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Towards estimation of CO,
adsorption on highly porous
MOF-based adsorbents using
gaussian process regression
approach

Majedeh Gheytanzadeh?, Alireza Baghban?*, Sajjad Habibzadeh**, Amin Esmaeili*,
Otman Abida®, Ahmad Mohaddespour® & Muhammad Tajammal Munir®

In recent years, new developments in controlling greenhouse gas emissions have been implemented
to address the global climate conservation concern. Indeed, the earth’s average temperature is

being increased mainly due to burning fossil fuels, explicitly releasing high amounts of CO, into the
atmosphere. Therefore, effective capture techniques are needed to reduce the concentration of CO,.
In this regard, metal organic frameworks (MOFs) have been known as the promising materials for CO,
adsorption. Hence, study on the impact of the adsorption conditions along with the MOFs structural
properties on their ability in the CO, adsorption will open new doors for their further application in
CO, separation technologies as well. However, the high cost of the corresponding experimental study
together with the instrument’s error, render the use of computational methods quite beneficial.
Therefore, the present study proposes a Gaussian process regression model with four kernel functions
to estimate the CO, adsorption in terms of pressure, temperature, pore volume, and surface area

of MOFs. In doing so, 506 CO, uptake values in the literature have been collected and assessed. The
proposed GPR models performed very well in which the exponential kernel function, was shown as the
best predictive tool with R? value of 1. Also, the sensitivity analysis was employed to investigate the
effectiveness of input variables on the CO, adsorption, through which it was determined that pressure
is the most determining parameter. As the main result, the accurate estimate of CO, adsorption by
different MOFs is obtained by briefly employing the artificial intelligence concept tools.

Abbreviations

ANFIS  Adaptive neuro fuzzy inference system
ANN Artificial neural network

BDP 1,4-Benzenedipyrazolate
Be-BTB  Beryllium benzene tribenzoate
BTC Benzene-1,3,5-tricarboxylate
BT Tri 1,3,5-Benzenetristriazolate
GPR Gaussian process regression

H Hat matrix

H* Critical leverage limit

I, Unit array

k Covariance (kernel) function
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K Modified Bessel function
¢ Length scale
LS-SVM  Least square-support vector machine
m Mean function
MSE Mean square error
MOF Metal organic framework
MRE Mean relative error
P Pressure (bar)
T Temperature (K)
r Relevancy factor
R? Difference between the experiments and the calculated values
RBF Radial basis function
RF Random forest
RMSE Root mean square error
S Surface area (m?/g)
STD Standard deviation
U Matrix dimensional of i ¥ j
\Y4 Volume (cm?/g)
X Input variable
X Input parameter in r eq.
X Input average in r eq.
y Target variable
Y Output parameter in r eq.
Y Average of outputs in r eq
Greek symbols
A random function
e Observation noise
0% poise Variance of the noise
W Mean value
Zr Covariance
a Scale mixture
o Amplitude
T Gamma function
Suscripts
E Exponential kernel function
i Number of parameters
j Number of training points
k Number of input parameter in r eq.
M Matern kernel function

p Pore

RQ Rational quadratic kernel function
SE Squared exponential kernel function
T Testing data

v Positive parameter

The concentration of atmospheric CO, has increased from 270 ppm before the industrial revolution to more
than 400 ppm today, mainly due to the increasing consumption of fossil fuels'. In addition, it is widely believed
that CO, has a major role in global climate change?. Thus, carbon capture technology has been employed as a
promising route to reduce the CO, concentration into the atmosphere and inhibit global warming>*. Several
approaches have been studied for CO, capture: membranes>®, chemical absorption”?, physical adsorption’, and
fluidized bed technologies'’. However, these methods suffer from some drawbacks, such as high energy consump-
tion, complex regeneration processes, and low CO, capture capacity. In order to build up a long-lasting chance
in CO, elimination, an appropriate adsorption medium should provide the following conditions: (1) a periodical
structure for both the capture and release of CO, reversibly, (2) high CO, selectivity, (3) optimized CO, adsorp-
tion capacities through modifying by chemical functionalization, and (4) thermal, chemical, and mechanical
stabilities'"!2. Metal-organic frameworks (MOFs) have been one of the most applicable porous compounds due
to their regulating chemical structure, adjustable chemical functionality, and high thermal stability, allowing
potential applications in gas adsorption'*-1°.

