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Hydrogen is a promising alternative energy source due to its significantly high energy density. Also, 
hydrogen can be transformed into electricity in energy systems such as fuel cells. The transition 
toward hydrogen-consuming applications requires a hydrogen storage method that comes with pack 
hydrogen with high density. Among diverse methods, absorbing hydrogen on host metal is applicable 
at room temperature and pressure, which does not provide any safety concerns. In this regard, AB2 
metal hydride with potentially high hydrogen density is selected as an appropriate host. Machine 
learning techniques have been applied to establish a relationship on the effect of the chemical 
composition of these hosts on hydrogen storage. For this purpose, a data bank of 314 data point 
pairs was used. In this assessment, the different A-site and B-site elements were used as the input 
variables, while the hydrogen absorption energy resulted in the output. A robust Gaussian process 
regression (GPR) approach with four kernel functions is proposed to predict the hydrogen absorption 
energy based on the inputs. All the GPR models’ performance was quite excellent; notably, GPR with 
Exponential kernel function showed the highest preciseness with R2, MRE, MSE, RMSE, and STD of 
0.969, 2.291%, 3.909, 2.501, and 1.878, respectively. Additionally, the sensitivity of analysis indicated 
that ZR, Ti, and Cr are the most demining elements in this system.

Energy demand has increased exponentially in recent years, reaching over 18 TW. In the subsequent years, 
this market growth is expected to continue1. Nowadays, fossil fuels account for over 80% of global energy 
consumption2–5. However, due to the environmental issues, the transition to renewable energy sources is critical6. 
In this regard, hydrogen can revolutionize renewable energy systems as a fuel and a clean energy carrier. It could 
be the basis for establishing carbon-free fuels7,8. Hydrogen energy has been among the most popular energy 
sources in recent years. This is since it has a higher energy content and causes fewer environmental issues 
than fossil fuels9. Hydrogen has a far higher energy density of 142 Mj kg−1 than fossil fuels, with a density of 
47 Mj kg−110. It is estimated that about 35% of European vehicles will be hydrogen-powered by 20409. In addi-
tion, hydrogen energy will provide around 34% of the world’s energy demands by 205011. Even though hydrogen 
is a prevalent element in nature, it is rarely found in pure form. As a result, several chemicals, electrochemical, 
photoelectrochemical, thermal, and microbiological approaches have been developed for producing it12–14. More 
than 50 million tons of hydrogen are produced annually in the world15.

Hydrogen may be stored in three primary ways, including gas, liquid, and solid-phase storage. Solid-phase 
storage is one of the most promising storage technologies owing to its ability to operate at room temperature and 
atmospheric pressure, as well as its excellent safety and low energy loss16–21. Metal hydrides have been noticed as 
a hydrogen storage material in solid-state conditions22–27 and are produced by absorption of hydrogen molecules 
on a metallic/intermetallic host28. The gravimetric density of hydrogen absorbed in these compounds is about 
1–3 wt%5,29. Different metal hydrides have been identified and examined so far, including AB, AB2, AB3, AB5, and 

OPEN

1Surface Reaction and Clean Energy Materials Laboratory, Chemical Engineering Department, Amirkabir 
University of Technology (Tehran Polytechnic), Tehran, Iran. 2Chemical Engineering Department, Fouman Faculty 
of Engineering, University of Tehran, Fouman, Iran. 3Chemical Engineering Department, Amirkabir University of 
Technology (Tehran Polytechnic), Mahshahr Campus, Mahshahr, Iran. 4College of Engineering and Technology, 
American University of the Middle East, 54200 Egaila, Kuwait. 5Department of Chemical Engineering, School of 
Engineering Technology and Industrial Trades, College of the North Atlantic - Qatar, Doha, Qatar. *email: Alireza_
baghban@alumni.ut.ac.ir; sajjad.habibzadeh@mail.mcgill.ca

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-26522-2&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21902  | https://doi.org/10.1038/s41598-022-26522-2

www.nature.com/scientificreports/

A2B, in which A and B are two types of metals or a group of metals. The AB2 metal hydride is the most promising 
type for hydrogen storage due to its easy activation, fast kinetics, and favorable pressure conditions30. In AB2 
alloys, element A contains hydride constituent of elements such as Ti, Zr, Ta, and Hf, while element B contains 
transition metals such as Fe, Co, Ni, Mn, Cr, and V31,32. The C14 and C15 with a hexagonal and face-center-cubic 
structure, respectively, are the laves phases of the AB2 metal hydrides33.

