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A R T I C L E  I N F O   

Handling Editor: Dr. Govindan Kannan  

Keywords: 
Data envelopment analysis 
Environmental efficiency 
Electric vehicles 
Life cycle assessment 
Sustainable transportation 

A B S T R A C T   

Decarbonizing residential transportation sector depends on the energy mix. A need for environmental efficiency 
of electric vehicles considering the life cycle impacts of electricity generation under different mix scenarios is 
essential. This research aims to present the first empirical analysis on the environmental efficiency of battery 
electric vehicles across 27 European countries, considering the average electricity mix, marginal electricity mix 
(2015–2020), and renewable energy-based electricity mix (2030–2040) scenarios. The midpoints environmental 
impacts per kWh electricity generation were estimated for each country using the latest ecoinvent v3.7 life cycle 
environmental impact data. Well-to-wheel environmental impacts of battery electric vehicles were calculated for 
each country based on a functional unit per km traveled. An input-oriented non-restricted and weight restricted 
frontier models using the panel-based weights obtained from the European Commission’s Joint Research Center 
(JRC) survey was built to model the environmental efficiency. Finally, the footprint efficiency results related to 
different electricity production mix scenarios and future projections to improve the environmental efficiency of 
battery electric vehicles were suggested. The results reveal Finland and Netherland as the most environmentally 
efficient countries using BEVs for all the electricity mix scenarios. It is seen that average mixes cause lower 
environmental efficiency scores of battery electric vehicles than marginal mixes due to higher shares of 
renewable electricity sources in marginal mixes.   

1. Introduction 

1.1. Background 

Road transportation of passengers and freight accounts for nearly a 
quarter of the global CO2 emissions, one of the principal anthropogenic 
greenhouse gases (GHG) (EEA, 2020). For the periods between 1995 and 
2019, emissions from passenger vehicle transportation have increased 
by 28% globally instead of a planned decrease of 2.5 metric tons of 
emissions from light-duty vehicles by 2020 (IEA, 2019). Electrified 
powertrains continue to gain popularity worldwide as a dominant clean 
fuel alternative to the traditional “internal combustion vehicles” (ICV) 
(Heidrich et al., 2017). European countries have started to show some 
pockets of growth in the EV uptake rate since 2014 (EEA, 2020). Europe 
stands as the first runner-up to date in EV adoption due to the declining 

manufacturing costs and nationwide charging infrastructure deploy
ment (IEA, 2019). The EU-wide EV sales have captured over 1.8 million 
vehicle registrations in the “battery electric vehicle (BEV)" and “plug-in 
hybrid electric vehicle (PHEV)" categories throughout 2019 (EEA, 
2020). 

The share of EV users in Europe has moved beyond 2.5%–4.2% in 
2019 (IEA, 2019). Combined EV adoption targets have been set by the 
European commission across each member states to reach 9–10 million 
EV users on the road by the end of 2022 (McKinsey and Company, 
2014). However, the shift in the global powertrain portfolio accom
panies a set of sustainability-related questions, related to the power 
surges in the electric grid to satisfy the extra charging needs of EV 
adopters, the ecosystem related impacts across the EV life cycle stages, 
and the concerns related to material recycling and end-of-life (EoL) 
impacts. Furthermore, consequences related to the energy storage sys
tems, range anxieties, impact backed with the increased use of 
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low-carbon sources in the power mix (Onat and Kucukvar, 2020), and 
active conditioners have all resulted in taking steps to pioneer the 
technology with a touch of sustainability science throughout the life 
cycle. With regard to the replacement of conventional vehicles by EV, 
Ghosh (2020) concludes that BEVs are considered a true zero-emission 
vehicle due to the lack of tailpipe emissions compared to other types 
of EV, but the savings in greenhouse gas (GHG) emissions from the EV is 
debatable when the energy required to charge the EV comes from 
traditional sources of fossil fuels, as it also alludes to the technical, 
economic, and logistical barriers that stop the expansion. The environ
mental impact of BEVs is contingent on the extent to which electricity 
used by the vehicles is produced in an environment-friendly manner. If 
the electricity is produced mainly using fossil fuels, BEVs may report 
higher GHG emissions than ICEVs. Szinai et al. (2020) estimate the 
integration of EV in the state of California, United States, by 2025. This 
analysis ensures that the fusion EV and renewables will help to decar
bonize both the transport and electricity sector simultaneously. Li and 
Chang (2019) carried out a study of electric mobility in the Asia 
Southeast, involving the fleet of residential passengers, buses, and 
trucks. This evaluation includes availability, applicability, acceptability, 
and affordability indicators, giving a final energy consumption and 
major energy security. Raugei et al. (2018) affirmed that the EV inte
gration can reduce significantly the UK’s dependence on conventional 
primary energy sources. The analyzed key–metric is the demand for 
non-renewable energy, which could be reduced by around 34% by EV in 
comparison to conventional vehicles. The mitigation of emissions, 
studied by Nichols et al. (2015) in the state of Texas (United States), 
demonstrates the substantial reduction of greenhouse gases to be ach
ieved by renewable integration into mix generation power systems. 
Vehicles powered by coal, natural gas, and renewables are compared to 
EVs, highlighting that EVs reduce significantly emissions and increase 
energy security. Understanding the generation mix of the power system 
is thus necessary to efficiently integrate EV into the residential fleet. 

1.2. Life cycle assessment for electric vehicles 

The switch towards carbon-neutral mobility practices has reshaped 
the automotive landscape to better understand the associated environ
mental impacts to avert the switch of the burden from one stage to the 
other across the life cycle (Elhmoud and Kutty, 2020). Life cycle studies 
on EVs mainly cover impact categories, including air quality impacts on 
human health, ecosystem health, and climate change (Onat et al., 2017). 
Studies on electric vehicle LCA have acknowledged contributions in 

these impact categories. In addition, they have attempted to investigate 
whether the deployment of these alternative technologies offers prom
ising benefits in terms of cost and impact reduction from a day-to-day 
perspective across the life cycle or not. 

Electric vehicle life cycle assessment (EV-LCA) is a time-tested 
multimedia assessment technique used to calculate the ecological im
pacts and estimate the resource consumption for EV using a life cycle 
thinking approach (Onat et al., 2015; Kutty et al., 2020). The EV-LCA 
studies often branch out into two prime assessment categories: Fuel 
life cycle analysis (F-LCA) and vehicle-based LCA approach (Onat et al., 
2019). Several studies have been developed and applied in the area of 
EV-LCA over the years. For example, Lucas et al. (2012) carried out a 
well-to-wheel fuel LCA analysis to quantify the energy utilization and 
carbon emissions from manufacturing, maintenance, and scrapping of 
fuel supply support infrastructures for EV and ICVs in Portugal. While, a 
combined LCA approach using PCO-CENEX drive cycle considering 
F-LCA, that consist of “Tank-to-Wheel (TTW)" and “Well-to-Tank (WTT)" 
approach and, vehicle LCA using a “cradle-to-grave (CTG) approach” for 
vehicle material related consumption was studied by Baptista et al. 
(2011). The results revealed that fuel cell-powered London passenger 
taxis consumed less energy than the diesel-powered ICV and electric 
propelled EVs. Similarly, a comparative approach with E-LCA combined 
with cost analysis from a CTG perspective using the Well-to-Wheel 
(WTW) analysis for fuel supply on Lithuanian passenger vehicles was 
carried out by Petrauskienė et al. (2021). As a result, low-carbon energy 
in the electricity mix for BEVs proved to neutralize the environmental 
impacts considerably, while simultaneously, the BEVs and ICVs proved 
to be cost-effective throughout the total life cycle use phase. 