MOFs are formed by a combination of two main parts of metal ions or clusters and organic ligands, creating
a 3D structure with a network of channels and uniform pores. In addition to the robust 3D structure, the main
characteristics of the MOFs are their permanent porosity and modular nature. These features of MOFs support
them in adsorbing other molecules as a guest and sustaining their structures with negligible damage!”'®. In com-
parison to the other porous materials, the most important advantage of the MOFs is their possibility to design
the functionality and the pore size by choosing the metal ion, the functional group, the organic ligand, and the
activation method". The properties of MOFs depend on the metal of interest and the linker. For example, MOF-5
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or IRMOF-1, containing zinc atoms linked to terephthalic acid molecules, possess a big void for gas capture, while
M-dobdc or M-MOF-74 (M =Mg, Ni, Co, Zn), with unsaturated metal centers in their 3D structures, provide
extra sites to bond with guest molecules®*?'. Besides, the pore sizes of MOFs change from several angstroms to
a few nanometers based on the diverse organic linkers!®.

Several studies reported high CO, adsorption capacity for MOF materials, ranging from 8.0 to 10.2 mol/kg at
298 K and 15 bar. CuBTC or HKUST-1 is one of the most explored MOFs for gas adsorption and storage'”**-2*,
To compare the adsorption capacity in zeolites and MOFs, at higher pressures, the adsorption capacity of the
benchmark zeolite 13X is much lesser than that of MOFs*. Additionally, when the micropore diffusion is the
rate control mechanism for CO, adsorption, the adsorption process in NaX and 5A zeolites proceeds slower than
in MOF materials?®®. MOFs are promising candidates for gas adsorption applications among the various porous
materials based on the mentioned features.

Despite numerous studies reported about gas—solid adsorption systems, investigating this phenomenon from a
cohesive viewpoint is still challenging®. The experimental studies are time-consuming and costly, through which
the instruments’ errors affect the adsorption results. On the other hand, many adsorption isotherms are usable
just for a specific range of data because they have been developed under simplified conditions assumptions®.
Accordingly, a comprehensive and accurate model for examining the adsorption of a gas on MOFs should be
developed. Intelligent methods (machine learning algorithms), namely, least-square support vector machine
(LS-SVM), artificial neural network (ANN), random forest (RF) adaptive neuro-fuzzy inference system (ANFIS),
and radial basis function network (RBF), can be possibly hired as an alternative to mathematical models for
solving problems precisely and without the experimental works’ troubles****. Compared to the conventional
mathematic approaches, the smart models have gained excellent success in solving complex and non-linear
optimization problems®*-%.

In the current study, an intelligent model is used to predict the non-linear system of CO, capture by MOFs
materials. For the first time, a machine learning algorithm of GPR with four various kernel functions was
developed to evaluate the CO, uptake on MOFs. Thirteen MOFs with different porosity and structural features
including: Cu;(BTC),, MOF-505, MOF-74, IRMOF-11, beryllium benzene tribenzoate (Be-BTB), MOF-177,
IRMOEF-1, IRMOFs-3, IRMOFs-6, MOF-2, Cu-BTTri (BTTri*" =1,3,5-benzenetristriazolate), Mgz’ (dobdc)
(dobdc* =1,4-dioxido-2,5-benzenedicarboxylate), and Co(BDP) (BDP?" = 1,4-benzenedipyrazolate) based on
experimental data were studied'”*’. Pressure, temperature, pore volume, and surface area of MOFs are considered
the model’s inputs. Several statistical analyses were applied to investigate the established model, while analysis
of sensitivity was used to determine the effective factors on the CO, adsorption by MOFs. Additionally, to assess
the precision of the proposed GPR models, the predicted results were compared with the experimental CO,
adsorption values in the literature.