Thus, the element selection for A-site and B-site of AB2 compounds influences their hydrogen storage per-
formance. In order to investigate the effect of different elements or dopants on the hydrogen storage properties, 
traditional approaches, such as basic laws, computational modeling, and experimental investigations, are costly, 
time-consuming, and associated with numerous trials and errors, making them challenging and inefficient. Thus, 
to save time, energy, and cost, mainly when a complicated nonlinear relationship exists between the parameters 
and the performance, alternative machine learning (ML) techniques could be effective assessment methods.

The ML has become a prominent field of research and approach in developing and selecting advanced energy 
materials in recent years34–40. So far, various machine learning algorithms have employed hydrogen storage by 
metal hydride systems. For example, Griffin and Darsey estimated entropy, enthalpy, the temperature at 1 atm, 
pressure at 25 C, and the weight percent of hydrogen stored in metal hydrides using artificial neural networks. 
For the above parameters, the average correlation coefficient of R2 was 0.8888, 0.9561, 0.9381, 0.9935, and 0.9569, 
respectively41. To estimate the hydrogen storage capacity in metal hydrides, Rahnama et al. utilized four models: 
linear regression, neural network, Bayesian linear regression, and boosted decision tree. The R2 of the utilized 
models were 0.50, 0.60, 0.56, and 0.83, respectively, indicating that the boosted decision tree performed better 
than the other models42. In another study, Rahnama et al. classified metal hydrides using four classifiers: mul-
ticlass logistic regression, multiclass decision forest, multiclass decision jungle, and multiclass neural network. 
The accuracy of the used models was 0.47, 0.60, 0.62, and 0.80, respectively, indicating that the multiclass neural 
network classifier performed better than the other classifiers. This classification was based on the properties of 
metal hydrides, including the weight percentage of hydrogen, heat of formation, and operating temperature and 
pressure43. Suwarno et al. used their research to use multivariate regression, decision tree, and random forest 
models. The heat of formation, phase abundance, and hydrogen storage capacity of AB2 metal hydrides were all 
estimated using these models. The random forest model showed the most outstanding performance among the 
three models, with an average R2 value of 0.72244. Determining the pressure-composition-temperature (PCT) 
curve is an important issue in metal hydrides. This issue was considered in the research of Kim et al., where 
random forest (RF), K-nearest neighbor (KNN), and deep neural network (DNN) models were used. The deep 
neural network (DNN) model exhibited the greatest performance among the three models, with an average 
correlation coefficient R2 of 0.930745.

In the present study, for the first time, the Gaussian process regression (GPR) model with four kernel func-
tions was used to estimate the energy of hydrogen absorption (ΔH) on the surface of the hydride alloys. The 
elements of A and B in AB2 compounds were chosen as input variables to establish a relationship between the 
chemical composition of AB2 and hydrogen storage properties. For this purpose, a substantial experimental data 
bank was applied. The developed model was evaluated by several error and statistical parameters. Also, sensitiv-
ity analysis was performed to find the most determining elements in the hydrogen storage on metal hydrides.

Methodology
Data collection.  A set of 314 pairs of AB2 alloys were collected and presented in the Supplementary Infor-
mation from the literature44. They include the information of constituent elements and ΔH absorption (in KJ/
(molH2)).

It is worth mentioning that, in the pressure-composition-temperature diagram, some of the ΔH of these alloy 
couples are tacitly explained but are not clearly stated in the publications. The van’t Hoff Law, as shown in the 
following equation, was used to calculate the aforementioned ΔH.

In order to determine the equilibrium pressure, the computation was done by choosing a midpoint from the 
plateau of the pressure-composition graph. The temperature value in the pressure-composition phase diagram 
is constant because R, the universal gas constant, is used in the calculation. The term S is assumed to have a 
constant value of − 110 kJ/(mol H2 K).

As depicted in Fig. 1, 22 alloying elements of Si, Mo, Fe, C, Ni, Co, Zr, La, Cu, Gd, Al, Mn, Ti, Ce, W, B, Mg, 
V, Ho, Cr, Sn, and Nb are the input parameters while the ΔH is the output of the model to see the effect of each 
parameter on the hydrogen storage conditions. In this work, 70% of data was separated coincidentally as training 
data to develop the model, and the rest (30% data) was used as testing data for prediction to evaluate the model’s 
accuracy. Several statistical factors were calculated to quantify the established model preciseness, including R2, 
standard deviation (STD), mean-square error (MSE), mean relative error (MRE), and root-mean-square error 
(RMSE). Consiering y and x as the predicted and experimental values respectively, these factors are defined as 
follows:

(1)lnPeq =
�H

RT
−

�S

R

(2)R2 = 1−
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Gaussian process regression.  In comparison to support vector machines and artificial neural networks, 
Gaussian process regression with its super-parameters, which can be adaptively attained, is easy to perform. 
Also, the confidence interval (i.e., the uncertainty of the model prediction) can be obtained by this method35,46.

