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An age-stratified mathematical model was constructed to describe transmission dynamics and estimate age-
specific differences in biological susceptibility to infection, age-assortativeness in transmission mixing, and tran-
sition in rate of infectious contacts (and reproduction number Ry) following introduction of mass interventions.
The model estimated the infectious contact rate in early epidemic at 0.59 contacts/day (95% uncertainty interval-

é(,i’fkvsvf’crgi;_z Ul = 0.48-0.71). Relative to those 60-69 years, susceptibility was 0.06 in those <19 years, 0.34 in 20-29 years,
COVID-19 0.57 in 30-39 years, 0.69 in 40-49 years, 0.79 in 50-59 years, 0.94 in 70-79 years, and 0.88 in >80 years.
Coronavirus Assortativeness in transmission mixing by age was limited at 0.004 (95% Ul = 0.002-0.008). Ry rapidly declined
Epidemiology from 2.1 (95% Ul = 1.8-2.4) to 0.06 (95% Ul = 0.05-0.07) following interventions' onset. Age appears to be a

China ) principal factor in explaining the transmission patterns in China. The biological susceptibility to infection
Mathematical model seems limited among children but high among those >50 years. There was no evidence for differential contact

mixing by age.

© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).

Introduction

An outbreak of a novel coronavirus strain, severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), was identified in Wuhan,
Hubei province, China, in late December 2019 [1,2]. The outbreak
started with identification of four cases of severe pneumonia of un-
known etiology, but with symptoms similar to those of Severe Acute Re-
spiratory Syndrome (SARS) and the Middle East Respiratory Syndrome
(MERS) [1,3]. Initial cases were linked to exposure at the Huanan Sea-
food Market, but subsequent infections resulted from rapid community
transmission [1-3]. Within about two months, over 80,000 cases and
3000 deaths occurred across China [2,4], amid extreme preventive
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measures and outstanding healthcare mobilization [2,3]. The resulting
disease was named Coronavirus Disease 2019 (COVID-2019) by the
World Health Organization (WHO) [5], and has been declared a pan-
demic [6] after affecting tens of countries and territories [4]. For simplic-
ity, we will thereafter refer to this virus as “COVID-19”, though it is the
name of the disease form, given its prevalent current use in the public
sphere and to avoid confusion between SARS-CoV-2 and SARS-CoV.

The aims of this study are to investigate and characterize key attri-
butes of COVID-19 epidemiology as the infection emerged in China in-
cluding 1) age-specific differences in the biological susceptibility to
infection, 2) age-assortativeness in infection transmission, and 3) transi-
tion in the rate of infectious contacts (and reproduction number) fol-
lowing the introduction of mass interventions.

Materials and methods
Mathematical model

A deterministic compartmental mathematical model was con-
structed to describe COVID-19 transmission dynamics in a given

2590-1133/© 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


http://crossmark.crossref.org/dialog/?doi=10.1016/j.gloepi.2020.100042&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.gloepi.2020.100042
mailto:hayoub@qu.edu.qa
mailto:lja2002@qatar-med.cornell.edu
Journal logo
https://doi.org/10.1016/j.gloepi.2020.100042
http://creativecommons.org/licenses/by/4.0/
Unlabelled image
http://www.sciencedirect.com/science/journal/25901133
https://www.journals.elsevier.com/global-epidemiology

H.H. Ayoub, H. Chemaitelly, G.R. Mumtaz et al.

population, and was applied here to the population of China (S1 Fig of
Supplementary Information (SI)). The model was designed based on
current understanding of the infection's natural history and epidemiol-
ogy. Nine age groups were considered, each representing a ten-year age
band except for the last category (0-9, 10-19, ..., 280 years). For each
age group, eight coupled nonlinear differential equations were used to
describe population flow across compartments based on infection sta-
tus, infection stage, and disease stage. The model consisted in total of
72 nonlinear differential equations. Analyses were performed in
MATLAB R2019a [7].

Susceptible individuals in each age group are at risk of being exposed
to the infection at varying hazard rates, which are age- and time- depen-
dent, to capture the variability in the risk of exposure and the impact of
public health interventions. Following a latency period, infected individ-
uals are stratified to develop mild infection followed by recovery, or se-
vere infection followed by severe disease then recovery, or critical
infection followed by critical disease and either recovery or disease
mortality.

The model parameterized the variation in the rate of infectious con-
tacts through a Woods-Saxon function [8-11] to characterize the transi-
tion after China's robust public health response in terms of its scale or
strength, smoothness or abruptness, duration, and the turning point.
The model also incorporated an age mixing matrix that allows a range
of contact mixing between individuals varying from fully assortative
(mixing only with individuals in the same age group) to fully propor-
tionate (mixing with individuals with no preferential bias for a specific
age group). The degree of assortativeness in infection transmission
mixing by age is a parameter defined through the age mixing matrix
that describes the mixing between the different age groups. The latter
parameter was estimated through model fitting. Relevant equations
pertaining to the age mixing matrix and its components can be found
in Section 1 of SL

Further details on model structure can be found in Section 1 of SI.