Methodology
Gaussian process regression. This study used the machine learning technique, GPRs model, because
they are able to deal with uncertainty in a probabilistic framework (Bayesian) and overcome the complex issues
straightforwardly*"*2. The non-linear GPR models need less training data and can combine new evidence when
the available data increases. Typically, the low number of hyper-parameters to optimize through training makes
this model less affected by the “overfitting” problem®. In the GPR technique, the training sample information
determines the parameters of the model. Then, the GPR model is developed via adding the previous information
to the modeling procedure and merging the actual (laboratory-measured) data*’. In contrast to the traditional
learning models, the GPR works through computing posterior distributions over models instead of finding the
most acceptable match to the experimental data*.

Generally, the GPR model is established in this way: if the input and the target variables are represented by
xandy, assume T = {xTA,» YT }?:1 and L = {xL.,- YL } ?:1 as the arbitrarily chosen test and training data sets,
respectively. The starting step in the GPR modeling is the following general equation:

yri=f(xri) +eri i=1,23,...,n (1)

where x; indicates the independent variables and y; represents the targets of the learning data points. The

e~N(- 030,-56[,,), 0%,0ise » and I, are the observation noise, the variance of the noise, and the unit array, respec-

tively. Therefore, each measured y is connected to the function f(x) by Gaussian noise model**. GPR assumes f
as a random function that can be entirely defined by its covariance and mean functions. Likewise, we can write:

yri=fxri) +eri i=123,...,n )

where x1 denotes the independent variables, and yr is the targets of the testing data sets. Also, the f(x) is distrib-
uted as a Gaussian process with covariance function k(x, x’) (also called kernel function) and mean function
m(x) 4

fxri) ~ GP(m(x) - k(x - x')) (3)

The mean function m(x) can be specified by using the explicit basis functions. Usually, the calculations are sim-
plified by considering m(x) to be zero because it can be challenging to identify a fixed m(x)*"**. Thus, we have:

fleri) ~GP(0-k(x - x)) (4)
The distribution of y is achieved by the combination of Egs. (1) and (4):
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y~N(0-k(x-x) +02eln) (5)

Considering all the above-described parameters and noises, we have:

—
{fi} NN(O,{k(xmL) k(xL~xT>D ©

fr k(er - x1) k(er - x1)
- 2
L oIy 0
~ N O . noise
|: g :| < |: 0 Ur%oiseI” :| ) (7)
The summation of Egs. (6) and (7) gives the following Gaussian expression:

- 2
Y| ~nfo. k(xp - x1) + 05i5eln k(xg - x7) D
[VT } ( { Krox) kG + odd, ®

Then, the distribution of the y; can be derived through the conditioning rule of Gaussians, in which p and X
are the mean value and the covariance:

(yrlyt) ~ N(ur - 1) 9)

UT = m(ﬁ) = k(xr .xL)(k(xL -xp) + crﬁoisel,,)_l)TT) (10)

S = k(xr - xr) = k(xr - %7) + O In
. (11)
— ke ) (KGet 1) + 0 ln) K Gxr - xr)

e given independent variable and the training data set can obtain the outputs prediction of the test data. In
training, choosing a powerful kernel function, which has an invertible and symmetric matrix, could significantly
affect the estimation power of the established GPR model. To find the most appropriate kernel function for the
current study, the learning method was conducted, through which four common and diverse kernel functions
of Matern, Exponential, Squared exponential, and Rational quadratic are manipulated. These functions have
the following forms:

® Matern kernel function:

1-v 4\ — 5/
kM(x-x/)Za22 («/ﬁx x)Kv(mx x) (12)

e Exponential kernel function:

x—x
ke (x- x') = oexp (_ ¢ ) (13)
e Rational quadratic kernel function:
x — %2 —a
krq(x - ") =02<1+ ) > (14)

e Squared Exponential kernel function:

)
ksg (x . x/) = azexp (_xezx) (15)

where £, a >0, g, and o? are the length scale, scale-mixture, amplitude, and variance. Also, the K, and v repre-
sent the modified Bessel function and a positive parameter, respectively, while the symbol I' indicates the gamma
function. The exponential and squared exponential kernel functions are two special cases in the Matern function,
where if v=0.5 or 1 Matern function becomes exponential or squared exponential function.

