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ARTICLE INFO ABSTRACT

Edited by: Dr Muhammad Zia-ur-Rehman Soil contamination with cadmium (Cd) is a persistent threat to crop production worldwide. The present study
examined the putative roles of nitric oxide (NO) in improving Cd-tolerance in cauliflower (Brassica oleracea L.).

Keywords: The present study was conducted using four different genotypes of B. oleracea named as FD-3, FD-4, FD-2 and

SNP Ceilo Blanco which were subjected to the Cd stress at various concentrations i.e., 0, 5, 10 and 20 uM with or

Reactive oxygen species
Cauliflower genotypes
Nutritional status

without the application of NO i.e.,, 0.10 mM in the sand containing nutrient Hoagland’s solution. Our results
illustrated that the increasing levels of Cd in the sand, significantly (P < 0.05) decreased shoot length, root
length, shoot fresh weight, root fresh weight, shoot dry weight, root dry weight, germination percentage,
germination index, mean germination time, time to 50% germination, chlorophyll a, chlorophyll b, total chlo-
rophyll and carotenoid contents in all genotypes of B. oleracea. The concentration of malondialdehyde (MDA)
and Cd accumulation (roots and shoots) increased significantly (P < 0.05) under the increasing levels of Cd in all
genotypes of B. oleracea while antioxidant (enzymatic or non-enzymatic) capacity and nutritional status of the
plants was decreased with varying levels of Cd in the sand. From all studied genotypes of B. oleracea, Ceilo Blanco
and FD-4 was found to be most sensitive species to the Cd stress under the same levels of the Cd in the medium
while FD-2 and FD-3 showed more tolerance to the Cd stress compared to all other genotypes of B. oleracea.
Although, toxic effect of Cd in the sand can overcome by the application of NO which not only increased plant
growth and nutrients accumulation but also decreased the oxidative damage to the membranous bounded or-
ganelles and also Cd accumulation in various parts of the plants in all genotypes of B. oleracea. Hence, it was
concluded that application of NO can overcome Cd toxicity in B. oleracea by maintaining the growth regulation
and nutritional status of the plant and overcome oxidative damage induced by Cd toxicity in all genotypes of

B. oleracea.
1. Introduction industrialization have caused the excessive release of heavy metals in
farmlands with damaging effects on ecosystems (Al Jabri et al., 2022;
In recent decades, rapid increases in urbanization and Riaz et al., 2020). Contamination of agricultural soils with cadmium
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(Cd) has become one of the most toxic and widespread environmental
problems (Afzal et al., 2020; Javed et al., 2017). Cd typically causes
direct or indirect inhibition of various physiological processes, such as
respiration, transpiration, photosynthesis, oxidative stress, cell elonga-
tion, nitrogen metabolism and uptake of mineral nutrition, finally
resulting in growth retardation, leaf chlorosis and reduced biomass
(Nabaei and Amooaghaie, 2019; Rehman et al., 2015; Rizwan et al.,
2016a). In the case of Cd stress, the plants has involved several strategies
that can resort to a number of defense systems, such as: (1) immobili-
zation; (2) exclusion; (3) synthesis of phytochelatins; (4) compartmen-
talization; (5) synthesis of metallothioneins; (6) synthesis of stress
proteins; (7) production of stress ethylene (Hoseini and Zargari, 2013;
Imran et al., 2020; Rehman et al., 2017; Shanying et al., 2017). More-
over, higher Cd retention in plant cells/tissues triggers the production of
reactive oxygen species (ROS), hydroxyl groups (OH), and superoxide
radicles (O-—), which either directly or indirectly affects the in planta
metabolic pathways (Rehman et al., 2018; Tanwir et al., 2015; Zia ur
Rehman et al., 2021). Over-production of ROS is toxic, and plants need
to scavenge those immediately through an antioxidative defense system
(Rizwan et al., 2012; Sager et al., 2020). Previously, antioxidative en-
zymes played a significant role in the reduction of Cd phytotoxicity in
Glycine max (El-Esawi et al., 2020), Solanum lycopersicum (Alyemeni
et al., 2018), Pfaffia glomerata (Pereira et al., 2018), Oryza sativa (Liu
et al., 2017), Boehmeria nivea (Tang et al., 2015) and Zea mays (Abbas
et al., 2020).

