG Ground Truth

wPPG Unrestored wPPG Restored fPPG Translated fPPG Ground Truth ECG Ground Truth

fPPG Ground Truth ECG Ground Truth

Fig. 8. Qualitative visualization of outcomes from different stages of the proposed TTR-GAN framework: (a)-(e) for healthy cases and (f)-(g) for unhealthy cases.

particularly by rectifying some highly erroneous samples (i.e., outliers)
through efficient wPPG restoration and fPPG’ synthesis.

3.4. Qualitative evaluation

In this section, we conduct a qualitative evaluation of the wPPG
restoration and w2fPPG translation schemes of the proposed TTR-GAN
framework through effective visualizations.

3.4.1. Blind wrist PPG restoration

In the blind wPPG restoration scheme, our goal is to restore or clean
the wPPG signals, regardless of their quality or the type of artifact. In
Fig. 7, we showcase corresponding wPPG, wVPG, and wAPG signals of
varying quality and morphology before and after restoration, along with
the ApEn measurements for wPPG. From all the provided samples, it is
evident that CycleGAN restored the signals without affecting their
morphology. In Fig. 7 (a) and Fig. 7 (b), wPPG and its derivatives were
restored from high-frequency distortions that cannot be cleaned through
traditional signal processing techniques (e.g., filtration). In a resting
condition, wearable wristwatches (the primary data acquisition device
for this study) exhibit more consistent skin contact pressure compared to
clip-based clinical fPPG recording systems. However, as wearables are
used during daily activities, skin contact may vary due to sudden
movements. Fig. 7 (c) illustrates a unique scenario where CycleGAN

restored a segment that was distorted as a result of fluctuations in skin
contact pressure. Lastly, Fig. 7 (d) represents a case where the input
wPPG signal is of high quality. The signal was almost untouched by the
system, thus demonstrating its robustness. Tsai et al. (Tsai, 2021), in
their study, inserted back lost features to manually restore distorted PPG
signals, which is being efficiently performed here by 1D-CycleGANs on a
much more diverse dataset.

3.4.2. Wrist-to-finger PPG synthesis

The wrist-to-finger PPG signal synthesis performance of the trans-
lator CycleGAN improved after wPPG restoration, as discussed in the
quantitative analysis section. Fig. 8 displays some sample intermediate
and final outputs from the TTR-GAN framework (3-channel approach)
for qualitative evaluation. It is evident that the translated fPPG wave-
forms closely resemble the ground truth fPPG signals, regardless of the
quality of the input wPPGs, thanks to the restoration. This also dem-
onstrates that CycleGAN can effectively translate fPPG waveforms
irrespective of the morphology of the input wPPG signals. Although the
MAUS dataset was collected from healthy volunteers, as per the dataset
description, for one subject (subject 14), the presence of heart
arrhythmia could be observed. As shown in Fig. 8 (f, g), these segments
exhibit high HRV/PRV, as reflected in the ECG, fPPG, and wPPG
waveforms. These signals posed a challenge for the CycleGAN to accu-
rately regenerate, primarily due to their rarity in the dataset (also

Table 4
Computational costs, model parameters, and TTR-GAN (3-channel) performance in restoration and synthesis across different types of neural networks.
Neural Network Restoration Translation
Type Model PRTX Total Parameters  Inference Time Model Performance Total Parameters  Inference Time
Architecture Performance ) (ms) Architecture (%) M) (ms)
(%)
HR HRV
CNN ResNet-9blocks 32.8 0.240 12.9 UNet 9.6 12.6 0.853 6.61
Self-ONN (q* = 3) 33.7 0.715 18.2 9.8 12.9 2.176 15.7
Super-ONN (q = 3, 35.9 1.048 26.7 10.4 14.7 2.184 23.0

sfP=2)

a. q: Polynomial Order.
b. sf: Kernel Shifting.
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reflected in Fig. 6). Nevertheless, this opens up the possibility of
employing 1D-CycleGANSs to correctly detect cardiovascular anomalies
from wPPG signals collected from wearables, provided that such data is
abundant in the training set.

3.5. Computational cost and portability of TTR-GAN

Considering that the primary application of the proposed TTR-GAN
framework is in wearable devices, such as wristwatches, the models
need to be lightweight to accommodate the memory and processing
limitations inherent in these devices. While the training process of
CycleGANSs can be computationally expensive, the testing setup can be
considerably simpler. As illustrated in Fig. 1, a typical implementation
of the proposed three-channel TTR-GAN involves four trained genera-
tors: three for wPPG, wVPG, and wAPG restoration (GB2GwPPG,
GB2GwVPG, GB2GwWAPG), and one for multichannel w2fPPG translation
(GW2F). Two primary factors influencing the computational cost of deep
learning models are their complexity and the total number of parameters
(Hu, Chu, Pei, Liu, & Bian, 2021). As part of an ablation study, we
implemented the CycleGAN generators for both restoration and trans-
lation phases using CNN, Self-ONN, and Super-ONN, while keeping the
discriminators the same. Table 4 provides their overall performance
metrics and computational costs.

