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A B S T R A C T   

Background and Motivations: Physiological signals, such as the Photoplethysmogram (PPG) collected through 
wearable devices, consistently encounter significant motion artifacts. Current signal processing techniques, and 
even state-of-the-art machine learning algorithms, frequently struggle to effectively restore the inherent bodily 
signals amidst the array of randomly generated distortions. This often leads to the modification or even the 
degradation of the underlying physiological information. 
Methods: To enhance heart rate estimation from wrist PPG (wPPG) signals, this study introduces the Translation 
Through Restoration GAN (TTR-GAN). TTR-GAN comprises cascaded dual-stage 1D Cycle Generative Adver
sarial Networks (1D-CycleGANs) constructed using Super-ONNs. In the first phase, corrupted wPPG waveforms 
are blindly restored using a 1D-CycleGAN-based restoration framework. Subsequently, in the second phase, the 
restored wPPG waveforms are translated into clean finger PPG (fPPG) signals through a 1D-CycleGAN-based 
signal-to-signal translation or synthesis framework. Both the restorer and translator GANs undergo indepen
dent evaluation using robust temporal, spectral, and clinical metrics. 
Results: The application of the multipass restoration scheme to the wPPG signals resulted in significantly lower 
entropy compared to the raw wPPGs, indicating reduced irregularity. Using the proposed PRTX metric to 
evaluate the translational ability of the multichannel translator CycleGAN, we achieved a substantial improve
ment of 35.88% in wrist-to-finger PPG translation. The correlation between the pulse rate and pulse rate vari
ations estimated from the generated fPPG signals and the heart rate and heart rate variability readings from the 
ground truth ECG improved by approximately 10.4% and 14.7%, respectively, when compared to the raw wPPG 
signals. 
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Conclusion: The proposed TTR-GAN can be implemented in wearable devices to obtain reliable real-time car
diovascular data during daily activities.   

1. Introduction 

Plethysmography is a medical technique used to measure changes in 
volume within an organ or the entire body. The term “Plethysmography” 
is derived from the Greek word “plethysmos,” which means increasing, 
enlarging, or becoming full, among other meanings (Plethysmography: 
Purpose, Procedure & Preparation, 2022). Photoplethysmography (PPG) 
is an optically obtained plethysmogram, primarily collected from a 
pulse-oximeter device. It is used to quantify the perfusion of blood to the 
dermis and subcutaneous tissue of the skin. While PPG is one of the most 
easily recordable physiological signals, it can be employed to estimate 
various vital body parameters such as Heart Rate (HR) (Reiss, 
Indlekofer, Schmidt, & Van Laerhoven, 2019), Respiratory Rate 
(Pimentel, 2017; Chowdhury, 2022), Blood Oxygen Saturation (SpO2) 
(Banik, Hossain, Kwon, Kim, & Kim, 2020), and Blood Pressure (BP) 
(Mahmud, 2022; Chowdhury, 2020). So, among the four vital body 
parameters, which include body temperature, heart rate, respiration 
rate, and blood pressure (Vital Signs, 2022), three can be robustly esti
mated from PPG signals (Reiss et al., 2019; Pimentel, Aug. 2017; 
Chowdhury, 2022; Banik et al., 2020; Mahmud, 2022; Chowdhury, 
2020). Due to its non-invasiveness, ease of acquisition, direct or indirect 
relation to various vital body parameters, and the ability to be combined 
with other physiological signals for creating robust solutions (Mahmud, 
2022; Mahmud, 2023), there have been several recent studies that uti
lized PPG and its derivatives to develop various healthcare tools and 
applications (Mahmud, 2023; Shabaan, et al., 2020; Liu et al., 2018; 
Yang et al., Nov. 2019; Alonzo and Co, 2018; Han, 2020; Spachos et al., 
2011; Reşit Kavsaoğlu et al., 2014). PPG signals have been instrumental 
in detecting and predicting various cardiovascular anomalies alongside 
ECG signals (Mahmud, 2023; Shabaan, et al., 2020; Liu et al., 2018). 
When combined, PPG and ECG signals, or their features, have contrib
uted to the development of robust machine learning tools for estimating 
cardiovascular diseases (CVDs) such as Heart Rate Variability (HRV) 
analysis (Liu, Fang, Chen, Li, & Li, 2018), Atrial Fibrillation (AF or A- 
Fib) detection (Yang et al., 2019), Ventricular Fibrillation (V-Fib) 
detection (Alonzo & Co, 2018), and Premature Atrial and Ventricular 
Contraction Detection (Han, 2020), among others. In some studies, PPG 
has shown promise for Biometric Identification as an alternative to ECG 
(Spachos, Gao, & Hatzinakos, 2011; Reşit Kavsaoğlu, Polat, & Recep 
Bozkurt, 2014). 

PPG is primarily obtained from fingertips using pulse-oximeter- 
based sensors in both clinical and non-clinical settings. The shape of 
PPG signals can vary due to the contact pressure applied to the skin 
during data collection (Scardulla, D’Acquisto, Colombarini, Hu, Pasta, & 
Bellavia, 2022). Besides fingers, PPG can also be acquired from other 
body locations, such as the wrist (Lee, Chung, & Lee, 2019), arm (Zhang, 
Zhou, & Zeng, 2017), forehead (Wan, Chen, & Yang, 2022), and other 
areas like the toe or ankle (Ubbink, 2004; Jönsson, Laurent, Eneling, 
Skau, & Lindberg, 2005), chest (Marzorati, Bovio, Salito, Mainardi, & 
Cerveri, 2020), and so on. The shape of PPG signals may also differ 
across different acquisition locations on the body (Hartmann et al., 
2019; Chan, 2019; Hartmann et al., 2019); even when collected from the 
same subject within the same timeframe. Other factors affecting PPG 
shape, such as patient age (Hartmann et al., 2019; Yousef, Reaz, & Ali, 
2022), blood pressure level (Martínez, Howard, Abbott, Lim, Ward, & 
Elgendi, 2022), or blood glucose level (BGL) (Golap, Raju, Haque, & 
Hashem, 2021), change very slowly and remain stable for a subject over 
a long duration, thus seldom impacting real-time setups. However, 
during real-time data acquisition, replicating studies from PPG acquired 
from different parts of the body (e.g., finger vs. wrist) presents 

challenges, as some PPG features change along with their shape. Hart
mann et al. (2019) reported that measurement sites significantly varied 
mean amplitude, peak point position, notch location, and reflective 
index among PPG signals acquired from six different body locations 
(finger, upper wrist, lower wrist, arm, earlobe, and forehead). Interest
ingly, PPG acquired from the lower wrist was found to be more similar to 
the most abundant finger PPG (fPPG) than the PPG acquired from the 
upper wrist. Moreover, PPG collected from different regions of the body 
exhibits phase shifts due to variations in Pulse Transit Time (PTT) 
resulting from the blood flowing from the aortic valve to the specific 
location, which was minimized in these studies during experimentation: 
(Hartmann et al., 2019; Hartmann et al., 2019). Therefore, for vital body 
parameter estimation, transferring knowledge learned from PPG 
collected at one physiological location to another is challenging but 
essential. Nevertheless, finger PPG is considered the gold standard for 
clinical data acquisition, and most of the large and diverse clinical-grade 
waveform databases (e.g., MIMIC-III (“MIMIC-III Waveform Database 
v1.0″, 2022; Johnson, 2016)) include fPPG along with other physio
logical signals such as ECG. However, it is not clinically acceptable to 
transfer knowledge acquired from training an algorithm on a dataset 
containing clinical grade fPPG to PPG acquired from another body 
location using a non-clinical-grade device (e.g., wPPG from wearables) 
for estimating body parameters due to feature variations and cross- 
domain challenges. Furthermore, the measured Pulse Rate Variability 
(PRV) from wPPG signals is less correlated with the ground truth HRV 
measured from ECG signals than the PRV measured from fPPG signals, as 
reported by Nardelli, Vanello, Galperti, Greco, & Scilingo, 2020. Pal
iakaitė (2021) through their experiments showed that wPPG is more 
erroneous than fPPG for cuff-less, continuous blood pressure estimation. 
On the other hand, Rajala, Lindholm, and Taipalus (2018) reported a 
stronger correlation between fPPG and Pulse Wave Velocity (PWV) than 
wPPG. Beh and Wu (2022) demonstrated that simultaneously collected 
ECG is the most efficient in classifying the level of mental workload 
among a group of controlled subjects, closely followed by fPPG, then 
wPPG. Apart from the presence of severe motion artifacts in wPPG, one 
primary reason behind these outcomes is the loss of intrinsic features in 
wPPG compared to fPPG or earlobe PPG, partially due to poor arterial 
blood supply in those organs (Hartmann et al., 2019). In an attempt to 
minimize feature loss, Tsai (2021) in their extensive study reintroduced 
missing features in distorted PPG (finger and wrist), the first derivative 
of PPG (FDPPG, VPG, or PPG’) and the second derivative of PPG 
(SDPPG, APG, or PPG’’) by setting manual thresholds on the third de
rivative of PPG (TDPPG or PPG’’’) based on the feature sets of uncor
rupted PPG. They disassembled the wPPG and fPPG signals into their 
component waves or harmonics and showed that the variation in their 
shapes and features is primarily due to them sharing the same harmonic 
content (component frequencies) but with varying amplitudes. How
ever, this scheme was not entirely successful due to the existence of 
missing features even in TDPPG to some extent, which could potentially 
be resolved using higher-order derivatives. Challenges of this nature can 
be readily addressed through deep learning-based approaches. A study 
conducted by the Stanford Machine Learning Group led by Andrew Ng 
(Voisin, Shen, Aliamiri, Avati, Hannun, & Ng, 2022) demonstrated that 
during training for AF episode detection from ambulatory PPG, the in
termediate kernels in their deep Convolutional Neural Network (CNN) 
network automatically generated derivatives of PPG while learning. 
Hence, efficient deep learning approaches, such as Generative Adver
sarial Networks (GANs) (Goodfellow, 2014), should be capable of 
effortlessly restoring missing features in corrupted PPG signals. In 
addition to conventional GANs (Goodfellow, 2014), there exist purpose- 
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built advanced and hybrid versions of GANs, like DCGAN (Radford, 
Metz, & Chintala, 2015), StyleGAN (Karras, Laine, & Aila, 2021), 
Pix2Pix (Lata, Dave, & Nishanth, 2019), DiscoGAN (Kim, Cha, Kim, Lee, 
& Kim, 2017), LSGAN (Mao, Li, Xie, Lau, Wang, & Smolley, 2017), and 
CycleGAN (Zhu, Park, Isola, & Efros, 2017), which can be applied for 
generative adversarial learning, as is the focus of this application. 
Among these, Cycle Generative Adversarial Networks, or CycleGANs, 
possess the ability to maintain consistency while learning to transform 
between images or signals of different modalities. This consistency 
serves as a crucial rationale behind the interest in CycleGANs for various 
clinical applications (Armanious et al., 2019). Therefore, in this study, 
our objective is to utilize CycleGANs to restore these harmonic compo
nents and synthesize fPPG from the corresponding wPPG. 

