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ARTICLE INFO ABSTRACT

Handling Editor: Dr. Govindan Kannan Decarbonizing residential transportation sector depends on the energy mix. A need for environmental efficiency
of electric vehicles considering the life cycle impacts of electricity generation under different mix scenarios is

Keywords: essential. This research aims to present the first empirical analysis on the environmental efficiency of battery

Data envelopment analysis electric vehicles across 27 European countries, considering the average electricity mix, marginal electricity mix

Environmental efficiency
Electric vehicles

Life cycle assessment
Sustainable transportation

(2015-2020), and renewable energy-based electricity mix (2030-2040) scenarios. The midpoints environmental
impacts per kWh electricity generation were estimated for each country using the latest ecoinvent v3.7 life cycle
environmental impact data. Well-to-wheel environmental impacts of battery electric vehicles were calculated for
each country based on a functional unit per km traveled. An input-oriented non-restricted and weight restricted
frontier models using the panel-based weights obtained from the European Commission’s Joint Research Center
(JRC) survey was built to model the environmental efficiency. Finally, the footprint efficiency results related to
different electricity production mix scenarios and future projections to improve the environmental efficiency of
battery electric vehicles were suggested. The results reveal Finland and Netherland as the most environmentally
efficient countries using BEVs for all the electricity mix scenarios. It is seen that average mixes cause lower
environmental efficiency scores of battery electric vehicles than marginal mixes due to higher shares of
renewable electricity sources in marginal mixes.

manufacturing costs and nationwide charging infrastructure deploy-
ment (IEA, 2019). The EU-wide EV sales have captured over 1.8 million
vehicle registrations in the “battery electric vehicle (BEV)" and “plug-in
hybrid electric vehicle (PHEV)" categories throughout 2019 (EEA,
2020).

The share of EV users in Europe has moved beyond 2.5%-4.2% in
2019 (IEA, 2019). Combined EV adoption targets have been set by the
European commission across each member states to reach 9-10 million
EV users on the road by the end of 2022 (McKinsey and Company,
2014). However, the shift in the global powertrain portfolio accom-
panies a set of sustainability-related questions, related to the power
surges in the electric grid to satisfy the extra charging needs of EV
adopters, the ecosystem related impacts across the EV life cycle stages,
and the concerns related to material recycling and end-of-life (EoL)
impacts. Furthermore, consequences related to the energy storage sys-
tems, range anxieties, impact backed with the increased use of

1. Introduction
1.1. Background

Road transportation of passengers and freight accounts for nearly a
quarter of the global CO5 emissions, one of the principal anthropogenic
greenhouse gases (GHG) (EEA, 2020). For the periods between 1995 and
2019, emissions from passenger vehicle transportation have increased
by 28% globally instead of a planned decrease of 2.5 metric tons of
emissions from light-duty vehicles by 2020 (IEA, 2019). Electrified
powertrains continue to gain popularity worldwide as a dominant clean
fuel alternative to the traditional “internal combustion vehicles” (ICV)
(Heidrich et al., 2017). European countries have started to show some
pockets of growth in the EV uptake rate since 2014 (EEA, 2020). Europe
stands as the first runner-up to date in EV adoption due to the declining
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Abbreviations
Symbol
BEV Battery electric vehicles

CCR Charnes Chooper and Rhodes
CO, Carbon dioxide

DEA Data envelopment analysis

DMU Decision-making unit

EEA European Environmental Agency
E-LCA  Environmental life cycle assessment
EoL End-of-life

EU European Union

EV Electric vehicle

EV-LCA Electric vehicle life cycle assessment

FCEV Fuel cell electric vehicle
GHG Greenhouse gas

HEV Hybrid electric vehicles
ICcv Internal combustion vehicle
JRC Join research commission

kWh Kilowatt-hour

LC Life cycle

LCA Life cycle assessment

LCC Life cycle costing

LCSA Life cycle sustainability assessment

PHEV  Plug-in hybrid electric vehicle
SBM Slacks-based Measure

SDG Sustainable development goal
SO, Sulfur dioxide

SLCA Social-Life cycle assessment
CI Cluster index

SCI Sum of cluster index

TBL Triple Bottom Line

TTW Tank-to-Wheel

UK United Kingdom

Us United States

WTT Well-to-Tank
WTW Well-to-Wheel

low-carbon sources in the power mix (Onat and Kucukvar, 2020), and
active conditioners have all resulted in taking steps to pioneer the
technology with a touch of sustainability science throughout the life
cycle. With regard to the replacement of conventional vehicles by EV,
Ghosh (2020) concludes that BEVs are considered a true zero-emission
vehicle due to the lack of tailpipe emissions compared to other types
of EV, but the savings in greenhouse gas (GHG) emissions from the EV is
debatable when the energy required to charge the EV comes from
traditional sources of fossil fuels, as it also alludes to the technical,
economic, and logistical barriers that stop the expansion. The environ-
mental impact of BEVs is contingent on the extent to which electricity
used by the vehicles is produced in an environment-friendly manner. If
the electricity is produced mainly using fossil fuels, BEVs may report
higher GHG emissions than ICEVs. Szinai et al. (2020) estimate the
integration of EV in the state of California, United States, by 2025. This
analysis ensures that the fusion EV and renewables will help to decar-
bonize both the transport and electricity sector simultaneously. Li and
Chang (2019) carried out a study of electric mobility in the Asia
Southeast, involving the fleet of residential passengers, buses, and
trucks. This evaluation includes availability, applicability, acceptability,
and affordability indicators, giving a final energy consumption and
major energy security. Raugei et al. (2018) affirmed that the EV inte-
gration can reduce significantly the UK’s dependence on conventional
primary energy sources. The analyzed key-metric is the demand for
non-renewable energy, which could be reduced by around 34% by EV in
comparison to conventional vehicles. The mitigation of emissions,
studied by Nichols et al. (2015) in the state of Texas (United States),
demonstrates the substantial reduction of greenhouse gases to be ach-
ieved by renewable integration into mix generation power systems.
Vehicles powered by coal, natural gas, and renewables are compared to
EVs, highlighting that EVs reduce significantly emissions and increase
energy security. Understanding the generation mix of the power system
is thus necessary to efficiently integrate EV into the residential fleet.

1.2. Life cycle assessment for electric vehicles

The switch towards carbon-neutral mobility practices has reshaped
the automotive landscape to better understand the associated environ-
mental impacts to avert the switch of the burden from one stage to the
other across the life cycle (Elhmoud and Kutty, 2020). Life cycle studies
on EVs mainly cover impact categories, including air quality impacts on
human health, ecosystem health, and climate change (Onat et al., 2017).
Studies on electric vehicle LCA have acknowledged contributions in

these impact categories. In addition, they have attempted to investigate
whether the deployment of these alternative technologies offers prom-
ising benefits in terms of cost and impact reduction from a day-to-day
perspective across the life cycle or not.

Electric vehicle life cycle assessment (EV-LCA) is a time-tested
multimedia assessment technique used to calculate the ecological im-
pacts and estimate the resource consumption for EV using a life cycle
thinking approach (Onat et al., 2015; Kutty et al., 2020). The EV-LCA
studies often branch out into two prime assessment categories: Fuel
life cycle analysis (F-LCA) and vehicle-based LCA approach (Onat et al.,
2019). Several studies have been developed and applied in the area of
EV-LCA over the years. For example, Lucas et al. (2012) carried out a
well-to-wheel fuel LCA analysis to quantify the energy utilization and
carbon emissions from manufacturing, maintenance, and scrapping of
fuel supply support infrastructures for EV and ICVs in Portugal. While, a
combined LCA approach using PCO-CENEX drive cycle considering
F-LCA, that consist of “Tank-to-Wheel (TTW)" and “Well-to-Tank (WTT)"
approach and, vehicle LCA using a “cradle-to-grave (CTG) approach” for
vehicle material related consumption was studied by Baptista et al.
(2011). The results revealed that fuel cell-powered London passenger
taxis consumed less energy than the diesel-powered ICV and electric
propelled EVs. Similarly, a comparative approach with E-LCA combined
with cost analysis from a CTG perspective using the Well-to-Wheel
(WTW) analysis for fuel supply on Lithuanian passenger vehicles was
carried out by Petrauskiene et al. (2021). As a result, low-carbon energy
in the electricity mix for BEVs proved to neutralize the environmental
impacts considerably, while simultaneously, the BEVs and ICVs proved
to be cost-effective throughout the total life cycle use phase.