Model parameterization

The model was parameterized using current data on COVID-19 nat-
ural history and epidemiology. The duration of latent infection was set
at 3.69 days based on an existing estimate [12] and based on a median
incubation period across confirmed cases of 5.1 days [1], adjusted for
the observed viral load among infected persons following exposure
[13] and reported infection transmission prior to onset of symptoms
[14]. The age-stratified proportions of infected individuals that will
eventually progress to develop mild, severe, or critical infections were
based on the observed distribution of cases across these infection stages
in China [3,15,16]. The duration of infectiousness was assumed to last
for 3.48 days based on an existing estimate [12] and based on the ob-
served time to recovery in persons with mild infection [3,12] and the
observed viral load among infected persons [13,14].

Individuals with severe (or critical) infections develop severe (or
critical) disease over a period of 28 days prior to recovery, as informed
by the observed duration from onset of severe (or critical) disease to re-
covery [3]. Individuals with critical disease had the additional risk of dis-
ease mortality [17]. The age-specific disease mortality rate was fitted
factoring the observed crude case fatality rate in each age group in
China as of February 11, 2020 [2,17].

The population size, demographic structure (age distribution), and
life expectancy of the population of China, as of 2020, were obtained
from the United Nations World Population Prospects database [18].

Further details on model parameters, values, and justifications can
be found in S1-S2 Tables and Section 2 of SI.

Model fitting

The model was fitted to the following sources of data: 1) time series
of diagnosed COVID-19 cases and of the cumulative number of
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diagnosed COVID-19 cases and of recovered individuals [3], 2) time se-
ries of reported COVID-19 deaths and of the cumulative number of
COVID-19 deaths [3], 3) crude case fatality rate in each age group
[2,17], 4) relative attack rate by age, that is the proportion of the popu-
lation that has already been infected by February 11, 2020 stratified by
age[17],5) proportion of infections in each age group that will progress
to be mild infections [3,15,16], 6) proportion of infections in each age
group that will progress to be severe infections [3,15,16], 7) proportion
of infections in each age group that will progress to be critical infections
[3,15,16]. China's reported cases and deaths were adjusted to reflect the
change in coronavirus case definition to include, in addition to the
laboratory-confirmed cases, those who are clinically-diagnosed [19,20]
(Section 2 of SI).

Model fitting was used to estimate the infectious contact rate, nine
parameters for the age-stratified susceptibility to the infection, degree
of assortativeness in the age group mixing, overall attack rate, overall
disease mortality rate, time delay between onset of actual infection
and case notification, and between actual death and reported death,
and transition in the basic reproduction number Ry (Section 3 of SI). A
nonlinear least-square data fitting method, based on the Nelder-Mead
simplex algorithm, was used to minimize the sum of squares between
data points and model predictions [21]. The model was further used to
estimate the susceptibility effect sizes (relative susceptibility) for each
age group while accounting for the infection transmission dynamics
and the effects of assortativeness in mixing in the population.

Uncertainty analyses

A multivariable uncertainty analysis was conducted to determine
the range of uncertainty around model predictions. Five-hundred simu-
lation runs were performed, applying at each run, Latin Hypercube sam-
pling from a multidimensional distribution of the model parameters,
where parameter values are selected from ranges specified by assuming
430% uncertainty around parameters' point estimates. These parame-
ters included the duration of latent infection, the duration of infectious-
ness, the duration of severe disease following onset of severe disease,
and the duration of hospitalization for critical infection. The model
was then refitted to the input data, and the resulting distributions of es-
timates, across all 500 runs, were used to calculate the model predic-
tions' means and 95% uncertainty intervals (Uls).

Results

The model fitted the different COVID-19 empirical data such as time-
series of diagnosed cases (Fig. 1A), time-series of reported deaths
(Fig. 1B), and age-stratified attack rate as of February 11, 2020
(Fig. 1C). The model estimated the epidemic emergence at ~49 days
(95% UI: 48-50) prior to January 17, 2020, that is towards the end of No-
vember 2019. At the beginning of the epidemic, the predicted infectious
contact rate was 0.59 contacts per day (95% UI: 0.48-0.71; S2D Fig of SI).
The predicted (average) time delay was 5.4 days (95% Ul: 5.2-5.6) be-
tween onset of actual infection and reported infection, and 1.6 days
(95% Ul: 1.5-1.7) between actual death and reported death.

