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Abstract

Global waste is a rising problem that requires attention. Pyrolysis is a process that converts waste into valuable products
like biochar, bio-oil, and gas by heating feeds above 300 °C. Pyrolysis studies mostly concentrate on fuel production and
characterization, while biochar studies lack parametric analysis, especially for co-pyrolysis. Little attention is given to the
effects of blending ratio and particle size on biochar yield. This research focuses on the pyrolysis of biosolids obtained
from gas-to-liquid wastewater treatment, waste cardboard, and co-pyrolysis of blended samples. Pyrolysis was performed
using a muffled furnace at temperatures ranging from 350-850 °C , heating rates of 3—10 °C /min, and residence times of
30-180 min to examine biochar yield and properties. Particle sizes and blending ratios were also studied. Proximate and
ultimate analyses, metal composition, surface area, and surface charge studies were conducted on biochar samples utilizing
analytical instruments. Biosolids had the highest yield followed by mixed samples and cardboard for all conditions, with
temperature and blending ratio having the greatest impact on yield. Regarding surface area, the maximum was found to be at
650 °C revealing 10.34, 170.4, and 124.8 m%g for biosolids, cardboard, and mixed samples, respectively. A significant effect
with change in blending ratio and a minimal effect by varying particle size was observed on the biochar yield. For future
applications, temperatures below 550 °C can be considered in terms of biochar yield, ash, and metal contents; as heating rate
and residence time showed minimal effects on yield, lower points are preferred to conserve energy during pyrolysis. Overall,
mixing waste improved quality and yield, making it environmentally beneficial for applications.
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Abbreviations

BS Biosolid

CB Cardboard

HR Heating rate

(ICP-OES) Inductively coupled plasma optical emission
spectroscopy

RT Residence time

SA Surface area

SS Sewage sludge

TGA Thermogravimetric analysis

DTG Derivative thermogravimetric

GTL Gas to liquids

ASTM American Society for Testing and Materials
BET Brunauer-Emmett—Teller

C Carbon

H Hydrogen

N Nitrogen

(0] Oxygen

Introduction

The global increase in population is proportional to the
amount of waste being generated. The millions of tons of
organic and inorganic wastes, both municipal and industrial
wastes being dumped, are responsible for harmful environ-
mental emissions (Nowicki et al. 2016). Global problems
like climate change, land degradation, and environmen-
tal pollution lead to economic, social, and environmental
instability. In recent times, the circular economy concept
is gaining attraction to maximize the use of resources and
hence reduce climate change impacts. Converting waste to
value-added products supports this ideology by achieving
a country’s sustainability goals and increasing economic
revenue (Mariyam et al. 2022). This seems more beneficial
than other waste management techniques, such as landfilling
and incineration that are considered environmentally harm-
ful methods.

Thermochemical conversion of wastes is being increas-
ingly investigated and applied around the world. Pyrolysis,
which is one of the methods, focuses on converting wastes
to products, including gas, oil, and char in the presence of
an inert atmosphere from temperatures ranging from 300
to 900 °C (Ayyadurai and Arunachalam 2022; Mariyam
et al. 2022; Saravanakumar et al. 2022). Pyrolysis of lig-
nocellulosic materials and biomass to fuels (oil and gas)
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and char started gaining recognition in the mid-1970s; the
reasons being due to increasing energy demand, rise in
petrol prices, and the need for clean energy due to cli-
mate change (Raju 2016). Research reveals that biochar
often considered a by-product has prominent commercial
applications for agricultural and water treatment purposes.
In recent years, due to the increase in wastewater being
produced, pyrolysis studies using wastewater treatment
generated waste—biosolids or sewage sludge is gaining
interest with a wide range of applications from carbon
sequestration, soil fertilizers, and nutrients, to pollution
treatment among others (Raju 2016).

Several operating parameters are crucial in determin-
ing the quantity and quality of the products obtained
during pyrolysis. Often, the temperature is reported as
the primary parameter that affects the products; lower
temperature leads to higher char yields, whereas higher
temperature yields more oil, gas, and ash products after
pyrolysis (Brindhadevi et al. 2021). Furthermore, the
heating rate, usually classified as slow and fast pyrolysis
processes, yields higher char and fuel products (Yogalak-
shmi et al. 2022). Residence time is also considered one of
the parameters affecting the formation and distribution of
products generated at different temperatures (Yogalakshmi
et al. 2022). Recently, co-pyrolysis, which is the pyrolysis
of two or more wastes combined, is gaining attention as
it helps reduce the waste volume effectively, and in some
cases, also improves the quality of char produced (Zhang
et al. 2020).