Naranjo et al. (2021) conducted a comparative LCA utilizing the CTG 
approach to quantify the potential climate change-related impacts dur
ing the use of Spanish passenger vehicles. Multiple impact categories 
and energy scenarios across time were taken into account for a BEV 
lifetime of 150,000 km. The energy projection scenario results revealed 
a considerable reduction in CO2-eq emissions up to 27.41% by using 
renewable electricity sources in BEVs by 2050. A similar study was 
carried out earlier by Yang et al. (2020) for Chinese passenger vehicles, 
including ICV, BEV, and PHEV, evaluating the particulate emissions 
across the entire vehicle LC stages. The study found PM2.5 and Sulfur 
dioxide (SO2) high when using the renewable energy source with 
biomass share compared to the emission statistics obtained for ICEVs. 
Xiong et al. (2021) conducted a hybrid LCA to understand the emission 
reduction potential for the complete electrification of passenger cars in 
mainland China. The study identified a lack of potential in reducing CO2 

Abbreviations 

Symbol 
BEV Battery electric vehicles 
CCR Charnes Chooper and Rhodes 
CO2 Carbon dioxide 
DEA Data envelopment analysis 
DMU Decision-making unit 
EEA European Environmental Agency 
E-LCA Environmental life cycle assessment 
EoL End-of-life 
EU European Union 
EV Electric vehicle 
EV-LCA Electric vehicle life cycle assessment 
FCEV Fuel cell electric vehicle 
GHG Greenhouse gas 
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LC Life cycle 
LCA Life cycle assessment 
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LCSA Life cycle sustainability assessment 
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SDG Sustainable development goal 
SO2 Sulfur dioxide 
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UK United Kingdom 
US United States 
WTT Well-to-Tank 
WTW Well-to-Wheel  
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emissions by the electrification of passenger cars in China since the 
emissions released during the vehicle manufacturing phase outweigh 
the emission saved on the road by the EV deployment. While the use of 
renewable energy sources in fuel cell technologies has resulted in 
considerable reductions in footprint-related emissions up to 70%, as 
identified through the LCA study conducted by Usai et al. (2021) for fuel 
cell electric vehicles (FCEV). An electricity system model integrated 
with LCA was used by Xu et al. (2020) to identify the difference in the 
impacts generated while utilizing several charging strategies for EVs in 
Europe. Prolonged vehicle-to-grid charging strategies resulted in load 
issues and impacts associated with overload on the power grid system. 
These studies play a pivotal role in structuring policies to meet air 
quality directives and support commitments laid to accomplish emission 
reduction targets. 

1.3. Efficiency assessment using DEA 

Data Envelopment Analysis (DEA) is a mathematical model used to 
assess the relative efficiency and performance of a set of “decision- 
making units (DMU)" using linear programming (Shao et al., 2019). The 
technique differs in which the DMUs freely choose from a set of inputs 
and outputs to minimize the associated impacts and maximize the 
relative efficiency (Sueyoshi and Yuan, 2015). Different from the 
traditional empirical models such as the regression analysis is the ability 
of DEA to arbitrarily assign weights to the sustainability indicators to 
estimate the efficiency of DMUs (Kutty et al., 2020a). As shown in the 
results of using the DEA technique, the relative efficiency for each of the 
comparable units appears as a non-negative score within the range of 
0–1 (Zurano-Cervelló et al., 2019). The efficiency scores translate that 
each DMU performs relative to the inputs they consume for the set of 
output units they produce, determining how best performing each unit is 
compared to similar functional units. 

DEA has long been used to assess the sustainable performance and 
the associated energy efficiency of comparable units across several 
research areas over the years (Ezici et al., 2020). Fathi et al. (2021) used 
an integrated bargaining “game cross-efficiency DEA model” to under
stand the energy efficiency performance of fossil fuel exporting nations 
worldwide. The countries were ranked based on the Nash equilibrium 
bargaining payoff points to find the most energy-efficient nation. Zhang 
et al. (2021) used an improved window DEA to analyze the 
cross-sectional energy efficiency of countries in western Europe. To 
acknowledge the optimal use of innovation strategies in energy man
agement and assess the environmental performance of energy R&D 
expenditure in developing countries, a “bootstrap DEA analysis” was 
used by Koçak et al. (2021). The study adds an empirical assessment to 
show the improvement path for inefficient countries as well. At the same 
time, a game theory-based “cross-efficiency DEA model” with the 
Malmquist productivity index was used for Chinese utility sector effi
ciency calculation by Xie et al. (2021). 

DEA being a powerful analytical technique, has not failed to extend 
its application to address concerns in the transportation sector (Neves 
et al., 2020). A parallel DEA model was applied to evaluate the inte
grated ecological efficiency for the passenger transportation system in 
China by Liu et al. (2020). A convergence analysis was used to capture 
the significant difference between the groups of performing units. 
Kucukvar et al. (2020) conducted an eco-efficiency performance 
assessment on 30 international airports around the world using a 
frontier-based DEA model taking into account the triple bottom line 
sustainability aspects. The carbon efficiency as a result of the govern
mental regulations on the Chinese transportation sector was evaluated 
using a “Slacks-based Measure (SBM) DEA model” by Chang and Zhang 
(2017). The results revealed adhering to the opportunity cost so as to 
reduce the carbon dependency. While, an SBM-DEA model with unde
sirability factors was used to understand the environmental efficiency of 
the Chinese traffic network in 30 provinces of mainland china by Song 
et al. (2015). Application of several modified DEA models can be seen in 

the studies conducted by Ibrahim and Daneshvar (2017) for supply 
chain performance assessment, Ru and Si (2015) to calculate energy 
efficiency in the sugar cane industry, and Zhang and Wang (2010) for 
project selection process efficiency evaluation. 