Nitric oxide (NO), a small, water and lipid soluble gas, has emerged
as a major signaling molecule (He et al., 2014). NO has been implicated
in a number of diverse physiological processes in plants, including seed
germination, stomatal closure, maturation and senescence, and pro-
grammed cell death responses to biotic and abiotic stresses (Akram
et al., 2018; Kaya et al., 2019). The protective role is based on its ability
to regulate the level and toxicity of reactive oxygen species (ROS). In
addition, it has also been reported that NO, a diffusible gaseous free
radical can protect many vegetative plant species against Cd-induced
oxidative stress (Arora and Bhatla, 2017; Gill et al., 2013; Qiu et al.,
2021). On the other hand, Cd accumulation can also induce changes in
antioxidative systems of a cell; e.g., in tomato, Cd enhanced anti-
oxidative defense system with increased lipid peroxidation and
hydrogen peroxide (H203) accumulation (Ahmad et al., 2018). Cauli-
flower, belonging to Brassicaceae, is a popular vegetable grown
throughout the world for its abundant proteins, minerals, vitamins, and
metabolites which protect mankind from heart diseases and certain
cancers (Ma et al., 2021). Plant species related to Brassicaceae are
generally considered as sensitive indicators or phytoremediators for
their fast growth, higher biomass, and adsorptive ability of heavy metals
(Ahmad et al., 2019). Previous studies have described the response of
Helianthus annuus, Arachis hypogaea, and Triticum aestivum (Arora and
Bhatla, 2017; Howladar et al., 2018; Kong et al., 2014), on Cd toxicity
under the different applications. B. oleracea characteristics such as huge
biomass and high tolerance to metal-stressed environment may be useful
for the selection of best tolerant genotype, but plant efficacy for Cd
stressed environment and core reactions of the antioxidant defense
system under Cd stress are unrevealed. However, none of the previous
studies reported the screening of different B. oleracea genotypes for Cd
stressed soils. Therefore, the primary objectives of this study was to
assess the effects of exogenous application of NO on growth, photo-
synthetic efficiency, oxidative stress and response of antioxidant com-
pounds, nutritional status of the plants and Cd accumulation in the
various part of the plants. In addition, we have determined the role of
enzymatic and non-enzymatic antioxidant defense system in details
under the toxic concentration of Cd in the soil. B. oleracea is a vegetable
and sensitive to the Cd stress, therefore we have screened various ge-
notypes of B. oleracea to obtain which variety will show maximum
tolerance under the same condition. The study will provide useful in-
formation to sort out suitable B. oleracea genotype for the Cd contami-
nated sand.
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2. Materials and methods
2.1. Experimental design and plant sowing

Seeds of four genotypes named as FD-3, FD-4, FD-2 and Ceilo Blanco
were collected from vegetable section of Ayub Agricultural Research
Institute (AARI) Faisalabad 38000, Pakistan. The seeds (5—8) were sown
in plastic pots (25 x 35 cm?) having washed natural soil supplemented
with 0, 5, 10 and 20 pM CdCl; containing the natural sand which was
supplied by the Hoagland’s solution. For the application of Cd stress,
cadmium chloride (CdCly) salt was used. The composition of Hoagland’s
nutrient solution was as follows (umol L™Y: Ca(NO3)s, 2000; KHPOy4,
100; KNOs, 3000; MgSO4, 1000; H3BO3, 50; MnCl,0.4 H,0, 0.05;
ZnS040.7H,0, 0.8; CuS040.5 H,0, 0.3; HoMO4-H20, 0.10; and FeNa-
CA, 12.5. The physio-chemicals are nutritional properties of the sand
used in this experiment are as follow: organic matter: > 70 % of the total
solids; density: 350 kg/m?%; pH: 7.6; electric conductivity: 20 mS/m;
organic nitrogen: 1400 mg/L; nitrogen: g/m3; phosphorus: 75 g/rn3;
potassium: 160 g/m? magnesium: 250 g/m5; calcium: 1600 g/m>; sul-
fur: 85 g/m>; copper: 2.5 g/m°; zinc: 1.8 g/m>; molybdenum: 2.7 g/m>
and iron: 5.6 g/m3. (Javed et al., 2020). The levels of Cd treatments were
selected based on previous study (Jung et al., 2020). Sodium nitro-
prusside (SNP) was used as NO donor. The SNP dose (0.10 mM) was
selected based on available literature (Kaya et al., 2020). The concen-
tration of SNP (NO) application was sprayed to the plants after two
weeks of the seed emergence. We established eight treatments in this
study i.e., 0 mM CdCly + 0 mM NO, 0 mM CdCl, + NO, 5 mM CdCly, 5
mM CdCl; + NO, 10 mM CdCl,, 10 mM CdCl; + NO, 20 mM CdCl, and
20 mM CdCl; + NO. Various treatments of Cd was provided with the
addition of the nutrient Hoagland’s solution and this solution was
maintained with the pH 6 using NaOH or HC], once in the week. In
addition, % strength Hoagland’s was provided to the sand mixture, as
this is the seedling stage experiment. The pots were placed in a growth
chamber (Sanyo versatile Environmental Test Chamber MLR-351, UK)
with a photoperiod of 16 h light/8 h dark with light intensity of 200
pmol m~2 s™! belonging to the Department of Botany, Government
College University, Faisalabad 38000, Punjab, Pakistan (31° 24/N, 73°
04/E). The day/night temperature was adjusted at 25 °C/23 °C with
relative humidity of 70-72 %. After 14 days of the seed sowing the
Hoagland’s nutrient solution was added to each pot to avoid any
nutrient deficiency in the sand mixture. The whole plants in triplicate
were uprooted from each treatment pot at 6 leaf stage (after six weeks of
seed sowing) for various morpho-physio and biochemical traits. During
the entire experiment, we did not observe any symptoms of water-
logging in both genotypes of B. oleracea. The experiment was conducted
in three replicates following complete randomized design (CRD).

2.2. Morphological traits and germination attributes

All plants were harvested to measure different morphological and
physiological attributes after 6 leaf stage of the life cycle of B. oleracea.
Plants were rooted up in the July 2020 and analysis of different bio-
logical parameters were performed in Government College University,
Pakistan. The sampled leaves were washed with distilled water, imme-
diately placed in liquid nitrogen and stored in a freezer at low temper-
ature (—80 °C) for further analysis. The whole plants were washed with
distilled water and separated into roots and shoots. Shoot length and
root length were measured using measuring scale and fresh biomass was
measured using weighting digital balance. For dry biomass, the samples
of roots and shoots were oven dried at 65 °C for 75 h. Germination index,
time to 50% germination, and mean germination time was measured by
following the method presented by Wiesner (1990), Coolbear et al.
(1984) and Ruan et al. (2002) respectively. Germination percentage (%)
was calculated by the following formula.