As discussed earlier, estimating HR, HRV, and other bodily param
eters from PPG signals and making clinical decisions is more challenging 
and prone to error compared to directly acquiring from ECG. It becomes 
even more challenging when using wPPGs due to the inherent feature 
loss even in clean wPPG signals and their increased susceptibility to 
motion artifacts generated by body movements. In recent years, wear
able wPPG has been widely employed to estimate the heart rate of 
subjects in real-time during their daily activities (Thomas and Gopi, 
2019; Biswas, 2019; Chowdhury et al., 2018; Jarchi and Casson, 2017; 
Zhang et al., 2015; Burrello, 2021; Roy and Gupta, 2020; Fujita et al., 
2018; Rocha, Aug. 2020; Panwar et al., 2020; Song et al., 2021; Yen 
et al., 2022; Yen et al., 2022; Risso, 2021; Ismail et al., 2022). In 
response to the challenges encountered during data acquisition, feature 
extraction, and body parameter estimation from wearable devices, 
several methods have been proposed in these studies. While most of the 
current research employs various signal processing techniques, the uti
lization of deep machine learning networks in this field remains rela
tively limited. CorNet (Biswas, 2019), along with its more efficient 
version Binary-CorNet (Rocha, 2020), used a combination of simple 
CNN and Long Short-Term Memory (LSTM) blocks to estimate HR and 
Biometric Identification from ambulatory PPG. MoDTRAP (Roy & 
Gupta, 2020) implemented multiple signal processing techniques in 
conjunction with LSTM and Multilayer Perceptron (MLP) networks for 
HR estimation from motion-corrupted PPG data. PP-Net, proposed by 
Panwar, Gautam, Biswas, & Acharyya, 2020, also utilizes a combination 
of CNN and LSTM to estimate HR and BP from fPPG data collected from 
the MIMIC-III dataset (MIMIC-III Waveform Database v1.0, 2022; 
Johnson, 2016). Song, Nam, & Kim, 2021 introduced the NAS-PPG 
framework for HR estimation from wPPG by combining multiple data
sets through neural network search. Yen, Chang, and Liao (2022) and 
Yen, Liao, and Huang (2022) employed CNN-LSTM networks for the 
estimation of HR, BP, and other physiological parameters from fPPG 
signals collected from MIMIC-III. Risso, 2021 presented MorphNet for 
HR estimation from motion-corrupted wPPG data from the PPG-DaLiA 
dataset (Reiss et al., 2019). In a very recent study, Ismail, Siddiqi, & 
Akram, 2022 proposed a Convolutional-Recurrent Regressor model for 
HR estimation from wPPG signals while correcting motion artifacts 
using corresponding 3-axis accelerometer (ACC) signals. However, to 
the best of our knowledge, none of the studies in the current literature 
have attempted to synthesize fPPG from wPPG for body parameter 
estimation. This is primarily due to two main challenges: the absence of 
a dataset containing corresponding fPPG and wPPG for evaluating 
signal-to-signal translation and the lack of corresponding ground truth 
ECG data for validating the estimated body parameters. Additionally, 
the challenge of estimating clean finger PPG directly from corrupted 
wrist PPG further complicates this task. 

CycleGANs used in this study have primarily been applied in two 
types of applications: image restoration (Wu et al., 2019; Wang et al., 
2022; Jia et al., 2019; Peng et al., 2020) and image-to-image translation 
or transformation, including domain adaptation and synthetic image 
generation (Dai and Tang,2022; Li et al., 2019; Tang et al.; 
Wang,2019SPS:id::bib67). There have been some preliminary studies 
that employed CycleGANs to correct motion artifacts from 1D 

physiological signals (predominantly wrist PPG) using wearable devices 
(Long, Kim, Lee, & Chung, 2022; Zargari, Aqajari, Khodabandeh, Rah
mani, & Kurdahi, 2022). In these studies, the authors converted the 
clean and corrupted PPG signals into 2D spectrograms during training 
and reverted them to 1D signals during the evaluation phase. In an early 
study, Lin, Zhang, & Liu, 2022 successfully removed Ballistocardiogram 
(BCG) artifacts from simultaneous EEG-fMRI (Electroencephalography 
and functional magnetic resonance imaging) signals using a 1D-Cycle
GAN. Kiranyaz et al. in their pioneering study introduced a 1D Opera
tional CycleGAN-based blind restoration scheme which effectively 
restored corrupted Holter ECGs regardless of the artifacts and out
performed CNN-based CycleGANs while utilizing five times fewer 
network parameters. In a more recent study, Mahmud et al. (2024) 
proposed a supervised, attention-guided operational CycleGAN (AGO-
CycleGAN) method to restore motion-corrupted EEG signals. CycleGANs 
have also been applied to signal-to-signal translation studies, such as the 
work in (Seo, Yoon, Joo, & Nam, 2022), which generated 12-lead ECG 
traces from single-channel ECG signals using CycleGANs. Mohebbian 
et al. (2022) and Basak (2024) reconstructed pure fetal ECG signals from 
a mixture of mother and fetal ECGs using CycleGANs. Several studies 
have attempted to generate synthetic EEG signals for data augmentation 
and other purposes (Hartmann et al., 2022; Xu, 2021; Luo and Lu, 2018; 
Jiao et al., 2020). More recently, some studies have focused on using 
cascaded CycleGANs to address challenging problems spanning multiple 
domains. The R2C-GAN framework, proposed by Ahishali, Degerli, 
Kiranyaz, Hamid, Mazhar, & Gabbouj, 2022 employed 2D-CycleGANs to 
blindly restore noisy X-ray images before COVID-19 classification. In 
contrast, Kanti Podder (2023) introduced a 1D-CycleGAN-based 
approach to restoring carotid artery flow velocity (cbfv) waveforms, 
enhancing the performance of a patient classification model. Sayem 
et al. (2023) in a very recent study proposed a 1D-CycleGAN-based 
wPPG restoration framework to enhance AF-detection (i.e., classifica
tion) from wearables. To the best of our knowledge, no prior study in the 
1D domain has explored the cascading of signal restoration and 
signal-to-signal translation CycleGANs to address any problem, as 
explored in this study. 

In light of the aforementioned challenges associated with extracting 
physiological parameters from wearable wPPG, this study introduces the 
Translation Through Restoration (TTR-GAN, in short), a dual-stage 
framework based on 1D-CycleGANs, designed for robustly estimating 
vital body parameters from wrist-worn wearable devices. As illustrated 
in Fig. 1, the TTR-GAN primarily comprises two cascading 1D-Cycle
GAN-based sub-systems. The primary objective of the CycleGANs in 
the first stage is to restore corrupted wPPG signals into clean wPPG 
signals. This restoration process significantly enhances the overall signal 
quality by eliminating artifacts that are challenging to remove using 
conventional signal processing techniques. However, while the clean 
wPPG signals exhibit improved quality, they may still lack some of the 
diagnostic or clinical information present in clinical grade fPPG wave
forms. To address this, CycleGAN in the second stage transfers the 
domain of the restored wPPG signals to clinical grade fPPG signals 
through translation. The PR and PRV extracted from the generated fPPG 
signals closely correlate with HR and HRV extracted from clinical-grade 
ECG signals, even more than the restored wPPG signals. The primary 
contributions of this study are summarized as follows:  

• In this pioneering study, clinical-grade fPPG signals are synthesized 
from restored motion corrupted wPPG data obtained using a wrist
watch through the proposed TTR-GAN to improve the precision of 
the estimated physiological information such as heart rate, heart rate 
variability, etc.  

• To the best of our knowledge, this study is the first to blindly restore 
PPG signals and their derivatives using 1D-CycleGANs.  

• This study represents the first instance where 1D-CycleGANs have 
been cascaded for both signal restoration and signal-to-signal 
synthesis. 
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• To the best of our knowledge, this study is the first to employ Super 
Generative Neuron-based Operational Neural Networks (Super- 
ONNs) in a 1D application.  

• For the first time, state-of-the-art time-series entropy measurement 
techniques have been used to quantitatively evaluate the signal 
restoration performance of the Restoration GANs. We have intro
duced the novel PRTX metric to reliably quantify the performance of 
the Translator GAN in synthesizing fPPG signals from the phase- 
shifted wPPG waveforms. 

The remainder of the paper is organized as follows: In Section 2, we 
delve into the materials and methods employed in this study, providing a 
comprehensive overview of the theoretical foundations of Super 
Generative Neuron based Operational Neural Networks (Super-ONNs) 
and the architectures of the 1D- CycleGANs used for wPPG restoration 
and wPPG to fPPG translation. Section 3 includes a concise account of 
the dataset employed in this study, data preparation techniques, 
experimental configurations, and an evaluation of the proposed TTR- 
GAN framework’s quantitative and qualitative performance. Lastly, in 
Section 4, we present a succinct conclusion. 

2. Materials and methods 

In this section, we first review the evolution of non-localized kernel- 
based 1D Super Generative Neuron Operational Neural Networks (1D- 
Super-ONNs) in comparison to Convolutional Neural Networks (CNNs), 
ONNs, and Self-ONNs. Following that, we provide an overview of the 
general structure and components of the proposed TTR-GAN frame
work, along with an explanation of the evaluation strategies. 