1.4. Novelty and contribution to the state-of-art 

Considering previous contributions aiming to decarbonize the resi
dential transport sector, determination of environmental efficiency level 
in the use of BEVs is important for countries, under various production 
mix scenarios to accelerate large-scale adoption of EVs in the market. 
Accounting to this, the research presented aims to conduct a scenario- 
based analysis on the environmental efficiency of European countries 
using restricted and non-restricted DEA models under various produc
tion mix scenarios. This research stays as a backbone in signaling action 
plans to accelerate the EU-wide large-scale EV adaption to support 
sustainable mobility by understanding the synergies between average 
electricity mix (2015), marginal electricity mix (2015–2020), and 
renewable energy-based electricity mix (2030–2040) for each of the EU 
member states used for powering the BEVs. As seen in the review, pre
vious studies were conducted across the United States, South East Asia, 
and other parts of the world with a small sample size, where this 
research is the first of its kind assessment for 27 EU member states, along 
with the well-to-wheel environmental life cycle analysis of BEVs. Simi
larly, the studies to date have focused on several life cycle approaches 
and efficiency evaluation techniques for EV sustainability assessment 
using non-parametric approaches such as the Data Envelopment Anal
ysis (DEA) and Stochastic Frontier Analysis (SFA). DEA assigns relative 
weights to the indicators using mathematical programming. Due to the 
use of unrealistic input and output weights assigned by linear pro
gramming, the discrimination power of the traditional DEA model is 
considerably reduced in some cases. Constraints on weights can be 
included in the model to eliminate the possibility of the DMUs having a 
high-efficiency score, thus raising the model’s discrimination power and 
eliminating any possible bias in the efficiency results. The implicit 
weighting using DEA and expert judgment-based weights were used to 
evaluate and compare the footprint efficiency results of different elec
tricity production mix scenarios for the first time in this research. The 
panel-based weights obtained from the survey of the European Com
mission’s Joint Research Center (JRC) are used to model the environ
mental efficiency. This helps to understand the change impact on each 
EU member state’s efficiency, supporting unbiased decision making. To 
sum up, this paper presents a holistic and integrated decision-making 
model by combining the non-parametric frontier model with environ
mental life cycle assessment for environmental efficiency of electric 
vehicles based on past, present, and future electricity production mixes 
of each European country. On all account, this research aims to cover the 
following objectives to broaden the scope of EV environmental sus
tainability assessment across Europe, namely;  

1. Conduct a scenario-based analysis for average power mix (base 
year), marginal electricity mix (2015–20), and renewable electricity 
mix (2030–2040). 

2. Develop environmental efficiency assessment models for the opera
tional environmental performance of battery electric vehicles across 
Europe.  

3. Build a weighted and non-weighted Charnes, Cooper, and Rhodes 
(CCR)-DEA model to analyze the environmental efficiency of bat
tery electric vehicles based on their well-to-wheel life cycle 
performance. 

4. Propose policy recommendations for each country for environmen
tally sustainable electric vehicle deployment related to the present 
and future electricity production mixes. 

The rest of the paper is divided into the following sections: Section 2 
describes in detail the proposed method for environmental efficiency 
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assessment under several electricity production mix scenarios using 
weighted and non-weighted DEA models combined with the WTW-LCA 
method. Section 3 discusses the results of the analysis in terms of effi
ciency scores, along with the results of the projection level analysis and 
model-based variability assessment with grouped performance. Finally, 
conclusions and future directions are given in Section 4. 

2. Methods 

This paper uses the Well-to-Wheel (WTW) LCA method combined 
with the weight restricted and unrestricted DEA model to bring out the 
environmental efficiency values for each of the 27 European countries. 
The research undertakes the following structure to accomplish the 
desired results in assessing the environmental efficiency of European 
countries towards the use of BEVs. The research makes use of the latest 
ecoinvent v3.7 life cycle impact database (Vandepaer et al., 2019). The 
midpoints environmental impacts per kWh of electricity generation are 
estimated for each of the 27 European countries. After estimating the per 
kWh environmental footprints for the electricity generation per country, 
the wheel-to-wheel environmental impacts of BEVs are calculated based 
on the functional unit per km traveled. 

A CCR-based weighted DEA model is then run using the panel-based 
weights obtained from the survey of the European Commission’s recent 
report to model the environmental efficiency (Sala et al., 2018). First, 
the footprint-based efficiency related to different electricity production 
mix scenarios is identified. It is then compared with the nonrestricted 
and weight-restricted DEA model results. Next, a scenario-based com
parison is carried out, followed by a future projection analysis to 
improve the environmental efficiency of BEVs. An environmental effi
ciency performance grouping is then done using the quartile method to 
identify the grouped performance scoring for each country. Finally, a 
model-based variability assessment using the Kruskal-Wallis H test is 
undertaken, supported with a projection level analysis. Fig. 1 presents 
the integrated research method in a step-by-step manner. 

2.1. Well-to-wheel (WTW) analysis 

WTW is an LCA method used in calculating the energy utilization and 
the associated emissions from the powertrain, starting from the extrac
tion phase of the energy system (Well) to the utilization point (Wheel). 
The analysis captures the tailpipe emissions and gives an entire picture 
of the emissions along the fuel cycle’s manufacturing, transportation, 
and distribution pathways. BEVs do not emit exhaust-based emissions 
along with their operation phase. Thus, sustainability assessment for 
BEVs depends on the source of the energy mix used during their life cycle 
(Onat et al., 2017b). The WTW analysis can be split into two sub-phases: 
the WTT approach and the TTW approach (see Fig. 2). The WTW anal
ysis accounts for the indirect emissions across the entire fuel chain and 
not along the drive cycle. At the same time, the TTW accounts for the 
emissions during the driving phase of BEVs. If j represents the envi
ronmental impact categories then, the associated emission along the 
assessment stage for the jth category is calculated using Eq. (1) as 
follows:  

Ej = EVcc × [TTWj + WTTj]                                                           (1) 

where; 
EVcc = electric vehicle charge consumption expressed in kWh/km. 
TTWj = energy consumption in kWh for the jth impact category 

across the drive cycle. 
WTTj = energy consumption in kWh for the jth impact category 

associated with the electricity generation phase. 
Per km travel is taken as the functional unit for the WTW assessment. 
The associated environmental impacts vary based on the power 

generation, trends in driving patterns, and weather-related uncertainties 
(Alghoul et al., 2018). In addition, the upstream and downstream energy 
consumption-related impacts vary based on the source used for the 
power generation (Kucukvar et al., 2017, 2018). The data for the elec
tricity generation mix is presented in Fig. S1 (Supporting Information 
(SI) file) was collected from the ecoinvent v3.7 life cycle impact 

Fig. 1. Research flow diagram.  
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database across three periods: average electricity mix (2015), marginal 
electricity mix (between 2015 and 2020), and renewable energy-based 
electricity mix (between 2030 and 2040). 