Despite the several applications of biochar, research on
co-pyrolysis heavily resides in biofuel, more specifically,
bio-oil production and optimization (Sakulkit et al. 2020;
Mohamed and Li 2022). Additionally, a significant portion
of studies focus on kinetics, thermal behavior of degra-
dation, and synergistic studies (Thibanyane et al. 2019;
Liu et al. 2020; Mariyam et al. 2022). Biochar related co-
pyrolysis studies focus on yield studies based on several
operational parameters (Rathnayake et al. 2021; Wanta-
neeyakul et al. 2021). However, there is a lack of studies
focusing on the effect of blending ratios and particle size
of feeds on biochar yield. Furthermore, the implications
of adding wastes with contrasting properties for co-pyrol-
ysis needs to be investigated further, as the physical and
chemical properties of the biochar influence their suit-
ability for utilization in a significant way (Fakayode et al.
2020). When it comes to the feeds, lignocellulosic wastes
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are considered to a great extent due to the presence of
cellulose, hemicellulose, and lignin, which converts to
solid, liquid, and gases by thermal decomposition in an
efficient manner (Yogalakshmi et al. 2022). Even though
there has been a variety of lignocellulosic feeds studied for
co-pyrolysis, they are primarily region-centric wastes such
as rice husk (Kazemi Targhi et al. 2022), bamboo waste
(Li et al. 2020), and corn straw (Suo et al. 2021) among
others. Therefore, this study focuses on cardboard, which
is a common waste available all around the world. As men-
tioned before, due to the interesting output from biosolids
(Callegari and Capodaglio 2018; Racek et al. 2020; Gopi-
nath et al. 2021), the other waste considered for this co-
pyrolysis study is biosolids. More specifically, this study
utilizes biosolids from the largest gas-to-liquids (GTL)
plant in Qatar, producing 6000 tons per year annually
(Kogbara et al. 2020). Since the feeds seem to have dif-
ferent origins, understanding the structure, degradability,
and optimization is essential before further applications.

This study is carried out in Qatar in the year 2022, and
the following are the objectives of this study:

1. To characterize the feeds: biosolids (BS) and cardboard
(CB) to understand the surface morphology, elemental
composition, calorific value, pH, and surface area.

2. To understand the thermal degradation behavior of BS
and CB and how the biochar properties change when the
two feedstocks are mixed.

3. To study the effect of operating parameters (temperature,
heating rate: HR, residence time: RT) and the feedstock
particle size and blending ratio on the biochar yield for
all three samples.

4. To understand the effect temperature has on the samples'
ash content, surface charge, and metal content.

5. Finally, to observe the effect of the aforementioned oper-
ating parameters, feedstock particle size, and blending
ratio on the biochar samples’ surface area and elemental
composition.

Materials and methods

Feedstock procurement

The BS samples were obtained from one of the gas-to-lig-
uids (GTL) plants in Qatar operated by Shell Qatar, and the

CB waste (1-ply) was collected from a leading shopping
market in Qatar.

Feedstock characterization
Proximate analysis

Proximate analysis was conducted on samples using a
thermal analyzer (SDT650, TA Instruments) according to
the American Society for Testing and Materials, (ASTM
D7582-15, ASTM International 2015) method. The samples,
weighing an average 10 mg, were prepared in triplicates
and heated in an inert environment starting from 105 °C for
30 min to determine moisture content. The temperature was
then increased at a rate of 30 °C/min to 950 °C and held at
this temperature for 7 min before oxygen was introduced to
allow combustion for 10 min, enabling the ash content to
be determined. Equation 1 was used to calculate the fixed
carbon content. Proximate analysis was also performed on
biochar samples produced from pyrolysis and co-pyrolysis
at various temperatures, residence times, and heating rates to
assess the effects of these parameters on ash content.