In Table 4, we present the computational cost in two ways: total
model parameters and inference time. Model inference time is a metric
influenced by both model complexity and the total number of parame-
ters (Hu et al., 2021). Therefore, instead of relying on a vague term like
“model complexity,” we utilize inference time, which encompasses all
relevant factors. The influence of model complexity on inference time is
evident from the ResNet-9block generators. Despite being much lighter
than the UNet-structured models, they are computationally more
expensive due to the residual layers in the bottleneck, which signifi-
cantly increases their inference time. On the other hand, based on
Table 4, Super-ONN, as expected, is more computationally demanding
than its CNN and Self-ONN counterparts, despite having the same model
architecture and hyperparameters. Nevertheless, Super-ONN also ex-
hibits slightly better performance than them. In real-life applications,
engineers need to carefully consider the tradeoff between computational
and memory requirements and performance improvements when
choosing the appropriate framework for their devices. Regarding
memory requirements for Super-ONN-based models, the ResNet-
9blocks-based trained generator for wPPG restoration contains
approximately 1.048 million (M) parameters, while the UNet-based
trained generator for w2fPPG translation comprises about 2.184 M pa-
rameters. In total, these parameters sum up to roughly 6.044 M pa-
rameters for the three-channel approach, which equates to around 6
megabytes (MB) of device memory. This requirement can be easily
accommodated by most contemporary wearable devices (Sabry, Eltaras,
Labda, Alzoubi, & Malluhi, 2022).

3.6. Comparison to existing literature

As detailed in the methodology, TTR-GAN is capable of restoring and
translating signals solely through the use of 1D-CycleGANs. It is not
equipped to directly estimate heart rates from PPG signals, necessitating
the use of external tools. Existing literature contains various studies on
heart rate extraction from wPPG signals, many of which have been
evaluated on benchmark datasets. Some studies have focused on ma-
chine learning-based algorithms, as mentioned in the introduction.
However, based on our comprehensive literature review, we have found
no study comparable to TTR-GAN, which employs a cascading approach
of 1D-CycleGANs and harnesses their restoration and translation capa-
bilities to enhance a corrupted PPG dataset and its clinical relevance.
Prior studies, such as: (Kiranyaz et al.; Mehrabadi et al., 2022; Aqajari,
Cao, Zargari, & Rahmani, 2021), have employed 1D-CycleGANs for
specific applications like blind ECG restoration, PPG to Arterial Blood
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Pressure (ABP) synthesis, Respiratory Rate translation, etc. Therefore,
given the novelty of our approach within the field of signal processing,
direct comparison with existing literature is not feasible.

3.7. Study limitations and future directions for research

The proposed TTR-GAN comprises two cascaded sub-frameworks for
restoration and synthesis, respectively. Future studies could investigate
the combination of these two frameworks to conduct restoration and
synthesis of wPPG signals through a single CycleGAN or similar deep
learning frameworks. This enhancement would simplify and make the
framework more portable, making it well-suited for wearable devices.
As a suggestion, this can be achieved by utilizing fPPG waveforms as the
target for the unpaired restoration scheme in TTR-GAN, instead of using
clean wPPG. TTR-GAN, in its current form, exclusively operates on data
from healthy volunteers, as available in the MAUS dataset (Beh & Wu,
2022; Beh et al., 2021). Incorporating data from unhealthy patients
would introduce an additional layer of challenge for researchers, as they
would need to restore the waveforms without affecting the various
cardiac anomalies present. Future studies can explore similar frame-
works with unhealthy data and attempt to enhance cardiac anomaly
detection and/or classification from real-time wPPG signals.

4. Conclusion

In conclusion, modern wearable devices often employ wrist PPG
signals to estimate vital cardiovascular parameters, such as heart rate,
which are significantly affected by motion. In this study, we introduce
TTR-GAN, a framework that blindly restores corrupted wrist PPG sig-
nals and translates them into finger PPG waveforms using 1D-Cycle-
GANs, thereby yielding accurate pulse-pulse interval and pulse rate
variation readings. The blindly restored wrist PPG signals exhibited
significantly lower entropy than the corrupted input samples, demon-
strating the platform’s artifact removal capability. Utilizing the pro-
posed PRTX metric, which is insensitive to phase shifts between wrist
and finger PPG signals, we observed both temporal and spectral corre-
lation between the translated finger PPG and the ground truth finger
PPG and reached an overall improvement of 35.88 % through TTR-
GAN. Furthermore, the correlation between pulse rate and pulse rate
variability of the TTR-GAN generated fPPG signals, in comparison to the
heart rate and heart rate variations extracted from ground truth ECG
signals, improved by approximately 10.4 % and 14.7 %, respectively,
when contrasted with the raw wrist PPG signals. TTR-GAN, due to its
computational efficiency, can be readily integrated into wearable de-
vices that collect wrist PPG signals, providing improved real-time car-
diovascular monitoring and enhancing clinical decision-making. In
future research, the combination of the restoration and translation
schemes of TTR-GAN into a single unified framework can be explored to
enhance portability and simplicity for wearables. Researchers in this
field may also delve into similar frameworks with unhealthy data,
aiming to enhance cardiac anomaly detection and/or classification from
real-time wPPG signals.
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