Naranjo et al. (2021) conducted a comparative LCA utilizing the CTG
approach to quantify the potential climate change-related impacts dur-
ing the use of Spanish passenger vehicles. Multiple impact categories
and energy scenarios across time were taken into account for a BEV
lifetime of 150,000 km. The energy projection scenario results revealed
a considerable reduction in CO2-eq emissions up to 27.41% by using
renewable electricity sources in BEVs by 2050. A similar study was
carried out earlier by Yang et al. (2020) for Chinese passenger vehicles,
including ICV, BEV, and PHEV, evaluating the particulate emissions
across the entire vehicle LC stages. The study found PM; 5 and Sulfur
dioxide (SO3) high when using the renewable energy source with
biomass share compared to the emission statistics obtained for ICEVs.
Xiong et al. (2021) conducted a hybrid LCA to understand the emission
reduction potential for the complete electrification of passenger cars in
mainland China. The study identified a lack of potential in reducing CO»
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emissions by the electrification of passenger cars in China since the
emissions released during the vehicle manufacturing phase outweigh
the emission saved on the road by the EV deployment. While the use of
renewable energy sources in fuel cell technologies has resulted in
considerable reductions in footprint-related emissions up to 70%, as
identified through the LCA study conducted by Usai et al. (2021) for fuel
cell electric vehicles (FCEV). An electricity system model integrated
with LCA was used by Xu et al. (2020) to identify the difference in the
impacts generated while utilizing several charging strategies for EVs in
Europe. Prolonged vehicle-to-grid charging strategies resulted in load
issues and impacts associated with overload on the power grid system.
These studies play a pivotal role in structuring policies to meet air
quality directives and support commitments laid to accomplish emission
reduction targets.

1.3. Efficiency assessment using DEA

Data Envelopment Analysis (DEA) is a mathematical model used to
assess the relative efficiency and performance of a set of “decision-
making units (DMU)" using linear programming (Shao et al., 2019). The
technique differs in which the DMUs freely choose from a set of inputs
and outputs to minimize the associated impacts and maximize the
relative efficiency (Sueyoshi and Yuan, 2015). Different from the
traditional empirical models such as the regression analysis is the ability
of DEA to arbitrarily assign weights to the sustainability indicators to
estimate the efficiency of DMUs (Kutty et al., 2020a). As shown in the
results of using the DEA technique, the relative efficiency for each of the
comparable units appears as a non-negative score within the range of
0-1 (Zurano-Cervello et al., 2019). The efficiency scores translate that
each DMU performs relative to the inputs they consume for the set of
output units they produce, determining how best performing each unit is
compared to similar functional units.

DEA has long been used to assess the sustainable performance and
the associated energy efficiency of comparable units across several
research areas over the years (Ezici et al., 2020). Fathi et al. (2021) used
an integrated bargaining “game cross-efficiency DEA model” to under-
stand the energy efficiency performance of fossil fuel exporting nations
worldwide. The countries were ranked based on the Nash equilibrium
bargaining payoff points to find the most energy-efficient nation. Zhang
et al. (2021) used an improved window DEA to analyze the
cross-sectional energy efficiency of countries in western Europe. To
acknowledge the optimal use of innovation strategies in energy man-
agement and assess the environmental performance of energy R&D
expenditure in developing countries, a “bootstrap DEA analysis” was
used by Kocak et al. (2021). The study adds an empirical assessment to
show the improvement path for inefficient countries as well. At the same
time, a game theory-based “cross-efficiency DEA model” with the
Malmquist productivity index was used for Chinese utility sector effi-
ciency calculation by Xie et al. (2021).

DEA being a powerful analytical technique, has not failed to extend
its application to address concerns in the transportation sector (Neves
et al., 2020). A parallel DEA model was applied to evaluate the inte-
grated ecological efficiency for the passenger transportation system in
China by Liu et al. (2020). A convergence analysis was used to capture
the significant difference between the groups of performing units.
Kucukvar et al. (2020) conducted an eco-efficiency performance
assessment on 30 international airports around the world using a
frontier-based DEA model taking into account the triple bottom line
sustainability aspects. The carbon efficiency as a result of the govern-
mental regulations on the Chinese transportation sector was evaluated
using a “Slacks-based Measure (SBM) DEA model” by Chang and Zhang
(2017). The results revealed adhering to the opportunity cost so as to
reduce the carbon dependency. While, an SBM-DEA model with unde-
sirability factors was used to understand the environmental efficiency of
the Chinese traffic network in 30 provinces of mainland china by Song
etal. (2015). Application of several modified DEA models can be seen in
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the studies conducted by Ibrahim and Daneshvar (2017) for supply
chain performance assessment, Ru and Si (2015) to calculate energy
efficiency in the sugar cane industry, and Zhang and Wang (2010) for
project selection process efficiency evaluation.

1.4. Novelty and contribution to the state-of-art

Considering previous contributions aiming to decarbonize the resi-
dential transport sector, determination of environmental efficiency level
in the use of BEVs is important for countries, under various production
mix scenarios to accelerate large-scale adoption of EVs in the market.
Accounting to this, the research presented aims to conduct a scenario-
based analysis on the environmental efficiency of European countries
using restricted and non-restricted DEA models under various produc-
tion mix scenarios. This research stays as a backbone in signaling action
plans to accelerate the EU-wide large-scale EV adaption to support
sustainable mobility by understanding the synergies between average
electricity mix (2015), marginal electricity mix (2015-2020), and
renewable energy-based electricity mix (2030-2040) for each of the EU
member states used for powering the BEVs. As seen in the review, pre-
vious studies were conducted across the United States, South East Asia,
and other parts of the world with a small sample size, where this
research is the first of its kind assessment for 27 EU member states, along
with the well-to-wheel environmental life cycle analysis of BEVs. Simi-
larly, the studies to date have focused on several life cycle approaches
and efficiency evaluation techniques for EV sustainability assessment
using non-parametric approaches such as the Data Envelopment Anal-
ysis (DEA) and Stochastic Frontier Analysis (SFA). DEA assigns relative
weights to the indicators using mathematical programming. Due to the
use of unrealistic input and output weights assigned by linear pro-
gramming, the discrimination power of the traditional DEA model is
considerably reduced in some cases. Constraints on weights can be
included in the model to eliminate the possibility of the DMUs having a
high-efficiency score, thus raising the model’s discrimination power and
eliminating any possible bias in the efficiency results. The implicit
weighting using DEA and expert judgment-based weights were used to
evaluate and compare the footprint efficiency results of different elec-
tricity production mix scenarios for the first time in this research. The
panel-based weights obtained from the survey of the European Com-
mission’s Joint Research Center (JRC) are used to model the environ-
mental efficiency. This helps to understand the change impact on each
EU member state’s efficiency, supporting unbiased decision making. To
sum up, this paper presents a holistic and integrated decision-making
model by combining the non-parametric frontier model with environ-
mental life cycle assessment for environmental efficiency of electric
vehicles based on past, present, and future electricity production mixes
of each European country. On all account, this research aims to cover the
following objectives to broaden the scope of EV environmental sus-
tainability assessment across Europe, namely;

1. Conduct a scenario-based analysis for average power mix (base
year), marginal electricity mix (2015-20), and renewable electricity
mix (2030-2040).

2. Develop environmental efficiency assessment models for the opera-
tional environmental performance of battery electric vehicles across
Europe.

3. Build a weighted and non-weighted Charnes, Cooper, and Rhodes
(CCR)-DEA model to analyze the environmental efficiency of bat-
tery electric vehicles based on their well-to-wheel life cycle
performance.

4. Propose policy recommendations for each country for environmen-
tally sustainable electric vehicle deployment related to the present
and future electricity production mixes.

The rest of the paper is divided into the following sections: Section 2
describes in detail the proposed method for environmental efficiency
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assessment under several electricity production mix scenarios using
weighted and non-weighted DEA models combined with the WTW-LCA
method. Section 3 discusses the results of the analysis in terms of effi-
ciency scores, along with the results of the projection level analysis and
model-based variability assessment with grouped performance. Finally,
conclusions and future directions are given in Section 4.

2. Methods

This paper uses the Well-to-Wheel (WTW) LCA method combined
with the weight restricted and unrestricted DEA model to bring out the
environmental efficiency values for each of the 27 European countries.
The research undertakes the following structure to accomplish the
desired results in assessing the environmental efficiency of European
countries towards the use of BEVs. The research makes use of the latest
ecoinvent v3.7 life cycle impact database (Vandepaer et al., 2019). The
midpoints environmental impacts per kWh of electricity generation are
estimated for each of the 27 European countries. After estimating the per
kWh environmental footprints for the electricity generation per country,
the wheel-to-wheel environmental impacts of BEVs are calculated based
on the functional unit per km traveled.