Fixed carbon (%)

= 100% — Volatile matter (%) + Ash (%) + M

Elemental analysis

The carbon (C), nitrogen (N), and hydrogen (H) content
of the samples before and after pyrolysis were determined
using an elemental analyzer (combustion type) (EA 3000,
EuroVector). The samples were measured at 980 °C with
a carrier flow of 121 mL/min. Oven-dried samples (0.50
to 1.5 mg) were weighed using acetanilide as a reference
standard. The oxygen content was calculated based on the
weight difference in elements, and the ash content obtained
from the samples' total mass. The aromaticity and polarity
were assessed by calculating the ratios of H/C and O/C.

pH measurement

The pH of the sample was determined using a modified
ASTM standard method D3838-99 (ASTM, 217 2005). Spe-
cifically, 0.1 g of the dried sample was added to a beaker
containing 10 mL of boiling de-ionized water and sealed
in a tube for approximately 15 min. The pH was calculated
using a filtered sample (Whatman paper, No. 2, 110 mm
diameter) at 323 +5 K.

a
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Thermogravimetric analysis (TGA)

The sieved single and mixed feeds (1:1) samples (1000 pm)
were used to conduct a TGA run using a thermogravimetric
analyzer (SDT650, TA Instruments) at 5 °C /min HR from
room temperature to 900 °C . The runs were accomplished
under an N, atmosphere purged at 100 ml/min. Each run
was conducted three times to ensure the reproducibility and
accuracy of the results. The analysis provides results in the
form of TGA and derivate thermogravimetric (DTG) curves,
which helps study the thermal degradation behavior of the
samples.

Nitrogen adsorption—desorption studies

The surface area (SA) of a material was determined using
the Brunauer-Emmett-Teller (BET) method, which involved
measuring the amount of nitrogen sorption at a temperature
of 77 K and a relative pressure ranging from 0.05 to 0.35; the
Nova 2200e surface area analyzer (Tristar3200, Micromerit-
ics, USA) was used for this purpose. Prior to the analysis,
the samples were degassed at a temperature of 105 °C for
480 min. The pore volume was also estimated using the BET
method, based on the liquid adsorbate volume of nitrogen at
a relative pressure of 0.99.

Calorific value measurement

The calorific values of the samples were determined using a
6300 Fixed Bomb Parr calorimeter, which operated under an
oxygen atmosphere to facilitate combustion. To measure the
calorific values, approximately 0.6 g of dried samples were
placed in the bomb along with a magnetic thread, and 4000
psi of oxygen was added. The bomb was then immersed in
2 L of water, and the resulting temperature increase was
measured using a variety of instruments including mercury-
in-glass thermometers, platinum resistance thermometers,
quartz oscillators, and thermistor systems.

Metal analysis

To determine the concentration and stability of metals in
the samples, the feedstock's metal content was analyzed in
triplicate. Initially, 0.3 g of each sample was digested in a
microwave digester tank with 9 mL of pure nitric acid and
1 mL of H,0, for 30 min. After shaking the mixture well,
it was left to settle for 1 h after tightening the piston before
being placed in the High-Performance Microwave Diges-
tion System (Milestone, 1-24100, Italy). Following digestion,
the samples were cooled and diluted tenfold before analysis
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using inductively coupled plasma optical emission spectros-
copy (ICP-OES) (The Agilent 5800 ICP-OES, USA).

Surface characterization

To understand the surface characteristics of the samples,
scanning electron microscopy (SEM) and energy-dispersive
X-ray spectroscopy (EDS) techniques were utilized. The
samples were in powder form and were spread onto carbon
tape with excess powder removed by compressed air. The
samples were coated with a thin layer of gold (using Quo-
rum Q150 sputter) to allow for electrical conductivity and
then analyzed using an ETD secondary electron detector
and Quanta 650FEG FEI SEM. Elemental microanalysis was
conducted using a Bruker Quantax EDS detector, with gold
being removed to obtain a semi-quantitative result at 15 kV.

Experimental procedures
Sample preparation for pyrolysis

The samples are directly ground, sieved, and mixed to the
desired ratios for all studies. For co-pyrolysis studies for
understanding the effects of particle size (at temp: 450 °C,
HR: 5 °C /min, 120 min), both samples are equally mixed
(1:1) along with the single wastes; the particle sizes are:
355-710 um (labelled-BS;55/CB355/Mix;s5), 710-1000 um
(labelled-BS,,,/CB;,(/Mix;,,), and 1000-2000 um
(Iabelled-BS 5o/CB gp¢/Mix go) To accurately measure the
particle size of the samples, a steel test sieve (ASTME 11
Standard ISO 565, USA) is used after grinding the samples.
Furthermore, the co-pyrolysis blending ratio experiments are
carried out by mixing BS and CB different blending ratios:
25% of BS and 75% CB (Mix,s), 50% mix (Mixs,), and 75%
BS and 25% CB (Mixys), all using 355710 um particle size
samples (at temp: 450 °C , HR: 5 °C /min,120 min). Both
the above-described studies were carried out at 450 °C at a
HR of 5 °C /min and a RT of 120 min.

