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Electrocatalytic hydrogen
evolution on the noble metal-free
MoS,/carbon nanotube
heterostructure: a theoretical study

Farhad Keivanimehr?, Sajjad Habibzadeh'?**, Alireza Baghban?, Amin Esmaeili?,
Ahmad Mohaddespour*, Amin Hamed Mashhadzadeh®, Mohammad Reza Ganjali®,
Mohammad Reza Saeb®, Vanessa Fierro® & Alain Celzard®

Molybdenum disulfide (MoS,) is considered as a promising noble-metal-free electrocatalyst for the
Hydrogen Evolution Reaction (HER). However, to effectively employ such material in the HER process,
the corresponding electrocatalytic activity should be comparable or even higher than that of Pt-based
materials. Thus, efforts in structural design of MoS, electrocatalyst should be taken to enhance the
respective physico-chemical properties, particularly, the electronic properties. Indeed, no report

has yet appeared about the possibility of an HER electrocatalytic association between the MoS, and
carbon nanotubes (CNT). Hence, this paper investigates the synergistic electrocatalytic activity of
MoS,/ CNT heterostructure for HER by Density Functional Theory simulations. The characteristics of
the heterostructure, including density of states, binding energies, charge transfer, bandgap structure
and minimum-energy path for the HER process were discussed. It was found that regardless of its
configuration, CNT is bound to MoS, with an atomic interlayer gap of 3.37 A and binding energy

of 0.467 eV per carbon atom, suggesting a weak interaction between CNT and MoS,. In addition,

the energy barrier of HER process was calculated lower in MoS,/CNT, 0.024 eV, than in the MoS,
monolayer, 0.067 eV. Thus, the study elaborately predicts that the proposed heterostructure improves
the intrinsic electrocatalytic activity of MoS,.

Hydrogen production from the water-splitting process has attracted increasing attention to meet the global
energy demand and provide a viable solution to environmental issues'. An economical process for hydrogen
production is based on a high-performance surface Hydrogen Evolution Reaction (HER) on an appropriate
electrocatalyst®. Molybdenum and tungsten sulfides have been identified as promising noble-metal-free electro-
catalysts, particularly for the HER process®®. The basic concept of HER mechanisms has also been understood
through relationships between computational approaches and corresponding experiments’~'>. Hinnemann et al.
proposed an approach based on the Density Functional Theory (DFT) in which they showed that the exposed
edges of MoS, sheets are the active sites for the adsorption of hydrogen if the binding free energy of atomic
hydrogen to the electrocatalyst is close to zero’. Nevertheless, a critical issue for the application of MoS, as an
electrocatalyst in electrochemical reactions is attributed to its low electronic conductivity between two neighbor-
ing S-Mo-S sheets, bonded by van der Waals (vdW) forces'®. The resistivity through the basal planes was indeed
determined to be 2200 times larger than that parallel to the planes!®.

There have been basically two proposed ways to improve the MoS, electrocatalyst towards the HER: (1)
increasing the density of active sites at the surface of the electrocatalyst; and (2) enhancing the electrical contact
at these sites by reducing the number of layers and by placing MoS, on highly conductive substrates, such as
carbon-based materials'®. Consequently, the stacking of MoS, nanosheets with only a few layers perpendicular
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to a conductive substrate is expected to be an effective electrocatalyst. This can facilitate charge transfer along the
edge of the electrode substrate to the active sites with minimal resistance'® while suppressing MoS, aggregation
at the same time'”'8. Recent progress in heterostructures based on vdW forces at the atomic level led to new
categories of vertical quantum heterostructures with sharp atomic interfaces between materials having different
physicochemical properties®. Such heterostructures, including two-dimensional (2D) crystalline layers, can
provide interfaces with new physical and chemical characteristics that can be potentially employed in certain
applications®*?!. Moreover, these 2D structures, thanks to the presence of strong covalent bonds, can already
provide adequate in-plane stability. However, maintaining the stacking of these heterostructures together requires
relatively weak vdW interactions®.