2.1. 1D-Super-ONNs: 1D-Self-ONNs infused with super neurons 

Conventional CNNs utilize only linear convolutional operators for 

feature propagation through their neurons and layers. The output of the 
kth neuron in the lth layer of a 1D-CNN can be expressed as Eq. (1) (Li 
et al.). In this case, for the sake of simplicity, a convolutional operation 
with unit stride and zero padding was considered. 

xl
k = bl

k +
∑Nl− 1

i=0
xl

ik (1)  

where bl
k is the bias associated with the neuron and xl

ik is the lth layer’s kth 

neuron output, which can be further expressed as Eq. (2), 

xl
ik(m) = Conv1D

(
wik, yl− 1

i

)
≡
∑k− 1

r=0
wl

ik(r)y
l− 1
i (m + r) (2)  

where wl
ik represents the weight of the kernel connecting the ith neuron 

of the (l − 1)th layer to the kth neuron of the lth layer, yl− 1
i represents the 

(l − 1)th layer’s ith neuron output, and ‘m’ and ‘r’ are convolutional op
erators. The convolution operation for CNNs is depicted in Fig. 2 (a). In 
contrast to CNNs, Operational Neural Networks (ONNs) (Kiranyaz, Ince, 
Iosifidis, & Gabbouj, 2020) are more generalized as they can possess 
non-linear convolutional operators. Based on the generalized operator 
formula for ONNs (Eq. (3)), it can be realized that in the case of ONNs, 
every single neuron can be assigned unique nodal (ψ) and pool (P) op
erators. Due to this flexibility, ONNs gain the ability to incorporate non- 
linear transformations suitable for a particular set of problems. The 
operator formula for ONNs (Eq. (3)) can be visualized in Fig. 2 (b). 

xl
ik(m) = Pl

k

(
ψ l

k
(
wl

ik(r), y
l− 1
i (m + r)

) )k− 1
r=0 (3) 

Even with their heterogeneous nature, conventional ONNs are often 
not suitable for general applications or cannot reach their full potential 
due to their exponentially increasing computational overhead in pro
portion to the network complexity, occurring due to their search for the 

Fig. 1. The proposed TTR-GAN framework (3-channel approach) operates in two phases: (a) Initially, the corrupted wPPGs and their first two derivatives are 
independently and blindly restored using the Restoration or Restorer GANs. (b) In the second stage, the restored wPPG data is utilized to translate to fPPG waveforms 
through the 3-channel Translator GAN. In each stage, the signal restoration or translation performance of the 1D-CycleGANs is assessed both temporally and 
spectrally. Finally, we conducted a clinical evaluation of the generated fPPGs in comparison to the input raw wPPGs against ground truth ECGs. 
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optimal operator for each neuron. On the contrary, handcrafting a 
certain set of features for each problem will greatly limit the flexibility 
and generality of the ONNs. It is also not always possible to express the 
nodal operator for each neuron in terms of common mathematical 
functions. To solve this problem, Kiranyaz, Malik, Abdallah, Ince, & 
Iosifidis, 2021 proposed Self-Generative ONNs, or simply Self-ONNs 
which use Taylor Series approximation near the origin (a = 0) (i.e., 
The Maclaurin Series) for the non-linear transformation of each gener
ative neuron, thus allowing any nodal operator function to be formed 
during training without the need o*f any operator set library or a prior 
search process. For this reason, Self-ONN-based models can reach an 
even higher level of diversity and flexibility than static ONNs. Now, as 
derived in (Kiranyaz et al., 2021; Malik et al., 2021; Malik et al.), the 
contribution of the ith neuron in generating the feature map xl

ik from the 
(l − 1)th layer to the lth layer of a Self-ONN model can be expressed by Eq. 
(4), 

x̃l
ik(m) =

∑K− 1

r=0

∑Q

q=1
ψ̃ l

k

(
wl(Q)

ik (r), yl− 1
i (m + r)

)

=
∑K− 1

r=0

∑Q

q=1
wl(Q)

ik (r, q)
(
yl− 1

i (m + r)
)q

≡
∑Q

q=1
Conv1D

(
wl(Q)

ik ,
(
yl− 1

i

)q
)

(4)  

where wl(Q)

ik is the K x Q dimensional kernel matrix between the ith 

neuron from the (l − 1)th layer to the kth neuron at the lth layer. This 
operation has been illustrated in Fig. 2 (c). Here, the hyperparameter Q 
can be tweaked to control the degree of Taylor series approximation 
while wl(Q)

ik is the learnable kernel, unlike CNNs and ONNs. Finally, the 
output of a single neuron can be formulated as Eq. (5), 

x̃l
k = bl

k +
∑Nl− 1

i=0
x̃l

ik (5)  

Mentionable that, with the Q = 1 setting, a Self-ONN acts like a CNN as 
there is no non-linearity in the first term of the Taylor Series 

Fig. 2. A depiction of the 1D nodal operations with the 1D kernels of the neurons at layer l for (a) CNN, (b) ONN, and (c) Self-ONN (Kiranyaz et al., 2021).  

Fig. 3. A Localized (a) vs. non-localized kernel operations (b, c) to create the pixel, xl+1
i (m), from the output maps of the previous layer neurons; (b) Randomly 

localized kernels within a spatial bias range of |Γ| = 4 are shown; (c) The optimized locations of each kernel during a particular iteration of backward propagation 
training are illustrated. 
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approximation. 
Nevertheless, Self-ONN like its predecessors (CNN, ONN) contains 

localized kernel connections between layers. As shown in Fig. 3 (a), for a 
certain neuron located at a point ‘m’ at the current layer of a 1D-Self- 
ONN, all linked kernels in the previous layer are centered at the same 
location of their output feature map. This limits a neuron to learning 
from only a fixed location of the previous layer’s feature map while the 

neighboring pixels might also provide important features for the neuron 
to learn. Kiranyaz et al., in their extensive study (Kiranyaz et al.) pro
posed two methods to generate non-localized kernels or super neurons 
to break this limitation. The first approach functions by randomly 
locating the kernel within a spatial bias of a predefined range (Γ). For 
this study, let’s set the maximum bias range, Γ as 4. Now, for a 1D-Self- 
ONN model, let αi

k ∈ Z[±Γ] be the integer bias for the ith neuron of the 
(l + 1)th layer connected to the kth neuron of the lth layer, and T(αi

k) be the 
shift operator for yl

k by the bias [αi
k]. Then we can perform the shift to 

obtain yl
k(m + αi

k) and operate with the original kernel wl+1
ik of size Kx, as 

expressed in Eq. (6). 

And, for the kernel element wl+1
ik , the nodal operator ψ can be expressed 

as Eq. (7). Upon omitting the DC bias term bl+1
i , the generative neuron 

has a 2D kernel matrix where the qth weight of the kernel element (r) has 
been represented by wl+1

ik (r,q). 

As shown in Fig. 3 (b), the yellow box represents the preset bias range 
(Γ =±4) within which the kernels of size 3 have been shifted randomly, 
but in integer locations. Now, the ith neuron of the (l + 1)th layer can 
learn from shifted kernels yl

k(m + αi
k) in various discrete locations αi

k ∈

Z[±4] within the predefined spatial-bias range. 
On the other hand, the second approach consists of guiding the 

kernels to convergence through backpropagation steps while optimizing 
along with other parameters during training. In this case, the shift values 
should be a real number i.e., αi

k ∈ R, thus the individual sensitivity 
Δαi

k = ∂E
∂αi

k 
can be computed. Due to the shift here being a subset of the 

real numbers, the shifted kernels y→l
k = T(αi

k)yl
k will stay in a fractional 

grid, as shown in Fig. 3 (c), contrary to the integer grid for the random 
approach. Thus, Eq. (6) can be replaced with the fractional bias as in Eq. 
(8). As shown in Fig. 3 (c), the shifted kernels assume fractional posi
tions over the layer yl

k. A bias range of αi
k ∈ R[±Γ] can still be predefined, 

within which the fractional positions can be achieved through interpo
lation.  

For this study, we have opted for the first approach to generate non- 
localized kernels for our Super-ONN-based models, given that the Py
thon implementation of the second and more ideal approach is currently 
unavailable. A comprehensive derivation of forward and backward 
propagation for Self-ONNs with non-localized Super Neurons or Super- 
ONNs is provided by Kiranyaz et al., covering both randomized and 
optimization-based implementations. PyTorch-based implementations 
of ONNs, Self-ONNs, and Super-ONNs can be found in Kiranyaz, Malik, 
Gabbouj, & Ince, 2022. 

2.2. The Translation Through Restoration GAN (TTR-GAN) framework 

The proposed Translation Through Restoration GAN (TTR-GAN) 
framework comprises two schemes: blind wPPG restoration and wPPG 
to fPPG translation, as illustrated in Fig. 1. The objective is to integrate 
the restorative and translational capabilities of 1D-CycleGANs within a 
unified framework. Both schemes follow similar training and testing 

procedures, except for distinct generator architectures and data prepa
ration steps, as depicted in Fig. 4. 

2.2.1. TTR-GAN structure 
TTR-GAN first focuses on restoring the corrupted Wrist PPG signals, 

as generating clinical grade finger PPGs directly from corrupted wPPGs 
is more prone to error. Additionally, since a majority of the wPPG seg
ments in the dataset were corrupted, using a small subset of good wPPG 
segments from a limited number of subjects for fPPG translation is 
insufficient to achieve optimal performance using CycleGANs. wPPG 
signals, typically generated by wearables, naturally contain more arti
facts compared to fPPGs, which are primarily acquired in clinical 

xl+1
i = bl+1

i +
∑Nl

k=1
oper1D

(
T(αi

k)
(
yl

k

)
,wl+1

ik ,′NoZeroPad′
)

⇒xl+1
i (m)

⃒
⃒(M− 1)
(0) = bl+1

i +
∑Nl

k=1

(
Pl+1

i

[
ψ
(
yl

k

(
m + αi

k

)
,wl+1

ik (0)
)
,…,ψ

(
yl

k

(
m + αi

k + r
)
,wl+1

ik (r)
)
,…

] )

∀r ∈ [0, Kx − 1]

(6)   

ψ
(
yl

k

(
m + αi

k + r
)
,wl+1

ik (r, q)
)
= wl+1

ik (r, 1)yl
k

(
m+αi

k + r
)
+wl+1

ik (r, 2)yl
k

(
m + αi

k + r
)2

+⋯+wl+1
ik (r,Q)yl

k

(
m + αi

k + r
)Q (7)   

xl+1
i = bl+1

i +
∑Nl

k=1
oper1D

(

wl+1
ik , y→l

k,
′NoZeroPad′

)

⇒xl+1
i (m)

⃒
⃒(M− 1)
(0) = bl+1

i +
∑Nl

k=1

(

Pl+1
i

[

ψ
(

y→l
k(m),wl+1

ik (0)
)

,…,ψ
(

y→l
k(m + r),wl+1

ik (r)
)

,…
]) (8)   
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settings. These artifacts vary in intensity and type, often diversely 
affecting wPPGs. In practical terms, it is also more reasonable to restore 
wPPG signals before synthesizing fPPG signals, considering that in real- 
life scenarios, wPPG signals are often corrupted by random artifacts. 
Based on this understanding, we perform unpaired and blind restoration 
of the wPPG signals in Phase 1 of TTR-GAN, carried out by the restorer 
GANs shown in Fig. 1 (a). This blind restoration scheme, which remains 
agnostic to the artifacts, enhances the quality and diversity of the clean 
wPPG subset. Subsequently, we translate all restored wPPG signals into 
clean fPPGs. As discussed earlier, wPPGs lack diagnostic values 
compared to clinical grade fPPGs purely due to physiological reasons. 
So, the translator GAN shown in Fig. 1 (b) is used to generate clinical 
grade fPPGs from restored, high-quality wPPG signals. Recently Mah
mud (2023) have reported improved signal synthesis performance by 
using the first two derivatives of PPG, namely Velocity of PPG (VPG or 
FDPPG or PPG’) and Acceleration of PPG (APG or SDPPG or PPG”), in 
parallel to the PPG waveforms. In the case of TTR-GAN, we experi
mented with both single-channel and three-channel approaches and 
found relatively better performance with the latter. Therefore, in Fig. 1, 
we propose that TTR-GAN should be implemented as a three-channel 
framework to achieve higher performance. Note that the two addi
tional inputs to the model (wVPG and wAPG) are only used to enhance 
CycleGAN performance in both phases by incorporating additional 
features during the learning process. However, when generating metrics 
(e.g., pulse rate), only PPG signals are utilized. During practical imple
mentations, there is no need for acquiring fPPG or ECG data. We only 
used ECG for clinical evaluation. Once the TTR-GAN has been trained, 
which requires only wPPG and fPPG data, we deploy the trained resto
ration and translation models in a cascaded fashion to convert the ac
quired raw wPPG into clean fPPG. 