Operating conditions

This section includes the conditions chosen for pyrolysis
and co-pyrolysis studies involving temperature, HR and RT
studies. In order to see the effect of these parameters on
co-pyrolyzed chars, a 1:1 ratio of BS and CB was consid-
ered. The particle size used for all the parametric studies was
355-710 pum. For understanding the effects of temperature,
the range selected was between 350 and 850 °C with 5 °C/
min intervals. Alternatively, the HR studies included 3, 5, 8,
and 10 °C /min and RT studies focused on 30, 60, 120, and
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Table 1 Operating conditions for pyrolysis and co-pyrolysis studies

Parameter Operating condition (varying) Fixed conditions Sample name

Temperature 350, 450, 550, 650, 750, 850 °C HR: 5 °C /min Biosolids (BS;5,—BSgs()
RT: 120 min Cardboard (CB35,—CBgs)
Blending ratio: 50:50 Mixed (50:50) (Mix;55-Mixgsg)
Particle size: 355-710 um

HR 3,5, 8,10 °C /min Temperature: 450 °C Biosolids (BS;-BS,)
RT: 120 min Cardboard (CB;—CB ()
Blending ratio: 50:50 Mixed (50:50) (Mix;-Mix; )
Particle size: 355-710 um

RT 30, 60, 120, 180 min HR: 5 °C /min Biosolids (BS;;—-BS, )

Temperature: 450 °C
Blending ratio: 50:50
Particle size: 355-710 pm

Cardboard (CB;;-BS 5,)

Mixed (50:50) (Mix;o-Mix, g0)

180 min (all conducted at 450 °C ), ensuring a wide range
for char production. For each condition specified in Table 1,
approximately 50 g of untreated samples were placed in a
ceramic dish and then inserted into a pyrolysis furnace. The
furnace used was a UL standard 1200 °C compact split tube
furnace model (OTF-1200X-S, MTI Corporation). For all
the cases, the temperature was regularly checked on the
monitor of the muffled furnace; the instrument was main-
tained regularly for accurate temperature control during the
pyrolysis process.

Yield calculation

The prepared samples (triplicates) were pyrolyzed under
different conditions described in Table 1 in the presence
of nitrogen using a muffle furnace (Lindberg Blue M-3504,
Thermo Scientific) in batch mode as described in “Operat-
ing conditions” section. After pyrolysis, the cooled samples
were used to calculate the yield by the equation below. The
yield is calculated as follows:

Biochar weight(g)
Feed weight(g)

Biochar Yield (%) x 100 )

Statistical analysis of the data obtained from the para-
metric study was uploaded on Excel and then exported to
SPSS version 20 for statistical analysis. The main objec-
tive was to find out if there is a significant effect of varying
parameters on char yield by conducting a Pearson correla-
tion analysis.

Comparison studies
The biochar samples were characterized to understand

the elemental composition following methodology in
Elemental analysis section, SA using the methodology

in “Nitrogen adsorption—desorption studies” section,
the content of metals in the biochar samples (BS;5(_ss,
CB350_550, MiX35_550) Were determined following meth-
odology in “Metal analysis” section, and the effect of
temperature on ash content as per in “Proximate analysis”
section. The charge of the biochar samples was deter-
mined using a zeta potential analyzer (Malvern Panalyti-
cal Zetasizer Nano-ZS). To prepare the samples, 0.1 g of
the char sample was added to 200 mL of distilled water
to create a suspension of 0.5 ppm. The suspension was
mixed thoroughly by shaking at 150 rpm for 12 h, after
which the samples were transferred into a cuvette and
analyzed using the zeta potential analyzer.

Results and discussion
Feedstock characterization
Proximate and ultimate analysis

BS and CB samples were analyzed to understand the con-
tent of moisture, volatile matter, ash, and fixed carbon by
proximate analysis (Table S1). The moisture and fixed car-
bon contents of BS are slightly higher than those reported
in the literature (Wang et al. 2016; Bai et al. 2021), show-
ing a higher moisture content than CB, both under 13%.
As expected, the volatile matter in the CB is higher than
BS; the fixed carbon, however, is in the same range for
all samples, all compliant with the values reported in the
literature (Salvador et al. 2004; Sotoudehnia et al. 2021).
Furthermore, the ultimate analysis showed the carbon con-
tent is higher in CB compared to BS (Salvador et al. 2004;
Sukarta et al. 2018). Additionally, CB is revealed to have
significantly higher oxygen content due to the reduced ash

]
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Fig. 1 Thermal degradation behavior of BS, CB, and mixed (50:50) feedstocks A TGA curve B DTG curve

content. The H/C and O/C calculated values show that
the ratios decreased in the order BS > CB owing to the
increasing carbon content. The nitrogen content, as pre-
dicted, is very low for CB as it has low protein content
(Sotoudehnia et al. 2020); the nitrogen content in the BS
sample is 5.03%, consistent with reported values (Wang
et al. 2016; Patel et al. 2019). This information will be val-
uable in understanding the influence of surface functional
groups if used for water treatment or bioremediation.