Fig. 2 shows the predicted time evolution of COVID-19 crude case fa-
tality rate (CFR). In the early phase of the epidemic, the crude CFR in-
creased rapidly following the rise in incidence, but plateaued shortly
after (towards the end of the first month) and remained so till incidence
reached its peak. When incidence started declining (~90 days), the
crude CFR grew rapidly, eventually saturating at ~150 days. End of out-
break CFR, estimated through the 500 simulation runs, was 5.1% (95%
Ul = 4.8-5.4%; S2A Fig of SI).

Fig. 3 features the estimated age-stratified susceptibility profile to
COVID-19 infection. Susceptibility was lowest in individuals 0-9 years
of age and highest in the 60-69 years age group. Relative to those
60-69 years of age, susceptibility to the infection was only 0.05 in
those 0-9 years of age and 0.06 in those 10-19 years of age, but 0.34
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Fig. 1. Model fitting of COVID-19 empirical data. Model fits to (A) the time-series of daily diagnosed cases, (B) the time-series of daily reported deaths, and (C) the age-stratified attack rate,
that is the proportion of the population that has already been infected by February 11, 2020 stratified by age.
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Fig. 2. Model predictions for the time evolution of the COVID-19 crude case fatality rate
defined as the cumulative number of deaths out of the cumulative number of diagnosed
infections.

in those 20-29 years of age, 0.57 in those 30-39 years of age, 0.69 in
those 40-49 years of age, 0.79 in those 50-59 years of age, 0.94 in
those 70-79 years of age, and 0.88 in those >80 years of age. The uncer-
tainty analysis affirmed these results with narrow uncertainty intervals
(S2B Fig of SI).

Fig. 4 illustrates the predicted degree of assortativeness in the age
group mixing for each of the 500 simulation runs and model fitting of
the uncertainty analysis. The mean degree of assortativeness (mean of
the parameter e,g. as described in SI) was estimated at 0.004 (95%
UI = 0.002-0.008)—there was virtually no assortativeness in infection
transmission mixing by age.

Fig. 5 and S2C Fig of SI show the time evolution of Ry, and its pre-
dicted mean and 95% Ul across the 500 uncertainty runs, respectively.
In the early phase of the epidemic, Ry was estimated at 2.1 (95% UI:
1.8-2.4), but rapidly declined to 0.06 (95% UI: 0.05-0.07) following
the onset of interventions. The sharp transition duration for Ry was esti-
mated at 11.5 days (95% UI: 9.5-13.0).
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Fig. 3. Model predictions for the age-stratified susceptibility profile to COVID-19 infection, relative to those 60-69 years of age.

Discussion

Several key attributes of the epidemiology of COVID-19 have been
investigated and estimated. A finding is that the biological susceptibility
to the infection appears to vary by age (Fig. 3). Susceptibility to COVID-
19 was substantially higher among those >50 years of age compared to
those in the younger age groups. For instance, compared to those
60-69 years of age, those <19 years of age, 20-29 years of age, and
30-39years of age were, respectively, 94%, 68%, and 43% less susceptible
to being infected. Notably, this age-dependence in the susceptibility to
the infection could not be explained by differences in mixing between
age groups, as the results indicated limited assortativeness in infection
transmission mixing by age (Fig. 4).

These findings support an important role for age in the epidemiology
of this infection and affirm other studies suggesting lower susceptibility
to the infection at younger age [3,22-29]. Remarkably, the observed
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Fig. 4. Model predictions for the degree of assortativeness in infection transmission mixing
by age across the 500 uncertainty analysis simulation runs. This parameter, defined
through the age mixing matrix, describes the mixing between the different age groups.
Relevant equations pertaining to the age mixing matrix and its components can be
found in Section 1 of Supporting Information.

attack rate pattern for COVID-19 by age (Fig. 1C) is the inverse (or better
complement) of the age-specific cumulative incidence pattern of the
2009 influenza A (H1N1) pandemic (HIN1pdm) infection (S3 Fig of
SI) [30]. Presumably, prior recent exposure to other common cold
coronaviruses (which are believed to have a similar attack rate pattern
to that of HIN1) could be potentially acting as a protective factor
(cross immunity) against COVID-19 acquisition (or rapid clearance) at
young age [31]. Growing evidence indicates that exposure to other com-
mon cold coronaviruses may induce cross-reactive T cell responses and
this development of T cell immune memory may be protective against
COVID-19 or its severe forms in unexposed individuals [32-34].