We utilized a 1D version of the ResNet-based generators commonly 
employed in 2D-CycleGANs to restore and denoising images (Mostofa 
et al., 2020; Tavakkoli et al., 2020; Wang and Yang, 2021), as the 
Restorer GANs. These three-layer deep Restoration GANs incorporate 
nine residual blocks in the bottleneck layers, with CNN layers being 
replaced by Super-ONN layers. A detailed illustration is provided in 
Fig. 4 (a). In the input layer, we employ 8 filters or kernels, which are 
subsequently doubled to 32 in the bottleneck layer. Each of the nine 

Super-ONN blocks within the bottleneck includes reflection padding. 
The kernel size in the initial layer is maintained at 7 to capture coarser 
features (Kiranyaz et al.), gradually decreasing to 3 in the bottleneck. 
Conversely, for the generators of the Translator GAN, we employed a 
five-layer deep UNet (Ronneberger, Fischer, & Brox, 2015) with its CNN 
layers substituted by Super-ONNs, as depicted in Fig. 4 (b). UNet and its 
various adaptations have been applied in numerous 2D (Ronneberger 
et al., 2015; Tahir, 2021; Qiblawey, 2021; Huang, et al., 2022) and 1D 
(Mahmud, 2023) segmentation tasks over the past few years, making it a 
suitable choice for the generator in the Translator CycleGAN. The 
number of filters in the UNet increases from 16 in the initial layer to 256 
in the bottleneck. Kernel size and padding decrease as we delve deeper 
into the model. In both Restoration and Translation GANs, the decoder 
structure has been designed as the exact reverse of the encoder, except 
for the final layer. While Restoration GANs always feature a single 
neuron in the final layer, Translator GANs can have either 1 or 3 neurons 
depending on the number of channels. For the Super-ONN blocks, we 
consistently applied a polynomial order ’q’ of 3 in all of our experiments, 
along with a kernel shifting ’sf’ of 2, as displayed in Fig. 4. Both for 
restoration and translation, we adopted Self-ONN-based, 5-layer 
PatchGAN (Isola, Zhu, Zhou, & Efros, 2022) models, as illustrated in 
Fig. 4 (c). The initial layer comprises 16 filters, with a progressive 
doubling in the number of filters in each subsequent layer, reaching 256 
in the fifth layer before culminating in a binary classifier featuring a 
linear activation function. The kernel size (from 11 to 3) and padding 
(from 5 to 1) are diminished in each deeper layer. These discriminators 
operate as binary classifiers, distinguishing between real and counterfeit 
or generated samples. 

2.2.2. Strategies for training CycleGANs: restoration vs. translation 
The general approach for training CycleGANs, whether for signal 

restoration or signal-to-signal translation, remains consistent, except for 
the data preparation strategies discussed in Section 3.2. The generator’s 
objective is to generate counterfeit samples that closely mimic real ones, 
while the discriminator’s role is to differentiate between authentic and 
counterfeit samples. Through this adversarial interplay, the CycleGAN 
continually refines its performance until the generators are capable of 
producing counterfeit samples of such high caliber that they become 

Fig. 4. The Generator and Discriminator architectures for the TTR-GAN framework are as follows: (a) The Generator for the Restoration GANs utilizes a ResNet- 
9block network implemented with Super-ONNs instead of CNNs. (b) For the Translation GAN, we employ a Super-ONN-based UNet model. (c) Self-ONN-based 
PatchGAN Discriminators are utilized for both the restoration and synthesis schemes. 
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indistinguishable from real samples by the discriminator. In TTR-GAN, 
the Restoration GANs generate counterfeit clean wPPG and its de
rivatives from the raw waveforms through blind restoration (i.e., 
restoration irrespective of the artifacts). Conversely, the Translation 
GAN generates counterfeit fPPG signals based on the restored wPPG 
waveforms and learns the art of signal synthesis. In this context, for 
wPPG restoration, the generator GB2GwPPG (referred to as the gener
ator for bad to good wPPG restoration) in Fig. 1 (a) gets trained to 
convert the poor-quality wPPG (WB) samples into high-quality or good 
ones (WG), while the generator GG2BwPPG learns to generate WB from 
WG and is discarded after training. Meanwhile, the discriminators 
DB2GwPPG (the discriminator for bad to good wPPG generation, gets 
trained to discriminate between ground truth and generated good- 
quality wPPG samples) and DG2BwPPG (the discriminator for good to 
bad wPPG generation) in Fig. 1 (a) strive to maximize the adversarial 
loss function to create more convincing transformations. The formula
tions for the adversarial loss functions are provided in Eqs. (9) and (10), 

Lossadv1(GB2GwPPG,DB2GwPPG,WB)

=
1
m

∑m

i=1
(1 − DB2GwPPG(GB2GwPPG(WB(i))))2 (9)  

Lossadv2(GG2BwPPG,DG2BwPPG,WG)

=
1
m

∑m

i=1
(1 − DG2BwPPG(GG2BwPPG(WG(i))))2 (10)  

To enhance the wPPG restoration performance, we incorporate cycle- 
consistency loss into the Restoration GAN for wPPG, as formulated in 
Eq. (11). 

The identity loss formulated in Eq. (12) is also considered alongside the 
above two losses to reduce the variance occurring due to the input 
sample class being the same as that of the desired output. 

For the 3-channel approach involving wVPG and wAPG, the same pro
cedure has been applied. Conversely, when wrist and finger PPGs are 
denoted as W and F, respectively, the functional aspects of the Translator 
GAN (Fig. 1 (b)) can be elucidated by substituting WB, WG, GB2GwPPG, 
GG2BwPPG, DB2GwPPG and DG2BwPPG with W, F, GW2F (generator 
for wrist to finger PPG translation), GF2W (generator for finger to wrist 
PPG translation), DW2F (discriminator for wrist to finger PPG trans
lation) and DF2W (discriminator for finger to wrist PPG translation), 
respectively, as shown in Eqs. (9) to (12). Ultimately, the objective of 
any CycleGAN training session is to minimize the overall loss as 
formulated in Eq. (13). 

Losstotal = Lossadv1 +Lossadv2 + λLosscyc + βLosside (13)  

Here, λ and β represent the loss weights that are fine-tuned before 
training. All losses have been formulated based on the Mean Squared 
Error (MSE). It’s worth noting that for the multichannel Translator GAN, 

there is no identity loss implemented. On the other hand, we employ our 
proposed PRTX metric (details in Section 2.3.2), which combines Power 
Ratio and Temporal Cross-Correlation measures, as the validation metric 
during the training of the Translator GANs. As for the Restoration GANs, 
we utilize Spectral Correlation (ηspec) (Eq. (14)) and spectral Relative 
Root Mean Squared Error (RRMSEspec) (Eq. (15)), as proposed by Zhang 
et al. (2021) as the validation metrics. 

ηspec = 100
(

1 −
1 − ρ(PSD(F),PSD(GX2C(F) )

1 − ρ(PSD(F),PSD(W) )

)

(14)  

RRMSEspec =
RMS(PSD(F)− PSD(GX2C(F) )

RMS(PSD(F))
(15)  

In this context, PSD stands for Power Spectral Density. It’s important to 
note that PRTX (power ratio and temporal cross-correlation), being a 
combination of temporal and spectral metrics, is partially dependent on 
the temporal alignment of the waveforms under evaluation. Specifically, 
they should be aligned or exhibit a constant phase shift. This makes 
PRTX suitable for the Translator GAN, given that the input wPPG, fPPG, 
and their respective derivatives are aligned (except for a constant phase 
shift between wrist and finger data, which is addressed through cross- 
correlation, as discussed in Section 2.3.2). Conversely, the Restoration 
GANs operate on unaligned data, and therefore, they are assessed using 
purely spectral metrics such as ηspec and RRMSEspec, which do not rely on 
the relative temporal alignment of the waveforms. 

2.3. Evaluation process for TTR-GAN 

The Restoration and Translation GANs are assessed separately using 

distinct sets of quantitative metrics. For the restoration scheme, the 
input data is unaligned, whereas for signal synthesis, it is aligned. 
Additionally, the Restoration GANs operate with data from a single 

modality (wPPG), while the Translation GANs are trained on cross- 
modal datasets (wPPG to fPPG). Therefore, their respective quantita
tive metrics should be capable of effectively measuring their perfor
mance improvements. We conduct both quantitative and qualitative 
evaluations of the two TTR-GAN framework components. 