The design of atomic layers based on vdW heterostructures can be quite challenging when it comes to adjust-
ing their electrocatalytic activity to the HER process, in order to render them more efficient than electrocatalysts
based on metals and metal oxides?***. It was found that no electrocatalytic activity was observed for the defect-
free basal planes in most 2D layers®*. However, the intrinsic electrocatalytic properties of the individual layers
for a specific reaction can be significantly changed depending on the design of the various heterostructures. Such
changes can be due to the electric field created between the different layers of the active electrocatalysts and the
respective conductive substrates'**>?%. Namely, the vdW stacking of hexagonal boron nitride and graphene makes
the corresponding heterostructure a quite active electrocatalyst towards HER despite the inactive sites of each
layer®?. In addition, to evaluate the electrochemical catalytic performance of vdW solids, the selection of the
layers in the heterostructure and their sequence must be carefully considered. The importance of the stack layer
sequence was addressed experimentally when the electrocatalytic activity of the vdW heterostructure of carbon
nanotube (CNT) on MoS, showed a higher HER efficiency than the layered structure of MoS, on CNT**. In
addition, a recent study has indicated that, when graphene is placed on top of MoS,, a higher electrocatalytic
efficiency can be obtained for the HER process in acidic solution compared to the inverse configuration®.

Despite the excellent electronic properties of MoS,/carbon-derived electrocatalysts for HER, only a few
studies have been carried out on the electrochemical reaction pathways of these advanced materials*?. Specifi-
cally, a DFT calculation on MoS,/graphene complexes indicated that the presence of graphene as an underlayer
of MoS, significantly affects the charge density distribution of MoS,*. In addition, the induced electric field of
the MoS,/graphene hybrid provides an excess negative charge density to the system, thus improving its HER
activity*!. Furthermore, this sandwich configuration can also make the MoS, basal plane near the thermo-neutral
Gibbs free energy change (AGp ~0), facilitating the activation of the MoS, basal plane towards the HER process.
Although a few studies have focused on MoS,/graphene, no report was found on the use of MoS,/CNT as a HER
electrocatalyst. In the present study, we used DFT calculations to understand the molecular mechanism of the
stacking sequence and subsequent layers of MoS,/CNT in the HER process. Namely, the electrocatalytic activity
of a new MoS,/CNT heterostructure and the effect of MoS, on the structural and electronic characteristics of the
CNT substrate for HER were theoretically explored.

Methodology

The relaxation of the geometry and the calculation of the electronic structure were performed by the DFT
approach. The stacked heterostructure of MoS,/CNT was investigated as our main system. In addition, an 8 x 8
CNT (a: 14.01 b: 13.91 c: 17.3 A) containing 224 carbon atoms was applied to match a 4 x 4 MoS, monolayer
(a:12.66 b: 12.66 c: 18.4 A) comprising 16 molybdenum and 32 sulfur atoms. The lattice mismatch of the MoS,
and CNT layers was approximately 5%. In addition, a void space of 15 A was considered on the Z-axis to ignore
possible interactions between the periodic structures. The relaxation process was carried out for both the MoS,
and CNT layers, atoms, and cells, and then the binding energy of the heterostructure was computed using the
following equation:

Ey = Etotal — EcNT — EMos, (1)

where Eyytq1, EcnT»> and Epgos, refer to the total energy of the MoS,/CNT heterostructure, the energy of a single
CNT, and the energy of a single-layer of MoS,, respectively. It is worth mentioning that the stable heterostructure
was such that the total energy of the MoS,/CNT heterostructure is lower than the energy of individual CNT
and MoS$, (see Eq. (1)) Moreover, the DFT method was used based on the Dmol® code with the Generalized
Gradient Approximation (GGA) approach in the Materials Studio version 7.0 package*~°. Furthermore, the
exchange-correlation functional used in this study was based on the work of Perdew, Burke and Ernzerhof
(PBE)*" with the Gaussian double zeta plus polarization numerical base (DNP) set. To treat the core electrons,
DFT semi-core pseudopotentials (DSPPs) were selected. The geometry relaxation and energy computations were
chosen with 1x 10-° Ha, 0.002 Ha/A, and 0.005 A for energy, force, and displacement tolerances, respectively.
Thanks to Grimme’s semi-empirical dispersion-corrected density functional theory (DFT-D2)*>* for consider-
ing weak interactions with high accuracy, we used DFT-D2 instead of the standard PBE functional. Besides, to
analyze the characteristics of the electron density difference, the CASTEP code® of plane wave and ultra-soft
pseudopotentials® was applied with a plane-wave cutoff energy of 400 eV.

Results and discussion

Optimized structures. The optimized configurations of the CNT, MoS,, and MoS, deposited on the CNT
substrate are shown in Fig. 1. There is a good agreement between the Mo-S bond length of our optimized struc-
ture (2.42 A) and the experimental one (2.41 A)**¥, In addition, a distance of 3.37 A was optimally achieved
between the CNT and the nearest sulfur layer. Since both of the above distances are greater than 1.81 A (the
sum of the covalent radii of carbon and sulfur atoms), vdW forces might be established between the MoS,
and the CNT substrate as the main interactions. Furthermore, the average C-C optimized bond length in the
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Figure 1. The most stable configurations of: (a) CNT; (b) MoS,; (c) top view of MoS,/CNT; and (d) side view of
MoS,/CNT. Gray, green and yellow spheres stand for C, Mo and S atoms, respectively.