An alternative hypothesis has suggested immune imprinting to a
similar virus among adults [22]. This being said, the underlying immu-
nological and/or epidemiological factors driving this age effect remain
to be investigated with several alternative mechanisms potentially
explaining this pattern. For instance, children and young adults may
have subclinical infection with low viral load and rapid clearance
with or with no transmission potential to others [35]. Of note that
the contact tracing data from China suggest that children did not ap-
pear to play a significant role in the transmission [3,24,25]. Differences
in social behavior and contact patterns by age, which can be very
complex [36,37], may also play a role in explaining the variation in the
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Fig. 5. Model predictions for the time evolution of the basic reproduction number Ro
before and after onset of the interventions in China.
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susceptibility to the infection. This being said, additional studies among
children exploring viral load, immune response, and social behavior fac-
tors are needed before the role of children in community transmission
can be ascertained to satisfaction.

Our results indicated that the crude CFR observed in the first three
months of the outbreak underestimated the end of outbreak CFR by
about 50% (Fig. 2). This is because most infections were still recent infec-
tions and have not yet progressed to critical disease or death—death is a
late outcome that was estimated to occur 2-8 weeks after onset of
symptoms [3].

Another finding of this study is the limited assortativeness in infec-
tion transmission mixing by age (Fig. 4), that is equal mixing between
the different age groups, which is rather uncommon for respiratory in-
fections [36,37]. This finding is possibly explained by the fact that,
with the rapid implementation of stringent lockdown, most transmis-
sions occurred in the context of households rather than of schools,
workplaces, or other settings, as supported by existing evidence [3]. In-
deed, analysis of 344 clusters in Guangdong and Sichuan provinces indi-
cated that 78-85% of clusters pertained to families [3]. This finding is
also supported by analysis of the contacts stratified by age in China
[23]. It is, however, important to highlight that while this finding may
apply to the China epidemic (given the lockdown measures that may
have limited all other transmission pathways such as in schools, work-
places or other settings), it may not necessarily be generalizable to
other settings, as existing evidence suggests strong age assortativeness
in the transmission dynamics of respiratory infections [36,37]. Indeed,
we recently observed strong age assortativeness when we modeled
the COVID-19 epidemic in Qatar [38].

The present study affirmed the impact and success of the drastic pre-
ventive measures in curtailing infection transmission. Ry was sharply re-
duced by 97% over a short duration (Fig. 5). At the beginning of the
epidemic, on average, each infected person had 0.6 infectious contacts
per day, that is each person passed the infection to 0.6 persons per
day (S2D Fig of SI). The rate of infectious contacts can be expressed
roughly as ¢ x p, where c is the number of “social” contacts conducive
to COVID-19 transmission per day and p is the transmission probability
of the virus in a single contact. While p is unknown, it is possibly in the
order of 1-5%, as suggested by contact tracing data from China—1-5% of
contacts were subsequently laboratory-confirmed as COVID-19 cases
[3]. This implies that, on average, each infected person had somewhere
between 10 and 60 contacts per day at the beginning of the epidemic,
but very few contacts after the lockdown. The latter further affirms
the role of the lockdown in severely cutting the contact rate, making
sustainable infection transmission very difficult. This finding demon-
strates how strong action by policymakers can have an immense impact
on limiting infection spread and sequelae.

This study has limitations. Model projections are contingent on the
quality and representativeness of the input data. For instance, we as-
sumed infection levels to be as officially documented, but evidence sug-
gested that many infections may have been undocumented [12]. Case
ascertainment could also be age dependent. The natural history of this
infection is not yet firmly established, and the case management proto-
cols have evolved over time [19,20]. Mortality data seem to suggest that
the standard of care improved over time especially in recent weeks
when the healthcare sector was no longer overwhelmed with a large
case load. We conducted this study using early epidemic data for one
specific country, but our knowledge of the epidemic has been rapidly
expanding, and thus an alternative broader view of the epidemiology
may emerge with accumulation of data. For example, differences in sus-
ceptibility among adults may not be as large as those estimated based
on China's early epidemic data. We used a deterministic compartmental
model, but this type of model may not be representative of the stochas-
tic transmission dynamics when the number of infections is small, such
as in the very early phase of the epidemic, thereby adding uncertainty to
our estimate for the day of outbreak emergence. Despite these
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limitations, our parsimonious model, tailored to the nature of available
data, was able to reproduce the COVID-19 epidemic as observed in
China, and provided insights about infection transmission and disease
progression in the population.

In conclusion, age appears to be a principal factor in explaining the
patterns of COVID-19 transmission dynamics in China. The biological
susceptibility to the infection seems limited among children, intermedi-
ate among young adults and those mid-age, but high among those
>50 years of age. There was no evidence for considerable differential
contact mixing by age, consistent with most transmission occurring in
households rather than in schools or workplaces. Further mathematical
modeling research is needed to understand the COVID-19 epidemics in
other countries, and to draw further inferences about the global epide-
miology of this infection.

Data availability

All data generated or analysed during this study are included in this
article and its Supplementary Material.
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