Thermal degradation behavior

The thermal degradation behavior of BS, CB and mixed
(50:50) samples were studied by TGA. Figure 1A shows
that the degradation behavior of all three samples is simi-
lar, showing significant weight loss between 400 and 500
°C . The degradation behavior divided into three stages
reveals that the weight loss percent for the mixed sam-
ple is between the weight loss percentages of the single
feedstocks at all stages. The weight loss % varies with
the stages, as expected, BS samples have higher moisture

Table 2 Thermal degradation behavior of BS, CB, and mixed samples

content which is apparent in the first dehydration/evapo-
ration stage (Table 2); the second stage reveals that CB
samples have the most volatile fraction with about 65%
weight loss. The derivative thermogravimetric (DTG)
curve in Fig. 1B shows a high peak in the second stage
between 200 and 400 °C, indicating the presence of cellu-
lose, hemicellulose, and lignin (primarily observed in bio-
mass samples). The small hump in the final stage between
600 and 650 °C in the CB and mixed samples shows
that some residual lignin is being degraded. Finally, the
weight loss at the final stage, mainly describing the char
degradation stage, reveals that weight loss for all three
samples in the final stage was in the range of 7 and 8%. A
similar trend is observed in the TGA studies for BS (Patel
et al. 2019) and CB (Sotoudehnia et al. 2020) reported in
the literature.

Feed characteristics

BS and CB were both found to be neutral, leaning toward
alkaline in nature; BS had a pH of 8.13 + 0.2, which is

Sample Stage I Weight loss (%) Stage I Weight loss (%) Stage III Weight loss (%) Residual ~ Total
weight weight
(%) loss (%)
BS Room temp—171.42  12.573 171.42-513.17 46.011 513.17-900 8.361 33.055 66.945
CB Room temp—173.79  4.897 173.79-401.58 65.525 401.58-900 17.338 22.24 77.76
Mix Room temp—172. 11 6.922 172.11-494.45 59.236 494.45-900 8.063 25.779 74.221
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slightly higher than the reported value of 8.03 pH (Chow
and Pan 2020); alternatively, the recorded pH of CB was
pH 7.41 +0.2, which in accordance with the literature
value of 7.69 (Suthar and Kishore Singh 2022). Further-
more, the calorific value for the BS sample is measured as
19.45 MJ/kg, which is around the range of 12 and 20 MJ/
kg for BS (Collivignarelli et al. 2019). Similarly, the calo-
rific value for CB was recorded as 17.06 MJ/kg, which is
close to the value of 18 MJ/kg for corrugated cardboard
(Sotoudehnia et al. 2020).

Regarding the metal content in the samples, both feed-
stocks had no detectable amounts of selenium, arsenic,
and cadmium. Due to its nature, BS has a higher metal
concentration than CB. Table S2 shows that CB has a lim-
ited amount of zinc and iron compared to BS; BS had an
expectedly high concentration of iron as an iron coagu-
lant was used during the industrial wastewater treatment
process—a study revealed increased iron concentrations
due to the usage of iron in the sewage pumping stations for
controlling odors and corrosion (Morf et al. 2018).

The SA of the feedstock samples is 0.010, 1.74, and 0.560
m?/g for BS, CB, and mixed samples, respectively. The SA
of BS and CB is reported to be less than 3 m%g in the litera-
ture (Rio et al. 2006; Sotoudehnia et al. 2021). The surface
morphology from the SEM images shows a distinct differ-
ence between the feeds—while BS is flat and non-porous
given its origin, cardboard samples are revealed to be fibrous
in nature (Fig. 2). From the SEM-EDS results, the BS in this

Fig.2 SEM-EDS results of feeds A BS B CB

study detected nitrogen and sulfur mainly from the waste-
water source. Additionally, iron was identified in the BS,
similar to the metal analysis results. On the other hand, CB
mainly detected carbon and oxygen, with the remaining ele-
ments below 0.72 (relative atom %) (Fig. 2).