A CCR-based weighted DEA model is then run using the panel-based
weights obtained from the survey of the European Commission’s recent
report to model the environmental efficiency (Sala et al., 2018). First,
the footprint-based efficiency related to different electricity production
mix scenarios is identified. It is then compared with the nonrestricted
and weight-restricted DEA model results. Next, a scenario-based com-
parison is carried out, followed by a future projection analysis to
improve the environmental efficiency of BEVs. An environmental effi-
ciency performance grouping is then done using the quartile method to
identify the grouped performance scoring for each country. Finally, a
model-based variability assessment using the Kruskal-Wallis H test is
undertaken, supported with a projection level analysis. Fig. 1 presents
the integrated research method in a step-by-step manner.
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2.1. Well-to-wheel (WTW) analysis

WTW is an LCA method used in calculating the energy utilization and
the associated emissions from the powertrain, starting from the extrac-
tion phase of the energy system (Well) to the utilization point (Wheel).
The analysis captures the tailpipe emissions and gives an entire picture
of the emissions along the fuel cycle’s manufacturing, transportation,
and distribution pathways. BEVs do not emit exhaust-based emissions
along with their operation phase. Thus, sustainability assessment for
BEVs depends on the source of the energy mix used during their life cycle
(Onat et al., 2017b). The WTW analysis can be split into two sub-phases:
the WTT approach and the TTW approach (see Fig. 2). The WTW anal-
ysis accounts for the indirect emissions across the entire fuel chain and
not along the drive cycle. At the same time, the TTW accounts for the
emissions during the driving phase of BEVs. If j represents the envi-
ronmental impact categories then, the associated emission along the
assessment stage for the jth category is calculated using Eq. (1) as
follows:

Ej = EVee x [TTW; + WTT]] ¢h)

where;

EV.. = electric vehicle charge consumption expressed in kWh/km.

TTWj = energy consumption in kWh for the jth impact category
across the drive cycle.

WTT; = energy consumption in kWh for the jt" impact category
associated with the electricity generation phase.

Per km travel is taken as the functional unit for the WTW assessment.

The associated environmental impacts vary based on the power
generation, trends in driving patterns, and weather-related uncertainties
(Alghoul et al., 2018). In addition, the upstream and downstream energy
consumption-related impacts vary based on the source used for the
power generation (Kucukvar et al., 2017, 2018). The data for the elec-
tricity generation mix is presented in Fig. S1 (Supporting Information
(SD) file) was collected from the ecoinvent v3.7 life cycle impact

Developing Sustainability Impact Matrix (ECOINVENT)

LV

Step Two Generating Electricity Mix Scenarios
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7 7
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& <}
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Fig. 1. Research flow diagram.
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Fig. 2. Schematics for a WTW analysis.

database across three periods: average electricity mix (2015), marginal
electricity mix (between 2015 and 2020), and renewable energy-based
electricity mix (between 2030 and 2040).

The average impact factors per kWh electricity generation by a
source according to the life cycle impact data were collected from the
latest ecoinvent v3.7. The environmental impacts of per kWh electricity
generation included several phases such as raw material extraction and
processing, operation and maintenance, and construction activities.
Similarly, the data for all the impact categories were obtained from the
ecoinvent v3.7 database. The battery-operated electric vehicle brand
“Nissan Leaf” was used to study the associated impacts. The average
electricity consumption for the selected BEV is 18.7 kWh/100 km
(Helmers and Marx, 2012). Considering the values for the average
electricity mix, marginal electricity mix, renewable energy-based elec-
tricity mix, and the associated impact categories mentioned in the
Supplementary Information File (see Tables S1-3), the WTT impacts
were calculated using equation (2) as;

WTTjk = "(Psk x Ejs) 2

where;

jk = jth impact category for the kth country.

Py = percentage value for the power generation source (s) in the kth
country.

Ejs = environmental impact for jth category per source s.

The values of water consumption (L/kWh) and GHG emissions (g/
kWh) are zero due to no direct emissions in the TTW stage. The envi-
ronmental impact categories included climate change (kg CO2-Eq/kWh),
freshwater ecotoxicity (kg 1,4-dichlorobenzene (DCB)-Eq/kWh), fresh-
water eutrophication (kg P-Eq/kWh), human toxicity (kg 1,4-DCB-Eq/
kWh), metal depletion (kg Fe-Eq/kWh), particulate matter formation

(kg particulate matter (PM),0-Eq/kWh), photochemical oxidant forma-
tion (kg non-methane volatile organic compounds (NMVOC)/kWh),
terrestrial acidification (kg SO2-Eq/kWh), and urban land occupation
(square meter-year/kWh.

2.2 Input-oriented DEA model.

A constant-return-to-scale model developed by (Charnes et al.,
1978), known as CCR, and a variable return-to-scale model developed
by Banker et al. (1984) are the two DEA models used commonly when
computing relative efficiency scores for decision-making units. This
study uses the input-oriented CCR model due to the robust efficiency
measures delivered by the model under realistic scenarios (Supciller and
Bulak, 2020). With the aim to cut down the environmental impacts
under the triple bottom line umbrella for the member states to be effi-
cient in their use of EVs. For that reason, the first model, which is the
I0-DEA multiplier model, was used in the study.

Consider x; and yj as the j th input and kth output for the respective
DMU under evaluation. To estimate the relative efficiency, the ratio
between the weighted output (WO) and the weighted input (WI) is used
as proposed in the studies of (Onat et al. 2017 a,b). The environmental
efficiency is computed using Eq. (3) as;

wo -

E=2_ Zl\;] Wi 3)
WL 3 v

where;

p = number of input DMUs

q = number of output DMUs.

v; > 0 = weights assigned to the j th input.

e > 0 = weights assigned to the k th output.

The DMU’s weights, v; and p, are arbitrarily chosen by linear pro-
gramming. The proposed DEA model is as follows (Egs. (4)-(6));
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Objective Function

q P
maxz = Z MYk Z ViX; (@)
=1 =1

Subject to;

q P
maxz= Y pi / Y v <1 j=1,...N 5)
k=1 j=1
P Vi = 0 6)
where;

x; and yy; = j th input and kth output of the ith DMU.

Z = total number of DMUs.

DMUj;j is considered efficient if the value of the objective function z
(Eq. (4)) is 1. If the value is found to be less than 1, the DMUj is
considered inefficient where the inputs of DMU; were not able to reach a
sufficient level producing the output for other DMUs.

2.2. Weighted and non-weighted DEA model

The non-weighted DEA model arbitrarily assigns weights that
maximize the efficiency scores for each DMU and provides flexibility in
determining these weights (Egilmez et al., 2013). This flexibility enables
different input and output weights of different DMUs, thus eliminating
the need to obtain a common weight set for all decision-making units.

Vi h vaar' I

\Y

devietion = Vurbaniand.
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v, >0 (C)]

Yj is the per km traveled by the DMU;. This model does not require
any multipliers due to the existence of a single output. The weight-
restricted model (Eq. (10)) helps us identify whether discrimination
limits the capacity of the DEA model to bring efficient results compared
with the traditional model for the envelopment analysis. Weights for
certain impact categories are assigned through estimation even after the
weight restriction as per equations (11)-(14). This model reads as
follows:

m

minz”' = 7 X ; ViX; (10)
Subject to

%xi’:zn]vix,»,-zl,j:17...,N an

vy —v; >0,j=2,3,...,8 12)

Byvi— v <0,j=23,...,8 13)

v, >0 14

where o; and p; are positive scalars. Weights gathered from the Eu-
ropean Commission’s Joint Research Center (Sala et al., 2018) are used
to denote the constraint (Eq. (15)) given as follows:

WY
N

ation —

V/resh waterecotoxicity

>

Due to the flexibility provided by the non-weighted DEA in determining
weights, the discrimination power of the model is considerably reduced
in some cases (Egilmez et al., 2016). The discrimination power of the
model decreases inputs, and output indicators are included in the
evaluation set. In this context, to raise the discrimination power of the
model, it may be preferable to include more decision-making units in the
analysis or to eliminate some of the input and output variables from the
analysis (Dyson et al., 2001). However, in some cases, it is not possible to
achieve this condition. Another way to raise the discrimination power of
the model is by adding constraints on the weights for the model. In other
words, since unrealistic input and output weights are used, constraints
on weights can be included in the model as a way of eliminating the
possibility of the DMUs having a high-efficiency score (Mavi et al.,
2019). Therefore, the DEA may be adjusted to alleviate the subjective
evaluation of the weights of the inputs (environmental impact cate-
gories) and outputs (economic performance variables), while the con-
ventional DEA does not necessitate an initial weight assignment (Pan
et al., 2021). In this context, two different approaches were put in place
to identify and compare the different consequences. Besides the con-
ventional approach, a weight-restricted model was adopted in the
environmental efficiency analysis of electrical vehicles. Eq. (4) is con-
verted into a mathematical programming model by multiplying the in-
verse function of the environmental efficiency ratio to form Eq. (5),
subject to the constraints Eq. (8) and Eq. (9).

1 m
minfl = Z ViXij (7)
yj i=1
Subject to
1 m
7 > vy =1, j=1,..,N (8)
b=

(15)

Table 1
Proposed DEA models under each energy source with selected inputs and
outputs.