The average impact factors per kWh electricity generation by a 
source according to the life cycle impact data were collected from the 
latest ecoinvent v3.7. The environmental impacts of per kWh electricity 
generation included several phases such as raw material extraction and 
processing, operation and maintenance, and construction activities. 
Similarly, the data for all the impact categories were obtained from the 
ecoinvent v3.7 database. The battery-operated electric vehicle brand 
“Nissan Leaf” was used to study the associated impacts. The average 
electricity consumption for the selected BEV is 18.7 kWh/100 km 
(Helmers and Marx, 2012). Considering the values for the average 
electricity mix, marginal electricity mix, renewable energy-based elec
tricity mix, and the associated impact categories mentioned in the 
Supplementary Information File (see Tables S1–3), the WTT impacts 
were calculated using equation (2) as; 

WTTjk =
∑

(Psk × Ejs) (2)  

where; 
jk = jth impact category for the kth country. 
Psk = percentage value for the power generation source (s) in the kth 

country. 
Ejs = environmental impact for jth category per source s. 
The values of water consumption (L/kWh) and GHG emissions (g/ 

kWh) are zero due to no direct emissions in the TTW stage. The envi
ronmental impact categories included climate change (kg CO2-Eq/kWh), 
freshwater ecotoxicity (kg 1,4-dichlorobenzene (DCB)-Eq/kWh), fresh
water eutrophication (kg P-Eq/kWh), human toxicity (kg 1,4-DCB-Eq/ 
kWh), metal depletion (kg Fe-Eq/kWh), particulate matter formation 

(kg particulate matter (PM)10-Eq/kWh), photochemical oxidant forma
tion (kg non-methane volatile organic compounds (NMVOC)/kWh), 
terrestrial acidification (kg SO2-Eq/kWh), and urban land occupation 
(square meter-year/kWh. 

2.2 Input-oriented DEA model. 
A constant-return-to-scale model developed by (Charnes et al., 

1978), known as CCR, and a variable return-to-scale model developed 
by Banker et al. (1984) are the two DEA models used commonly when 
computing relative efficiency scores for decision-making units. This 
study uses the input-oriented CCR model due to the robust efficiency 
measures delivered by the model under realistic scenarios (Supciller and 
Bulak, 2020). With the aim to cut down the environmental impacts 
under the triple bottom line umbrella for the member states to be effi
cient in their use of EVs. For that reason, the first model, which is the 
IO-DEA multiplier model, was used in the study. 

Consider xj and yk as the j th input and kth output for the respective 
DMU under evaluation. To estimate the relative efficiency, the ratio 
between the weighted output (WO) and the weighted input (WI) is used 
as proposed in the studies of (Onat et al. 2017 a,b). The environmental 
efficiency is computed using Eq. (3) as; 

ξ =
WO
WI

=

∑q
k=1μkyk

∑p
j=1vjxj

(3)  

where; 
p = number of input DMUs 
q = number of output DMUs. 
vj ≥ 0 = weights assigned to the j th input. 
μk ≥ 0 = weights assigned to the k th output. 
The DMU’s weights, vj and μk are arbitrarily chosen by linear pro

gramming. The proposed DEA model is as follows (Eqs. (4)–(6)); 

Fig. 2. Schematics for a WTW analysis.  
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Objective Function 

maxz=
∑q

k=1
μkyk

/
∑p

j=1
vjxj (4) 

Subject to; 

maxz=
∑q

k=1
μkyk

/
∑p

j=1
vjxj ≤ 1, j = 1,…,N (5)  

μk, vj ≥ 0 (6) 

where; 
xij and yki = j th input and kth output of the ith DMU. 
Z = total number of DMUs. 
DMUj is considered efficient if the value of the objective function z 

(Eq. (4)) is 1. If the value is found to be less than 1, the DMUj is 
considered inefficient where the inputs of DMUj were not able to reach a 
sufficient level producing the output for other DMUs. 

2.2. Weighted and non-weighted DEA model 

The non-weighted DEA model arbitrarily assigns weights that 
maximize the efficiency scores for each DMU and provides flexibility in 
determining these weights (Egilmez et al., 2013). This flexibility enables 
different input and output weights of different DMUs, thus eliminating 
the need to obtain a common weight set for all decision-making units. 

Due to the flexibility provided by the non-weighted DEA in determining 
weights, the discrimination power of the model is considerably reduced 
in some cases (Egilmez et al., 2016). The discrimination power of the 
model decreases inputs, and output indicators are included in the 
evaluation set. In this context, to raise the discrimination power of the 
model, it may be preferable to include more decision-making units in the 
analysis or to eliminate some of the input and output variables from the 
analysis (Dyson et al., 2001). However, in some cases, it is not possible to 
achieve this condition. Another way to raise the discrimination power of 
the model is by adding constraints on the weights for the model. In other 
words, since unrealistic input and output weights are used, constraints 
on weights can be included in the model as a way of eliminating the 
possibility of the DMUs having a high-efficiency score (Mavi et al., 
2019). Therefore, the DEA may be adjusted to alleviate the subjective 
evaluation of the weights of the inputs (environmental impact cate
gories) and outputs (economic performance variables), while the con
ventional DEA does not necessitate an initial weight assignment (Pan 
et al., 2021). In this context, two different approaches were put in place 
to identify and compare the different consequences. Besides the con
ventional approach, a weight-restricted model was adopted in the 
environmental efficiency analysis of electrical vehicles. Eq. (4) is con
verted into a mathematical programming model by multiplying the in
verse function of the environmental efficiency ratio to form Eq. (5), 
subject to the constraints Eq. (8) and Eq. (9). 

minz− 1 =
1
Yj

∑m

i=1
vixij (7) 

Subject to 

1
Yj
×

∑m

i=1
vixij ≥ 1, j = 1,…,N (8)  

vr ≥ 0 (9) 

Yj is the per km traveled by the DMUj. This model does not require 
any multipliers due to the existence of a single output. The weight- 
restricted model (Eq. (10)) helps us identify whether discrimination 
limits the capacity of the DEA model to bring efficient results compared 
with the traditional model for the envelopment analysis. Weights for 
certain impact categories are assigned through estimation even after the 
weight restriction as per equations (11)–(14). This model reads as 
follows: 

minz− 1 =
1
Yj

×
∑m

i=1
vixij (10) 

Subject to 

1
Yj
×

∑m

i=1
vixij ≥ 1, j = 1,…,N (11)  

αjv1 − vj ≥ 0, j = 2, 3,…, s (12)  

βjv1 − vj ≤ 0, j = 2, 3,…, s (13)  

vr ≥ 0 (14) 

where αj and βj are positive scalars. Weights gathered from the Eu
ropean Commission’s Joint Research Center (Sala et al., 2018) are used 
to denote the constraint (Eq. (15)) given as follows:  

Table 1 
Proposed DEA models under each energy source with selected inputs and 
outputs.  