G% = No-of germinated seeds/Total number of seeds x 100
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2.3. Determination of photosynthetic pigments

Chlorophyll contents were determined following (Arnon, 1949), by
taking 0.1 g leaf sample extracted with 95.5% acetone and absolute
ethyl alcohol in 1:1 ratio. This extraction was done in the dark place for
48 h.

2.4. Determination of malondialdehyde and antioxidant capacity

Lipid peroxidation was detected by MDA contents following the
method described by (Heath and Packer, 1968). Briefly, 0.5 g leaf
sample was taken and homogenized with 5 mL of 0.1 % tri-
chloroaceticacid (TCA). Then, the obtained homogenate was centri-
fuged at 10,000 rpm for 5 min. Four milliliters of TCA (20 %) along with
thiobarbituric acid (0.5 %) was added in every 1 mL of aliquot. Finally,
MDA contents were determined using extinction coefficient of 155
mM~!em™L

Catalase (CAT) activity was analyzed according to (Aebi, 1984). The
assay mixture (3.0 mL) was comprised of 100 uL enzyme extract, 100 pL
H20; (300 mM) and 2.8 mL 50 mM phosphate buffer with 2 mM ETDA
(pH 7.0). The CAT activity was measured from the decline in absorbance
at 240 nm as a result of HyO5 loss (¢ = 39.4 mM ! em™ D).

Peroxidase (POD) activity in the leaves was estimated using the
method of (Sakharov and Ardila, 1999) by using guaiacol as the sub-
strate. Increases in the absorbance at 470 nm because of guaiacol
oxidation were recorded for 2 min. One unit of enzyme activity was
defined as the amount of the enzyme.

Superoxidase dismutase (SOD) activity was assayed in 3 mL reaction
mixture containing 50 mM sodium phosphate buffer (pH 7), 56 mM
nitro blue tetrazolium, 1.17 mM riboflavin, 10 mM methionine and 100
uL enzyme extract. Finally, the sample was measured by using a spec-
trophotometer (xMark™ Microplate Absorbance Spectrophotometer;
Bio-Rad, Hercules, CA, USA). Enzyme activity was measured using a
method by (Chen and Pan, 1996) and expressed as U g’1 FW.

2.5. Determination of non-enzymatic antioxidants

Plant ethanol extracts were prepared for the determination of non-
enzymatic antioxidants and some key osmolytes. For this purpose, 50
mg of dry plant material was homogenized with 10 mL ethanol (80 %)
and filtered through Whatman No. 41 filter paper. The residue was re-
extracted with ethanol, and the 2 extracts were pooled together to a
final volume of 20 mL. The determination of flavonoids (Pckal and
Pyrzynska, 2014) and phenolics (Bray and Thorpe, 1954) was performed
from the extracts. (Rosen, 1957) method was used to measure the total
free amino acid. 0.5 mL extract was taken and allowed to react with 0.5
mL 4% ninhydrin and 0.5 mL of 2 % pyridine. After cooling the test tubes
distilled water is added to make the final volume 7.5 mL and absorbance
was measured at 570 nm. Total soluble proteins (TSP) were measured
from fresh leaf material. The leaf tissue (0.5 g) was crushed in 10 mL of
chilled potassium phosphate buffer (50 mM; pH 7.5). The supernatant
was used to determine proteins following the method of (Bradford,
1976).

2.6. Determination of Cd concentration and nutrient uptake

Plant dry material (0.1 g) was used to determine different elements
from root and shoots (Allen et al., 1986). For this purpose, plant roots
and shoots were washed twice in the distilled water, dipped in 20 mM
EDTA for 3 s, and then, again, washed with the distilled water twice for
the removal of adsorbed metal on the plants surface. The dried roots and
shoots were digested by using a wet digestion method in HNO3: HC1O4
(7:3 V/V) until clear samples were obtained. Each sample was filtered
and diluted with redistilled water up to 50 mL. The root and shoot
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contents of Mn, Mg, Ca and K and were analyzed by using flame
photometer (Sherwood, Model 360).

Finely ground samples were digested with pure HNO3 at 190 °C for
45 min (10 min pre-heating, 15 min heating, 20 min cooling) in a mi-
crowave oven (Mars 6, CEM Corporation, Matthews, NC, USA) with the
settings described in details by (Jezek et al., 2015). Samples were diluted
with 2 % HNO3 and determined by inductively coupled plasma-mass
spectroscopy (ICP-MS; Agilent 7700, Agilent Technologies Inc., USA).

2.7. Statistical Analysis

Data analysis was executed by using two-way analysis of variance
(ANOVA) with computer based Co-stat version Cohorts Software 6.2,
2003 (Monterey, CA, USA). The differences among treatments were
evaluated by least significant difference method (Fisher s LSD) at p value
of < 0.05 level. The data was standardized by logarithmic or inverse
transformations prior to analysis. Principal component analysis (PCA)
was executed to quantify relationship among different variables. The
Pearson correlation coefficients and the principal component analysis
between variables different genotypes of B. oleracea were also calculated
using RStudio software.