Data collection. A total number of 506 experimental data of CO, adsorption by various structured MOFs,
including pores decorated with open metal sites Cu;(BTC), and (MOF-505), hexagonally packed cylindrical
channels (MOF-74), interpenetration (IRMOEF-11), square channels (MOF-2), Mg,(dobdc), Cu-BTTri, the
extra-high porosity MOF-177, Be-BTB, IRMOF-1, amino- and alkyl-functionalized pores (IRMOFs-3 and-6),
and Co(BDP), were collected from reported studies (see Table S1)'”*°. The pressure (P, bar), the temperature
(T, K), the pore volume (Vp, cm’/ ), and the surface area (S, m?/ g) of the MOFs are the model input variables,
while the CO, uptake (xCO, mmol/g) is the output of the model. In order to establish the most accurate model,
arbitrarily, 20% of the total data was separated as the testing set, which was used to study the validity of the
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model. The rest (80%) of the total data was utilized as the training set to investigate the MOF-CO, systems. Five
statistical parameters (Egs. 16-20), including R? (difference between the experiments and the calculated values),
mean-square error (MSE), the standard deviation (STD), root-mean-square error (RMSE), and mean relative
error (MRE) were used to evaluate the precision of the model.

n redicted experimental 2
oy i | (16)
- n redicted 2
i=1 [xf’ - xm}

xpredicted _ 2
STD — zn: <'nxm> (17)

i=1

1 o redicted experimental \ 2
MSE = — (x‘.’ — X )
2 (x : a8)

i=1

i=1 i i

n (xpredicted _ xgxperimental>2
RMSE = (19)

n

redicted experimental
" xf) —X; P

1
MRE = ; Z experimental (20)
X,

i=1 i

Estimation of the precision of the collected data. Some data have inconsistent behavior in the data
bank with the remainder of the data points identified as the suspected data. The suspected data mainly makes
mention of the experimental errors. Recognizing the suspected data is crucial because its presence in the data
bank can result in an inappropriate forecast for the established model. Thus, to seek the suspected or outlier data
and advance the data bank quality, the Leverage method is used. In this method, Hat matrix (H) and critical
leverage limit (H*) are used for identification of the outlier data, which are defined as follow*®.

-1
H= U(UTU> uT 1)
3j
H* =
it1 (22)

where U, i, and j are a matrix dimensional of i * j, the number of the model parameters, and the number of train-
ing points, respectively. To investigate the precision of the CO, adsorption data bank, the standardized residuals
are represented against Hat values in Fig. 1, namely William’s plot. The bounded zone between the critical lever-
age limit and standardized residuals of — 3 to 3 is known as the reliable region in William’s plot. It is clear that
all the extracted data points for the CO, uptake by different MOFs are reliable. Therefore, the dataset is excellent
for testing and training models.

Results and discussion

Analysis of sensitivity. In order to propose a precise model, identification of the effects of the input on the
CO, uptake by MOFs is vital. A sensitivity analysis is the needed technique to obtain the relevancy factor of each
input parameters, which is calculated as follow*”*;

;= Z?:l (Xk.i — Xk) (Yi — ?)
VI (X — X)L (vi - V)

where X ;, Xk, Yi, and Y are the K’ th input, input average, ‘i'th output, and the average of outputs, respectively.
The more value of r for an input parameter means that its efficiency on the CO, adsorption is higher and vice
versa. The effect of the input variable on the CO, adsorption is shown in Fig. 2. The sensitivity analysis indicates
that the pressure and the surface area of MOFs with r values of 0.68 and 0.52 are the most influential input vari-
ables on the CO, adsorption estimation. These inputs have a direct relationship with CO, uptake. Furthermore,
increasing the pore volume of the MOFs results in higher CO, adsorption. It is worth mentioning that the small
amount of r for the temperature can be related to its limited change in the experimental data.