CNT nanostructure studied in our work was calculated to be about 1.42 A, which is in line with the previously
reported DFT studies (1.43 A)*%. Moreover, these results agree with previously published works on graphene/
ZnO* and phosphorene/graphene**? equilibrium distances.

The stability of the MoS,/CNT interface was evaluated by computing the binding energy per C atom between
MoS, and the CNT substrate. The binding energy obtained was approximately 0.467 eV/atom, similar to the
values reported for MoS,/graphene®® and MoS,/N-graphene*. Therefore, the value of binding energy can also be
considered as a further evidence of the weak vdW interaction forces existing in the MoS,/CNT system.

Density of states (DOS). The electronic properties of the system can be determined through the DOS
while considering the HOMO-LUMO bandgap energy (E,). This term is the minimum energy required to excite
electrons from the valence band to the conduction band. A lower E, can result in greater system conductivity
and hydrogen adsorption capacity. During the formation of the vdW heterostructure, the electronic structure
of the CNT on the one hand and of the MoS, monolayer on the other hand were altered near the Fermi energy
level. As seen in Fig. 2, the DOS of the MoS,/CNT structures was compared to the DOS of the isolated constitu-
ent monolayers.

Furthermore, the projected density of states (PDOS) for the C-p orbitals in the CNT and the S-p and Mo-d
orbitals in MoS, are shown in Fig. 2a,b. It should be mentioned that CNTs are two dimensional Dirac materials
with a linear dispersion near the Fermi energy level*>*¢, as observed in Fig. 2a. In addition, the MoS, monolayer
as a semiconductor possesses a bandgap of about 1.8 eV*. However, the bandgap obtained for MoS, was calcu-
lated to be 2.08 eV in the current simulation (see Fig. 2b). This difference of E, can be attributed to the unfilled
d-orbital in the Mo atoms. Thus, semi-local DFT functionals cannot be used to calculate the corresponding
E, correctly, which requires the application of many-body corrections by Green’s function (GW)* or hybrid
Heyd, Scuseria, and Ernzerhof (HSE) functionals* to compensate for the bandgap differences of 0.28 eV in the
semi-local DFT functionals. However, to reduce computational costs, such bandgap corrections were ignored
because the semi-empirical DFT-D2 method can achieve sufficient accuracy for the calculation of structural and
electronic properties of the MoS,/CNT interface®.

Furthermore, the bottom of the conduction band and the top of the valence band originate mainly from the
Mo-d orbitals and both the Mo-d and S-p orbitals, respectively (see Fig. 2b). In addition, it can be seen that the
Mo-d and S-p orbitals were hybridized together at the top of the valence band (see Fig. 2b). It can be concluded
from Fig. 2a that the half-filled p orbitals perpendicular to the planar structure create the 7 and 7* bands in
the electronic configuration of CNT. Moreover, at the corner of the Brillouin zone of the CNT, both bonding
and antibonding bands touch at a single point near the Fermi energy level. Furthermore, the PDOS of MoS,/
CNT (see Fig. 2¢) is displayed relative to the partial d-DOS (blue) of Mo in MoS, and the p-DOS (red) of C in
the CNT. It can be seen that the Fermi energy level of the MoS,/CNT heterostructure is characterized by the
Dirac-cone-like characteristic from CNT and a gap-like characteristic from MoS, (see Fig. 3¢). Furthermore,
the location of PDOSs for CNT is similar to that of MoS,/CNT where there is also a remarkable change in the
intensity and profile of the PDOSs of MoS,.
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Figure 2. PDOS diagrams for: (a) CNT; (b) MoS,; and (c) MoS,/CNT. The Fermi energy level is set at zero.

Band structure analysis. To evaluate the impact of stacking configurations on the bandgap and electronic
properties of the MoS,/CNT heterostructure, structural and electronic calculations were performed separately
on the freestanding CNT and the MoS, monolayer. As seen in Fig. 3a, the bandgap obtained for an isolated CNT
is determined to be 0.017 eV. Besides, a bandgap structure based on a linear Dirac dispersion can be observed
for the isolated CNT near the Fermi energy level. The band structure of MoS, is illustrated in Fig. 3b, which
shows a direct bandgap of 2.01 eV with the conduction and valence bands positioned at the K point. The result-
ant bandgap is greater than the reported experimental value (about 1.80 eV)*”. However, this discrepancy can be
corrected by applying the GW approximation technique, which is not the subject of our study.