3. Results

3.1. Response of morphological, germination and photosynthetic
attributes

In the present study, different morphological traits such as root
length, shoot length, root fresh weight, shoot fresh weight, root dry
weight and shoot dry weight, various germination parameters such as
germination percentage, germination index, mean germination time and
time to 50 % germination and also photosynthetic pigments such as
chlorophyll a, chlorophyll b, total chlorophyll and carotenoid contents
were decreased under the increasing levels of Cd in the sand (Table 1,
Fig. 1). The maximum decreased in growth parameters and germination
attributes were found at the highest level of Cd in the sand i.e., (20 pM),
compared to the plants which were grown in the sand which was not
contaminated with Cd. According to the results, it was also noticed that
the Ceilo Blanco and FD-4 was found to be most sensitive species to the
Cd stress under the same levels of the Cd in the medium while FD-2 and
FD-3 showed more tolerance to the Cd stress compared to all other ge-
notypes of B. oleracea. The negative impact of Cd toxicity was overcome
by the application of NO, which significantly (P < 0.05) increased
growth, germination and photosynthetic pigments in the plants grown
under the various levels of Cd in the sand (Table 1, Fig. 1).

3.2. Response of malondialdehyde and antioxidant capacity

In the present study, we have measured the concentration of
malondialdehyde (MDA) from the leaves of B. oleracea and presented in
Fig. 3a. Results showed that the increasing levels of Cd in the sand (0, 5,
10 and 20 uM), caused a significant increase in the concentration of
MDA in all genotypes of B. oleracea. However, in all genotypes of
B. oleracea the activity of CAT was decreased but contrastingly; activity
of SOD and POD were increased in all genotypes of B. oleracea under the
varying levels of Cd in the sand. Although, non-enzymatic antioxidants
(total soluble protein, flavonoid and phenolics) were decreased with the
increasing levels of Cd in the nutrient solution (Fig. 4), but a minor
changed has been found in all genotypes of B. oleracea in their free
amino acid under the treatment of different levels of Cd in the sand
(Fig. 4a).

It was also noticed that the application of NO induced different re-
sults in different parameters for the various genotypes of B. oleracea
under the treatment of Cd stress in the sand. Under the application of
NO, the concentration of MDA was decreased significantly (P < 0.05)
and also the activities of SOD, CAT were also decreased in all genotypes
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Table 1
Effect of various application levels of nitric oxide and Cd toxicity tolerance on various growth parameters in various varieties of B. oleracea grown in various levels of Cd
treatments in the medium.

Variety TO T1 T2 T3 T4 TS T6 T7
Shoot Length FD-3 6.53 + 0.01 6.66 + 0.02 6.41 £+ 0.01 7.4 £+ 0.06 6.1 & 0.06 7.10 + 0.06 5.8 £ 0.06 6.13 + 0.03
FD-2 6.47 + 0.03 6.78 + 0.02 6.37 &+ 0.02 7.87 +0.03 6.3 + 0.03 7.83 + 0.03 6 + 0.06 7.47 £ 0.15
FD-4 6.86 + 0.03 7.2 +0.06 5.7 £0.09 6.5 £+ 0.06 5.3 +£0.12 6.53 + 0.03 54 0.06 5.97 + 0.07
Ceilo Blanco 5.87 £ 0.03 6.3 £ 0.06 5.5+ 0.06 5.8 £ 0.06 5.3 +£0.03 6.0 + 0.03 54 0.06 5.7 £0.03
Root Length FD-3 1.90 £ 0.06 2.93 + 0.09 1.67 £+ 0.09 2.20 + 0.06 1.4 £0.06 1.80 + 0.06 1.10 &+ 0.06 1.73 £ 0.12
FD-2 1.80 £ 0.06 3.43 £ 0.07 1.72 £ 0.04 2.07 +0.03 1.03 £ 0.19 1.50 £+ 0.06 0.60 + 0.06 1.17 £ 0.09
FD-4 2.47 +0.03 3.00 + 0.06 2.30 £ 0.06 2.60 + 0.06 1.53 £ 0.01 1.72 £ 0.01 0.37 £ 0.03 0.80 + 0.06
Ceilo Blanco 1.83 £ 0.09 2.80 + 0.06 1.90 £ 0.06 2.60 + 0.06 2.07 + 0.09 2.47 +0.20 1.00 £ 0.06 1.70 £ 0.06
Shoot F.W FD-3 0.64 + 0.01 0.73 £ 0.01 0.64 +0.01 0.72 +£0.01 0.64 + 0.01 0.69 + 0.00 0.64 + 0.01 0.66 + 0.01
FD-2 0.60 + 0.01 0.68 + 0.01 0.60 + 0.01 0.69 + 0.0 0.60 + 0.01 0.68 + 0.0 0.60 + 0.01 0.71 £ 0.0
FD-4 0.62 + 0.0 0.72 £ 0.01 0.62 + 0.0 0.75 + 0.01 0.62 + 0.0 0.70 + 0.01 0.62 + 0.0 0.70 = 0.0
Ceilo Blanco 0.59 + 0.01 0.66 + 0.02 0.59 £+ 0.01 0.64 + 0.01 0.59 + 0.01 0.66 + 0.01 0.59 + 0.01 0.64 + 0.01
Root F.W FD-3 0.18 + 0.00 0.29 + 0.00 0.17 + 0.00 0.26 + 0.01 0.15 + 0.00 0.21 £ 0.01 0.10 + 0.00 0.16 + 0.00
FD-2 0.19 £ 0.01 0.34 +£0.01 0.19 £ 0.01 0.31 £ 0.00 0.15+0.01 0.27 £ 0.01 0.11 +£0.01 0.20 £+ 0.00
FD-4 0.24 + 0.01 0.29 + 0.00 0.22 & 0.00 0.27 + 0.01 0.17 + 0.01 0.21 + 0.01 0.13 £ 0.01 0.19 + 0.00
Ceilo Blanco 0.20 + 0.00 0.28 + 0.00 0.18 + 0.00 0.21 +£0.01 0.13 + 0.01 0.19 £ 0.01 0.10 £ 0.01 0.16 = 0.01
Shoot D.W FD-3 0.24 + 0.01 0.31 £ 0.01 0.23 + 0.01 0.30 + 0.00 0.17 £ 0.01 0.28 + 0.00 0.11 + 0.00 0.26 + 0.00
FD-2 0.22 + 0.01 0.37 £ 0.01 0.21 + 0.01 0.32 +0.01 0.14 + 0.01 0.29 + 0.00 0.10 + 0.00 0.27 + 0.01
FD-4 0.25 + 0.01 0.30 + 0.01 0.24 £+ 0.01 0.28 4 0.01 0.16 + 0.01 0.26 + 0.01 0.12 £ 0.01 0.19 £ 0.01
Ceilo Blanco 0.21 £ 0.01 0.29 = 0.00 0.20 £ 0.01 0.21 +£0.01 0.14 + 0.01 0.19 £ 0.01 0.08 + 0.01 0.13 £ 0.01
Root D.W FD-3 0.14 + 0.01 0.25 + 0.00 0.13 + 0.00 0.18 + 0.00 0.10 + 0.00 0.19 + 0.00 0.07 + 0.00 0.12 + 0.01
FD-2 0.12 + 0.01 0.28 + 0.00 0.09 + 0.00 0.20 £ 0.01 0.05 + 0.00 0.20 + 0.01 0.01 + 0.00 0.17 £ 0.01
FD-4 0.09 + 0.00 0.19 £ 0.01 0.08 + 0.01 0.17 £ 0.01 0.04 + 0.00 0.16 + 0.01 0.01 + 0.00 0.12 +£0.01
Ceilo Blanco 0.13 + 0.01 0.18 + 0.01 0.09 + 0.00 0.14 + 0.01 0.06 + 0.00 0.13 + 0.00 0.02 + 0.00 0.10 + 0.00