(23)

Modeling results. In order to examine how exactly the proposed model is, the matching statistical param-
eters are used to specify a match between experimental and predicted CO, adsorption values. These parameters
are determined and reported in Table 1. The R? values of 1.00, 0.998, 0.997, and 0.997 are obtained for GPR mod-
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Figure 1. Detection of outliers for GPR model containing kernel function of (a) exponential, (b) matern, (c)

squared exponential and (d) rational quadratic.
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Figure 2. Analysis of sensitivity of the input parameters for CO, uptake by various MOFs.
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\Rz ‘MRE(%) \MSE ‘RMSE \STD

GPR (Exponential)

Train 1.000 0.51 0.00 0.02 0.02
Test 0.999 | 3.11 0.07 |0.26 0.22
Total 1.000 1.75 0.02 |0.26 0.14
GPR (Matern)

Train | 0.998 | 3.06 0.14 |0.38 0.35
Test 0.990 |62.78 0.65 |0.81 0.75
Total 0.995 |31.13 0.28 |0.81 0.49

GPR (Squared exponential)

Train 0.997 1.68 020 |0.44 0.41
Test 0.992 | 41.81 056 |0.75 0.69
Total 0.995 | 20.40 0.33 0.75 0.53
GPR (Rational quadratic)

Train 0.997 |10.27 020 |0.45 0.40
Test 0.989 | 36.59 0.65 |0.81 0.72
Total 0.994 |22.83 0.36 |0.81 0.53

Table 1. The statistical parameters of proposed GPR models.

els with Exponential, Matern, Squared exponential, and Rational quadratic kernel functions. The error param-
eters of MRE, MSE, RMSE, and STD in the training data indicate that the proposed GPR models have trained
the data with acceptable precision. In addition to the prediction accuracy of the training data, the ability of the
established models to forecast unseen CO, adsorption data points has critical importance. Thus, the proposed
models were assessed for the testing data set. It can be seen that the GPR model containing the Exponential ker-
nel function has the most accurate prediction of the unseen CO, uptake dataset, where R%, MRE, MSE, RMSE,
and STD are 0.999, 3.11%, 0.07, 0.26, and 0.22, respectively.

To further confirm the precision of the established models, the experimental and predicted CO, adsorption
values are simultaneously shown in Fig. 3. It can be clearly observed that there is excellent agreement between the
experimental CO, adsorptions and different GPR models. For all proposed models, the predicted CO, adsorp-
tion values follow the experimental CO, adsorption precisely. Thus, the proposed GPR models have outstanding
capability in the prediction of CO, adsorption.

The predicted CO, adsorption values versus experimental data for all the models are plotted and described
in Fig. 4. All the predicted CO, adsorption are situated to their experimental values so that the fitting lines on
them have correlation coefficients higher than 0.98. The fitting lines cross considerably with 45° line represent-
ing the precision of all the GPR models for forecasting experimental CO, adsorption data. The bisector line (45°
line) is a standard for the precision of established models. Nevertheless, the GPR model with Exponential kernel
function yields the most precise results due to the correlation coefficient of 1.

Figure 5 shows the relative deviations between the experimental CO, adsorption and all GPR models’ pre-
dicted values. As it is presented, the various kernel functions of Matern, Squared exponential, and Rational
quadratic have absolute deviation points lower than 30%, while for Exponential kernel function, they are lower
than 20%.

According to the results, the proposed GPR models showed excellent performance for CO, adsorption pre-
diction. To ensure that the suggested models have enough precision in estimating CO, adsorption by different
MOFs, the current study results are compared to the available correlations with the same aim reported by Dashti
et al.?. The statistical parameters, including R%, MSE, and STD, for the Dashti et al. study are listed in Table S2.
Among the four examined algorithms, the RBF showed the best prediction with R*=0.997, MSE =0.204, and
STD =4.211. In comparison, all the established GPR models have better estimating of CO, adsorption, specifi-
cally, the GPR model with Exponential kernel function with R?=1.00, MSE =0.02, and STD =0.14.