DEA Energy Source Inputs Unit Output
Models
Scenario-1 Average Climate change kg CO2-Eq/ Per-Km
electricity mix kWh Travel
(2015)
Scenario-2 Marginal Freshwater eco- kg 1,4-
electricity mix toxicity DCB-Eq/
(2015-20) kWh
Scenario-3 Renewable Freshwater kg P-Eq/
energy-based eutrophication kWh
electricity mix
(2030-40)
WScenario- Average Human toxicity kg 1,4-
1 electricity mix DCB-Eq/
(2015) kWh
WScenario-  Marginal Metal depletion kg Fe-Eq/
2 electricity mix kWh
(2015-20)
WScenario-  Renewable Particulate matter kg PM10-
3 energy-based formation Eq/kWh
electricity mix
(2030-40)
Photochemical kg
oxidant formation NMVOC/
kWh
Terrestrial kg SO»-Eq/
acidification kWh
Urban land square
occupation meter-

year/kWh




M. Kucukvar et al.

The weights are assigned to each of the midpoint impact categories
by the expert panel using the elicitation techniques and “value choice”
method based on the most critical impact categories and elementary
flows to reach a consensus in assigning the weights. The assigned
weights by the expert panel to each of the impact categories can be
found in Sala et al. (2018). The primary objective in running a
weight-restricted DEA model is to arbitrarily manage the efficiency level
of the DMUs and undertake a comparison between the weight-restricted
and unrestricted DEA models. Therefore, assigning weights by the ex-
perts to the impact categories can greatly impact the efficiency outcomes
for each DMU. Table 1 shows all the six DEA models categorized into
weighted and non-weighted scenarios along with the inputs and outputs.
All the environmental impact categories namely; Climate change,
Freshwater eco-toxicity, Freshwater eutrophication, Human toxicity,
Metal depletion, Particulate matter formation, Photochemical oxidant
formation, Terrestrial acidification, and Urban land occupation were
considered as inputs and, per-km travel as the output for all the six DEA
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]
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-
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models considered in the study. Three different analyses were carried
out for both the weighted and non-weighted scenarios using an
input-oriented DEA model.

2.3. Non-parametric test for variability assessment

Kruskal-Wallis H test, a non-parametric test is used to determine the
significant difference in the mean ¢ score across each scenario outlined in
the study. The test draws the assumption that the samples are randomly
distributed. The null hypothesis (Hy) for the Kruskal-Wallis H test is that
the mean ¢ score is equally distributed to the alternative hypothesis (Hp)
that there exists at least one ¢ score significantly different from the
overall sample. The test hypothesis can be represented as; Ho = ;1) =
Hez) = - = He(e) AN Ha = pz1) = He(a) 7 fe(a) = - = He(e)s WheTe ig s
the mean & score for the jth Scenario. The Kruskal-Wallis H test statistics
can be calculated using Eq. (16) as follows;

Environmental Efficiency

0 1

1.00/£
#1

I HR
N A
0.688 0.726
#25 #24

1.00

0.991

#s q 834 T, & oy

b) Scenario 2

7 1.00
#1

) Scenario 3

Fig. 3. Environmental efficiency and ranking results of BEVs under a non-restricted model for a) Scenario 1; b) Scenario 2; ¢) Scenario 3.
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:Zallj (Y/ 7)?) (Z— 1)

— ——~ Forj =1,2,...,6 (16)
zuzszkJ:I (ka _X)

where;

n; = DMUs tested under the jth Scenario.

Z = total number of DMUs considered in the study.

Xjx = rank of kth observation under the jth Scenario.

X; = average rank for the jth Scenario.

X = average rank across all the scenarios considered in the study.

To determine whether the mean ¢ score across each scenario varies
significantly, a 95% significance level represented by a = 0.05 is chosen
to compare the estimates with the p-value. If p-value > a, the H statistics
is insignificant. Thus, we fail to reject Hy. This translates to the fact that
the mean & score across each scenario is insignificantly different from
each other. On the contrary, if the p-value < a, there is sufficient evi-
dence to prove that the mean & score across each varies significantly from
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each other. Pairwise comparison is used to identify the set of scenarios
with similar ¢ scores. The combination for each scenario for a pairwise
comparison is calculated using Eq. (17);

n!

C":i Forn = 6andr = 2 a7)
on=r)r!

where;

n = number of scenarios
r = number of subsets under comparison.

3. Results and discussions
3.1. Unrestricted DEA model
This section attempts to explain the analysis conducted for all six

scenarios. Fig. 3 shows the relative environmental efficiency score (¢)

Environmental Efficiency
L —
0 1

*" b !
™ i
100 2 3
#1 ' :

‘ £f£
#1

b) WScenario 2

0933 g 1.00
#10 #1
¢) WScenario 3

Fig. 4. Environmental efficiency and ranking results of BEVs under weight restricted model for a) WScenario 1; b) WScenario 2; ¢) WScenario 3.
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under all the Scenarios (Scenario 1, Scenario 2, Scenario 3) for each
European member state. The results appear as a non-negative score
within the range from O to 1. Each European country is ranked in the
ascending order of its performance under Scenario 1, as shown in Fig. 3.
It is seen under Scenario 1 that Romania performs the least in terms of
environmental efficiency with an efficiency score ¢ = 0.7781 relative to
other comparable units. The reason might account for the decreased
shares of renewable energy sources and of natural gas combined-cycle
plants in Romania, explaining the tendency towards lower impact and
efficiency scores. The impacts of the average electricity mix are gener-
ally more spread out in comparison to the marginal mix. This is due to
the extreme value caused in some categories by harmful fossil-fired units
whose shares are significantly lower in the average mixes.

On the other hand, European countries like Slovenia, Sweden,
Netherlands, Greece, France, Finland, Belgium and, Austria were ranked
among the top with an efficiency score £ = 1. When, Netherlands,
France, Finland, and Belgium retained their position under Scenario 2
(Fig. 3) as the most environmentally efficient countries in terms of their
use of EVs, Slovenia, Sweden, Greece, and Austria were pushed out of
the list to fall under the medium-to-low efficiency categories. Scenario 2
witnessed the Czech Republic as the least performing unit with an effi-
ciency score of £ = 0.6554. The reason for the least efficient performance
of the Czech Republic can account for the biggest difference between
average and marginal mix, in terms of impacts. The scores of the mar-
ginal mix are mostly due to the vast share of foreign imports, with both
relying on fossil-fired units for a large share of their mix, and shares
stemming from fossil heat and power co-generation units. In terms of its
relative efficiency under scenario 1, Romania, the least performing
country, showed considerable improvement under scenario 2 (¢ =
0.9531). Despite the improvement, Romania still falls under the “fairly
good” performing category in the medium efficiency zone. Under this
scenario, Slovakia, Portugal, Malta, Latvia, Lithuania, Italy, Ireland,
Hungary, Denmark, Cyprus, and Bulgaria were termed environmentally
efficient with an efficiency score &£ = 1.

The results for Scenario 3 show that all the European countries
selected for the study except Latvia, Hungary, Germany, Belgium, and
Austria are efficient with an efficiency score of ¢ = 1. Under Scenario 3,
most of the European countries showed meritorious performance
compared to the least performing countries. However, the least per-
forming countries under scenario 3 do hold a fairly high-efficiency score
(£=0.999) compared to the least performing countries in Scenario 1
and Scenario 2.

3.2. Weight-restricted DEA model

According to the weights assigned to the impact categories, all the
previous scenarios were run for the EU Electrical Vehicle environmental
efficiency DEA Model. According to the analysis, Fig. 4 shows the results
under the weight-restricted DEA model for WScenario 1, Wscenario 2,
and Wscenario 3. The countries categorized as the most efficiently
performing units under Scenario 1 for the non-weighted DEA model
(Fig. 3) compared with the WScenario 1 remained the same. Notably,
the weights assigned by the expert panel to each indicator made no
difference in the efficiency outcomes in the high-performing countries.
While the efficiency scores drastically fell for the remaining European
countries. Under WScenario 1, the Czech Republic with an efficiency
score of £ = 0.241 is the least performing European country relative to
other comparable units. Despite the Czech Republic not falling on the
efficient frontier under both scenarios, for Scenario 1, the country ranks
20th with an ¢ score equal to 0.8834. An efficiency score of 0.8834 is
fairly good in comparison with the WSecanrio 1 score of the Czech Re-
public (¢ = 0.241). A total of 19 countries reported poor performance
based on the efficiency score as the scores ranged from 0.38 to 0.241.
This translates to the fact that nearly 70.37% of countries in the
WScenario 1 stood way under the efficient frontier. In terms of the value-
added outcomes for each of the listed countries to their environmental
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burdens when accounted for relatively, certain weight assignments
negatively impacted the efficiency scores of some countries.

Similarly, when comparing the efficiency results of WScenario 2 with
Scenario 2 (Fig. 4), it can be seen that all the efficient countries under
WScenario 2 remained the same as in Scenario 2, like the former case
mentioned. Estonia, with an efficiency score ¢ = 0.248, is the least
efficient country in terms of using BEVs under WScenario 2. The least
efficient Czech Republic under Scenario 2 was pushed to the 26th rank
under WScenario 2 with an efficiency score of ¢ = 0.308. The results
were surprising when WScenario 3 was put under comparison with the
results of Scenario 3. 81.48% of countries considered for the assessment
were efficient under Scenario 3. This percentage fell, leaving Portugal,
Slovakia, Malta, Finland, the Czech Republic, and Cyprus as environ-
mentally efficient countries in BEV usage under Wscenario 3. Nearly 21
countries were inefficient under this scenario. Nearly 77% of countries
under the WScenario 3 can be found to be inefficient. The inefficient
countries hold an efficiency score ranging from 0.968 to 0.754.