Means sharing similar letter(s) within a column for each parameter do not differ significantly at P < 0.05. Data in the tables are means of three repeats (n = 3) of just
one harvest of B. oleracea varieties + standard deviation (SD). Different abbreviations used in the table are as follow: To= 0 uM CdCl2, T1 = 0 uM CdCI2 +NO, T2 =5
uM CdCl2, T3 = 5 uM CdCI2 +NO, T4 = 10 pM CdCl2, T5 = 10 pM CdCI2 +NO, T6 = Control+ 20 uM CdCl2, T7 = 20 uM CdCl2 +NO.
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Fig. 1. Effect of Nitric oxide (NO) on germination attributes (A=Germination percentage, B=Germination index, C=Mean germination time, D=Time to 50%
germination) in four genotypes of cauliflower (Brassica oleracea var. botrytis) under varying levels of cadmium stress. To= 0 pM CdCl,, T1 = 0 uM CdCl, +NO,
T2 =5 uM CdCly, T3 =5 uM CdCl, +NO, T4 = 10 uM CdCl,, T5 = 10 uM CdCl, +NO, T6 = Control+ 20 uM CdCl,, T7 = 20 pM CdCl, +NO.
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Fig. 2. Effect of Nitric oxide (NO) on chlorophyll contents (A=chlorophyll a, B=chlorophyll b, C=total chlorophyll, D=chlorophyll a/b) in four genotypes of
cauliflower (Brassica oleracea var. botrytis) under varying levels of cadmium stress. To= 0 pM CdCl,, T1 = 0 pM CdCl, +NO, T2 = 5 uM CdCl,, T3 = 5 uM CdCl,
+NO, T4 = 10 uM CdCl,, T5 = 10 uM CdCl; +NO, T6 = Control+ 20 uM CdCl,, T7 = 20 uM CdCI, +NO.

of B. oleracea. It was noticed that the free amino acid, soluble protein,
flavonoid and phenolic were increased under the application of NO in all
genotypes of B. oleracea. Although, the activity of POD showed different
responses under the application of NO.