DEA 
Models 

Energy Source Inputs Unit Output 

Scenario-1 Average 
electricity mix 
(2015) 

Climate change kg CO2-Eq/ 
kWh 

Per-Km 
Travel 

Scenario-2 Marginal 
electricity mix 
(2015–20) 

Freshwater eco- 
toxicity 

kg 1,4- 
DCB-Eq/ 
kWh 

Scenario-3 Renewable 
energy-based 
electricity mix 
(2030–40) 

Freshwater 
eutrophication 

kg P-Eq/ 
kWh 

WScenario- 
1 

Average 
electricity mix 
(2015) 

Human toxicity kg 1,4- 
DCB-Eq/ 
kWh 

WScenario- 
2 

Marginal 
electricity mix 
(2015–20) 

Metal depletion kg Fe-Eq/ 
kWh 

WScenario- 
3 

Renewable 
energy-based 
electricity mix 
(2030–40) 

Particulate matter 
formation 

kg PM10- 
Eq/kWh   

Photochemical 
oxidant formation 

kg 
NMVOC/ 
kWh   

Terrestrial 
acidification 

kg SO2-Eq/ 
kWh   

Urban land 
occupation 

square 
meter- 
year/kWh  

Vclimatechange ≥Vparticulatematterformation ≥ Vmetaldepletion = Vurbanlandoccupation ≥ Vphotochemicaloxidantformation ≥ Vhumantoxicity = Vterrestrialacidification ≥ Vfreshwatereutrophication

≥ Vfreshwaterecotoxicity (15)   
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The weights are assigned to each of the midpoint impact categories 
by the expert panel using the elicitation techniques and “value choice” 
method based on the most critical impact categories and elementary 
flows to reach a consensus in assigning the weights. The assigned 
weights by the expert panel to each of the impact categories can be 
found in Sala et al. (2018). The primary objective in running a 
weight-restricted DEA model is to arbitrarily manage the efficiency level 
of the DMUs and undertake a comparison between the weight-restricted 
and unrestricted DEA models. Therefore, assigning weights by the ex
perts to the impact categories can greatly impact the efficiency outcomes 
for each DMU. Table 1 shows all the six DEA models categorized into 
weighted and non-weighted scenarios along with the inputs and outputs. 
All the environmental impact categories namely; Climate change, 
Freshwater eco-toxicity, Freshwater eutrophication, Human toxicity, 
Metal depletion, Particulate matter formation, Photochemical oxidant 
formation, Terrestrial acidification, and Urban land occupation were 
considered as inputs and, per-km travel as the output for all the six DEA 

models considered in the study. Three different analyses were carried 
out for both the weighted and non-weighted scenarios using an 
input-oriented DEA model. 

2.3. Non-parametric test for variability assessment 

Kruskal-Wallis H test, a non-parametric test is used to determine the 
significant difference in the mean ξ score across each scenario outlined in 
the study. The test draws the assumption that the samples are randomly 
distributed. The null hypothesis (H0) for the Kruskal-Wallis H test is that 
the mean ξ score is equally distributed to the alternative hypothesis (HA) 
that there exists at least one ξ score significantly different from the 
overall sample. The test hypothesis can be represented as; H0 = μξ(1) =

μξ(2) = …. = μξ(6) and HA = μξ(1) = μξ(2) ∕= μξ(3) = …. = μξ(6); where μξ(j) is 
the mean ξ score for the jth Scenario. The Kruskal-Wallis H test statistics 
can be calculated using Eq. (16) as follows; 

Fig. 3. Environmental efficiency and ranking results of BEVs under a non-restricted model for a) Scenario 1; b) Scenario 2; c) Scenario 3.  
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H =

∑
all j

(
Xj − X

)
(Z − 1)

∑
all j

∑nj
k=1

(
Xjk − X

)2 ; For j = 1, 2,…, 6 (16)  

where; 
nj = DMUs tested under the jth Scenario. 
Z = total number of DMUs considered in the study. 
Xjk = rank of kth observation under the jth Scenario. 
Xj = average rank for the jth Scenario. 
X = average rank across all the scenarios considered in the study. 
To determine whether the mean ξ score across each scenario varies 

significantly, a 95% significance level represented by α = 0.05 is chosen 
to compare the estimates with the p-value. If p-value > α, the H statistics 
is insignificant. Thus, we fail to reject H0. This translates to the fact that 
the mean ξ score across each scenario is insignificantly different from 
each other. On the contrary, if the p-value ≤ α, there is sufficient evi
dence to prove that the mean ξ score across each varies significantly from 

each other. Pairwise comparison is used to identify the set of scenarios 
with similar ξ scores. The combination for each scenario for a pairwise 
comparison is calculated using Eq. (17); 

Cn
r =

n!
(n − r)! r!

; For n = 6 and r = 2 (17)  

where; 
n = number of scenarios 
r = number of subsets under comparison. 

3. Results and discussions 

3.1. Unrestricted DEA model 

This section attempts to explain the analysis conducted for all six 
scenarios. Fig. 3 shows the relative environmental efficiency score (ξ)

Fig. 4. Environmental efficiency and ranking results of BEVs under weight restricted model for a) WScenario 1; b) WScenario 2; c) WScenario 3.  
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under all the Scenarios (Scenario 1, Scenario 2, Scenario 3) for each 
European member state. The results appear as a non-negative score 
within the range from 0 to 1. Each European country is ranked in the 
ascending order of its performance under Scenario 1, as shown in Fig. 3. 
It is seen under Scenario 1 that Romania performs the least in terms of 
environmental efficiency with an efficiency score ξ = 0.7781 relative to 
other comparable units. The reason might account for the decreased 
shares of renewable energy sources and of natural gas combined-cycle 
plants in Romania, explaining the tendency towards lower impact and 
efficiency scores. The impacts of the average electricity mix are gener
ally more spread out in comparison to the marginal mix. This is due to 
the extreme value caused in some categories by harmful fossil-fired units 
whose shares are significantly lower in the average mixes. 

On the other hand, European countries like Slovenia, Sweden, 
Netherlands, Greece, France, Finland, Belgium and, Austria were ranked 
among the top with an efficiency score ξ = 1. When, Netherlands, 
France, Finland, and Belgium retained their position under Scenario 2 
(Fig. 3) as the most environmentally efficient countries in terms of their 
use of EVs, Slovenia, Sweden, Greece, and Austria were pushed out of 
the list to fall under the medium-to-low efficiency categories. Scenario 2 
witnessed the Czech Republic as the least performing unit with an effi
ciency score of ξ = 0.6554. The reason for the least efficient performance 
of the Czech Republic can account for the biggest difference between 
average and marginal mix, in terms of impacts. The scores of the mar
ginal mix are mostly due to the vast share of foreign imports, with both 
relying on fossil-fired units for a large share of their mix, and shares 
stemming from fossil heat and power co-generation units. In terms of its 
relative efficiency under scenario 1, Romania, the least performing 
country, showed considerable improvement under scenario 2 (ξ =
0.9531). Despite the improvement, Romania still falls under the “fairly 
good” performing category in the medium efficiency zone. Under this 
scenario, Slovakia, Portugal, Malta, Latvia, Lithuania, Italy, Ireland, 
Hungary, Denmark, Cyprus, and Bulgaria were termed environmentally 
efficient with an efficiency score ξ = 1. 