2.3.1. Blind wrist PPG restoration 
In this scheme, we restore corrupted wPPG signals using 1D-Cycle

GANs. The CycleGAN takes two inputs: clean wPPG or its derivatives 
and corrupted wPPG or its derivatives. It is trained to learn the under
lying probabilistic distribution of both sets of training data and how to 
improve the corrupted segments based on high-quality samples. How
ever, this data is unaligned, meaning that for a particular corrupted 
wPPG segment, there is no corresponding clean segment that can be 
temporally assessed (as elaborated in Section 3.2). Implementing a 
system that can simultaneously acquire the clean version of the 

Losside(GB2GwPPG,GG2BwPPG,WB,WG) =
1
m
∑m

i=1
((GB2GwPPG(WG(i) ) ) − WG(i) )+

1
m
∑m

i=1
((GG2BwPPG(WB(i) ) ) − WB(i) ) (12)   

Losscyc(GB2GwPPG,GG2BwPPG,WB,WG) =
1
m
∑m

i=1
(GG2BwPPG(GB2GwPPG(WB(i) ) ) − WB(i) )+

1
m
∑m

i=1
(GB2GwPPG(GG2BwPPG(WG(i) ) ) − WG(i) )

(11)   
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corrupted wPPG signals is not practically feasible, making it impossible 
to assess the CycleGAN performance using traditional quantitative 
evaluation metrics such as accuracy, precision, recall, reconstruction 
error, or correlation coefficients. Therefore, we propose relative quan
tification metrics, such as entropy, to evaluate CycleGAN’s ability to 
restore corrupted wPPG signals. Entropy is a commonly used scientific 
concept for assessing anomalies or randomness in a system. Artifacts in 
physiological signals are anomalies or irregularities that we aim to 
quantify using various state-of-the-art time-series entropy measurement 
techniques. For this study, we employed three different entropy metrics: 
Approximate Entropy (ApEn) (Pincus, Gladstone, & Ehrenkranz, 1991), 
Sample Entropy (SampEn) (Richman & Moorman, 2000), and Fuzzy 
Entropy (FuzzyEn) (Chen, Wang, Xie, & Yu, 2007) to quantify the ir
regularities (or regularities) in the wPPG waveforms before and after 
restoration. ApEn, which was proposed by Pincus et al., 1991 for 
quantifying irregularities in physiological signals (e.g., ECG), is defined 
in Eq. (16): 

ApEn = ϕm(r) − ϕm+1(r) (16)  

where, ϕm(r) can be defined as Eq. (17), 

ϕm(r) = (N − m + 1)− 1
∑N− m+1

i=1
ln•Cm

i (r) (17)  

Here, Cm
i (r) measures the regularity within a given tolerance r, while 

ϕm(r) − ϕm+1(r) measures the mean stability of those patterns while 
iterating through the data points. Richman & Moorman, 2000 intro
duced SampEn as an improvement over ApEn, and it is formulated in Eq. 
(18): 

SampEn = − ln(
Am(r)
Bm(r)

) (18)  

Here, Am(r) and Bm(r) are defined in Eqs. (19) and (20), respectively, 

Am(r) = (N − m)
− 1
∑N− m

i=1
Am

i (r) (19)  

Bm(r) = (N − m)
− 1
∑N− m

i=1
Bm

i (r) (20) 

In this case, Am
i (r) and Bm

i (r) quantify the irregularity in the pattern 
within a given tolerance r for a signal with N data points, while m de
notes the length of compared runs of data (i.e., the threshold for 
checking patterns). r can also be denoted as the filter level or the 
threshold for detecting irregularities (i.e., any irregularity with an 
amplitude lower than this will be ignored). Inspired by ApEn and 
SampEn, Chen et al. (2007) proposed FuzzyEn for estimating time series 
irregularities and first applied it to characterize surface Electromyog
raphy (EMG) signals. FuzzyEn can be formulated by Eq. (21) as follows: 

FuzzyEn = ln(ϕm(n, r) ) − ln
(
ϕm+1(n, r)

)
(21)  

ϕm in the FuzzyEn can be defined as Eq. (22), 

ϕm(n, r) = (N − m)
− 1
∑N− m

i=1

(

(N − m − 1)− 1
•
∑N− m

j=1,j∕=1
Dm

ij

)

(22)  

Here, Dm
ij denotes the degree of similarity or regularity between two 

adjacent vectors Xm
i and Xm

j . The distorted wPPG signals and their de
rivatives are generally more irregular, resulting in a higher overall en
tropy. The contained entropy of the restored wPPG waveforms should be 
lower due to their uniformity. From Fig. 1 (a), we adopt the multipass 
evaluation strategy from Kiranyaz et al. through passing the CycleGAN 
outputs through the trained model multiple times to achieve better 
wPPG restoration performance. We qualitatively and quantitatively 

assess the outcomes from each pass in Section 2.3.3 to show that the 
restoration performance indeed improves until a certain pass starts to 
show a drop in performance. We use the restored wPPGs from the 
optimal pass for wPPG to fPPG translation. 

2.3.2. Wrist-to-finger PPG synthesis 
The wrist-to-finger PPG synthesis scheme is similar to traditional 1D- 

segmentation model-based signal-to-signal translation (Mahmud, 2023). 
In the single-channel approach, we train a 1D-CycleGAN to estimate 
fPPGs from the restored wPPGs. In the three-channel approach (Fig. 1), 
we include restored wVPGs and wAPGs from phase 1 as inputs to a 
multi-channel (three-channel) 1D-CycleGAN for fPPG synthesis. In this 
case, we propose our novel PRTX metric due to the shortcomings in the 
existing metrics for robustly quantifying the performance of the 1D- 
CycleGANs in wrist-to-finger PPG translation. Initially, we attempted 
to apply the Pearson Correlation Coefficient (PCC) (Eq. (23)), which 
failed to evaluate the fPPG translation performance effectively due to its 
susceptibility to existing phase shifts between the ground truth and the 
generated fPPG signals (Mahmud, 2023). 

PearsonCorrelationCoefficient, ρ(x, y) =
∑n

i=1(xi − x)(yi − y)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(xi − x)2

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1
(yi − y)2

√ (23) 

Even though the generated fPPG signals matched in shape, there was 
a time domain shift compared to the ground truth due to the phase shift 
between the input wPPG and fPPG waveforms (Hartmann et al., 2019; 
Hartmann et al., 2019). Therefore, we utilized cross-correlation (Xcorr) 
for the temporal or time domain evaluation of fPPG translation, as it is 
insensitive to phase shifts owing to its use of convolution (Bracewell, 
1999; Papoulis, 1994). The convolutional operation can be formulated 
as shown in Eq. (24). 

f *g =

∫ ∞

− ∞
f (τ)g(t − τ)dτ (24)  

Based on this, the temporal Xcorr (TXcorr in this study) between the 
ground truth and the translated fPPGs can be formulated as in Eq. (25) 
(Cross-correlation, 2022); 

TXcorr(fPPG, fPPG′) = fPPG*fPPG′⇒[TXcorr(fPPG, fPPG′)](t)

=

∫ ∞

− ∞
(fPPG( − τ) • fPPG′(t − τ) )dτ

≡

∫ ∞

− ∞
(fPPG(τ) • fPPG′(t + τ) )dτ (25)  

Here, fPPG′ represents the translated fPPG from wPPG, and fPPG de
notes the complex conjugate of the fPPG signal. However, during the 
evaluation stage, it was observed that using TXcorr alone as a metric did 
not yield distinguishable results before and after translation. Therefore, 
we also incorporated the power ratio (PWRR) of the signals into our 
evaluation metric due to its capacity to quantify the power contained 
within wPPG and generated fPPG signals, allowing for differentiation. 
PR can be formulated based on Eq. (26). 

PowerRatio(PWRR) = 1 −
(

|Pnorm(fPPG) − Pnorm(fPPG) |

max(Pnorm(fPPG),Pnorm(fPPG))

)

(26)  

Here, max(A,B) denotes a built-in function used to determine the 
maximum value between two variables. This metric has been designed 
to vary between 0 and 1. Now, the normalized power is denoted as Pnorm, 
of a signal x can be defined as shown in Eq. (27). 

Pnorm(x) =
∑n

i=1(xi)
2

n
(27)  

Here, n represents the number of data points in the signal. Therefore, the 
final PRTX metric for evaluating the translation from wPPG to fPPG has 
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been formulated as the mean of the temporal cross-correlation (TXcorr) 
and the power ratio (PWRR), as presented in Eq. (28). 

PRTX =
PWRR + TXcorr

2
(28)  

2.3.3. Clinical evaluation process 
The proposed TTR-GAN (Fig. 1) is a framework for signal restoration 

and synthesis, particularly for wPPG signals. It cannot detect the QRS 
complex (R-peaks) from the ECG signals nor the systolic/diastolic peaks 
from the PPG signals. To clinically evaluate the platform through heart 
rate (HR) and heart rate variation (HRV) analysis, external tools or al
gorithms are required. As explained in the introductory section, HR and 
HRV can be robustly estimated from the ECG signals, while the inverse 
of the pulse-pulse interval (PPI) from PPG can be used as a pseudo-HR, 
namely pulse rate (PR). HR is one of the four vital bodily parameters 
(Vital Signs, 2022), and HR and HRV can be used to reliably predict 
various cardiovascular diseases (Perret-Guillaume, Joly, & Benetos, 
2009), respiratory tract infectious diseases (e.g., COVID-19 (Hasty, 
García, Dávila, Wittels, Hendricks, & Chong, 2021), hypertension 
(Chowdhury, 2020; Lan, Raknim, Kao, & Huang, 2018), and more. 
Resting state HR varies from person to person and can be affected by 
factors such as stress, anxiety, medication, hormones, high body tem
perature, dehydration, and physical activity (Olshansky, Ricci, & 
Fedorowski, 2022). An abnormality in HR and HRV (too high, too low, 
or irregular) can indicate cardiac complexities, such as Tachycardia 
(resulting from a high resting HR) (Swai, Hu, Zhao, Rugambwa, & Ming, 
2019) and Bradycardia (resulting from a low resting HR) (Mason & 
Lönnqvist, 2015). In addition to respiratory tract diseases, as discussed 
earlier (e.g., COVID-19), abnormalities in HR and HRV might also be 
related to infectious diseases such as viral myocarditis (Schultz, Hilliard, 
Cooper, & Rihal, 2009), Lyme disease (Lelovas, Dontas, Bassiakou, & 
Xanthos, 2008), etc. The existence of endocrine disorders, such as Hy
perthyroidism (Cacciatori, 1996) and Hypothyroidism (Herrmann, 
2020), can also be predicted from abnormally fluctuating HR. Beyond 
that, HR has direct correlations with the psychological conditions of 
patients, such as anxiety and depression (Gorman & Sloan, 2000). 
Recent studies have applied advanced machine learning techniques to 
link HR and HRV to seemingly unrelated diseases, including Diabetes 
Mellitus (DM) (Ewing, 1981), inflammation (Williams, 2019), and more. 
Given this discussion, it is crucial to robustly estimate HR and HRV from 
wearables in order to monitor such diseases in real-time during 24-hour 
home monitoring. 

In this study, we detect the R-peaks using the deep learning-based R- 
peak detector proposed by Gabbouj, 2022, which is implemented using a 
1D-Self-ONN-based UNet (Ronneberger et al., 2015). It is trained on the 
benchmark CPSC-2020 ECG dataset (Cai, 2020), which contains more 
than 1 million beats. Based on the detected R-peaks, we calculate the 
beat-to-beat, i.e., the RR-interval (RRI or RR-I in short) between the 
peaks. Mean RR (RR) and mean HR (HR) for each segment are estimated 
using Eqs. (29) and (30), respectively (Qin, Li, Huang, & Zhao, 2017). 