The band structure of the MoS,/CNT heterostructure can be determined by the energy bands of the CNT
and MoS,. Figure 3¢ shows the linear dispersion bands of the CNT, which are located in the large energy gap of
MoS, while the electronic energy band of the pristine CNT can be found without any major change. However,
a significant change near the Fermi energy level can be observed. The results obtained from the band structure
can evidently show the efficient interactions between CNT and MoS, that improve the electronic properties of
the CNT, the band gap of the heterostructure having dropped to 0.008 eV.

Determination of charge density and charge transfer.  Figure S1 illustrates the variations in the aver-
age atomic charge (Aq) on the sulfur and molybdenum atoms specified by Hirshfeld’s charge analysis. S1-S4
and M1-M4 represent different positions of sulfur and molybdenum atoms, respectively, in the MoS,/CNT
heterostructure. The average atomic charge obtained on the MoS, monolayer for S and Mo atoms was calculated
to be —0.114 and 0.229 a.u., respectively. Table S1 summarizes the charges on Mo and S atoms in the MoS,/
CNT heterostructure. It should be noted that the charge on Mo atoms remains almost unchanged at the value of
~0.229 a.u, whereas it changes negatively and significantly on sulfur atoms.

Figure 4 illustrates the difference in charge density of the current MoS,/CNT system. The charge depletion
is observed at the two middle neighboring S and C planes. Moreover, no orbital overlap between the MoS, layer
and the CNT can be observed due to the weak vdW interactions between MoS, and the CNT. Besides, the charge
transfer, involving the total sum of the Hirshfeld charge populations, was analyzed and computed for the MoS,
layer. A negative charge value means that the charge is transferred from the CNT to MoS,, while the charge
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Figure 4. Spatial mapping of charge density differences for: (a) a MoS, monolayer; and (b) the MoS,/CNT
heterostructure. Regions of electron accumulation and depletion are denoted by blue and red lobes, respectively.
BIOVIA, Dassault Systémes, Materials Studio, version 7. https://bit.ly/38IRRQR.
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Figure 5. Minimum-energy pathway of the Volmer reaction on: (a) MoS,; and (b) the MoS,/CNT
heterostructure. IS, TS and FS stand for initial, transition and final states, respectively. BIOVIA, Dassault
Systémes, Materials Studio, version 7. https://bit.ly/38IRRQR.

transfer from MoS, to the CNT reflects its positive charge value. Hence, a negative charge value of —0.051 a.u.
obtained for MoS,/CNT implies a charge transfer from the CNT to the MoS, monolayer.

Mechanism of the Hydrogen Evolution Reaction (HER). The superior electronic structure of MoS,/
CNT relative to pristine MoS, means that this heterostructure can be used effectively as an electrocatalyst for the
HER process. A well-known mechanism of HER, known as Volmer-Heyrovsky or Volmer-Tafel mechanism,
can be expressed as follows®*%

2HT 4 2¢~ — 2H* (Volmer) (2)
H* + HY — Hyg (Heyrovsky) (3)
H* + H* — Hyg (Tafel) (4)

According to this mechanism, a hydronium ion first adsorbs on the surface and forms a hydrogen radical.
Then, two hydrogen radicals combine and form a hydrogen molecule. Basically, HER activity can be investigated
by the adsorption of hydronium ions and the activation energy barrier. The adsorption energy of the hydronium
ion adsorbed on MoS, and MoS,/CNT monolayer are calculated to be 0.0057 eV and 0.0039 eV, respectively,
indicating an easier adsorption of hydronium ion on the MoS,/CNT heterostructure than on the MoS, monolayer.

To characterize the HER activity of the proposed heterostructure, we considered the initial step of the HER
process (Volmer reaction) as the rate-determining step (RDS). As illustrated in Fig. 5, the path of minimum
energy for the transfer of one of the solvated protons to the MoS, surface in the 4 x 4 supercell consists of three
steps: initial, transition and final states (IS, TS and FS, respectively). It can be seen that the adsorption of H atom
at each step occurs on the edge of S atom, signifying the electrocatalytic activity of the edge S atoms towards
HER. In addition, the energy barrier of MoS,/CNT and MoS, monolayer is calculated to be 0.024 eV and
0.067 eV, respectively. This observation might be ascribed to the electron redistribution of the edge S atom after
the adsorption of the CNT®*. From the Hirshfeld charge analysis, the edge S atom of MoS,/CNT gains —0.190
e (see Table S1) while that of pristine MoS, acquires —0.114 e. This suggests that due to electrostatic attraction,
the edge S atom in MoS,/CNT has a more negative charge and thus a greater interaction with the H atom. As a
result, it can be seen that the CNT reduces the energy barrier (or the onset potential of HER), thus improving
the intrinsic activity of MoS,.