The results for Scenario 3 show that all the European countries 
selected for the study except Latvia, Hungary, Germany, Belgium, and 
Austria are efficient with an efficiency score of ξ = 1. Under Scenario 3, 
most of the European countries showed meritorious performance 
compared to the least performing countries. However, the least per
forming countries under scenario 3 do hold a fairly high-efficiency score 
(ξ= 0.999) compared to the least performing countries in Scenario 1 
and Scenario 2. 

3.2. Weight-restricted DEA model 

According to the weights assigned to the impact categories, all the 
previous scenarios were run for the EU Electrical Vehicle environmental 
efficiency DEA Model. According to the analysis, Fig. 4 shows the results 
under the weight-restricted DEA model for WScenario 1, Wscenario 2, 
and Wscenario 3. The countries categorized as the most efficiently 
performing units under Scenario 1 for the non-weighted DEA model 
(Fig. 3) compared with the WScenario 1 remained the same. Notably, 
the weights assigned by the expert panel to each indicator made no 
difference in the efficiency outcomes in the high-performing countries. 
While the efficiency scores drastically fell for the remaining European 
countries. Under WScenario 1, the Czech Republic with an efficiency 
score of ξ = 0.241 is the least performing European country relative to 
other comparable units. Despite the Czech Republic not falling on the 
efficient frontier under both scenarios, for Scenario 1, the country ranks 
20th with an ξ score equal to 0.8834. An efficiency score of 0.8834 is 
fairly good in comparison with the WSecanrio 1 score of the Czech Re
public (ξ = 0.241). A total of 19 countries reported poor performance 
based on the efficiency score as the scores ranged from 0.38 to 0.241. 
This translates to the fact that nearly 70.37% of countries in the 
WScenario 1 stood way under the efficient frontier. In terms of the value- 
added outcomes for each of the listed countries to their environmental 

burdens when accounted for relatively, certain weight assignments 
negatively impacted the efficiency scores of some countries. 

Similarly, when comparing the efficiency results of WScenario 2 with 
Scenario 2 (Fig. 4), it can be seen that all the efficient countries under 
WScenario 2 remained the same as in Scenario 2, like the former case 
mentioned. Estonia, with an efficiency score ξ = 0.248, is the least 
efficient country in terms of using BEVs under WScenario 2. The least 
efficient Czech Republic under Scenario 2 was pushed to the 26th rank 
under WScenario 2 with an efficiency score of ξ = 0.308. The results 
were surprising when WScenario 3 was put under comparison with the 
results of Scenario 3. 81.48% of countries considered for the assessment 
were efficient under Scenario 3. This percentage fell, leaving Portugal, 
Slovakia, Malta, Finland, the Czech Republic, and Cyprus as environ
mentally efficient countries in BEV usage under Wscenario 3. Nearly 21 
countries were inefficient under this scenario. Nearly 77% of countries 
under the WScenario 3 can be found to be inefficient. The inefficient 
countries hold an efficiency score ranging from 0.968 to 0.754. 

3.3. Model-based variability assessment 

The Kruskal-Wallis H-test, as detailed in section 3.5 was used to 
determine the significant difference in the mean efficiency scores under 
all the six scenarios outlined in the study. The H statistics and p-value for 
the Kruskal-Wallis test were found to be 48.21 and 0.000, respectively. 
Based on the p-value, it is concluded that either of the scenarios domi
nates the other, resulting in rejecting the null hypothesis. The influence 
of input and output variables on the mean ξ score was studied using 
pairwise comparison. 

Table 2 shows the pairwise comparison results of ξ score for a sig
nificance level of α = 0.05. Based on the pairwise comparison results, 
there assumes an insignificant difference in the mean ξ score across 
Scenario 1 and, Scenario 2, WScenario 2, and WScenario 3. Similar re
sults can be seen in the pairwise comparison for Scenario 2, WScenario 
3, and WScenario 2, while significant difference can be seen in the mean 
ξ score across Scenario 1 with Scenario 3 and WScenario 1. Similarly, the 
pairwise comparison results show a significant difference compared to 
Scenario 2, Scenario 3, and WScenario 1. 

Table 2 
Pairwise comparison on the mean ξ scores.  

Analysis Category Kruskal- 
Wallis 

P- 
value 

Decision 

Insignificant Significant 

Scenario 1 Vs. Scenario 2 15,685 1.000 ✓  
Scenario 1 Vs. Scenario 3 42.444 0.005  ✓ 
Scenario 1 Vs. WScenario 

1 
34.944 0.050  ✓ 

Scenario 1 Vs. WScenario 
2 

4.407 1.000 ✓  

Scenario 1 Vs. WScenario 
3 

12.926 1.000 ✓  

Scenario 2 Vs. Scenario 3 26.759 0.370 ✓  
Scenario 2 Vs. WScenario 

1 
50.360 0.000  ✓ 

Scenario 2 Vs. WScenario 
2 

11.278 1.000 ✓  

Scenario 2 Vs. WScenario 
3 

28.611 0.244 ✓  

Scenario 3 Vs. WScenario 
1 

77.389 0.000  ✓ 

Scenario 3 Vs. WScenario 
2 

38.037 0.021  ✓ 

Scenario 3 Vs. WScenario 
3 

55.370 0.000  ✓ 

WScenario 1 Vs. 
WScenario 2 

39.352 0.014  ✓ 

WScenario 1 Vs. 
WScenario 3 

22.019 0.967 ✓  

WScenario 2 Vs. 
WScenario 3 

17.333 1.000 ✓   
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3.4. Environmental efficiency performance clustering 

This section uses the quartile method to measure the spread of the 
environmental efficiency scores for each DMU under the respective 
scenarios. The quartile-based clustering helps understand the impact of 
having certain output parameters in the production set on the total ef
ficiency performance. Once the three quartiles (q1, median, and q3) are 
calculated, each DMU is placed in the appropriate cluster (group) based 
on their efficiency scores. Countries that reveal efficiency scores less 
than the q1 are classified as “low performance”, while the countries 
revealing efficiency scores greater than q3 are classified as “high per
formance”. The others are classified as “medium performance”. Table 3 

reports the percentile values using the quartile method. 
Fig. 5 shows the group-based efficiency performance for each DMU 

under all six scenarios. To better visualize the efficiency performance, 
conditional formatting tends to assign position-dependent color gra
dience for each cluster. 

The results in Fig. 5 show Finland as the most efficiently performing 
country in terms of their use of BEVs for all six scenarios, while France 
and Netherlands stand as the first runner up with a slight dip in their 
performance under WScenario 3. The results also show that Croatia, 
Malta, Poland, Sweden, and Slovenia that fell under the High- 
Performance cluster in Scenario 1 were pushed to the poorly perform
ing category under WScenario 1. On the other hand, all the countries 

Table 3 
The percentile values using the quartile method.  