As shown in Fig. 6, MOF-177 has the highest CO, adsorption capacity of 33.5 mmol/g, which is much more
significant than other MOFs. After that, IRMOFs-11, -1, and -3, with Zn,0(O,C),-type frameworks, show excel-
lent capacities for CO, adsorption at room temperature. These MOFs have great effective pore sizes, which induce
a sigmoidal shape(step) in their adsorption isotherms?. Also, the CO, adsorption isotherms of MOF-2, MOF-74,
Norit RB2, MOF-505, and Cu;(BTC), are monotonic (Type I). The severe CO, adsorption at low pressure makes a
“knee shape” in these isotherms, while the maximum capacity is gained at high pressure as the pores are saturated.

Figure 7 indicates the CO2 adsorption isotherms of Co(BDP), Cu-BTTri, BeBTB, Mg,(dobdc), and MOF-177
at 313 K. The MOF-177 and BeBTB show much better performance than other MOFs in the CO, adsorption,
which is due to their higher surface area (see Table S1). The isotherm of Co(BDP) has a step-like feature which
might be attributed to its flexible structure, allowing gate-opening occurrence**. Cu-BTTri and Mg,(dobdc)
adsorbed high CO, at low pressures, which is related to their surface areas and the additional polarizing effect
of metal cations on the framework surface. Due to higher polarizability and the quadrupole moment of CO,,
the surface area can affect the amount of CO, adsorption by MOF. Figure 8 shows the temperature effect on the
CO, adsorption.

Scientific Reports |

(2021) 11:15710 | https://doi.org/10.1038/s41598-021-95246-6 nature portfolio



www.nature.com/scientificreports/

Train Exp. Train Output Train Exp. Train Output
Test Exp. Test Output Test Exp. Test Output
40 40
™ 35 35
~
= 30 230
E (=)
g 25 g 25
N’
g 20 EZO
g 15 s 15
5 =
g 10 =10
o
O 5 O s
Q
0 0 |
5 } 100 200 300 400 500 5 % 100 200 300 400 500
Data Index Data Index

~
o
~
~
o
~

Train Exp. Train Output Train Exp. Train Output
Test Exp. Test Output Test Exp. Test Output
40 40
) 35 35
Py ~
E 30 %” 30
g 25 g 25
N’
N
% 20 § 20
*g_ 15 \ g 15
ON 10 | =10
o
O 5 O s
Q
0 0
5 } 100 200 300 400 500 5 % 100 200 300 400 500
Data Index Data Index

(c) (d)

Figure 3. Comparison of experimental values and model outputs for GPR model containing kernel function of
(a) Exponential, (b) Matern, (c) Squared exponential and (d) Rational quadratic.

Conclusion

In the current study, the GPR models based on different kernel functions have been established to estimate the
CO, adsorption ability of MOFs in terms of pressure, temperature, pore volume, and surface area of MOFs. For
this purpose, 506 experimental CO, uptake values in the literature have been collected and assessed. Four various
kernel functions of Exponential, Squared exponential, Matern, and Rational quadratic have been studied. An
excellent match has been detected between the experimental CO, adsorptions and predicted values by the devel-
oped GPR models, confirming these models’ great ability in determining the CO, uptake. Among the proposed
models, the GPR model based on exponential kernel function, was shown as the most precise predictive tool with
R?*=1.00, MSE=0.02, and STD =0.14. Also, the suggested GPR models have better performance in comparison
to the reported correlations. The sensitivity analysis indicates that the pressure is the most influential variable in
CO, adsorption by MOFs. The surface area of the MOFs can be presented as the second determining paramater
in the CO, capture by MOFs systems. The discussions in the current study can make it a helpful report for the
engineers and researchers dealing with gas separation technologies.
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