Yield calculations

Figure S1 shows the BS, CB, and mixed samples before and
after pyrolysis, and Fig. 3 shows the effect of temperature,
HR, and RT on yields of BS, CB, and mixed samples. BS
samples provide the highest yield at a maximum of 50%
at 350 °C. It is clear in the case of BS that as temperature
increases, the yield of biochar reduces significantly for all
three samples. A study on mixed SS and municipal solid
wastes at temperatures 350, 550, and 750 °C showed a drop
in yield from 82, 62, and 60% (Wang et al. 2021). This study
reveals a drastic yield drop after 550 °C, and the least yield
(~ 5%) was obtained at 850 °C when CB was pyrolyzed
(Fig. 3A). Increasing the pyrolysis temperature makes the
chemical energy contained in the gases and liquids rather
than in the char leading to lower char yields (MaSek et al.
2013).

The yield trend for varying heating rates (HR) was
similar to that of temperature (Fig. 3B); however, it was
more pronounced for the CB and mixed samples. Con-
trary to the effects of temperature and HR, the impact of

es | Element | Atom[%]
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* @ Springer



624 International Journal of Environmental Science and Technology (2024) 21:617-630

A B
50 4 . -—BS 45 - : 1 ~— BS
o CB - CB
e g e Mix . —— Mix
40_ ~ ~ e , RS
S . 35
T -
T 30 £ 3 ¥
> 1 ©
20 4 - . > 25
N B ~— R
T~ 20 -
\\
10 + * A
T . 15 4 .
o T ! T T ] 1 10 T T T T T T T T 1
300 400 500 600 700 800 900 2 3 4 5 6 7 8 9 0 1
Temperature (°C) Heating rate (°C/min)
ss, C
~—BS
50 . +—CB
S~ +— Mix
45 T—
- 40 R R ————
e T
> < T
35 T
30 "r..\_
25
.
20

20 40 60 80 100 120 140 160 180 200
Residence time (min)

Fig. 3 Pyrolysis operating parameters effect on yield A temperature B HR C RT

1000 - 2000
s —
= 5
£ o
5 N

c

3 g 710- 1000
o S
2 :
o

355- 710

1
50
Yield (%) Yield (%)

Fig.4 Biochar yield effect by varying A particle size B blending ratio

%

@ Springer



International Journal of Environmental Science and Technology (2024) 21:617-630 625

RT on biochar yields is more gradual (Fig. 3C). Further-
more, statistically, the correlation test (at the 95% con-
fidence level) reveals that a significant, strong negative
correlation was only observed with varying temperatures
(- 0.877, — 0.776, — 0.844 for BS, CB, and mixed sam-
ples, respectively) (Table S3). This study’s results are
similar to another parametric study on rapeseed biochar,
which concluded temperature as the only parameter that
showed statistical significance on biochar yield (Zhao
et al. 2018). Generally, mixing lignocellulosic and other
biomasses with SS are known to reduce the yield of the
samples. A study on mixing feedstocks such as bamboo
wastes, rice husk, kitchen waste, wood sawdust, and
exhausted tea wastes with SS reported reduced yield in
all cases (Wang et al. 2021)—this is true for all conditions
in the present study as well (Fig. 3).

The effect of varying particle size was also conducted to
understand if there is a significant impact, as mentioned in
“Feedstock characterization” section. From observations, it
is clear that there is a slightly better yield when the smallest
particle size samples (355-710 um) were pyrolyzed—this
is consistent with all samples (Fig. 4B). A similar study on
bamboo chars concluded that the heat transfer and diffusion
paths in smaller particle size samples aid in increased char
production (Parthasarathy et al. 2021; Mariyam et al. 2023).
However, this difference was not proven to be statistically
significant.

On the contrary, the effect of the blending ratio was
statistically proven significant, and a strong negative
correlation with yield (at a 95% confidence interval)
was demonstrated (Table S3)—this indicates that when
the amount of BS decreased (increased CB), the yield
reduced significantly. This is expected as the yield of
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Fig.5 Pyrolysis temperature effect on ash content and surface charge

BS at all conditions studied was much higher than CB.
Figure 4A shows that the yield is in the following order
Mix,5 < Mixs, < Mix4s. This could occur because CB has
a higher volatile content than BS (Table S1), producing
a higher oil and gas yield than char. This is consistent
with literature that explains a lower ash and high volatile
content in lignocellulosic biomass tends to produce more
oil and gas and a lower char content (Imam and Capareda
2012).