Parameter Scenario 1 Scenario 2 Scenario 3 WScenario 1 WScenario 2 WScenario 3 

Minimum 0.7781 0.6554 0.9999 0.241 0.248 0.754 
1st Quartile 

25th Percentiel 
0.8775 0.898425 1 0.28575 0.62775 0.807 

2nd Quartile 
50th Percentile 

0.92425 1 1 0.317 1 0.881 

3rd Quartile 
75th Percentile 

0.9894 1 1 0.535 1 0.976 

Maximum Score 1 1 1 1 1 1  

Fig. 5. Comparative performance assessment using quartile-based clustering.  
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under Scenario 3 except Austria, Belgium, Hungary, and Lithuania 
maintained excellent efficiency scores. For general insight about the 
efficacy performance of the EU countries, the sum of cluster index (SCI) 
is used. Since index 1 refers to the “High Performance” cluster, the 
countries having the minimum SCI would perform better than others 
over all the scenarios and vice versa. The SCI can be determined using 
Eq. 18 

SCIi =
∑6

j=1
CIij ∀ i = 1, 2, 3…27 (18)  

where i refers to the country, j refers to the scenario number, and CIij 
refers to the cluster-index of the i th country under the jth scenario. Fig. 6 
reports the SCIi values of the EU countries. 

Considering that the “High Performance” cluster index equals one 
and the total number of clusters equals 6, the minimum and maximum 
values of the SCI are 6 and 18. Therefore, Fig. 6 shows that Cyprus, 
Finland, and Slovakia are the most efficient countries over the six sce
narios. On the other hand, Denmark, Lithuania, Romania are the least 
efficient countries (SCI = 14), followed by Hungary and Croatia (SCI =
13). 

3.5. Correlation analysis: efficiency versus energy prices 

This section quantifies the collinearity associated between the effi
ciency scores and the energy prices in the EU countries. Under the 
context of this paper, collinearity refers to the strength of the linear 
relationship between the efficiency scores and electricity precise. 
However, the coefficient of determination is the most commonly used 
measure for collinearity between two variables. The R2 explains the 
percentage of variability in one of the model variables estimated from 
the other model variable. The R2 ranges from 0 to 1, quantifying the 
strength of the linear association between the two variables. The score of 
0 indicates no correlation, while the score of 1 indicates a strong cor
relation. In correlation analysis, it is always important to initially eval
uate the scatter plot of the two variables before computing a correlation 
coefficient. This is particularly useful to explore associations between 
the variables. 

In this study, we answer our question concerning the significance of 
the relationship between the efficiency scores and electricity prices 
using the R2-value. To continue, we set the efficiency score as the y-axis 
and the electricity price as the x-axes. Then, the R2 can be computed as 
follows: 

R2 = 1 −

∑n
i=1(yi − y)2

∑n
i=1(yi − y′

i)
2 (19)  

where yi represents the efficiency score of the i th EU country, y repre
sents the average of the efficiency scores, and y′

i represents the fitted 
value associated with yi. The sample size n is set to the EU countries (n 
=27). Fig. 7 illustrates the fitting plot of efficiency scores and electricity 
prices for average power mix and marginal electricity mix (2015–2020). 
The dashed lines in Fig. 7 represent the fitting line (or y′

i values). 
As it is noted from Fig. 7, there is a lack of linear fitting between the 

efficiency scores (y) and electricity prices (X) under the four scenarios of 
DEA models. The fitting line is poorly capable of representing a signif
icant portion of the model variability. The four DEA scenarios yielded 
very low R2-values, ranging from 0.095 to 0.227, which is another ev
idence of the lack of linearity. These findings confirm the lack of line
arity between efficiency scores and electricity prices for average power 
mix (Scenario-1) and marginal electricity mix (Scenario-2). 

3.6. Projection level analysis 

This section attempts to carry out a projection level analysis for all 
the six scenarios discussed in this paper. The percentage reduction level 
corresponding to each environmental impact category helps understand 
the extent to which each indicator needs to be cut down to reach the 
efficient frontier. In a better sense, this analysis helps each European 
country move towards the sustainable use of BEVs following its best- 
performing peers. Table S3 shows the reference set and average pro
jection level for Romania (RO) under Scenario 1. With an efficiency 
score of ξ = 0.7781, Romania is the least efficient European country 
compared to other counties. Austria (v1 = 0.102), Netherlands (v2 =

0.009) and Sweden (v3 = 0.889) were chosen as the benchmarks under 
this scenario. This means that Romania needs to follow the bench
marked units to achieve the average projection level to reach the desired 
sustainability level. The input variables for each benchmarked unit need 
to be multiplied by their corresponding weights for Romania to be 
considered efficient. Based on this analysis, Romania needs to reduce the 
climate change-related impacts by 84.087%, freshwater eco-toxicity by 
46.48%, freshwater eutrophication by 92.379%, human toxicity by 
83.477%, metal depletion by 22.19%, particulate matter formation by 
92.159%, petrochemical oxidant formation by 22.19%, terrestrial 
acidification and urban land occupation value by 86.772% and 22.19% 
respectively, to improve its performance to reach the efficient frontier. 

Fig. 6. Comparative performance assessment using the sum of cluster-index.  
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Table S4 shows the least efficient country like the Czech Republic 
(CZ), accounting for an ξ = 0.241 under Scenario 2. Cyprus (v4 = 0.918) 
and Portugal (v5 = 0.082) were chosen as the reference set to guide 
Czech Republic (CZ) for becoming efficient unit. Similarly, while 
considering Scenario 3, Table S5 demonstrates that Cyprus (v6 = 0.747) 
and Slovakia (v7 = 0.253) were taken as the benchmarking units for the 
inefficient unit Lithuania (LT). The assigned weights for each reference 
set are multiplied with the respective environmental impact categories 
to lay pathways for the inefficient units to improve their performance. 
The average projection level for the former is 69.56%, and the latter is 
4.57%. While considering Scenario 2, the Czech Republic needs to cut 
down the impacts by 63.24% from the climate change category, fol
lowed by 57.576% from freshwater eco-toxicity and 97.328% from 
freshwater eutrophication inefficient performance. While 90.227% 
needs to be downsized from the human toxicity impact category, 
34.461% from metal depletion, 81.156% from particulate matter for
mation, 34.461% from photochemical oxidant formation, 84.796% from 
the terrestrial acidification, and 82.76% from the urban land 
occupation-related impacts for possible efficiency improvements. Sce
nario 3 projection level analysis’s results indicate that Lithuania needs 
to decrease its share across “climate change-related impacts, freshwater 

eco-toxicity, freshwater eutrophication, human toxicity, metal deple
tion, particulate matter formation, petrochemical oxidant formation, 
terrestrial acidification, and urban land occupation” value by 25.717%, 
1.849%, 0.007%, 11.448%, 1.573%, 0.01%, 0.018%, 0.007%, and 
0.47%, respectively. Finally, when considering all the weighted DEA 
Scenarios, the Czech Republic (CZ), Estonia (EE), and Hungary (HU) 
were found to be the inefficient and the least performing European 
countries under WScenario 1, WScenario 2, and WScenario 3, 
respectively. 