3.3. Model-based variability assessment

The Kruskal-Wallis H-test, as detailed in section 3.5 was used to
determine the significant difference in the mean efficiency scores under
all the six scenarios outlined in the study. The H statistics and p-value for
the Kruskal-Wallis test were found to be 48.21 and 0.000, respectively.
Based on the p-value, it is concluded that either of the scenarios domi-
nates the other, resulting in rejecting the null hypothesis. The influence
of input and output variables on the mean ¢ score was studied using
pairwise comparison.

Table 2 shows the pairwise comparison results of £ score for a sig-
nificance level of a = 0.05. Based on the pairwise comparison results,
there assumes an insignificant difference in the mean & score across
Scenario 1 and, Scenario 2, WScenario 2, and WScenario 3. Similar re-
sults can be seen in the pairwise comparison for Scenario 2, WScenario
3, and WScenario 2, while significant difference can be seen in the mean
¢ score across Scenario 1 with Scenario 3 and WScenario 1. Similarly, the
pairwise comparison results show a significant difference compared to
Scenario 2, Scenario 3, and WScenario 1.

Table 2
Pairwise comparison on the mean ¢ scores.
Analysis Category Kruskal- P- Decision
1l I
Wallis vaiue Insignificant  Significant

Scenario 1 Vs. Scenario 2 15,685 1.000 v

Scenario 1 Vs. Scenario 3 42.444 0.005 v

Scenario 1 Vs. WScenario ~ 34.944 0.050 v
1

Scenario 1 Vs. WScenario 4.407 1.000 v
2

Scenario 1 Vs. WScenario 12.926 1.000 v
3

Scenario 2 Vs. Scenario 3 26.759 0.370 v

Scenario 2 Vs. WScenario 50.360 0.000 v
1

Scenario 2 Vs. WScenario 11.278 1.000 v
2

Scenario 2 Vs. WScenario 28.611 0.244 v
3

Scenario 3 Vs. WScenario 77.389 0.000 v
1

Scenario 3 Vs. WScenario 38.037 0.021 v
2

Scenario 3 Vs. WScenario ~ 55.370 0.000 v
3

WScenario 1 Vs. 39.352 0.014 v
WScenario 2

WScenario 1 Vs. 22.019 0.967 v
WScenario 3

WScenario 2 Vs. 17.333 1.000 v

WScenario 3
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Table 3
The percentile values using the quartile method.
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Parameter Scenario 1 Scenario 2

Scenario 3

WScenario 1 WScenario 2 WScenario 3

0.7781
0.8775

0.6554
0.898425 1

Minimum
1st Quartile
25th Percentiel
2nd Quartile
50th Percentile
3rd Quartile
75th Percentile
Maximum Score 1 1 1

0.92425 1 1

0.9894 1 1

0.9999

0.241
0.28575

0.248
0.62775

0.754
0.807
0.317 1 0.881
0.535 1 0.976

1 1 1

EU Countries| Scenario 1 | Scenario 2

Scenario 3

Wscenario 1| Wscenario 2 | Wscenario 3
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Fig. 5. Comparative performance assessment using quartile-based clustering.

3.4. Environmental efficiency performance clustering

This section uses the quartile method to measure the spread of the
environmental efficiency scores for each DMU under the respective
scenarios. The quartile-based clustering helps understand the impact of
having certain output parameters in the production set on the total ef-
ficiency performance. Once the three quartiles (¢, median, and g3) are
calculated, each DMU is placed in the appropriate cluster (group) based
on their efficiency scores. Countries that reveal efficiency scores less
than the ¢; are classified as “low performance”, while the countries
revealing efficiency scores greater than g3 are classified as “high per-
formance”. The others are classified as “medium performance”. Table 3

10

reports the percentile values using the quartile method.

Fig. 5 shows the group-based efficiency performance for each DMU
under all six scenarios. To better visualize the efficiency performance,
conditional formatting tends to assign position-dependent color gra-
dience for each cluster.

The results in Fig. 5 show Finland as the most efficiently performing
country in terms of their use of BEVs for all six scenarios, while France
and Netherlands stand as the first runner up with a slight dip in their
performance under WScenario 3. The results also show that Croatia,
Malta, Poland, Sweden, and Slovenia that fell under the High-
Performance cluster in Scenario 1 were pushed to the poorly perform-
ing category under WScenario 1. On the other hand, all the countries
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Fig. 6. Comparative performance assessment using the sum of cluster-index.

under Scenario 3 except Austria, Belgium, Hungary, and Lithuania
maintained excellent efficiency scores. For general insight about the
efficacy performance of the EU countries, the sum of cluster index (SCI)
is used. Since index 1 refers to the “High Performance” cluster, the
countries having the minimum SCI would perform better than others
over all the scenarios and vice versa. The SCI can be determined using
Eq. 18

6
SCL=Y Cl;¥i =1,2,3..27

=

(18)

where i refers to the country, j refers to the scenario number, and CI;
refers to the cluster-index of the i th country under the jth scenario. Fig. 6
reports the SCI; values of the EU countries.

Considering that the “High Performance” cluster index equals one
and the total number of clusters equals 6, the minimum and maximum
values of the SCI are 6 and 18. Therefore, Fig. 6 shows that Cyprus,
Finland, and Slovakia are the most efficient countries over the six sce-
narios. On the other hand, Denmark, Lithuania, Romania are the least
efficient countries (SCI = 14), followed by Hungary and Croatia (SCI =
13).

3.5. Correlation analysis: efficiency versus energy prices

This section quantifies the collinearity associated between the effi-
ciency scores and the energy prices in the EU countries. Under the
context of this paper, collinearity refers to the strength of the linear
relationship between the efficiency scores and electricity precise.
However, the coefficient of determination is the most commonly used
measure for collinearity between two variables. The R? explains the
percentage of variability in one of the model variables estimated from
the other model variable. The R? ranges from 0 to 1, quantifying the
strength of the linear association between the two variables. The score of
0 indicates no correlation, while the score of 1 indicates a strong cor-
relation. In correlation analysis, it is always important to initially eval-
uate the scatter plot of the two variables before computing a correlation
coefficient. This is particularly useful to explore associations between
the variables.

In this study, we answer our question concerning the significance of
the relationship between the efficiency scores and electricity prices
using the R2-value. To continue, we set the efficiency score as the y-axis
and the electricity price as the x-axes. Then, the R? can be computed as
follows:

11

E;‘:l(yi - Y)Z
S =)

R*=1-— (19)

where y; represents the efficiency score of the i th EU country, ¥ repre-
sents the average of the efficiency scores, and y; represents the fitted
value associated with y;. The sample size n is set to the EU countries (n
=27). Fig. 7 illustrates the fitting plot of efficiency scores and electricity
prices for average power mix and marginal electricity mix (2015-2020).
The dashed lines in Fig. 7 represent the fitting line (or y; values).

As it is noted from Fig. 7, there is a lack of linear fitting between the
efficiency scores (y) and electricity prices (X) under the four scenarios of
DEA models. The fitting line is poorly capable of representing a signif-
icant portion of the model variability. The four DEA scenarios yielded
very low R?-values, ranging from 0.095 to 0.227, which is another ev-
idence of the lack of linearity. These findings confirm the lack of line-
arity between efficiency scores and electricity prices for average power
mix (Scenario-1) and marginal electricity mix (Scenario-2).