Effect of pyrolysis temperature on ash content,
metal concentration, and surface charge

The ash content in the biochar increased with rise in
pyrolysis temperature (Fig. 5). The possible decomposi-
tion of the volatile organic matter and the presence of
non-volatile mineral components led to increased ash
production (Aktar et al. 2022). At lower temperatures,
BS char has a comparatively higher amount of ash, but
CB was observed to have higher ash as the temperature
increased and this could be due to a higher loss of vola-
tiles in CB at higher temperatures as both feedstock type
and temperature are known to play a key role in the ash
content produced (Crombie et al. 2013) (Fig. 5). In all
cases, the ash content in the mixed samples remained
between the BS and CB samples range. In a similar fash-
ion, the zeta potential values reveals that the surface
charge of the samples increases as the pyrolysis tem-
perature increases (Fig. 5). The char samples’ negativ-
ity shows the potential for attracting positively charged
pollutants from water or other sources. A similar trend of
increased positivity with temperature is described in the
literature (Julien et al. 1998; Suliman et al. 2016).

The effect of temperature on metal concentration was
studied at 450, 550, and 650 °C, and the results revealed
that the metal became more concentrated as the tem-
perature increased (Table S4). Previous work has also
reported the accumulation of metals with an increase in
pyrolysis temperature due to the reduced weight loss of
metals compared to organic compounds at higher tem-
peratures (Lu et al. 2016; Wang et al. 2019b). Like the
feeds, selenium, arsenic, and cadmium were not detected
in any of the samples (in section “Yield calculations”),
and iron and zinc were observed to have the highest con-
centration. Zinc and other metals like copper and lead are
considered high contributors in the sludge char samples
based on the source (Xingdong Wang et al. 2019a, b;
Tytta 2019). Even though zinc is regarded as an essential
pollutant, its environmental risk is considered insignifi-
cant at times (Tytla 2019), showing unproblematic metal
mobility due to the alkaline nature of SS samples (Wang
et al. 2019a). Therefore, further toxicity tests must be
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Table 3 Pyrolysis temperature effect on mean elemental concentra-
tion in %

Sample Pyrolysis C H N S
temperature

BS 350 33.62 2.90 5.20 5.81
450 43.87 2.90 5.35 5.45
550 35.85 2.61 533 5.62
650 43.55 1.37 6.12 5.12
750 43.87 1.13 6.36 6.43
850 44.02 1.01 6.56 6.43

CB 350 44.94 1.61 0.08 3.12
450 48.96 1.58 0.05 3.96
550 49.40 1.54 0.10 3.81
650 49.54 1.37 0.08 3.23
750 49.67 1.38 0.08 3.20
850 50.00 1.24 0.03 3.41

Mix 350 38.97 1.80 5.05 4.51
450 39.34 1.63 5.65 4.21
550 40.34 1.54 5.32 3.67
650 46.39 1.34 5.21 3.89
750 47.39 1.21 5.01 4.02
850 49.39 1.03 542 4.31

considered before water treatment, or other applications
affecting the environment. As anticipated, CB samples
are less polluted by metals. However, mixed samples are
again seen to contain high amounts of iron due to the
influence of BS (Table S4).

Effect of factors on elemental composition

Compared to the feeds, the carbon content is significantly
higher in the char samples, especially those produced at
high temperatures (Table 3). The elemental composition
of the samples changes with the increase in temperature
for all three samples. As temperature increases, the carbon
content also does with the maximum carbon content in CB
at 50%. Additionally, mixed samples had carbon ranges
between BS and CB at each stage. Alternatively, the pres-
ence of hydrogen decreased with an increase in tempera-
ture. Sulfur was detected in all the char samples, unlike
the feedstocks, which is compliant with some reported
research showing less sulfate and more sulfur at higher
pyrolytic temperatures (500-800 °C)—the reason is attrib-
uted to the changes in composition and speciation of the

Table 4 Comparison of surface

. . Feedstock Operating conditions Surface area Reference
area of biochar samples with 2
5 (m7g)
iterature
SS Temp: 550 °C 0.920 (Wang et al. 2021)
SSB HR: 10 C/min 313
SSB with bamboo sawdust RT: 60 min 20.3
SSB with wood sawdust 14.7
SSB with exhausted tea 22.1
SSB with rice husk 16.0
SSB with kitchen waste 12.1
BS Temp: 550 °C 8.234 This study
CB HR: 5 °C/min 70.39
Mixed RT: 120 min 24.78
140 c
124.8