Moreover, the other two primary steps which can be plausible for H, evolution in the second step of the HER
process encompass Heyrovsky and Tafel reactions. In the case of Heyrovsky reaction (as the initial step), H, mol-
ecule is formed through the reaction of the proton (in the water layer) with an adsorbed hydrogen (see Eq. (3)).
Figure 6 displays the estimated minimum-energy paths at two dissimilar structures. It is evident that an adsorbed
H atom on a sulfur one reaches an H atom of a hydronium ion in the water layer. This is followed by breaking
the adsorbed H from the surface, forming H, molecule within the water layer. In the TS (Fig. 6), the interfacial
adsorbed H is separated from the surface and the S-H distance increased from 1.301 A in the IS to 2.391 A in
the MoS, monolayer. At the same time, the proton from H;O* travels toward the separated H atom, forming a
molecule with H-H bond lengths of 0.760 A and 0.756 A in the MoS, monolayer and MoS,/CNT heterostructure,
respectively. The evolved H, molecule is detached from the surface in the FS. An activation energy of 0.68 eV
was determined for MoS, while such energy barrier drops to 0.41 eV for the MoS,/CNT heterostructure (Fig. 6).
Thus, the energy barrier is far greater for the Heyrovsky reaction than that for the Volmer reaction, suggesting
that the H desorption procedure would be the RDS of the Volmer — Heyrovsky pathway.
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Figure 6. Minimum-energy pathway of the Heyrovsky reaction on: (a) MoS,; and (b) MoS,/CNT
heterostructure. BIOVIA, Dassault Systémes, Materials Studio, version 7. https://bit.ly/38IRRQR.
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Figure 7. Minimum-energy pathway of the Tafel reaction on: (a) MoS; and (b) the MoS,/CNT heterostructure.
BIOVIA, Dassault Systémes, Materials Studio, version 7. https://bit.ly/38IRRQR.

Furthermore, adjoining H atoms coupling to surface S atoms perform the Tafel reaction on MoS, (see Eq. (4)).
Figure 7 depicts the minimum-energy path of direct recombination of two adjoining protons adsorbed on S active
sites. Due to the absence of charge transfer over the interface, the entire energies along the path are not amended
for possible deviance. In the IS, the distances between the two H atoms are 3.922 A and 3.817 A in the MoS,
monolayer and MoS,/CNT heterostructure, respectively. The two S-H bond lengths in the MoS, monolayer and
MoS,/CNT heterostructure are 1.309 A and 1.324 A, respectively. However, the formed H, molecule undergoes
desorption from the surface with a H-H bond length of 0.750 A for both of the developed structures in the FS. In
the MoS, monolayer and MoS,/CNT heterostructure, the estimated energy barrier of direct recombination values
are 1.27 eV and 0.56 eV, respectively, which are markedly greater than that for the Volmer reaction. Therefore,
the RDS in the Volmer-Tafel reaction is the H desorption (Tafel step).

Opverall, a comparison of the energy barriers for the Heyrovsky and Tafel reactions on MoS, monolayer and
MoS,/CNT heterostructure reveals that the Tafel reaction should surmount elevated barriers of 1.27 and 0.56 eV,
respectively, while it is possible for the Heyrovsky reaction to proceed more straightforwardly. This indicates more
efficiency of the Heyrovsky reaction where the Volmer — Heyrovsky mechanism is the major pathway of HER. In
addition, finding from the recent reports shows that HER potentially occurs through the Volmer — Heyrovsky
process on the basal plane of 1 T-MoS,, 2H-MoS, and Ni-MoS,/RGO>*>*%

Conclusion

The present study theoretically investigates the synergistic electrocatalytic activity of the MoS,/CNT hetero-
structure towards the HER process by applying DFT simulations. The results indicated a weak van der Waals
interaction between the CN'T and the MoS, monolayer. Moreover, a distance of 3.37 A was determined between
them, and the binding energy per C atom in this system was found to be approximately 0.467 eV. The bandgap
structure indicated that the linear Dirac-like dispersion of CNT near the Fermi energy level remains unchanged
in the MoS,/CNT interface as well. However, it was found that a bandgap around 8 meV was calculated at the
Dirac K-point of the CNT in the MoS,/CNT interface. Finally, it was confirmed that the presence of CNT can
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improve the electronic conductivity while reducing the energy barrier in the MoS,/CNT heterostructure for the
HER process.
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