RR =

∑N
i=1RRi+1

N
(29)  

HR =

∑N
i=1

(
60000
RRi+1

)

N
(30) 

Here, RRI is a measurement of the time elapsed between two suc
cessive R-waves of the QRS signal on the ECG, typically expressed in 
milliseconds (ms), while HR, its reciprocal, is generally expressed as 
beats per minute (BPM). To convert RR into HR (i.e., converting milli
seconds into minutes), Eq. (30) is applied to each RRI-estimate. Pulse 
rates (PRs) are calculated from the PPI (in place of RRI) using Eqs. (29) 
and (30) based on the systolic/diastolic peaks extracted from wPPG and 
fPPG signals using MATLAB-based (Peak analysis, 2023) peak detector 

used in these studies: (Mahmud, 2022; Mahmud, 2023). We then 
calculate the Pearson Correlation Coefficient (PCC) (Eq. (23)) between 
the true HR from ECG and the pseudo-HR or PR from wPPG and syn
thesized fPPG (fPPG’) signals, respectively, over the entire dataset. HRV 
and PRV are measured per ECG and PPG segment, respectively, using the 
Root Mean Square of Successive Differences (RMSSD) and per subject 
using the Standard Deviation of Normal-R-to-Normal-R Intervals 
(SDNN) (Qin et al., 2017). SDNN and RMSSD can be calculated as shown 
in Eqs. (31) and (32), respectively. 

SDNN =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(RRi − RR)2

N

√
√
√
√
√

(31)  

RMSSD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1
(RRi+1 − RRi)

2

N − 1

√
√
√
√
√

(32) 

So, SDNN is determined based on the mean RR (RR), while RMSSD is 
akin to a moving average. In this study, we calculate RR per subject to 
measure SDNN. RMSSD, being a dynamic parameter, is divided by one 
less than the number of RR estimates per segment. SDNN and RMSSD are 
then averaged over the entire dataset (subject and segment-wise, 
respectively) to generate a single numerical value (ECG, wPPG, fPPG, 
and fPPG’) for comparison. To conduct a comprehensive analysis, in 
Section 3.3.3, we create scatter plots to illustrate the correlations be
tween PPI from fPPG vs. wPPG (Fig. 6 (e)) and fPPG’ (Fig. 6 (f)). 
Additionally, we present the trends of HR/PR, RRI/PPI, and HRV/PRV 
across the entire dataset (Fig. 6 (a-d)). SDNN and RMSSD measures for 
PRV are calculated based on PPI (instead of RRI) using Eqs. (31) and 
(32), respectively. 

3. Experimentation and results 

In this section, we will first discuss the Mental Workload Assessment 
on the N-back Task Using the Wearable Sensor (MAUS) dataset (Beh & 
Wu, 2022; Beh, Yi-Hsuan, & An-Yeu (Andy) Wu, 2021), which was 
utilized in this study. Second, we will delve into the data preparation 
strategies and experimental setup that were established for the proposed 
TTR-GAN. Third, we will present detailed quantitative and qualitative 
assessment results for both wPPG restoration and wrist-to-finger PPG 
synthesis. Additionally, we will examine the computational complexities 
of the TTR-GAN framework when implemented in a wearable system. 
Finally, we will conclude this section with a comparative analysis of 
TTR-GAN against relevant frameworks from the literature. 

3.1. Mental workload assessment on N-back task using wearable sensor 
(MAUS) dataset 

The MAUS dataset utilized in this study was curated and shared by 
Beh and Wu (2022) and Beh et al. (2021) to assess mental workloads 
through physiological signals acquired from wearable devices. This 
dataset includes wPPG signals obtained wirelessly using a PixArt 
wristwatch with a sampling frequency of 100 Hz. Additionally, it en
compasses fPPG, ECG, and Galvanic Skin Response (GSR) signals, all of 
which were simultaneously collected using a ProComp Infiniti device 
with a sampling frequency of 256 Hz (Bio-medical.com, 2022). The 
dataset was compiled from 22 healthy young participants with a mean 
age of 23 years and a standard deviation (SD) of 1.7 years. During data 
collection, each subject was engaged in tasks spanning various levels of 
mental workload, ranging from restful states to intensive cognitive ac
tivities. The average duration of signal acquisition per subject amounted 
to approximately 35 min, resulting in a total usable signal length of 
around 12 h and 50 min. The primary motivation behind selecting the 
MAUS dataset for this study stems from the scarcity of publicly available 
or shareable datasets that contain concurrent wrist and finger PPG 
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waveforms suitable for signal-to-signal translation or synthesis, as well 
as ground truth ECG data for the validation of certain physiological 
parameters derived from the PPG signals. Notably, none of the similar 
datasets (Markova et al., 2019; Albuquerque, 2020; Mijić et al., 2019; 
Vollmer et al., 2023; Gjoreski, 2020) encompass simultaneous re
cordings of wrist and finger PPG signals. While there have been datasets 
(Tsai, 2021) that collected concurrent wrist and finger PPG signals, they 
lacked ECG ground truth, and their accessibility was restricted due to 
privacy concerns. It is worth mentioning that the GSR signals within the 
MAUS dataset were not utilized in the context of this study. 

3.2. Data preparation and experimental setup 

The MAUS dataset included signals collected from two devices, 
PixArt and ProComp Infiniti, with different sampling frequencies (100 
Hz and 256 Hz, respectively). To ensure temporal alignment in the 
processed dataset, all signals were resampled to a common sampling rate 
of 125 Hz. Both devices were affected by 50 Hz powerline noise, with 
PixArt being more severely affected. To reduce powerline noise, a 50 Hz 
notch filter with a quality factor (Q-factor) of 10 was applied to signals 
from both devices. Bandpass filters were used to clean the PPG signals, 
with cutoff frequencies of 0.05 and 30 Hz (Pilt et al., 2013), while the 
cutoff frequencies for the bandpass filter applied to the ECG signals were 
0.1 and 40 Hz (Bailey, 1990). Following practices from similar studies, 
the signals were segmented into segments of 512 data points, and each 
segment was normalized to a range between 0 and 1 for preparing the 
dataset for training deep learning models (Mahmud, 2022; Mahmud, 
2023; Ibtehaz, 2022). A total of 8976 segments were extracted from the 
dataset. Upon meticulous visual assessment of several samples, it was 
evident that the fPPG and ECG signals were of high quality and did not 
necessitate restoration. This study conducted experiments using both 
single-channel (PPG) and three-channel (PPG, VPG, and APG) ap
proaches. For the three-channel approach, VPG and APG signals for both 
wPPG and fPPG segments were derived and stored in the database 
(Fig. 1). The extraction and preprocessing of VPG and APG signals, 

including filtering, alignment, and normalization, followed the process 
explained in past studies (Mahmud, 2022; Mahmud, 2023). The deep 
learning networks (CycleGANs) were trained in a Python environment, 
utilizing an end-to-end pipeline built on the PyTorch library. Each 
network was trained on an NVIDIA 3080Ti GPU for 1000 epochs while 
monitoring the validation metrics (ηspec and RRMSEspec) discussed in 
Section 2.2.2. 

3.2.1. Blind wrist PPG restoration 
For the “Blind wPPG restoration” scheme, the wPPG segments were 

manually categorized into three groups: high, mediocre, and low qual
ity. The annotators rigorously distinguished between high and low- 
quality wPPG segments, adhering to the data preparation strategies 
proposed by Kiranyaz et al.. To create an adversarial dataset, the very 
high-quality wPPG signals were labeled as ‘good,’ and the very low- 
quality wPPG signals were labeled as ‘bad,’ while the rest were cate
gorized as ‘mediocre.’ During the manual sorting process, certain cor
rupted segments with NaN values, straight lines, or no discernible 
physiological information were excluded from the dataset. Out of the 
8976 segments, 1876 were labeled as ‘good,’ 2732 as ‘mediocre,’ 4204 
as ‘bad,’ and 164 as ‘corrupted.’ Due to the dataset’s class imbalance, the 
‘good’ samples were intentionally overlapped by 50 %, resulting in a 
final count of 3752 segments. These 3752 ‘good’ segments, along with 
the 4204 ‘bad’ quality wPPG segments, were utilized to construct 5-fold 
subject-independent datasets for Cross-Validation (CV). In each fold, all 
segments (including ‘good,’ ‘mediocre,’ and ‘bad’) from 4 to 5 subjects 
(approximately 20 % of all subjects) were designated for testing, while 
the ‘good’ and ‘bad’ segments from the remaining subjects were desig
nated for training. As previously explained, the test sets for the resto
ration GANs did not contain ground truth clean segments, making it 
impossible to perform a direct quantitative evaluation of the restoration 
performance in the temporal domain. The annotations for the ‘good’ and 
‘bad’ wVPG and wAPG segments followed the same criteria as the wPPG 
segments and were restored independently for the three-channel 
approach, with configurations similar to those used for wPPG 

Fig. 5. Entropy measurements for (a) wPPG, (b) wVPG, and (c) wAPG signals before and after restoration, following the multipass restoration scheme in TTR-GAN 
Phase 1, as depicted in Fig. 1 (a). 

S. Mahmud et al.                                                                                                                                                                                                                               



Expert Systems With Applications 246 (2024) 123167

12

Fig. 6. (a) Heart (or Pulse) Rate (HR/PR), (b) RR (or PP)-interval (RRI/PPI), Heart (or Pulse) Rate Variability (HRV/PRV) trends in terms of (c) RMSSD and (d) 
SDNN based on the ground truth wPPG, fPPG, and estimated fPPG’ (fPPGE) against the ground truth ECG are displayed over the entire dataset, with the samples 
corresponding to each subject annotated. We used an alpha of 65% to create semi-transparent PPG plots. Additionally, (e) and (f) feature scatter plots illustrate the 
correlation between PRs extracted from wPPG and fPPG’ against those of fPPG, respectively. We noticed a 4% improvement in correlation and rectification of outliers 
by passing the wPPG signals through TTR-GAN. 
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restoration (as shown in Fig. 1). This approach allowed the three 
restoration GANs to independently learn the transformation domains for 
restoring wPPG and its derivatives, which would subsequently be used 
in the wPPG to fPPG translation phase. During training, 10 % of the 
segments were randomly selected for validation. Supplementary 
Table S1 provides additional details about the folds. 