Surface area (m?/g)
Surface area (m?/g)

|o.0153 93148

600 300 400 500
Temperature (°C)

Surface area (m?g)
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Temperature (°C)

Temperature (°C)

Fig. 6 Effect of temperature on mean surface area of samples A BS B CB C Mixed
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biochar when the pyrolysis temperature increases (Cheah
et al. 2014). The effect of HR and RT is not evident, as
only minimal changes are observed with varying param-
eters (Table S5). A similar study on the “effect of pyrolysis
temperature, heating rate, and residence time on rapeseed
stem" also concluded temperature to be the only signifi-
cant factor contributing to the char samples' elemental
composition. Likewise, only a minimal effect is observed
with varying particle size of the feeds (Table S5). Fur-
thermore, Table S5 shows the impact of the blending ratio
on the elemental composition—the higher the CB in the
mix, the greater the carbon content following the order:
Mix ;5 < Mixsq < Mix,s.

Effect of factors on surface area of biochar

The results obtained from this study are in accordance with
the literature in that the SA of the biochar at 550 °C is much
higher compared to the feedstock (Table S6). Contrary to
the reported paper in Table 4, this study reveals that the SA
improved significantly when mixed with CB. Furthermore,
the SA for all three samples increased with temperature rise
(Fig. 6). This observation has been reported in the literature
several times and described in a review paper (Paz-Ferreiro
et al. 2018). Temperature is known to cause changes in bio-
char SA and porosity mainly caused by the organic mat-
ter decomposition forming micropores; additionally, the
aliphatic alkyls and ester groups destroy, under high tem-
peratures, exposing the aromatic lignin, which is known to
increase the SA (Wang et al. 2020). However, temperatures
above 550 °C showed a reduction in the SA, possibly due to
the high ash content as described in a paper comparing bio-
mass char and ash (Trivedi et al. 2018) (Fig. 6). This result
is also supported by a recent article with similar results (Xu
et al. 2017), explaining the possible collapsing of micropores
caused by the loss of volatiles with additional reduction in
SA due to the sintering process at higher temperatures (Lu
et al. 1995).

Furthermore, HR and RT have shown minimal effects on
SA, concluding temperature to be the main effecting param-
eter (Table S6). The particle size study at 450 °C showed
minimal effects on the SA. However, varying blending ratio
revealed that the SA increased from 1.425 m%/g to 8.338
m%g when 25% and 75% of CB were mixed with BS, respec-
tively. Regarding the blending ratio study, the maximum SA
of 9.338 m?/g was obtained when CB was pyrolyzed without
mixing with BS.

Conclusion

This study uniquely focused on pyrolyzing biosolid, card-
board, and mixed samples to understand the properties of
the biochar obtained. TGA showed that the degradation
behavior of all three samples is similar, showing signifi-
cant weight loss between 400 and 500 °C; this is evident
in the calculated yield as a factor of temperature. The
biochar yield was in the order BS > Mix > CB for all con-
ditions. Statistically, only temperature and blending ratio
were shown to have a significant yield effect showing
reduced yields when the temperature and cardboard con-
tent increased. However, by observation, a negative yield
effect was shown when heating rate, residence time and
particle size increased. In terms of surface area, the maxi-
mum was found to be 650 °C, revealing 10.34, 170.4 and
124.8 m%/g for BS, CB and mixed samples, respectively.
Nevertheless, the ash content for these samples is high
and the yield is low. Just like the biochar yield, tempera-
ture and blending ratio are shown to be the conditions to
have a more pronounced effect on the surface area and
elemental composition. Finally, a rise in temperature is
shown to increase the surface charge and metal concentra-
tion. Considering all the yield studies and characteriza-
tion of the biochar samples, the ones produced at 450 °C
can be regarded as most suitable for further upgrading
and environmental applications. Since the heating rate
and residence time did not show pronounced effects, a
heating rate 5 °C /min and residence time of 30 min can
be considered for future applications. The proximate and
ultimate analyses of the biochar samples produced at
these conditions are shown in Table S7. The produced
biochar can be activated to improve functionality and
surface properties to enable water treatment applications
or be used directly for agricultural purposes. For proper
application of the biochar samples, leaching studies needs
to be conducted to check if the environmental regula-
tion limits are met. The presence of iron in the BS and
mixed samples can also be used to advantage for pollutant
removal studies owing to the iron content and magnetic
properties.
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