In GPR modeling L =
{

xL·i · yL·i
}n1
i=1

 and T =
{

xT ·i · yT ·i
}n2
i=1

 are arbitrarily selected training and testing data 
sets with input and output parameters of x and y, respectively. The modeling begins by:

where ε , σ2
noise, and In are the observation noise, the variance of the noise, and the unit array. Similar to the traing 

data, we have for the test data:

In GPR method, f(x) is a random function which defined by its corresponding covariance k(x, x′) (also called 
kernel) and mean m(x) functions.

Although m(x) can be obtained by applying explicit basis functions, for simplicity, it is usually supposed to 
zero47.

From Eqs. (7) and (11) the y is achieved as:

Now, based on the introduced parameters:
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Figure 1.   Steps and analysis parameters through the study.
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By summation of these two equations, the Gaussian expression is derived:

To obtain the yT distribution, the conditioning rule of Gaussians can be used:

With ΣT and μT as the covariance and the mean value, respectively. The core of the GPR is the kernel function 
which generates a covariance matrix to calculate the "distance" between two data points. Thus, various kernel 
functions have different calculation approaches, affecting the strength and the robustness of the final GPR 
model48. In the present study, four kernel functions of Matern, Rational quadratic, Exponential, and Squared 
exponential are chosen to find the most appropriate one, defined as follows

•	 Matern kernel function:

•	 Rational quadratic kernel function:

•	 Exponential kernel function:

•	 Squared Exponential kernel function:

In these equations, ℓ, σ, σ2, and α > 0 indicate the length scale, the amplitude, the variance, and scale-mixture, 
respectively. Also, v, Kv, and Γ represent a positive parameter, the modified Bessel function, and the gamma 
function, respectively.

In the present study, we developed GPR models based on four kernel functions in MATLAB software version 
2018 and compared their capabilities to estimate enthalpy of absorptions.

Data set outlier detection.  Due to the existing errors in experiments or calculation methods, some of 
the collected data behave differently from other data points, known as suspected data or outliers. Having these 
data in the data bank leads to improper anticipation for the established models. Accordingly, the presence of the 
suspected data in the data bank should be investigated to advance the quality of the collected data bank. For this 
purpose, the Leverage method is used, which defines the Hat matrix and critical leverage limit as follows:

where U is a matrix with the i*j dimension, and i and j are the number of parameters and the training data, 
respectively. To assess the quality of the collected data bank, William’s plot concept is used, through which 
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standardized residuals are portrayed versus hat values. According to the method, the data from the reliable zone, 
the confined area between standardized residuals of [− 3, 3] and [0, critical leverage limit], are suspected data. In 
the present work, as shown in Fig. 2, most data is in the reliable area. In detail, for all the developed GPR models, 
only 14 or 13 data points out of 314 data (about 4%) are out of the reliable zone, confirming the collected data 
set is appropriate for training and testing.

Results and discussion
Sensitivity analysis.  In order to determine the effect of each element on the absorption enthalpy, an analy-
sis of sensitivity is implemented. The relevancy factor, the metric which implies how much a parameter is effec-
tive, is derived from the following expression:

where Xk.i and Yi represent the ’k’ th input and ’i’ th output, while the average values of input and outputs are 
denoted by Xk and Y  , respectively. The input parameter with a larger r means a greater effect on the outcome. 
The positive sign indicates the parameter affects the output positively and vice versa for negative signs. According 
to the sensitivity analysis (Fig. 3), Ti and Zr are the most effective elements in the ΔH absorption of hydrogen, 
with the relevancy factor of − 38.47% and 38.38%, respectively. The opposite sign of these elements is because 
of their interchange in A site. In other words, when Ti increases, the amount of Zr automatically decreases and 
vice versa. This result was expected because, as discussed, element A (here are Ti and Zr) in AB2 structures is the 
hydride forming element, significantly affecting the hydrogen adsorption energy of the alloy49. Among the rest 
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Figure 2.   Detection of suspected data for GPR model with kernel function of (a) Exponential, (b) Matern, (c) 
Squared exponential, (d) Rational quadratic.
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of the metals placed in the B site of the AB2 structures, Cr and V are the most influential input elements, while 
C and Co have the minimum effect on the alloys-hydrogen absorption ΔH. It can be related to their abundance 
in the collected dataset. Indeed, Cr, Mn, and V have been extensively applied in this research area, while other 
metals were often used as dopants/modifiers.