3.2.2. Wrist-to-finger PPG synthesis 
On the other hand, for the “w2fPPG synthesis” scheme, we employed 

corresponding wPPG and fPPG segments for one-to-one translation. The 
restored wPPG segments obtained from all test folds in the previous step 
were aggregated to form the restored wPPG dataset. Consequently, a 
total of 8812 segments (comprising 1876 ‘good,’ 2732 ‘mediocre,’ and 
4204 ‘bad’ quality wPPG segments) and their corresponding fPPG seg
ments were utilized to train the translator GAN. In the three-channel 
approach, the wPPG segments constituted just one of the three input 
channels for the Translator GAN. The other two channels received inputs 
from the restored wVPG and wAPG segments (as depicted in Fig. 1). The 

data for training the Translator GAN was partitioned into 5-fold subject- 
independent CV, adhering to the same approach as that of the restora
tion GANs. During the training process, 10 % of the segments were 
randomly selected for validation. In contrast to the restoration scheme, 
the test sets, in this case, included ground truth fPPG signals and their 
derivatives, allowing for direct quantitative evaluation in the temporal 
domain. Further details about the folds can be found in Supplementary 
Table S2. 

3.3. Quantitative evaluation 

In this section, we conduct a quantitative evaluation of the perfor
mance of CycleGANs in wPPG restoration and wrist-to-finger PPG 
translation. 

3.3.1. Blind wrist PPG restoration 
As mentioned earlier, each segment in the processed dataset com

prises N = 512 data points. For all entropy measurement techniques, we 
employed an m of 2 and a r of 0.1 (Eqs. (16) to (22)), which are standard 
values established in the literature (Bandt & Pompe, 2002; Porta, 1998). 
According to the literature, the value of m should be chosen such that N 
falls between 10m and 30m to ensure reliable measurement of irregu
larity, a criterion that was satisfied with our selected values. We opted 
for a small value of r to account for even minor irregularities present in 
the signals (see Fig. 7). We computed the mean entropies of the 8812 
wPPG segments both before and after restoration across all 5 passes. It is 
important to note that the unrestored data comprises a mixture of cor
rupted, mediocre, and high-quality signals. The restoration GANs 
bolstered the approach by preserving the integrity of high-quality 
wPPGs, wVPGs, and wAPGs for most cases (as depicted in Fig. 7 (d)). 
Consequently, the entropy measurements remained very close in such 

Fig. 7. Qualitative visualization of sample outcomes from the multipass wPPG restoration scheme under TTR-GAN. It includes common cases in which (a)-(b) 
entropy decreased, (c) entropy increased, and (d) entropy remained similar after wPPG, wVPG, and wAPG restoration. For each sample, we also provide the 
Approximate Entropy (ApEn) for the wPPG segment before and after restoration. 

Table 1 
The overall 5-fold-CV w2fPPG translation performance based on the proposed 
PRTX metric. We also show the performance before and after wPPG restoration.  

Metric Waveform Before wPPG Restoration After wPPG Restoration 

Single 
Channel 

Three 
Channels 

Single 
Channel 

Three 
Channels 

TXcorr fPPG vs.wPPG  0.6762  0.6762  0.6706  0.6706 
fPPG vs. fPPG′  0.9006  0.9235  0.9466  0.9561 

PWRR fPPG vs.wPPG  0.5440  0.5440  0.5304  0.5304 
fPPG vs. fPPG′  0.8689  0.9238  0.9322  0.9398 

PRTX fPPG vs.wPPG  0.5977  0.5977  0.5867  0.5867 
fPPG vs. fPPG′  0.8953  0.9212  0.9357  0.9455  
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instances. For mediocre cases, slight improvements were observed, 
while severely corrupted segments exhibited significant enhancements 
in entropy measurements (Fig. 7 (a-c)). Fig. 5 presents the average en
tropy results of 5-fold-CV for wPPGs, wVPGs, and wAPGs before and 
after restoration. 

From Fig. 5, using all techniques, it is evident that the entropy of the 
waveforms significantly decreased after restoration, indicating the 
removal of irregularities through the process. It can also be observed 
that, in most cases, the optimal performance is achieved during the 3rd 
pass. Beyond the 3rd pass, the improvement is generally negligible, 
absent, or even leads to degradation in some cases. Consequently, we opt 
for using the restored wPPG signals from the 3rd pass for the wPPG to 
fPPG translation phase. It is worth mentioning that for a small group of 
corrupted segments, the entropy increased after restoration (as shown in 
Fig. 7 (c)), as these corrupted segments were less irregular compared to 
the restored ones. These segments belong to the final segments in their 
respective records and are unique cases specific to this dataset. The 
MATLAB implementation of the entropy algorithms was sourced from 
(Monge-Álvarez, 2022). 

3.3.2. Wrist-to-finger PPG synthesis 
We assessed the translation performance of the 1D-CycleGAN with 

and without wPPG restoration in both single and three-channel ap
proaches, using the proposed PRTX metric. The aggregated 5-fold cross- 
validation results for w2fPPG translation can be found in Table 1. For a 
more detailed breakdown, per-fold results with and without wPPG 
restoration are available in Supplementary Tables S3 and S4, 
respectively. 

From Table 1, we can observe that the PRTX between the ground 
truth fPPG and the fPPG′ (generated fPPG) significantly improved after 
wPPG restoration. Furthermore, introducing wVPG and wAPG (in the 3- 
channel approach) to the system led to a slight enhancement in the 
PRTX metric. For the best case, the PRTX metric improved from 
approximately 58.67 % (between fPPG and wPPG) to over 94.55 % 
(between fPPG and fPPG′) after translation i.e., around 35.88 % 
improvement. These results demonstrate the capability of these metrics 
to effectively quantify the morphological differences between wPPG and 

fPPG signals and the improvements achieved after translation, irre
spective of phase shifts. 

3.3.3. Clinical evaluation: Heart rate and heart rate variability analysis 
As previously mentioned, the TTR-GAN framework cannot inde

pendently determine heart rate (HR), heart rate variability (HRV), pulse 
rate (PR), and pulse rate variability (PRV) from ECG and/or PPG signals. 
Its primary function is to enhance corrupted wearable wPPG signals and 
translate them to clinical grade fPPG waveforms to improve the 
extraction of cardiovascular features. For clinical evaluation, we use the 
corresponding ECG signals as the reference. We extract R-peaks from the 
ECG signals based on the trained model by Gabbouj (2022). Pulse-pulse 
interval (PPI) is measured based on systolic/diastolic peaks extracted 
from both wPPG and fPPG using the peak detection techniques utilized 
in previous studies (Mahmud, 2022; Mahmud, 2023). When we corre
late the HR and HRV extracted from the ground truth ECG signals with 
the PR and PRV from the PPG signals using the Pearson Correlation 
Coefficient (PCC) formulated in Eq. (23), we obtain the results presented 
in Table 2. The correlation between HRV and PRV is determined by 
using the SDNN metric formulated in Eq. (31). This choice is made 
because SDNN is considered a more robust measure of HRV than 
RMSSD, as it is utilized in state-of-the-art wearables like the Apple 
Watch (Kar, 2023). 

The PCC between the PRs estimated from fPPG’ generated by the 
TTR-GAN and the HRs extracted from the ground truth ECG signals 
improved by approximately 10.35 % compared to PRs from the unre
stored wPPG signals, increasing from 0.7968 to 0.9003 by dint of 
Translation Through Restoration. Before this, we observed an approxi
mate 3.36 % (improved from 0.7968 to 0.8304) boost in the PCC be
tween the HRs from the ECG and the PRs from the wPPG after 
restoration. On the other hand, when correlating HRV from ECG and 
PRV from fPPG’ measured through SDNN, the TTR-GAN achieved an 
improvement of approximately 14.66 %, increasing from 0.6991 to 
0.8457 thanks to the Translation Through Restoration on the raw wPPG 
waveforms. Prior to this, we observed an approximate 4.47 % (improved 
from 0.6991 to 0.7438) boost in the PCC between the HRV from the 
ECGs and the PRV from the restored wPPGs. 

To ensure that the extracted heart (or pulse) rate and variability 
ranges align with subject metadata and real-world trends, we examined 
four key metrics: mean HR/PR (in BPM), mean RR (in ms), mean HRV/ 
PRV in terms of SDNN (ms) and RMSSD (ms) measured across the entire 
dataset. These results are presented in Table 3 where we can observe 
that the mean HRV (or PRV) values across different modalities are not as 
pronounced i.e., closely related as those for HRs (or PRs). However, 
TTR-GAN generated fPPG’ signals closely approximate the ground truth 
fPPGs across all metrics. In general, the PPG waveforms exhibit a similar 
range of mean PRVs as the HRV from the ECG signals, even though the 
clinical parameters were extracted using different techniques. Further
more, the extracted HR (or PR), RR, and HRV (or PRV) parameters align 
with the clinical range for healthy young subjects (Shaffer & Ginsberg, 
2017; Aeschbacher, 2016), which make up the MAUS dataset. This 
alignment underscores the reliability of the analytical procedures 
employed in this section. 

The trends in HR/PR and HRV/PRV across the entire dataset may not 
be readily apparent from the mean results presented in Table 3. There
fore, in Fig. 6 (a-d), we have plotted the HR, RRI, and HRV (RMSSD and 
SDNN) trends of ECG against PR, PPI, and PRV (RMSSD and SDNN) from 
wPPG, fPPG, and fPPG’, respectively, with annotations for each subject. 
It is evident from these plots that TTR-GAN enhanced PR, PPI, and PRV 
performance for all subjects through restoration and translation, subject 
14 being the most anomalous. However, the performance of fPPG’ never 
surpasses that of fPPG in matching ECG, as fPPG serves as the ground 
truth for the TTR-GAN, and ECG has been used solely for clinical eval
uation. Scatter plots in Fig. 6 (e, f) illustrate the correlations between 
PRs extracted from fPPG and wPPG, and from fPPG and fPPG’, respec
tively. We can conclude that TTR-GAN has improved the correlation, 

Table 2 
PCC between HR extracted from ground truth ECG, wPPG, fPPG, and translated 
fPPG ′ signals for the 3-channel approach.  

Parameter Waveforms Pearson Correlation 
Coefficient (PCC) 

Heart Rate (HR) vs. Pulse Rate (PR) ECG vs. wPPG 
(unrestored)  

0.7968 

ECG vs. wPPG 
(restored)  

0.8304 

ECG vs. fPPG  0.9242 
ECG vs. fPPG ′  0.9003 

Heart Rate Variability (HRV) vs. 
Pulse Rate Variability (PRV) in 
SDNN 

ECG vs. wPPG 
(unrestored)  

0.6991 

ECG vs. wPPG 
(restored)  

0.7438 

ECG vs. fPPG  0.9254 
ECG vs. fPPG ′  0.8457  

Table 3 
Mean Heart (or Pulse) Rate (HR/PR), mean RR/PP-Interval (RRI/PPI), and Heart 
(or Pulse) Rate Variability (HRV/PRV) analysis outcomes over the entire dataset 
(3-channel) for ECG, wPPG, fPPG, and fPPG’.  