3.6. Projection level analysis

This section attempts to carry out a projection level analysis for all
the six scenarios discussed in this paper. The percentage reduction level
corresponding to each environmental impact category helps understand
the extent to which each indicator needs to be cut down to reach the
efficient frontier. In a better sense, this analysis helps each European
country move towards the sustainable use of BEVs following its best-
performing peers. Table S3 shows the reference set and average pro-
jection level for Romania (RO) under Scenario 1. With an efficiency
score of & = 0.7781, Romania is the least efficient European country
compared to other counties. Austria (v; = 0.102), Netherlands (vy =
0.009) and Sweden (v3 = 0.889) were chosen as the benchmarks under
this scenario. This means that Romania needs to follow the bench-
marked units to achieve the average projection level to reach the desired
sustainability level. The input variables for each benchmarked unit need
to be multiplied by their corresponding weights for Romania to be
considered efficient. Based on this analysis, Romania needs to reduce the
climate change-related impacts by 84.087%, freshwater eco-toxicity by
46.48%, freshwater eutrophication by 92.379%, human toxicity by
83.477%, metal depletion by 22.19%, particulate matter formation by
92.159%, petrochemical oxidant formation by 22.19%, terrestrial
acidification and urban land occupation value by 86.772% and 22.19%
respectively, to improve its performance to reach the efficient frontier.
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Table S4 shows the least efficient country like the Czech Republic
(CZ), accounting for an £ = 0.241 under Scenario 2. Cyprus (v4 = 0.918)
and Portugal (v5 = 0.082) were chosen as the reference set to guide
Czech Republic (CZ) for becoming efficient unit. Similarly, while
considering Scenario 3, Table S5 demonstrates that Cyprus (v6 = 0.747)
and Slovakia (v7 = 0.253) were taken as the benchmarking units for the
inefficient unit Lithuania (LT). The assigned weights for each reference
set are multiplied with the respective environmental impact categories
to lay pathways for the inefficient units to improve their performance.
The average projection level for the former is 69.56%, and the latter is
4.57%. While considering Scenario 2, the Czech Republic needs to cut
down the impacts by 63.24% from the climate change category, fol-
lowed by 57.576% from freshwater eco-toxicity and 97.328% from
freshwater eutrophication inefficient performance. While 90.227%
needs to be downsized from the human toxicity impact category,
34.461% from metal depletion, 81.156% from particulate matter for-
mation, 34.461% from photochemical oxidant formation, 84.796% from
the terrestrial acidification, and 82.76% from the wurban land
occupation-related impacts for possible efficiency improvements. Sce-
nario 3 projection level analysis’s results indicate that Lithuania needs
to decrease its share across “climate change-related impacts, freshwater
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eco-toxicity, freshwater eutrophication, human toxicity, metal deple-
tion, particulate matter formation, petrochemical oxidant formation,
terrestrial acidification, and urban land occupation” value by 25.717%,
1.849%, 0.007%, 11.448%, 1.573%, 0.01%, 0.018%, 0.007%, and
0.47%, respectively. Finally, when considering all the weighted DEA
Scenarios, the Czech Republic (CZ), Estonia (EE), and Hungary (HU)
were found to be the inefficient and the least performing European
countries under WScenario 1, WScenario 2, and WScenario 3,
respectively.

Diving deep into each scenario, Table S6 shows that France with a
weight of vg = 0.714 and Sweden with an assigned weight of vg = 0.286
need to be multiplied with their respective environmental impact cate-
gories to reach efficiency levels under WScenario 1. Similarly, Table S7
illustrates the weights assigned to Cyprus (v9 = 1) under WScenario 2
and, Table S8 indicates that Slovakia (vi9 = 0.011) and Cyprus (vi1 =
0.989) under WScenario 3 need to be multiplied with the respective
input parameters to push the inefficient countries namely; Estonia and
Hungary to fall onto the efficient frontier. The average projection levels
for the Czech Republic (CZ), Estonia (EE), and Hungary (HU) are
73.63%, 75.09%, and 8.62%, respectively, for the weight-restricted
condition. In the meantime, WScenario 1, WScenario 2, and
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WScenario 3 are considered with their environmental indicators and
provided with their overall projection levels. To improve the sustain-
ability performance of the inefficient units, not all the inputs need to be
reduced or outputs are increased. Some inputs remain constant whose
increase or decrease does not affect the overall outcome.

4. Conclusions and policy recommendations

This research used a WTW-LCA combined with weight restricted and
unrestricted DEA to measure the environmental efficiency for each of
the 27 European countries. An efficiency performance grouping scheme
was then used to identify the grouped performance scores for each
country. Finally, a model-based variability assessment using a non-
parametric test was undertaken, supported with a projection level
analysis. The projection level analysis can help the least performing
countries in identifying pathways to reach the efficient frontier.

The results revealed 16 out of 27 member states are efficient under
the marginal electricity mix for both the restricted and un-restricted
scenarios. Only 6 countries were termed efficient under the weight-
restricted renewable energy-based electricity mix (2030-40) scenario.
Similarly, only 8 countries managed to make up to the efficiency frontier
under the average electricity mix scenario for both the weight restricted
and unrestricted model. In most scenarios, average mixes cause lower
environmental efficiency scores of battery electric vehicles than mar-
ginal mixes due to higher shares of renewable electricity sources in
marginal mixes. The findings also prove that the decarbonization of the
power generation sector could lead to favorable environmental effi-
ciency performance. This can be seen when considering the case of
renewable energy-based electricity mix under Scenario 3. Countries
showed excellent performance in terms of their use of BEVs on highways
under scenario 3 for all of Europe. Scenario 3 acts as a baseline in
addressing climate change-related impacts. Similar results can be seen
under WScenario 3 that uses the same renewable energy-based elec-
tricity mix. All the countries fall under the fairly high-performing to the
excellent-performing category in this scenario. However, countries
including Romania, the Czech Republic, and Estonia should strengthen
their EV usage policies for different electricity mixes. Under all the
scenarios, these countries showed below-average performance. Thus,
the findings in this study critically acknowledge the advantage of the use
of decarbonized energy supply in the power mix to cut down emissions
from all the impact categories.

National incentives and benefits apart from the central European
commission incentives can strengthen the nationwide EV adoption. The
monetary EV incentives in Belgium, EV registration tax benefits in
Denmark, 100% exemption on ownership tax for EVs that emit less than
50g COy/km and the attractive scrappage scheme offered by France for
EVs are all examples of national incentives to strengthen the EV adop-
tion to reach maturity. However, despite the promising benefits offered
by the subsidies to commercialize the use of EVs with the meta goal of
carbon emission reduction, the case of Finland is surprising and an
answer to the research conducted in this study. Finland is well known for
no subsidies and tax incentives when it comes to the use of EVs. How-
ever, the study Finland is the highest performing country across all the
six scenarios. The reason behind the meritorious performance of Finland
can be attributed to its bio-fuel adaption policy post-2015 and the switch
to intense carbon neutral practices.

Furthermore, the use of differentiated smart metering systems for EV
charging can help separate taxation for electricity use by EV adopters to
take advantage of the government incentives for EVs. To socially opti-
mize the use of EVs on highways, policymakers can implement charges
on the number of emissions per vehicle type as the EV market transitions
towards maturity. Such initiatives can open a new market to the concept
of EVs for sharing economy.

Power generation from a clean energy source has become a key
overlay in bringing carbon neutral and circular economy opportunities
in the transportation industry. The global consensus to push for the
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electrification of public transport is a positive step towards lowering
emissions in cities. Electrification of public transport also provides an
opportunity to achieve multiple objectives of low-carbon urban devel-
opment, reduction of local air pollution, creation of jobs, and higher
acceptance of public transport by residents. To be successful, electric
urban buses must be approached as a coherent system that embraces the
vehicle, the infrastructure, the operation, the users, and the financial
sustainability. Cities can also shape the transition to electric-shared
mobility by partnering on pilot programs centered around EV adop-
tion, charging, and innovative multi-modal first/last mile programs. For
future research, the authors suggest choosing the full ReCipe endpoint
impact categories to understand the destructions inflicted on human
health, ecosystem health, and resource damage using alternative
mobility practices in Europe under the same scenarios using the envi-
ronmental, social LCA approach. Furthermore, the authors suggest
conducting a material footprint analysis to identify and compare the
emissions associated with the materials required per unit generation of
electricity utilizing the decarbonized technologies with the traditional
fossil fuel generation system. A scenario-based multi-level integrated
LCA approach is suggested to identify the carbon emissions associated
with electricity generation technologies under energy scenarios. It is
readily important to determine the actual share-of-use of low-carbon
energy per km for EVs with the identified saving potential values from
using “renewable electricity mix” to avoid the unfair estimation of
advantage for EVs. In addition, the authors suggest the combined
application of hybrid life cycle sustainability assessment and DEA
models to measure the social, economic, and environmental perfor-
mance for the complete electrification of passenger cars based on the
triple bottom line sustainability impacts in Europe and the globe.
Therefore, the authors propose to include extra environmental and
socio-economic indicators such as material footprint, life cycle cost, and
economic value-added and develop a holistic input-output hybrid life
cycle sustainability assessment of battery electric vehicles considering
the full life cycle stages, including the circular economy applications of
end of life batteries.

CRediT authorship contribution statement

Murat Kucukvar: Methodology, Writing — original draft, Concep-
tualization, Supervision. Nuri C. Onat: Writing — original draft, Writing
- review & editing, Visualization, Data curation. Adeeb A. Kutty:
Methodology, Writing — original draft, Writing — review & editing. Galal
M. Abdella: Formal analysis, Writing — original draft, Writing — review
& editing. Muhammet Enis Bulak: Software, Formal analysis, Writing —
original draft. Fajr Ansari: Formal analysis, Writing — original draft,
Data curation. Gurkan Kumbaroglu: Validation, Writing — review &
editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.jclepro.2021.130291.