Diving deep into each scenario, Table S6 shows that France with a 
weight of v8 = 0.714 and Sweden with an assigned weight of v9 = 0.286 
need to be multiplied with their respective environmental impact cate
gories to reach efficiency levels under WScenario 1. Similarly, Table S7 
illustrates the weights assigned to Cyprus (v9 = 1) under WScenario 2 
and, Table S8 indicates that Slovakia (v10 = 0.011) and Cyprus (v11 =

0.989) under WScenario 3 need to be multiplied with the respective 
input parameters to push the inefficient countries namely; Estonia and 
Hungary to fall onto the efficient frontier. The average projection levels 
for the Czech Republic (CZ), Estonia (EE), and Hungary (HU) are 
73.63%, 75.09%, and 8.62%, respectively, for the weight-restricted 
condition. In the meantime, WScenario 1, WScenario 2, and 

Fig. 7. Fitting plots and R2 for unrestricted and weighted DEA models a) Scenario-1 b)Scenario-2 c) WScenario-1 d) WScenario-2.  
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WScenario 3 are considered with their environmental indicators and 
provided with their overall projection levels. To improve the sustain
ability performance of the inefficient units, not all the inputs need to be 
reduced or outputs are increased. Some inputs remain constant whose 
increase or decrease does not affect the overall outcome. 

4. Conclusions and policy recommendations 

This research used a WTW-LCA combined with weight restricted and 
unrestricted DEA to measure the environmental efficiency for each of 
the 27 European countries. An efficiency performance grouping scheme 
was then used to identify the grouped performance scores for each 
country. Finally, a model-based variability assessment using a non- 
parametric test was undertaken, supported with a projection level 
analysis. The projection level analysis can help the least performing 
countries in identifying pathways to reach the efficient frontier. 

The results revealed 16 out of 27 member states are efficient under 
the marginal electricity mix for both the restricted and un-restricted 
scenarios. Only 6 countries were termed efficient under the weight- 
restricted renewable energy-based electricity mix (2030–40) scenario. 
Similarly, only 8 countries managed to make up to the efficiency frontier 
under the average electricity mix scenario for both the weight restricted 
and unrestricted model. In most scenarios, average mixes cause lower 
environmental efficiency scores of battery electric vehicles than mar
ginal mixes due to higher shares of renewable electricity sources in 
marginal mixes. The findings also prove that the decarbonization of the 
power generation sector could lead to favorable environmental effi
ciency performance. This can be seen when considering the case of 
renewable energy-based electricity mix under Scenario 3. Countries 
showed excellent performance in terms of their use of BEVs on highways 
under scenario 3 for all of Europe. Scenario 3 acts as a baseline in 
addressing climate change-related impacts. Similar results can be seen 
under WScenario 3 that uses the same renewable energy-based elec
tricity mix. All the countries fall under the fairly high-performing to the 
excellent-performing category in this scenario. However, countries 
including Romania, the Czech Republic, and Estonia should strengthen 
their EV usage policies for different electricity mixes. Under all the 
scenarios, these countries showed below-average performance. Thus, 
the findings in this study critically acknowledge the advantage of the use 
of decarbonized energy supply in the power mix to cut down emissions 
from all the impact categories. 

National incentives and benefits apart from the central European 
commission incentives can strengthen the nationwide EV adoption. The 
monetary EV incentives in Belgium, EV registration tax benefits in 
Denmark, 100% exemption on ownership tax for EVs that emit less than 
50g CO2/km and the attractive scrappage scheme offered by France for 
EVs are all examples of national incentives to strengthen the EV adop
tion to reach maturity. However, despite the promising benefits offered 
by the subsidies to commercialize the use of EVs with the meta goal of 
carbon emission reduction, the case of Finland is surprising and an 
answer to the research conducted in this study. Finland is well known for 
no subsidies and tax incentives when it comes to the use of EVs. How
ever, the study Finland is the highest performing country across all the 
six scenarios. The reason behind the meritorious performance of Finland 
can be attributed to its bio-fuel adaption policy post-2015 and the switch 
to intense carbon neutral practices. 

Furthermore, the use of differentiated smart metering systems for EV 
charging can help separate taxation for electricity use by EV adopters to 
take advantage of the government incentives for EVs. To socially opti
mize the use of EVs on highways, policymakers can implement charges 
on the number of emissions per vehicle type as the EV market transitions 
towards maturity. Such initiatives can open a new market to the concept 
of EVs for sharing economy. 

Power generation from a clean energy source has become a key 
overlay in bringing carbon neutral and circular economy opportunities 
in the transportation industry. The global consensus to push for the 

electrification of public transport is a positive step towards lowering 
emissions in cities. Electrification of public transport also provides an 
opportunity to achieve multiple objectives of low-carbon urban devel
opment, reduction of local air pollution, creation of jobs, and higher 
acceptance of public transport by residents. To be successful, electric 
urban buses must be approached as a coherent system that embraces the 
vehicle, the infrastructure, the operation, the users, and the financial 
sustainability. Cities can also shape the transition to electric-shared 
mobility by partnering on pilot programs centered around EV adop
tion, charging, and innovative multi-modal first/last mile programs. For 
future research, the authors suggest choosing the full ReCipe endpoint 
impact categories to understand the destructions inflicted on human 
health, ecosystem health, and resource damage using alternative 
mobility practices in Europe under the same scenarios using the envi
ronmental, social LCA approach. Furthermore, the authors suggest 
conducting a material footprint analysis to identify and compare the 
emissions associated with the materials required per unit generation of 
electricity utilizing the decarbonized technologies with the traditional 
fossil fuel generation system. A scenario-based multi-level integrated 
LCA approach is suggested to identify the carbon emissions associated 
with electricity generation technologies under energy scenarios. It is 
readily important to determine the actual share-of-use of low-carbon 
energy per km for EVs with the identified saving potential values from 
using “renewable electricity mix” to avoid the unfair estimation of 
advantage for EVs. In addition, the authors suggest the combined 
application of hybrid life cycle sustainability assessment and DEA 
models to measure the social, economic, and environmental perfor
mance for the complete electrification of passenger cars based on the 
triple bottom line sustainability impacts in Europe and the globe. 
Therefore, the authors propose to include extra environmental and 
socio-economic indicators such as material footprint, life cycle cost, and 
economic value-added and develop a holistic input-output hybrid life 
cycle sustainability assessment of battery electric vehicles considering 
the full life cycle stages, including the circular economy applications of 
end of life batteries. 
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