Waveforms Mean HR/ 
PR (BPM) 

Mean RRI/ 
PPI (ms) 

Mean HRV/ 
PRV (SDNN- 
ms) 

Mean HRV/PRV 
(RMSSD-ms) 

ECG  82.240  770.245  94.008  44.928 
wPPG  78.114  789.596  96.048  52.988 
fPPG  79.307  751.418  90.489  37.609 
fPPG ′  79.433  752.274  91.694  41.690  
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particularly by rectifying some highly erroneous samples (i.e., outliers) 
through efficient wPPG restoration and fPPG’ synthesis. 

3.4. Qualitative evaluation 

In this section, we conduct a qualitative evaluation of the wPPG 
restoration and w2fPPG translation schemes of the proposed TTR-GAN 
framework through effective visualizations. 

3.4.1. Blind wrist PPG restoration 
In the blind wPPG restoration scheme, our goal is to restore or clean 

the wPPG signals, regardless of their quality or the type of artifact. In 
Fig. 7, we showcase corresponding wPPG, wVPG, and wAPG signals of 
varying quality and morphology before and after restoration, along with 
the ApEn measurements for wPPG. From all the provided samples, it is 
evident that CycleGAN restored the signals without affecting their 
morphology. In Fig. 7 (a) and Fig. 7 (b), wPPG and its derivatives were 
restored from high-frequency distortions that cannot be cleaned through 
traditional signal processing techniques (e.g., filtration). In a resting 
condition, wearable wristwatches (the primary data acquisition device 
for this study) exhibit more consistent skin contact pressure compared to 
clip-based clinical fPPG recording systems. However, as wearables are 
used during daily activities, skin contact may vary due to sudden 
movements. Fig. 7 (c) illustrates a unique scenario where CycleGAN 

restored a segment that was distorted as a result of fluctuations in skin 
contact pressure. Lastly, Fig. 7 (d) represents a case where the input 
wPPG signal is of high quality. The signal was almost untouched by the 
system, thus demonstrating its robustness. Tsai et al. (Tsai, 2021), in 
their study, inserted back lost features to manually restore distorted PPG 
signals, which is being efficiently performed here by 1D-CycleGANs on a 
much more diverse dataset. 

3.4.2. Wrist-to-finger PPG synthesis 
The wrist-to-finger PPG signal synthesis performance of the trans

lator CycleGAN improved after wPPG restoration, as discussed in the 
quantitative analysis section. Fig. 8 displays some sample intermediate 
and final outputs from the TTR-GAN framework (3-channel approach) 
for qualitative evaluation. It is evident that the translated fPPG wave
forms closely resemble the ground truth fPPG signals, regardless of the 
quality of the input wPPGs, thanks to the restoration. This also dem
onstrates that CycleGAN can effectively translate fPPG waveforms 
irrespective of the morphology of the input wPPG signals. Although the 
MAUS dataset was collected from healthy volunteers, as per the dataset 
description, for one subject (subject 14), the presence of heart 
arrhythmia could be observed. As shown in Fig. 8 (f, g), these segments 
exhibit high HRV/PRV, as reflected in the ECG, fPPG, and wPPG 
waveforms. These signals posed a challenge for the CycleGAN to accu
rately regenerate, primarily due to their rarity in the dataset (also 

Fig. 8. Qualitative visualization of outcomes from different stages of the proposed TTR-GAN framework: (a)-(e) for healthy cases and (f)-(g) for unhealthy cases.  

Table 4 
Computational costs, model parameters, and TTR-GAN (3-channel) performance in restoration and synthesis across different types of neural networks.  

Neural Network 
Type 

Restoration Translation 
Model 
Architecture 

PRTX 
Performance  
(%) 

Total Parameters 
(M) 

Inference Time 
(ms) 

Model 
Architecture 

Performance 
(%) 

Total Parameters 
(M) 

Inference Time 
(ms) 

HR HRV 

CNN ResNet-9blocks  32.8  0.240  12.9 UNet  9.6  12.6  0.853  6.61 
Self-ONN (qa = 3)  33.7  0.715  18.2  9.8  12.9  2.176  15.7 
Super-ONN (q = 3, 

sfb=2)  
35.9  1.048  26.7  10.4  14.7  2.184  23.0 

a. q: Polynomial Order. 
b. sf: Kernel Shifting. 
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reflected in Fig. 6). Nevertheless, this opens up the possibility of 
employing 1D-CycleGANs to correctly detect cardiovascular anomalies 
from wPPG signals collected from wearables, provided that such data is 
abundant in the training set. 

3.5. Computational cost and portability of TTR-GAN 

Considering that the primary application of the proposed TTR-GAN 
framework is in wearable devices, such as wristwatches, the models 
need to be lightweight to accommodate the memory and processing 
limitations inherent in these devices. While the training process of 
CycleGANs can be computationally expensive, the testing setup can be 
considerably simpler. As illustrated in Fig. 1, a typical implementation 
of the proposed three-channel TTR-GAN involves four trained genera
tors: three for wPPG, wVPG, and wAPG restoration (GB2GwPPG, 
GB2GwVPG, GB2GwAPG), and one for multichannel w2fPPG translation 
(GW2F). Two primary factors influencing the computational cost of deep 
learning models are their complexity and the total number of parameters 
(Hu, Chu, Pei, Liu, & Bian, 2021). As part of an ablation study, we 
implemented the CycleGAN generators for both restoration and trans
lation phases using CNN, Self-ONN, and Super-ONN, while keeping the 
discriminators the same. Table 4 provides their overall performance 
metrics and computational costs. 

In Table 4, we present the computational cost in two ways: total 
model parameters and inference time. Model inference time is a metric 
influenced by both model complexity and the total number of parame
ters (Hu et al., 2021). Therefore, instead of relying on a vague term like 
“model complexity,” we utilize inference time, which encompasses all 
relevant factors. The influence of model complexity on inference time is 
evident from the ResNet-9block generators. Despite being much lighter 
than the UNet-structured models, they are computationally more 
expensive due to the residual layers in the bottleneck, which signifi
cantly increases their inference time. On the other hand, based on 
Table 4, Super-ONN, as expected, is more computationally demanding 
than its CNN and Self-ONN counterparts, despite having the same model 
architecture and hyperparameters. Nevertheless, Super-ONN also ex
hibits slightly better performance than them. In real-life applications, 
engineers need to carefully consider the tradeoff between computational 
and memory requirements and performance improvements when 
choosing the appropriate framework for their devices. Regarding 
memory requirements for Super-ONN-based models, the ResNet- 
9blocks-based trained generator for wPPG restoration contains 
approximately 1.048 million (M) parameters, while the UNet-based 
trained generator for w2fPPG translation comprises about 2.184 M pa
rameters. In total, these parameters sum up to roughly 6.044 M pa
rameters for the three-channel approach, which equates to around 6 
megabytes (MB) of device memory. This requirement can be easily 
accommodated by most contemporary wearable devices (Sabry, Eltaras, 
Labda, Alzoubi, & Malluhi, 2022). 

3.6. Comparison to existing literature 

As detailed in the methodology, TTR-GAN is capable of restoring and 
translating signals solely through the use of 1D-CycleGANs. It is not 
equipped to directly estimate heart rates from PPG signals, necessitating 
the use of external tools. Existing literature contains various studies on 
heart rate extraction from wPPG signals, many of which have been 
evaluated on benchmark datasets. Some studies have focused on ma
chine learning-based algorithms, as mentioned in the introduction. 
However, based on our comprehensive literature review, we have found 
no study comparable to TTR-GAN, which employs a cascading approach 
of 1D-CycleGANs and harnesses their restoration and translation capa
bilities to enhance a corrupted PPG dataset and its clinical relevance. 
Prior studies, such as: (Kiranyaz et al.; Mehrabadi et al., 2022; Aqajari, 
Cao, Zargari, & Rahmani, 2021), have employed 1D-CycleGANs for 
specific applications like blind ECG restoration, PPG to Arterial Blood 

Pressure (ABP) synthesis, Respiratory Rate translation, etc. Therefore, 
given the novelty of our approach within the field of signal processing, 
direct comparison with existing literature is not feasible. 

3.7. Study limitations and future directions for research 

The proposed TTR-GAN comprises two cascaded sub-frameworks for 
restoration and synthesis, respectively. Future studies could investigate 
the combination of these two frameworks to conduct restoration and 
synthesis of wPPG signals through a single CycleGAN or similar deep 
learning frameworks. This enhancement would simplify and make the 
framework more portable, making it well-suited for wearable devices. 
As a suggestion, this can be achieved by utilizing fPPG waveforms as the 
target for the unpaired restoration scheme in TTR-GAN, instead of using 
clean wPPG. TTR-GAN, in its current form, exclusively operates on data 
from healthy volunteers, as available in the MAUS dataset (Beh & Wu, 
2022; Beh et al., 2021). Incorporating data from unhealthy patients 
would introduce an additional layer of challenge for researchers, as they 
would need to restore the waveforms without affecting the various 
cardiac anomalies present. Future studies can explore similar frame
works with unhealthy data and attempt to enhance cardiac anomaly 
detection and/or classification from real-time wPPG signals. 

4. Conclusion 

In conclusion, modern wearable devices often employ wrist PPG 
signals to estimate vital cardiovascular parameters, such as heart rate, 
which are significantly affected by motion. In this study, we introduce 
TTR-GAN, a framework that blindly restores corrupted wrist PPG sig
nals and translates them into finger PPG waveforms using 1D-Cycle
GANs, thereby yielding accurate pulse-pulse interval and pulse rate 
variation readings. The blindly restored wrist PPG signals exhibited 
significantly lower entropy than the corrupted input samples, demon
strating the platform’s artifact removal capability. Utilizing the pro
posed PRTX metric, which is insensitive to phase shifts between wrist 
and finger PPG signals, we observed both temporal and spectral corre
lation between the translated finger PPG and the ground truth finger 
PPG and reached an overall improvement of 35.88 % through TTR- 
GAN. Furthermore, the correlation between pulse rate and pulse rate 
variability of the TTR-GAN generated fPPG signals, in comparison to the 
heart rate and heart rate variations extracted from ground truth ECG 
signals, improved by approximately 10.4 % and 14.7 %, respectively, 
when contrasted with the raw wrist PPG signals. TTR-GAN, due to its 
computational efficiency, can be readily integrated into wearable de
vices that collect wrist PPG signals, providing improved real-time car
diovascular monitoring and enhancing clinical decision-making. In 
future research, the combination of the restoration and translation 
schemes of TTR-GAN into a single unified framework can be explored to 
enhance portability and simplicity for wearables. Researchers in this 
field may also delve into similar frameworks with unhealthy data, 
aiming to enhance cardiac anomaly detection and/or classification from 
real-time wPPG signals. 
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