References

Alghoul, M.A., Hammadi, F.Y., Amin, N., Asim, N., 2018. The role of the existing
infrastructure of fuel stations in deploying solar charging systems, electric vehicles
and solar energy: a preliminary analysis. Technol. Forecast. Soc. Change 137,
317-326.


https://doi.org/10.1016/j.jclepro.2021.130291
https://doi.org/10.1016/j.jclepro.2021.130291
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref1
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref1
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref1
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref1

M. Kucukvar et al.

Banker, R.D., Charnes, A., Cooper, W.W., 1984. Some models for estimating technical
and scale inefficiencies in data envelopment analysis. Manag. Sci. 30 (9),
1078-1092.

Baptista, P., Ribau, J., Bravo, J., Silva, C., Adcock, P., Kells, A., 2011. Fuel cell hybrid taxi
life cycle analysis. Energy Pol. 39 (9), 4683-4691.

Chang, Y.T., Zhang, N., 2017. Environmental efficiency of transportation sectors in China
and Korea. Marit. Econ. Logist. 19 (1), 68-93.

Charnes, A., Cooper, W.W., Rhodes, E., 1978. Measuring the efficiency of decision-
making units. Eur. J. Oper. Res. 2 (6), 429-444.

Dyson, R.G., Allen, R., Camanho, A.S., Podinovski, V.V., Sarrico, C.S., Shale, E.A., 2001.
Pitfalls and protocols in DEA. Eur. J. Oper. Res. 132 (2), 245-259.

EEA, 2020. Retrieved from: https://www.eea.europa.eu/publications/European-union-
greenhouse-gas-inventory-2020.

Egilmez, G., Gumus, S., Kucukvar, M., Tatari, O., 2016. A fuzzy data envelopment
analysis framework for dealing with uncertainty impacts of input-output life cycle
assessment models on eco-efficiency assessment. J. Clean. Prod. 129, 622-636.

Egilmez, G., Kucukvar, M., Tatari, O., 2013. Sustainability assessment of US
manufacturing sectors: an economic input output-based frontier approach. J. Clean.
Prod. 53, 91-102.

Elhmoud, E.R., Kutty, A.A., 2020. Sustainability assessment in aviation industry: a mini-
review on the tools, models and methods of assessment. In: Proceedings of the
International Conference on Industrial Engineering and Operations Management, Harare,
Zimbabwe. October 20-22, 2020 (in press).

Ezici, B., Egilmez, G., Gedik, R., 2020. Assessing the eco-efficiency of US manufacturing
industries with a focus on renewable vs. non-renewable energy use: an integrated
time series MRIO and DEA approach. J. Clean. Prod. 253, 119630.

Fathi, B., Ashena, M., Bahari, A.R., 2021. Energy, environmental, and economic
efficiency in fossil fuel exporting countries: a modified data envelopment analysis
approach. Sustain. Prod. Consum. 26, 588-596.

Ghosh, A., 2020. Possibilities and challenges for the inclusion of the Electric Vehicle (EV)
to reduce the carbon footprint in the transport sector: a review. Energies 13 (10),
2602.

Heidrich, O., Hill, G.A., Neaimeh, M., Huebner, Y., Blythe, P.T., Dawson, R.J., 2017. How
do cities support electric vehicles and what difference does it make? Technol.
Forecast. Soc. Change 123, 17-23.

Helmers, E., Marx, P., 2012. Electric cars: technical characteristics and environmental
impacts. Environ. Sci. Eur. 24 (1), 1-15.

Ibrahim, M.D., Daneshvar, S., 2017. Supply chain pessimistic efficiency evaluation using
a modified data envelopment analysis model. Int. J. Supply Chain Manag. 6 (3),
181-186.

IEA, 2019. Transport sector CO emissions by mode in the Sustainable Development
Scenario, 2000-2030. Available Online: https://www.iea.org/data-and-statistics/cha
rts/transport-sector-co2-emissions-by-mode-in-the-sustainable-development-scena
rio-2000-2030.

Kocak, E., Kinaci, H., Shehzad, K., 2021. Environmental efficiency of disaggregated
energy R&D expenditures in OECD: a bootstrap DEA approach. Environ. Sci. Pollut.
Control Ser. 1-10.

Kucukvar, M., Alawi, K.A., Abdella, G.M., Bulak, M.E., Onat, N.C., Bulu, M.,

Yalgintas, M., 2020. A Frontier-based Managerial Approach for Relative
Sustainability Performance Assessment of the World’s Airports. Sustainable
Development.

Kucukvar, M., Haider, M.A., Onat, N.C., 2017. Exploring the material footprints of
national electricity production scenarios until 2050: the case for Turkey and UK.
Resour. Conserv. Recycl. 125, 251-263.

Kucukvar, M., Onat, N.C., Haider, M.A., 2018. Material dependence of national energy
development plans: the case for Turkey and the United Kingdom. J. Clean. Prod. 200,
490-500.

Kutty, A.A., Yetiskin, Z., Abraham, M.M., Nooh, M.A., Kucukvar, M., Abdella, G.M.,
2020. An Empirical Assessment on the Transportation Sustainability Indicators and
Their Impact on Economic Productivity, Proceedings of the 5% NA. Conference on
Industrial Engineering and Operations Management, Detroit, Michigan, USA. August
10-14.

Kutty, A.A., Abdella, G.M., Kucukvar, M., 2020a. Ridge Penalization-based weighting
approach for Eco-Efficiency assessment: the case in the food industry in the United
States. IOP Conf. Ser. Mater. Sci. Eng. 947 (1), 012003, IOP Publishing.

Li, Y., Chang, Y., 2019. Road transport electrification and energy security in the
Association of Southeast Asian Nations: quantitative analysis and policy
implications. Energy Pol. 129, 805-815.

Liu, H., Yang, R., Wang, Y., Zhu, Q., 2020. Measuring performance of road transportation
industry in China in terms of integrated environmental efficiency in view of
Streaming Data. Sci. Total Environ. 727, 138675.

Lucas, A., Silva, C.A., Neto, R.C., 2012. Life cycle analysis of energy supply infrastructure
for conventional and electric vehicles. Energy Pol. 41, 537-547.

Mavi, R.K., Saen, R.F., Goh, M., 2019. Joint analysis of eco-efficiency and eco-innovation
with common weights in two-stage network DEA: a big data approach. Technol.
Forecast. Soc. Change 144, 553-562.

McKinsey, Company, 2014. EVolution: Electric Vehicles in Europe-Gearing up for a New
Phase? Amsterdam Roundtable Foundation and McKinsey & Company, The
Netherlands.

14

Journal of Cleaner Production 335 (2022) 130291

Naranjo, G.P.S., Bolonio, D., Ortega, M.F., Garcia-Martinez, M.J., 2021. Comparative life
cycle assessment of conventional, electric and hybrid passenger vehicles in Spain.
J. Clean. Prod. 125883.

Neves, S.A., Marques, A.C., Moutinho, V., 2020. Two-stage DEA model to evaluate
technical efficiency on deployment of battery electric vehicles in the EU countries.
Transport. Res. Transport Environ. 86, 102489.

Nichols, B.G., Kockelman, K.M., Reiter, M., 2015. Air quality impacts of electric vehicle
adoption in Texas. Transport. Res. Transport Environ. 34, 208-218.

Onat, N.C., Kucukvar, M., 2020. Carbon footprint of construction industry: a global
review and supply chain analysis. Renew. Sustain. Energy Rev. 124, 109783.

Onat, N.C., Kucukvar, M., Aboushaqrah, N.N.M., Jabbar, R., 2019. How sustainable is
electric mobility? A comprehensive sustainability assessment approach for the case
of Qatar. Appl. Energy 250, 461-477.

Onat, N.C., Kucukvar, M., Tatari, O., 2015. Conventional, hybrid, plug-in hybrid or
electric vehicles? State-based comparative carbon and energy footprint analysis in
the United States. Appl. Energy 150, 36-49.

Onat, N.C., Kucukvar, M., Halog, A., Cloutier, S., 2017. Systems thinking for life cycle
sustainability assessment: a review of recent developments, applications, and future
perspectives. Sustainability 9 (5), 706.

Onat, N.C., Noori, M., Kucukvar, M., Zhao, Y., Tatari, O., Chester, M., 2017b. Exploring
the suitability of electric vehicles in the United States. Energy 121, 631-642.

Pan, W.T., Zhuang, M.E., Zhou, Y.Y., Yang, J.J., 2021. Research on sustainable
development and efficiency of China’s E-Agriculture based on a data envelopment
analysis-Malmquist model. Technol. Forecast. Soc. Change 162, 120298.

Petrauskiené, K., Galinis, A., Kliaugaité, D., Dvarioniené, J., 2021. Comparative
environmental life cycle and cost assessment of electric, hybrid, and conventional
vehicles in Lithuania. Sustainability 13 (2), 957.

Raugei, M., Hutchinson, A., Morrey, D., 2018. Can electric vehicles significantly reduce
our dependence on non-renewable energy? Scenarios of compact vehicles in the UK
as a case in point. J. Clean. Prod. 201, 1043-1051.