3.3. Response of nutrient uptake and Cd accumulation

In the present study, we also measured the nutrients content (Mg,
Mn, K and Ca) and Cd accumulation from the different parts of the plants
body (roots and shoots) in all genotypes of B. oleracea. The data
regarding the nutritional status of the plants is presented in Table 1S and
the data regarding the Cd accumulation in the plants in presented in
Table 2S. From the given results, we illustrated that the increasing
concentration of Cd in the sandn caused a significant (p < 0.05)
increased in Cd concentration in the roots and shoots of the plants
(Table 2S) while a significant (p < 0.05) decreased in the nutrient con-
tents (Mg, Mn, K and Ca) in the roots and shoots of the plants (Table 1S).
The maximum concentration of Mg, Mn, K and Ca was observed in the
FD-4 and Ceilo Blanco genotypes, while the maximum concentration of
Cd was accumulated in the FD-2 and FD-3 genotypes, under the same
level of the stress in the sand. Although, the exogenous application of NO
decreased the content of Cd in the roots and shoots of all genotypes of
the plants, compared to the plants which were grown without the
application of NO. In contrast, exogenous application of NO increased
the content of essential ions (Mg, Mn, K and Ca) in the roots and shoots
of the plants, compared to the plants which were grown without the
application of NO.

3.4. Relationship between Cd uptake with different attributes of the plants

A Pearson’s correlation graph illustrates the relationship between
various growth, morphological and physiological parameters of
different varieties of B. oleracea under various application levels of nitric
oxide grown under the various levels of Cd in the sand (Fig. 5). The Cd
concentration in the roots was positively correlated with Cd concen-
tration in the shoots, proline content, ascorbate peroxidase activity,
manganese content in the roots, peroxidase activity, chlorophyll a/b
content, malondialdehyde content, germination percentage, germina-
tion index, germination energy and means germination time while
negatively correlated with potassium content in the roots, magnesium
content in the shoots, calcium content in the shoots, magnesium content
in the roots, potassium content in the shoots, intercellular CO5, man-
ganese content in the shoots, calcium content in the roots, flavonoid
content, shoot dry weight, root dry weight, trifluoroacetic anhydride,
catalase activity, transpiration rate, root length, superoxidase dismutase
activity, chlorophyll a content, total chlorophyll content, chlorophyll b
content, stomatal conductance, time to 50% seed germination, shoot
fresh weight, carotenoid content, trisodium phosphate, phenolic con-
tent, shoot length and root fresh weight. This relationship depicts a close
connection between plant growth and composition in different varieties
of B. oleracea under various application levels of nitric oxide grown
under the various levels of Cd in the sand.

3.5. Principal component analysis

A principal component analysis (PCA) was used to illustrate the ef-
fect of nitric oxide on various levels of Cd toxicity in various varieties of
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Fig. 3. Effect of Nitric oxide (NO) on enzymatic antioxidant contents (A=MDA, B=CAT, C=POD, D=SOD) in four genotypes of cauliflower (Brassica oleracea var.
botrytis) under varying levels of cadmium stress. To= 0 pM CdCl,, T1 = 0 pM CdCl; +NO, T2 = 5 pM CdCl,, T3 = 5 uM CdCl; +NO, T4 = 10 uM CdCl,, T5 = 10 uM

CdCl, +NO, T6 = Control+ 20 uM CdCl,, T7 = 20 uM CdCl, +NO.

B. oleracea (Fig. 6). Dim1 and Dim2 exhibited maximum contribution
and occupy more than 72 % of differences. Among which Dim1 exhibits
(56.3 %) and Dim2 exhibits (16.1 %). All studied parameters distributed
successfully in the database which is giving a clear indication that Cd
stress causes a significant effect to the growth and physiology of all
B. oleracea varieties. From the results it can be derived that Cd con-
centration in the roots, Cd concentration in the shoots, proline content,
ascorbate peroxidase activity, manganese content in the roots, peroxi-
dase activity, chlorophyll a/b content, malondialdehyde content,
germination percentage, germination index, germination energy and
means germination time were positively correlated in the database to all
other parameters studied in this experiment. While, potassium content
in the roots, magnesium content in the shoots, calcium content in the
shoots, magnesium content in the roots, potassium content in the shoots,
intercellular CO9, manganese content in the shoots, calcium content in
the roots, flavonoid content, shoot dry weight, root dry weight, tri-
fluoroacetic anhydride, catalase activity, transpiration rate, root length,
superoxidase dismutase activity, chlorophyll a content, total chlorophyll
content, chlorophyll b content, stomatal conductance, time to 50 % seed
germination, shoot fresh weight, carotenoid content, trisodium phos-
phate, phenolic content, shoot length and root fresh weight were posi-
tivity correlated with all other studied attributes.

4. Discussion

In line with earlier studies, it was inferred that high absorption and
translocation of Cd via phloem disrupt the water absorption resulting in
abridged plant biomass that is major factor leading to reduced plant
growth subjected to Cd stress (Imran et al., 2021; Qiu et al., 2021;