Modeling results and validation.  The statistical parameters and the graphical comparison figures are 
presented to evaluate the developed model performance in the hydrogen absorption ΔH prediction. The sta-
tistical parameters are calculated and listed in 1 for the train, test, and overall dataset. In the training phase, 
the R2 values of 0.976, 0.976, 0.95, and 0.966 were obtained for established GPR-Exponential, GPR-Matern, 
GPR-Squared Exponential, and GPR-Rational Quadratic models, respectively. Considering their low amount of 
MRE, MSE, RMSE, and STD, especially for the GPR-Exponential model, confirms that all the GPR models were 
trained with enough preciseness. They were used to predict new (testing) data to examine the robustness of the 
models. Based on Table 1, all the developed models showed their acceptable capability in the ΔH prediction. 
The GPR-Exponential is slightly more accurate among all models with R2 = 0.969, MRE = 2.291%, MSE = 3.909, 
RMSE = 2.501, and STD = 1.878.

Figure 3.   Sensitivity analysis of the input variables for ΔH absorption of hydrogen on metal hydrides.
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The simultaneous comparison between the experimental and anticipated amounts of hydrogen absorption 
ΔH for all the models is illustrated in Fig. 4. It is clear that all the proposed GPR models are predicted in excel-
lent agreement with the actual values of ΔH through which the prediction lines cover the data points accurately.

The cross plots for all the GPR models are depicted in Fig. 5. In these graphs, the bisector line of the first 
quarter is the accuracy merit; the closer data to this line, the more precise model is developed. As shown in 

Table 1.   The calculated statistical parameters of proposed GPR models.

Model Group R2 MRE (%) MSE RMSE STD

GPR (Exponential)

Train data 0.976 2.303 3.130494859 1.7693 1.6724

Test data 0.938 2.253 6.25850367 2.5017 2.4030

Total data 0.969 2.291 3.909998652 2.5017 1.8782

GPR (Matern)

Train data 0.976 2.646 3.409763115 1.8466 1.7033

Test data 0.903 3.895 7.025170203 2.6505 2.4049

Total data 0.965 2.957 4.310727182 2.6505 1.9072

GPR (Squared Exponential)

Train data 0.955 4.136 4.856165672 2.2037 1.8525

Test data 0.940 5.262 10.34689408 3.2167 2.9355

Total data 0.950 4.416 6.224462209 3.2167 2.1691

GPR (Rational Quadratic)

Train data 0.966 3.711 4.844857898 2.2011 1.9656

Test data 0.906 4.588 6.788354588 2.6054 2.2364

Total data 0.957 3.929 5.329179756 2.6054 2.0388
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Figure 4.   Comparison of actual and anticipated data for GPR model containing kernel function of (a) 
Exponential, (b) Matern, (c) Squared exponential, (d) Rational quadratic.
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Fig. 5, the data are placed very close to the bisector line, and their respective linear fitting equations are almost 
the same as the merit line (slope of unit with R2 greater than 0.9). Thus, the established GPR models could 
anticipate the ΔH very well.

For more assessment of the GPR models’ results, the relative deviation between the actual hydrogen absorp-
tion and the predicted ones is calculated and illustrated in Fig. 6. In each of the developed GPR models, most 
of the calculated absolute deviation data points are smaller than 10%. Also, the GPR model with Exponential 
kernel function has the minimum mean relative error of 2.291% compared to GPR-Matern (2.957%), GPR-Square 
exponential (4.416%), and GPR-Rational quadratic (3.929%).

Conclusion
In order to anticipate the hydrogen absorption ΔH on the AB2 alloys, a machine learning approach of Gaussian 
process regression (GPR) with four different kernel functions (Exponential, Matern, Squared exponential, and 
Rational quadratic) was assessed. The 22 different alloying elements were used as the input. All the developed 
GPR models performed very well. Among them is the GPR-Exponential model with a little more excellence than 
others, with R2, MRE, MSE, RMSE, and STD of 0.969, 2.291%, and 3.909, 2.501, and 1.878, respectively, chosen 
as the best one. According to the sensitivity analysis, the Ti and Zr elements, along with V and Cr, contribute the 
most to the change of hydrogen absorption ΔH. The results of the presented work could provide the researchers 
and scientists with a perspective to choose the appropriate elements for AB2 alloys for hydrogen storage.
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Figure 5.   Cross plots for GPR model with kernel function of (a) Exponential), (b) Matern, (c) Squared 
exponential, (d) Rational quadratic.
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