Ru, L., Si, W., 2015. Total-factor energy efficiency in China’s sugar manufacturing
industry. In: China Agricultural Economic Review.

Sala, S., Cerutti, A.K., Pant, R., 2018. Development of a weighting approach for the
Environmental Footprint. Publications Office of the European Union, Luxembourg.

Shao, L., Yu, X., Feng, C., 2019. Evaluating the eco-efficiency of China’s industrial
sectors: a two-stage network data envelopment analysis. J. Environ. Manag. 247,
551-560.

Song, X., Hao, Y., Zhu, X., 2015. Analysis of the environmental efficiency of the Chinese
transportation sector using an undesirable output slacks-based measure data
envelopment analysis model. Sustainability 7 (7), 9187-9206.

Sueyoshi, T., Yuan, Y., 2015. China’s regional sustainability and diversified resource
allocation: DEA environmental assessment on economic development and air
pollution. Energy Econ. 49, 239-256.

Supciller, A.A., Bulak, M.E., 2020. Performance evaluation of mobile applications with
data envelopment analysis. GUSTIJ 10 (3), 711-723.

Szinai, J.K., Sheppard, C.J., Abhyankar, N., Gopal, A.R., 2020. Reduced grid operating
costs and renewable energy curtailment with electric vehicle charge management.
Energy Pol. 136, 111051.

Usai, L., Hung, C.R., Vasquez, F., Windsheimer, M., Burheim, O.S., Strgmman, A.H.,
2021. Life cycle assessment of fuel cell systems for light duty vehicles, current state-
of-the-art and future impacts. J. Clean. Prod. 280, 125086.

Vandepaer, L., Treyer, K., Mutel, C., Bauer, C., Amor, B., 2019. The integration of long-
term marginal electricity supply mixes in the ecoinvent consequential database
version 3.4 and examination of modeling choices. Int. J. Life Cycle Assess. 24 (8),
1409-1428.

Xie, B.C., Chen, Y.F., Gao, J., Zhang, S., 2021. Dynamic environmental efficiency analysis
of China’s power generation enterprises: a game cross-Malmquist index approach.
Environ. Sci. Pollut. Control Ser. 28 (2), 1697-1711.

Xiong, S., Wang, Y., Bai, B., Ma, X., 2021. A hybrid life cycle assessment of the large-scale
application of electric vehicles. Energy 216, 119314.

Xu, L., Fuss, M., Poganietz, W.R., Jochem, P., Schreiber, S., Zoephel, C., Brown, N., 2020.
An Environmental Assessment Framework for Energy System Analysis (EAFESA):
The method and its application to the European energy system transformation.

J. Clean. Prod. 243, 118614.

Yang, L., Yu, B,, Yang, B., Chen, H., Malima, G., Wei, Y.M., 2020. Life cycle
environmental assessment of electric and internal combustion engine vehicles in
China. J. Clean. Prod. 124899.

Zhang, J., Patwary, A.K., Sun, H., Raza, M., Taghizadeh-Hesary, F., Iram, R., 2021.
Measuring energy and environmental efficiency interactions towards CO2 emissions
reduction without slowing economic growth in central and western Europe.

J. Environ. Manag. 279, 111704.

Zhang, Y., Wang, X.J., 2010, August. Tender evaluation method for engineering projects
based on modified DEA and fuzzy theory. In: 2010 International Conference on
Management and Service Science, pp. 1-4. IEEE.

Zurano-Cervello, P., Pozo, C., Mateo-Sanz, J.M., Jiménez, L., Guillén-Gosalbez, G., 2019.
Sustainability efficiency assessment of the electricity mix of the 28 EU member
countries combining data envelopment analysis and optimized projections. Energy
Pol. 134, 110921.


http://refhub.elsevier.com/S0959-6526(21)04456-5/opt3CraA8a2bj
http://refhub.elsevier.com/S0959-6526(21)04456-5/opt3CraA8a2bj
http://refhub.elsevier.com/S0959-6526(21)04456-5/opt3CraA8a2bj
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref2
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref2
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref3
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref3
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref4
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref4
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref5
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref5
https://www.eea.europa.eu/publications/European-union-greenhouse-gas-inventory-2020
https://www.eea.europa.eu/publications/European-union-greenhouse-gas-inventory-2020
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref7
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref7
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref7
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref8
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref8
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref8
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref9
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref9
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref9
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref9
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref10
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref10
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref10
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref11
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref11
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref11
http://refhub.elsevier.com/S0959-6526(21)04456-5/optUlgx9pEi2Q
http://refhub.elsevier.com/S0959-6526(21)04456-5/optUlgx9pEi2Q
http://refhub.elsevier.com/S0959-6526(21)04456-5/optUlgx9pEi2Q
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref13
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref13
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref13
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref14
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref14
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref16
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref16
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref16
https://www.iea.org/data-and-statistics/charts/transport-sector-co2-emissions-by-mode-in-the-sustainable-development-scenario-2000-2030
https://www.iea.org/data-and-statistics/charts/transport-sector-co2-emissions-by-mode-in-the-sustainable-development-scenario-2000-2030
https://www.iea.org/data-and-statistics/charts/transport-sector-co2-emissions-by-mode-in-the-sustainable-development-scenario-2000-2030
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref18
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref18
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref18
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref19
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref19
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref19
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref19
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref20
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref20
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref20
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref21
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref21
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref21
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref22
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref22
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref22
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref22
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref22
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref23
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref23
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref23
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref24
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref24
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref24
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref25
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref25
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref25
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref27
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref27
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref28
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref28
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref28
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref29
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref29
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref29
http://refhub.elsevier.com/S0959-6526(21)04456-5/optEY8MXVpyw3
http://refhub.elsevier.com/S0959-6526(21)04456-5/optEY8MXVpyw3
http://refhub.elsevier.com/S0959-6526(21)04456-5/optEY8MXVpyw3
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref30
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref30
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref30
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref31
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref31
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref32
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref32
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref33
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref33
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref33
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref34
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref34
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref34
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref35
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref35
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref35
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref36
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref36
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref37
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref37
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref37
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref38
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref38
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref38
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref39
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref39
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref39
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref40
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref40
http://refhub.elsevier.com/S0959-6526(21)04456-5/optfS78mTJvDl
http://refhub.elsevier.com/S0959-6526(21)04456-5/optfS78mTJvDl
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref41
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref41
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref41
http://refhub.elsevier.com/S0959-6526(21)04456-5/opt01pzcIgoO2
http://refhub.elsevier.com/S0959-6526(21)04456-5/opt01pzcIgoO2
http://refhub.elsevier.com/S0959-6526(21)04456-5/opt01pzcIgoO2
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref43
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref43
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref43
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref44
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref44
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref45
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref45
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref45
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref46
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref46
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref46
http://refhub.elsevier.com/S0959-6526(21)04456-5/opte5miVEEYoN
http://refhub.elsevier.com/S0959-6526(21)04456-5/opte5miVEEYoN
http://refhub.elsevier.com/S0959-6526(21)04456-5/opte5miVEEYoN
http://refhub.elsevier.com/S0959-6526(21)04456-5/opte5miVEEYoN
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref48
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref48
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref48
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref49
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref49
http://refhub.elsevier.com/S0959-6526(21)04456-5/optNL7l6ROyNI
http://refhub.elsevier.com/S0959-6526(21)04456-5/optNL7l6ROyNI
http://refhub.elsevier.com/S0959-6526(21)04456-5/optNL7l6ROyNI
http://refhub.elsevier.com/S0959-6526(21)04456-5/optNL7l6ROyNI
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref50
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref50
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref50
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref51
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref51
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref51
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref51
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref52
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref52
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref52
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref53
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref53
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref53
http://refhub.elsevier.com/S0959-6526(21)04456-5/sref53

	Environmental efficiency of electric vehicles in Europe under various electricity production mix scenarios
	Environmental efficiency of electric vehicles in Europe under various electricity production mix scenarios
	1 Introduction
	1.1 Background
	1.2 Life cycle assessment for electric vehicles
	1.3 Efficiency assessment using DEA
	1.4 Novelty and contribution to the state-of-art

	2 Methods
	2.1 Well-to-wheel (WTW) analysis
	2.2 Weighted and non-weighted DEA model
	2.3 Non-parametric test for variability assessment

	3 Results and discussions
	3.1 Unrestricted DEA model
	3.2 Weight-restricted DEA model
	3.3 Model-based variability assessment
	3.4 Environmental efficiency performance clustering
	3.5 Correlation analysis: efficiency versus energy prices
	3.6 Projection level analysis

	4 Conclusions and policy recommendations
	CRediT authorship contribution statement
	Declaration of competing interest
	Appendix A Supplementary data
	References