Valivand and Amooaghaie, 2021a; b). Photosynthesis, respiration, cell
division, water relations, opening and closing of stomata, nitrogen
metabolism, and mineral nutrition are the main metabolic processes
within the plants, which are negatively affected by Cd stress (Anwar,
2019). The mechanisms of NO as a signaling regulatory molecule and
reactive oxygen scavenger in improving plant tolerance to Cd stress were
poorly understood. In recent years, NO is an important signaling mole-
cule and has gained a noticeable consideration due to its role in allevi-
ating an abiotic and biotic stresses in plants (Kaya et al., 2019). This
research demonstrated an insight into the role of NO donor SNP in
regulating the physiological, biochemical and nutritional responses of
B. oleracea genotypes under Cd stress. In the present study, the inhibi-
tory effects were significantly alleviated by exogenous NO, and the
mitigation effect of NO on all B. oleracea genotypes were noticed
(Table 1). The stimulation of plant growth by NO has also been reported
in Lolium perenne (Wang et al., 2013), Oryza sativa (Rizwan et al., 2018)
and Solanum lycopersicum (Amooaghaie and Nikzad, 2013). The allevi-
ation of Cd stress by NO may be related to increased germination rate
(Fig. 1), enhanced chlorophyll content (Fig. 2), improved nutrient bal-
ance (Table 1S), better regulated activities of antioxidant enzymes
(Fig. 3), and inhibited Cd translocation from roots to the leaves
(Table 2S), thus enhancing the tolerance of B. oleracea genotypes to Cd
toxicity. Recent work has explained that NO is a phytohormone that
influences many physiological processes of plants (Sun et al., 2018). NO
acts on phospholipid bilayers which enhanced membrane fluidness,
relax the cell wall, which ultimately stimulate cell enlargement and
growth of plant (Gill et al., 2013; Kaya et al., 2019). It was also reported
that the different crop varieties exhibited different germination per-
centage when grown under metal-contaminated soil (Saleem et al.,
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Fig. 4. Effect of Nitric oxide (NO) on non-enzymatic antioxidant contents (A=Total free amino acids, B=Total soluble proteins, C=Flavonoids, D=Phenolics) in four
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2019). Nevertheless, the specific rate of germination could be due to the
high concentration of Cd in the soil; thus, under the same Cd concen-
tration, FD-2 and FD-3 exhibited maximum plant height and fresh and
dry biomass compared with Ceilo Blanco and FD-4. Plant growth and
biomass variation under the same environmental conditions in different
B. oleracea genotypes might be due to low availability of water, poor
stomatal regulation, and perturbed root architecture (Saleem et al.,
2020b).

Stress conditions can disturb the dynamic equilibrium of reactive
oxygen species (ROS) production and elimination under normal growth
in plants (Javed et al., 2021), which promotes ROS accumulation and
membrane lipid peroxidation, and disrupts the structure and function of
the cell membrane system (Aziz et al., 2021; Gill et al., 2021). It was
reported that an excess of Cd can increase lipid peroxidation and MDA,
an oxidized product of membrane lipids, indicating the prevalence of
oxidative stress and membrane damage (Rizwan et al., 2019). Accu-
mulation of protein and amino acids is known to be important signal of
stress tolerance under heavy metal stress and it also has a significant role
in osmotic adjustment, macromolecule stabilization, ROS scavenging
and cell protection from oxidative damage (Afzal et al., 2020). Siddiqui
et al. (2013) concluded that NO has the capability of restoring and
defending the cell membrane to alleviate the damage in the cell mem-
brane system e.g., minimize the membrane permeability and membrane
lipid peroxidation, hence preventing electrolyte leakage. This ROS
accumulation in plants is removed by a variety of antioxidant enzymes
such as superoxide dismutase (SOD), peroxidase (POD) and catalase
(CAT) which were also increased in the plants grown in the toxic con-
centration of Cd (20 uM), compared with the plants grown in Cd-free
sand (Fig. 3). However, exogenous NO prevented Cd-induced increase

in the activities of antioxidant enzymes (SOD, POD and CAT) in the
B. oleracea varieties. The regulation in the activities of antioxidant en-
zymes by SNP alleviated the stress of B. oleracea genotypes and scav-
enged the O3 and Hy0; (Fig. 3), as well as MDA (Fig. 3a). So, the
stimulation of antioxidant production may suggest that NO can stabilize
the cell membranes, counteract oxidative damages and protect
B. oleracea genotypes against stressful condition. Plants produce a va-
riety of non-enzymatic compounds such as total free amino acids, total
soluble proteins, flavonoids and phenolics that improve tolerance
against metal toxicity (Rizwan et al., 2016b). Interestingly,
NO-treatment caused a marked enhancement of Cd-induced soluble
protein contents, which indicated that the B. oleracea genotypes were
partially relieved from Cd stress.

Cd toxicity has been stated to lead the imbalance of water status and
suppress the nutrient uptake, which could be the cause of decrease in
leaf water potential, Mn, Mg, Ca and K under Cd stress, but these at-
tributes were found to be enhanced with exogenously applied NO under
Cd toxicity (Kaya et al., 2019). Mineral nutrients are needed for several
key metabolic processes, such as plant growth and development, and
water status. Adequate accumulation of minerals is vital to safeguard
mechanical integrity of the plant and key physiological processes, and
any changes in mineral uptake may markedly perturb plant metabolism
(Mumtaz et al., 2021; Saleem et al., 2020a). NO has a substantial reg-
ulatory influence on the contents of plant mineral nutrients in plants and
relieves stress by allocation to sustain those elements. Numerous reports
demonstrated that the uptake and translocation of essential elements in
plants were restricted under Cd stress (Abbas et al., 2020; Tanwir et al.,
2015). It is well known that Cd toxicity in crops depends on the
bioavailability of Cd in soils and the concentration of elements, which
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Fig. 5. Relationship between different varieties of B. oleracea under various application levels of nitric oxide grown under the Cd-contaminated soil. Different
abbreviations used in the figure are as follow: K-R (potassium content in the roots), Mg-S (magnesium content in the shoots), Ca-S (calcium content in the shoots),
Mg-R (magnesium content in the roots), K-S (potassium content in the shoots), Ci (intercellular CO5), Mn-S (manganese content in the shoots), Ca-R (calcium content
in the roots), Flav (flavonoid content), SDW (shoot dry weight), RDW (root dry weight), TFAA (Trifluoroacetic anhydride), CAT (catalase activity), TR (transpiration
rate), RL (root length), SOD (superoxidase dismutase activity), Chl-a (chlorophyll a content), TC (total chlorophyll content), Chl-b (chlorophyll b content), GS
(stomatal conductance), POD (peroxidase activity), T-50 %-G (time to 50 % seed germination), SFW (shoot fresh weight), Carot (carotenoid content), TSP (Trisodium
Phosphate), Phen (phenolic content), SL (shoot length), MDA (malondialdehyde content), Chl-a/b (chlorophyll a/b content), RFW (root fresh weight), Mn-R
(manganese content in the roots), APX (ascorbate peroxidase activity), Prol (proline content), Cd-R (Cd concentration in the roots), Cd-S (Cd concentration in
the shoots), GP (germination percentage), Gi (germination index), GE (germination energy) and MGT (means germination time).

can compete with Cd during plant uptake (Shanying et al., 2017). In
general, B. oleracea takes up Cd in the form of Cd*" from the soils. Cd
uptake in B. oleracea plants varies with soil pH and organic matter
content present in the soils (Gill et al., 2013). Excess Cd decreased the
Mn, Mg, Ca and K contents in the present study (Table 1S), which may

cause ions deficiency in plants. This shows that Cd stress inhibits transfer
of these elements in plants from root to shoot. The ion stability in a cell is
closely related to plant adaptation to heavy-metal toxicity. Although, it
can be depicted that an increase in H*-ATPase activity (not measured in
the present study) is the mechanism of protecting the integrity of plasma
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Fig. 6. Loading plots of Principal component analysis (PCA) on various attri-
butes (morphological and physiological) of different varieties of B. oleracea s
under the various application levels of nitric oxide in Cd-contaminated soil.
Different abbreviations used in the figure are as follow: K-R (potassium content
in the roots), Mg-S (magnesium content in the shoots), Ca-S (calcium content in
the shoots), Mg-R (magnesium content in the roots), K-S (potassium content in
the shoots), Ci (intercellular CO,), Mn-S (manganese content in the shoots), Ca-
R (calcium content in the roots), Flav (flavonoid content), SDW (shoot dry
weight), RDW (root dry weight), TFAA (Trifluoroacetic anhydride), CAT
(catalase activity), TR (transpiration rate), RL (root length), SOD (superoxidase
dismutase activity), Chl-a (chlorophyll a content), TC (total chlorophyll con-
tent), Chl-b (chlorophyll b content), GS (stomatal conductance), POD (peroxi-
dase activity), T-50%-G (time to 50% seed germination), SFW (shoot fresh
weight), Carot (carotenoid content), TSP (Trisodium Phosphate), Phen
(phenolic content), SL (shoot length), MDA (malondialdehyde content), Chl-a/b
(chlorophyll a/b content), RFW (root fresh weight), Mn-R (manganese content
in the roots), APX (ascorbate peroxidase activity), Prol (proline content), Cd-R
(Cd concentration in the roots), Cd-S (Cd concentration in the shoots), GP
(germination percentage), Gi (germination index), GE (germination energy)
and MGT (means germination time).

membrane, which can improve the resistance to Cd toxicity. So the
plants can absorb more mineral nutrients and maintain ionic homeo-
stasis (Ahmad et al., 2018). A principal defense step to counteract Cd
toxicity in plants is to prevent Cd accumulation in shoot tissues. It was
documented by (He et al.,, 2014) that exogenous NO alleviated Cd
toxicity in Oryza sativa by increasing pectin and hemicellulose contents
in root cell walls, increasing Cd deposition in root cells and decreasing
Cd accumulation in soluble fractions of leaves. Recently the application
of NO scavenger in lupine is shown to reduce the level of Cd accumu-
lation due to reduced endogenous NO levels (Gill et al., 2013; Panda
et al., 2011). In this work the reduced uptake of Cd perhaps may also be
a result of formation of metal Cd-NO complex, however this will need
further experiments.

5. Conclusion

Outcomes of current study revealed that toxic level of Cd signifi-
cantly affected plant growth and biomass, photosynthetic pigments,
gaseous exchange traits, antioxidative machinery and minerals uptake
by B. oleracea genotypes. Furthermore, Cd toxicity increased the
oxidative stress indicators, Cd contents in plant organs. We also noticed
that FD-4 and Ceilo Blanco genotypes showed higher tolerance to Cd
stress while FD-2 and FD-3 showed more sensitive responses to the Cd
stress induced into in the sand. Our results provided strong evidence that
NO effectively alleviated Cd-induced reduction in growth and biomass,
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which was mainly attributed to decrease in Cd uptake, protection of
photosynthetic pigments and proteins, inhibition of ROS content by
increasing the activities of several antioxidant enzymes as well as by
maintaining the content of essential minerals. Overall, we have
concluded that FD-4 and Ceilo Blanco showed higher resistance to the Cd
stress under NO application and can be cultivated in metal stressed
environment to produce higher yield and productivity. However, further
genetic and molecular studies should be considered to gain a deeper
insight into the better understanding of the detailed mechanisms of NO-
induced Cd-stress tolerance in B. oleracea genotypes.
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